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ABSTRACT: Optimization of thermal transport across the interface of two different
materials is critical to micro-/nanoscale electronic, photonic, and phononic devices.
Although several examples of compositional intermixing at the interfaces having a
positive effect on interfacial thermal conductance (ITC) have been reported, an
optimum arrangement has not yet been determined because of the large number of
potential atomic configurations and the significant computational cost of evaluation. On
the other hand, computation-driven materials design efforts are rising in popularity and
importance. Yet, the scalability and transferability of machine learning models remain as
challenges in creating a complete pipeline for the simulation and analysis of large
molecular systems. In this work we present a scalable Bayesian optimization framework,
which leverages dynamic spawning of jobs through the Message Passing Interface (MPI)
to run multiple parallel molecular dynamics simulations within a parent MPI job to
optimize heat transfer at the silicon and aluminum (Si/Al) interface. We found a
maximum of 50% increase in the ITC when introducing a two-layer intermixed region
that consists of a higher percentage of Si. Because of the random nature of the intermixing, the magnitude of increase in the ITC
varies. We observed that both homogeneity/heterogeneity of the intermixing and the intrinsic stochastic nature of molecular
dynamics simulations account for the variance in ITC.
KEYWORDS: Bayesian optimization, molecular dynamics simulation, Si/Al interface, interatomic mixing, interfacial thermal conductance

1. INTRODUCTION
As the size of electronic devices decreases, controlling heat
transfer becomes a critical issue. For some devices such as
thermoelectrics, retention of heat is a desirable characteristic to
improve the figure-of-merit.1,2 In contrast, for the majority of
micro- and nanoscale devices as well as cryogenic detectors
and quantum information systems, heat dissipation is
important to maintain function.3,4 For nanoscale devices in
particular, when the surface-to-volume ratio is high, max-
imizing heat transfer across solid−solid interfaces is essential.
This corresponds to maximizing phonon transport across
interfaces. Hence, identifying ways to vary interfacial phonon
scattering that can lead to controlling the thermal conductivity
(Kapitza conductance) in nanosystems can provide necessary
insights for tailoring thermal performance in devices and
guidance for materials synthesis.5

In macroscopic devices, interfacial thermal transport
depends primarily on the interfacial structure and contact
areas (vibrational and lattice mismatch of the two materials are
nanoscale factors). At the atomic level, however, roughness at
the interface has been demonstrated to influence thermal
transport.5−11 Roughness can entail a wide range of
phenomena, including compositional intermixing, nanopattern-
ing, amorphous structures, and defects such as impurities,
vacancies, and dislocations. Typically, roughness at an interface

has been demonstrated to decrease thermal transport, both
experimentally5−7 and computationally.8−11 Hopkins and
colleagues used high-vacuum thin-sputter deposition to
demonstrate that at a Cr/Si boundary thermal conductivity
varies as a function of the thickness of the intermixing layer as
well as the rate of compositional change.6 Duda and Hopkins
found that chemical etching can be used to control roughness
between thin aluminum films and silicon substrates, and the
impact on thermal conductivity measured by time-domain
thermoreflectance was exponential with respect to the root-
mean-square roughness of the interface.7 In some computa-
tional models, Kapitza conductance was found to be reduced
by amorphous or disordered regions9 or by large mass
impurities.11 Other computational models, however, have
determined that the thermal conductance can be increased
by bridging the phonon mismatch between two materials. This
bridging can occur by several methods such as intermixing,12,13

introduction of impurity atoms of an intermediate mass,11,14 or
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deposition of an interfacial film with median properties.15

Increasing thermal conductance across an interface requires
precise control of the interfacial structure, which is becoming
increasingly attainable due to advanced synthetic methods such
as molecular beam epitaxy. Despite these examples of atomic
arrangements increasing thermal conductance, an optimum
arrangement has not yet been determined because of the large
number of potential atomic configurations and the significant
computational cost of evaluation.
With current technological advances in the field of machine

learning (ML) and computing science, the accessibility of ML
methods for molecular simulations has increased significantly
in the past decade.16−18 Despite the variety of ML tools that
have been applied to molecular simulation, there are still
significant challenges in creating a complete pipeline for the
simulation and analysis of atomistic systems. In particular,
improvements in scalability and transferability are necessary for
closing this gap, especially for large computational systems.
We developed an efficient and scalable framework to explore

