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Abstract

Stellar variability is a limiting factor for planet detection and characterization, particularly around active M-type
stars. Here we revisit one of the most active stars from the Kepler mission, the M4 star GJ 1243, and use a sample
of 414 flare events from 11 months of 1-minute cadence light curves to study the empirical morphology of white-
light stellar flares. We use a Gaussian process detrending technique to account for the underlying starspots. We
present an improved analytic, continuous flare template that is generated by stacking the flares onto a scaled time
and amplitude and uses a Markov Chain Monte Carlo analysis to fit the model. Our model is defined using classical
flare events but can also be used to model complex, multipeaked flare events. We demonstrate the utility of our
model using TESS data at the 10-minute, 2-minute, and 20 s cadence modes. Our new flare model code is made

publicly available on GitHub.’

Unified Astronomy Thesaurus concepts: M dwarf stars (982); Stellar flares (1603); Starspots (1572)

Supporting material: machine-readable table

1. Introduction

Stellar flares are energetic events that occur on the surface of
stars and are a result of the reconnection of magnetic field lines
(Benz 2008). They are believed to share a common underlying
physical formation mechanism and have been observed on all
types of main-sequence stars that have outer convection
envelopes (Pettersen 1989). For instance, there is evidence of
flaring on low-mass stars (e.g., Lacy et al. 1976; Pazzani &
Rodono 1981; Doyle et al. 1990; Panagi & Andrews 1995), on
RS CVn stars (e.g., Osten & Brown 1999), and on the Sun
(e.g., Pearce & Harrison 1990). On the Sun, we see how the
variety of magnetic activity from large-scale surface events
such as spots, coronal mass ejections (CMEs), and flares gives
rise to significant photometric variations (Carrington 1859).
From the Sun, we expect flares to occur near active regions on
a star (Benz & Giidel 2010). However, not all stars follow this
behavior; the M-type star GJ 1243 is an example of a star that
has flare events happening all over the surface of the star with
no significant correlation to the starspot phase (Hawley et al.
2014). Several studies have argued that this is because the spot
coverage on young active stars is 80% or greater (Gully-
Santiago et al. 2017; Feinstein et al. 2020). Meanwhile, for
fully convective stars it has been shown that flares may occur at
very high latitudes because magnetic fields are emerging close
to the stellar rotational poles (Ilin et al. 2021). Since the polar
regions are always visible, unless the inclination is 90°, we can
observe the flare events. The ubiquity of flares present among
low-mass stars motivates further study of their flare frequencies
and morphologies.

> hutps: //github.com/lupitatovar/Llamaradas-Estelares

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Stellar magnetic activity has long influenced our ability to
detect and characterize extrasolar planetary systems. For
instance, in the case of the flare star AU Mic, a flare event
occurred at the same time that the planet AU Mic b was
transiting (Plavchan et al. 2020). The flare was masked out,
which caused greater uncertainty in the transit ingress/egress
profile. In addition to detectability, many teams have shown that
strong magnetic activity (i.e., flares and CMEs) can affect
planetary atmospheres (e.g., Segura et al. 2010; Vida et al. 2016;
Tilley et al. 2019) and thus influence potential habitability by
causing runaway greenhouse effects (Shields et al. 2016),
atmospheric erosion (Lammer et al. 2007), and hydrodynamic
escape of atmospheres (Luger et al. 2015). By better under-
standing the temporal evolution or light-curve morphology of
flares on active M-type stars, we can help improve exoplanet
detection and characterization (Gilbert et al. 2021).

The Kepler space telescope has provided long-duration,
high-precision, optical light curves that are advantageous for
studying stellar variability phenomena (Borucki et al. 2010).
Many catalogs of flares have been created from the Kepler data
(e.g., Hawley et al. 2014; Davenport 2016; Martinez et al.
2019). The catalogs have been useful tools to aid in our ability
to understand and model these stellar energetic events.

While it is generally understood that flares share a common
physical origin (e.g., Benz 2008), there are many different
parameterizations that have been used to describe what we see
during flare events. Previous studies modeled flares using single
exponential profiles, fast rise exponential decay (FRED) profiles,
or combinations of a Gaussian plus an exponential (e.g.,
Walkowicz et al. 2011; Loyd & France 2014). However, these
models ignore the two-phase cooling decay that is typically
observed during flare events (e.g., Andrews 1965; Hilton 2011;
Davenport et al. 2014). More recently, many have studied the
morphology of flares from white-light flare profiles that have
impulsive and gradual phases (Kowalski et al. 2013), as well as
possible quasi-periodic oscillations during flare events (e.g., Pugh
et al. 2015). In addition, higher-cadence observations have
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resolved the flare peaks and found that they roll over, emphasizing
the need for a continuous model that does not have break points
between the rise and decay phases (e.g., Kowalski et al. 2016;
Jackman et al. 2018, 2019; Howard & MacGregor 2022).

Davenport et al. (2014, hereafter D14) used Kepler short-
cadence data from data release 23 (DR23) of GJ 1243 to
understand the characteristics of flare light curves and found
that when many flares are averaged together a median flare
template can be generated. This has proved to be very useful
for modeling flare light curves from a variety of surveys (e.g.,
Schmidt et al. 2019) and has helped with modeling transits in
the presence of flares (e.g., Luger et al. 2017). However, this
flare template has some major limitations. The D14 model used
a piecewise function to parameterize the flare shape, which
causes a discontinuity at the peak of a given flare event. The
model used the peak time and amplitude as two of the
parameters, which are very sensitive to scaling effects. Finally,
this model used a local smoothing function to detrend the
underlying starspots around the flares. This approach is not as
robust as new statistical methods, such as Gaussian process
(GP) regression (Rasmussen & Williams 2006), which also
provides the uncertainties of the starspot profile.

In this paper, we derive an updated analytic and continuous
flare model to parameterize white-light flare events that
addresses the limitations of previous models. We start by
considering the model introduced in Jackman et al. (2018),
which uses the parameterization from Gryciuk et al. (2017) and
provides a template for modeling flares. This model is
continuous, but it is only derived from a small number of
individual flares. To address the small number of flares, we use
a vetted version of the D14 flare catalog to derive an updated
template. Thanks to improvements in Kepler light-curve
processing, updates to statistical techniques that allow us to
detrend starspots, new parameterizations, and a newly vetted
data set, we are now able to address the limitations of the D14
flare template. We present the details of the updated flare model
below and also make the code readily available on GitHub
(https://github.com /lupitatovar/Llamaradas-Estelares).

The outline of the paper is as follows: In Section 2, we revisit
the GJ 1243 flare sample from Kepler data. In Section 3, we
describe starspot detrending using GP regression. Using the
flare sample and starspot detrending, we reproduce the original
flare template in D14. In Section 4, we introduce a new analytic
flare model adapted from Jackman et al. (2018) and compare to
other analytical models. Then, in Section 5, we present a new
method for constructing the flare template that further addresses
some of the limitations present in D14. In Section 6, we explain
the model fitting procedure and analysis. Next, Section 7
explores various applications of this new model. We conclude
with a discussion of the implications of our study and the
promising future for stellar activity studies that combine Kepler
and TESS data in Section 8.

2. Defining the Flare Sample

For this study, we revisit GJ 1243 (KIC 9726699), one of the
benchmark stars for space-based flare studies (Hawley et al.
2014). This dM4e star is the most active flare star in the Kepler
field. The high level of activity observed on the star is directly
correlated to its young age of 