a large number of atomistic configurations to optimize thermal
conductivity at the silicon and aluminum (Si/Al) interface.
Silicon and aluminum were chosen as the materials because of
their widespread use in micro- and nanoelectronics, detectors
for dark matter and high-energy physics,19 and resonator
applications in quantum computing devices.20 In addition,
high-quality Si/Al interfaces can be grown by using techniques
such as molecular beam epitaxy and ultrahigh-vacuum
evaporation, where the abruptness of the interface and degree
of intermixing can be controlled.21 Only phonon transport was
considered in this study as the interfacial electronic effects
either can be separated from phonons22,23 or can be neglected
in nanosized thin films.24 We used a single objective Bayesian
optimization technique to optimize heat transfer at the
semiconductor:metal interface by tuning the depth and
fraction of compositional intermixing. A Gaussian process-
based ML algorithm was used to search the configuration
space, and nonequilibrium molecular dynamics (NEMD)25

was used to evaluate the thermal conductance.26

Bayesian optimization has been used extensively to optimize
a scalar figure-of-merit or property of interest�such as
isotropic thermal conductance�when at any set of input
parameters the property remains uncertain and therefore can
only be known up to some distribution.27−29 The distribution
of the property as a function of the input parameter is termed
the response function. An upper confidence bound (UCB)30

approach is called for when the purpose is to identify a subset
of possible parameters that maximizes the response function.
However, it is computationally expensive to use molecular
dynamics (MD) simulations to estimate thermal conductance,
so a parallel batch sampling variation is developed for this
study in which several choices for the input parameters are
evaluated simultaneously in a high-performance computing
(HPC) environment. Typically, in statistical sampling, as the
number of parameters tested increases, the knowledge of the
thermal conductance distribution improves. A standard
learning rate is applied to the UCB cutoff so that as the
number of parameters tested increases, the level of confidence
in the UCB likewise increases, and the uncertainty in the
optimal material parameters decreases.

2. METHODOLOGY
2.1. Simulation Domain. MD is a powerful technique to

simulate heat transfer processes, as it intrinsically includes all

lattice vibrations with well-developed interatomic potentials. In
its classical limits, MD is an ideal method for predicting
thermal boundary resistance.31,32 We chose the Large-Scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package33 for integration with ML because of its high-
efficiency computation parallelization and high customizability.
We used the modified embedded atomic method (MEAM)
potential of Jelinek et al., which has been reported to
reproduce Al and Si properties with high accuracy for all
pairwise atomic interactions.34

2.1.1. System Setup. The schematic of the periodic
simulation cell is shown in Figure 1. The system consists of

hot/cold reservoirs and fixed boundaries at both ends to break
periodicity in the heat transfer direction, while maintaining
periodic boundary conditions in the y and z directions. The
reservoirs have the same composition and periodicity as the
sample. The sample region is defined as everything except for
the reservoirs and fixed boundary regions. The Si region is 30
unit cells in length (lattice constant aSi = 5.43 Å), and the Al
region is 45 unit cells in length (aAl = 4.05 Å). The two regions
are in contact with the mixing region that consists of 3 unit
cells of Al, forming a single interface parallel to the (100)
crystallographic plane. The cross-sectional area of the
simulation box, which is parallel to the interface, consists of
6 × 6 Si unit cells and 8 × 8 Al unit cells, such that the lattice
mismatch is small (0.56%) to minimize interfacial strain. As the
bulk of the materials were fully relaxed prior to NEMD
simulations, the straining effects are assumed to be negligible.
Therefore, we omit the investigation of straining effect on
interfacial thermal transport properties. The mixing region
bounds the optimization space to 6 atomic layers of Al, with
mixing ratio defined as the ratio of Si to Al. For an intermixing
arrangement of [l, r], where l is the mixing depth (atomic
layers) and r is the mixing ratio, the initial configuration is
produced by obtaining the indices of all Al atoms in the mixing
region l and randomly selecting r% of indices to replace the
atom type with Si atom. A unity mixing fraction means that all

Figure 1. Schematic of the simulation cell (top) and example of fitted
temperature profile (bottom). Solid lines are the fitting to actual data
points, and dashed lines are the extrapolation of the fitted lines. Each
point on the temperature profile is obtained through kinetic energy of
the group of atoms in a 1.1 nm cross-sectional bin in the heat transfer
direction averaged over the number of atoms in the bin over the data
collection period.
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atoms in the mixing region have been swapped from Al to Si
while still initially in an FCC configuration. The minimum
mixing fraction is set to 0.01 to ensure there are at least 1−2 Si
atoms intermixed into the Al structure, while the maximum
mixing fraction is set to 0.99 to ensure there are at least 1−2 Al
atoms present in the mixing region.
2.1.2. Direct Method. The NEMD heat transfer simulation

is set up by using the direct method,26 where a fixed amount of
energy Δϵ is added to atoms in the hot reservoir in the Si
substrate and the same energy is subtracted from atoms in the
cold reservoir in the Al substrate, creating a heat flux J = Δϵ/
AcΔt (Ac is the cross-sectional area; Δt is the time step of
MD). This establishes a temperature gradient in the system,
which when combined with knowledge of the energy transfer
rate enables us to compute the interfacial thermal conductance
(ITC) as the inverse of the Kapitza resistance:35

= =G
R

J
T

1

k (1)

where J is the heat flux (in W/m2) and ΔT is the interfacial
temperature gradient. The interface has a variable thickness
due to atomic intermixing; thus, we treat the maximum Si/Al
mixing region as the interfacial region and evaluate ΔT at its
boundaries, so that G can manifest all the influence from
intermixing and represent the overall thermal performance of
the system when the length is fixed. The method of applying
heat flux involves scaling the velocities of the atoms in each of
the reservoirs to add or remove a desired amount of kinetic
energy. We defined thickness of the reservoirs to consist of
four unit cells in each material such that a sufficient number of
atoms are present in the reservoirs, reducing the energy scaling
per atom.
2.1.3. Data Collection and Analysis. During MD

simulations, the sample and reservoirs are initially equilibrated
at a uniform temperature of 300 K by randomly generating the
atomic velocities according to a Gaussian distribution. This is
followed by a constant number of atoms, volume, and energy
(NVE, microcanonical) simulation, where a heat flux of 15.1
GW/m2 is applied. The magnitude of the heat flux is large
enough to create a distinct temperature profile along the
substrate without developing nonlinearities throughout the
sample due to the temperature dependence of the thermal
conductivity.13 Immediately after the heat flux is applied, the
simulation runs for a period of 4 ns with 1 fs timesteps (4
million steps) to allow the sample to reach a steady-state
condition. Atomic energies are then collected at every time
step for an additional 2 ns (2 million steps), which are
averaged to obtain the temperature profile along the x-axis.
Considering that the mixing regions of the systems have
different thicknesses, the temperature change at the interface is
evaluated by extrapolating the linear part of the temperature
profile in each material to the interface, where ΔT is taken as
the difference of the two values, as shown in Figure 1b. We
found that the distribution of temperature drops across the
mixing region was sensitive to the choice of regions supporting
each linear fit. From a preliminary data set, the end points for
each linear region were optimized to ensure the fitting function
works for all the systems with various intermixing arrange-
ments while maintaining the quality of the linear fit (with R2 ≥
0.98). For a given heat flux, the change in the ITC is
monitored by keeping track of ΔT.
2.1.4. Uncertainty in MD Simulations. Small deviations can

have large effects during high-throughput optimization over a

large sample space. With randomness and uncertainties in MD
simulations, assessing the uncertainty upfront is important.
Previous studies have demonstrated that the MD-predicted
thermal boundary resistance (Rk) depends on the size of the
system Ls, where Ls = LL + Lmix + LR, and the thermal reservoir
(Lres) used in the simulation.13,26,32 Therefore, we kept Ls and
Lres constant over all simulations. We indeed found that Ls
changes slightly during the simulation with varying intermixing
depth and percentage. However, the magnitude of this change
is <0.5% in all cases, which is sufficiently small and can be
neglected. The size dependence of Rk on Ls, which in principle
can only be eliminated when the system is infinitely large, still
exists and can potentially affect the optimization of
intermixing. According to the study of Schelling et al., for
the same interface there is a linear correlation between Rk and
1/Ls;

26 thus, it was expected that in our systems, each distinct
intermixing ratio or pattern warrants a new interface with a
different linear correlation. However, by conducting a
convergence study we find that the linear correlation is
consistent for the same intermixing ratio and region regardless
of the random atomic arrangement (Figure S1). Therefore,
linear extrapolation can still be applied to extend our results to
systems of varied lengths. Still, a convergence study is needed
for the size effect on the optimization of intermixing, which is
introduced in the Results section.
Significant progress in simulation methodology and

computing power has enabled simulations of increasingly
large systems and long time scales.16−18,36,37 However, the
accuracy of these simulations in predicting physical observables
remains variable and relies on both accurate energy functions
and effective sampling. With accurate energy functions,
adequate sampling of a desired phase space is essential in
achieving low associated error of estimated thermodynamic
and kinetic properties. Simulations generally consist of
equilibration and production phases, where the systems evolve
during equilibration to be representative of the desired
ensemble before data are collected during production run to
derive physical properties. It is necessary to thoroughly
investigate the effect of equilibration and data collection
periods to determine the appropriate time scale to ensure both
the accuracy and efficiency of the simulations while comparing
the results of independent MD in a self-consistent manner. To
isolate the effect of intermixing, both pristine and intermixed
interfaces are examined in this particular study. We chose 15
different combinations of [τss, τav] to examine the sensitivity of
ITC to the simulation time, where τss is the time allowed for
the temperature to reach steady state after introducing the heat
flux and τav is the time used for collecting and averaging atomic
energies to obtain the temperature profiles.

2.2. Machine Learning Domain. 2.2.1. Bayesian Opti-
mization. Bayesian optimization is a sample-efficient and
gradient-free approach to global optimization black-box
functions. The goal of this technique is to bound the maxima
of the random objective function, f(x;ξ) (where ξ represents
the random input upon which f depends) by using the fewest
number of samples that satisfy the accuracy requirement or the
computational budget.29,38,39

Bayesian optimization40 consists of two main components:
(1) a Bayesian statistical model for modeling the objective
function and (2) an acquisition function to decide the next
point to sample. The statistical model provides a Bayesian
posterior probability distribution that describes potential
values for x at a candidate point x. Each time we observe f
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at a new point, this posterior distribution is updated. The
acquisition function measures the value that would be
generated by evaluation of the objective function at a new
point x based on the current posterior distribution over f.
The Gaussian process (GP) is a generalization of the

Gaussian probability distribution. It is a convenient and
powerful prior distribution on functions and are used in
majority of the Bayesian optimization work. GPs are defined by
their mean (m) and covariance/kernel functions (k(xi,xj)). m
is almost always assumed a constant value (often assumed 0)
which simplifies the necessary equations for conditioning. We
parametrized the covariance kernel as a composite of a two-
dimensional radial basis function and added a white noise
kernel to account for the noise from MD simulations.
Specifically
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Here we define C as a constant term, d = xi − xj, and li is the
parameter that sets the characteristic length scale of the
process for each dimension.
The second component of Bayesian optimization is an

acquisition function, which defines how to explore/exploit the
parameter space for a defined figure-of-merit. Normally, the
high values of acquisition functions correspond to potentially
high values of the objective function, whether for high
predicted mean value, the greater uncertainty, or both.41 The
upper confidence bound (UCB) is a popular acquisition
function; it calculates the most optimistic improvement at a
given point, weighted by a scalar multiplier, β, of the noise
estimation, as follows:

= +x x xUCB( ) ( ) ( ) (3)

The value of β balances between exploiting the supposed
location of the maximum where the posterior mean μ(x) is
high and exploring uncertain regions where the posterior
variance σ(x) is high. In sequential optimization, argmax
UCB(x) is then taken as the next sampling point. Because the
time-consuming nature of the MD simulations necessitates
batch evaluation to achieve optimization within a reasonable
time frame, we implemented a quantile-based adaptive
sampling algorithm based on UCB, as described in Algorithm
1, to select a batch of sampling points. As opposed to using the
maximum UCB value to determine the next sampling point, we
randomly sampled a batch of test points from the quantile of
the GP above the UCB, hereafter called the quantile region. As
the optimization proceeds, we restrict the quantile region
further to the upper P percent of heat transfer rate values, 1/
ΔT, in the quantile region by evaluating the threshold ,
which is the lower bound on the heat transfer rate value in this
restricted region. Considering higher variance in ΔT values
acquired from the MD simulations for the intermixed cases, β
= 5 is taken to ensure the GP regions with high uncertainties
are not excluded from the reduced sampling region at the
earlier stage of the optimization.
2.2.2. MPI Assisted Parallel Optimization Framework.

Although Bayesian optimization is an efficient technique, the
computational cost of MD is still comparatively high. To
accelerate the exploration/exploitation process, we developed a
Message Passing Interface (MPI) based framework that can
execute multiple concurrent LAMMPS simulations and update

a central Bayesian optimization model, as shown in Figure 2.
Child processes are created with the MPI spawning function.

The spawned processes have their own MPI_COMM_-
WORLD consisting of identical copies of the MPI program
specified by the command, and in addition they have a
predefined intercommunicator MPI_COMM_PARENT.42

The open-source Python library OpenAI Gym43 is used in
this work for creating environment instances and interacting
with them. It provides a standard application programming
interface to communicate between Bayesian optimization
algorithm and the environment in which sampling points are
queried by building the intermixing structure, obtaining
temperature profile with LAMMPS and performing post-
simulation analyses to evaluate ΔT. A more detailed
description of the OpenAI Gym environment is included in
the Supporting Information.

3. RESULTS AND DISCUSSION
As detailed in the methodology section, we used a GP model
as the probabilistic surrogate for the black-box objective
function we seek to optimize which describes the relationship
between intermixing and ITC. ITC is calculated as G = J/ΔT.
For systems with mixing regions no larger than two atomic
layers, we obtained ITC between 0.35 and 0.48 GW/(m2 K),
which falls in the range predicted by mismatch models and

Figure 2. Schematic diagram of the MPI-based framework used to
achieve batch optimization. Each of the child processes is initiated
with MPI_SPAWN and interfaces with LAMMPS by using the
OpenAI gym environment.
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similar simulations.44 These theoretical values are higher than
experimental measurements,45 likely due to the ideal
conditions in simulations without oxidation. In addition to
the idealized interfaces, the choice of the interatomic potentials
as well as the finite system size effect can also lead to the
discrepancy between experiment and simulations. Because we
fixed the heat flux J for all systems, we defined the figure-of-
merit for the optimization as the inverse of the temperature
drop across the interface, 1/ΔT, which is used as an analogue
for thermal conductivity. Snapshots of the GP-UCB hypersur-
face throughout the optimization are shown in Figure 3.

Throughout the optimization, the shape of the GP hypersur-
face evolves and converges while the quantile region continues
to shrink with each iteration. A batch of 10 sampling points
selected from the evolving quantile region is evaluated (with
NEMD simulation) per iteration to accelerate the exploration/
exploitation process. Resulting 1/ΔT values obtained from
these simulations show large variance especially at early
iterations of the optimization, as shown in Figure S2a, due to
the fact that we are evaluating the points in the quantile region
with low a quantile threshold value. With each iteration of the
optimization, as the quantile region shrinks, points with higher
predicted GP values are evaluated, and the mean 1/ΔT value
of the batch also increases. The GP predicted maximum 1/ΔT
values for each iteration plotted in Figure S2b show the
convergence of the GP model only after six iterations with
minimal variance. A convergence study shows that optimiza-
tions of systems with different lengths tend to reach the same
intermixing percentile region (Figure S3). This, together with
the applicability of linear extrapolation of our results, suggests
that our current data set is capable of representing a wider
range of Si/Al systems of varying lengths. In the following
paragraphs we will look into the sources of the large variance
from MD data and discuss the significance of the intrinsic
uncertainties to the model training and evaluation.
A snapshot comparison of three mixing profiles (pristine,

optimal, and negative impact) is shown in Figure 4. The results
from the optimization scan show that the ITC increases by as
much as 50% relative to the pristine interface with a mixing
region of two atomic layers at 93% intermixing. Previous work
based on the atomistic Green’s function has demonstrated that
interfacial atomic intermixing can enhance the elastic phonon
transmission by providing a region with bridging phonon
density of states that overlaps with both materials, thus
increasing the ITC,12 while more recent work based on
classical MD suggests that enhanced inelastic phonon transport
contributes significantly at such deformed interfaces.46 We
attribute the ITC enhancement in our study to both factors,
considering the similarity between our modeling environment
and that of Lu et al.46 However, further increasing the size of
the mixing region beyond the apex values reduces the ITC.
This can be explained by increased Anderson localization in

Figure 3. Illustration of the GP-UCB surface evolution throughout
the optimization. The contours indicate the topography of the GP-
UCB surface in terms of the heat transfer rate, 1/ΔT. The shaded
region is the quantile region at a given epoch, which shrinks during
optimization as the learning rate forces P to decrease (called
“percentile” in each subplot) and consequently the heat transfer rate
threshold to increase.

Figure 4. Temperature profiles of three interfacial mixing configurations: (a) pristine interface, (b) two-layer intermixing at 93%, and (c) six-layer
intermixing at 50%.
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the disordered mixing region,47,48 which negates the increase
introduced by enhanced elastic and inelastic phonon transport.
It is noteworthy that even with 50% increase, the ITC does not
reach the value predicted by the acoustic mismatch model.44

A 50% increase of the ITC, despite the significance, is not
always guaranteed. This can be attributed to two factors. One
is the intrinsic errors from the MD simulations which can be
minimized but cannot be eliminated. The other is the random
positioning of the intermixed atoms leading to different
intermixed structures for the same intermixing length and
ratio. NEMD is a powerful technique to simulate heat transfer
processes. Still, no single method is perfect. With systematic
and random sources of errors accruing in MD simulations,
assessing the uncertainties is important to support active-
learning strategies. In our work, we carefully evaluated the
system design, parametrization, and analysis of simulation
result to minimize the variation in the results to be less than
the quantity of interest. As stated in the Setup section, with
length of the system and thermal reservoir kept constant over
all simulations, resulting ITCs are directly comparable.
Simulation duration is another important parameter. We
examined 15 different combinations of [τss, τav] for both
pristine and intermixed structures, and the distributions of the
resulting ΔT values are plotted in Figure 5. An additional
figure with different ordering (varying τav for τss) is included in
the Supporting Information (Figure S4).

The relative variance (variance divided by mean) of ΔT
ranges from 0.27% to 4.0% for the pristine interface and 1.69%
to 4.72% for the intermixed cases. A detailed statistical
description of each entry is listed in the Supporting
Information (Table S1). For a fixed τss, the variance of ΔT
decreases with increasing data collection time τav. In theory,
the uncertainties can be reduced to a certain degree (the
intrinsic uncertainty of MD from its stochastic nature) with
increased computational time. However, this increases the cost
of the simulation significantly and the low cost-effectiveness
destroys the ML workflow. For our system, each additional
nanosecond of NVE integration adds ∼256 core hours to the
simulation. Increasing the [τss, τav] from [4 ns, 2 ns] to [4 ns, 8
ns] doubles the computational cost from ∼1700 to ∼3400 core
hours, while lowering the relative variance roughly from 1.37%

to 0.27% for the pristine interface and only from 2.21% to
1.82% for the intermixed case. Considering the trade-off
between computational cost and accuracy, and that each data
point requires a separate MD simulation, we equilibrate the
systems for 4 ns before collecting data for an additional 2 ns to
calculate the temperature gradient.
Comparing the pristine interface with the intermixed, we

observed greater variance in ΔT for the intermixed cases.
Because the positions of the swapped atoms in the intermixing
layers are assigned randomly when generating the intermixed
structure, homogeneity/heterogeneity of the intermixed region
is not controlled. Lu et al.46 also found the distribution of
disorder to affect the ITC. Swapping atoms at the boundary
layer rather than in layers further from the interface improves
ITC enhancement, as this provides better atomic intermixing
and more inelastic scattering sites at the interface. Introducing
changes away from the interface has a reduced effect on ITC
and introduces extra inelastic scattering in the bulk phase of
the material, which hinders phonon transport.46 It is important
to highlight that despite the greater variation in results, there is
no overlap between the temperature gradients of intermixed
versus pristine interfaces, clearly indicating the improvement of
thermal conductivity with intermixing. We note that the
percentage of enhancement also depends on the total length of
the system, as is indicated by the size effect on ITC (Figure
S1); thus, a 50% increase is not guaranteed for systems of sizes
other than those used in this study.

4. CONCLUSIONS
This study highlights the advantages of Bayesian optimization
technique with built-in uncertainties leveraging the errors from
MD to yield statistically robust and reproducible results. We
pushed the model to explore more in the higher confidence
region using an adaptive quantile-based confidence interval
approach (1) to prevent early lock-in on local maxima, (2) to
increase the confidence in the result, and (3) to generate
multiple nonoverlapping plausible query points to expedite the
optimization. Parallel evaluation of candidate structures with
MD simulations, made possible by dynamic spawning of jobs
through the Message Passing Interface (MPI), ensured viability
of optimization within a reasonable time frame. This
framework�seamlessly incorporating MD simulations with
ML algorithms�is easily transferrable to any system with well-
developed interatomic potentials. The GP model suggests that
the ITC of the Si/Al junction can be enhanced by introducing
an intermixed region that consists of three or fewer atomic
layers containing 80% or higher ratio of Si. Further extending
the intermixing region increases Anderson localization in the
disordered mixing region and negatively impacts the ITC.
Because of the random nature of intermixing, the magnitude of
increase in the ITC varies. Further efforts are ongoing to better
understand the relationship between ITC and distribution of
the intermixing.
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of the uncertainty analysis result with different ordering
(varying τav for τss), and a table containing the statistical
descriptions of the uncertainty analysis result (PDF)
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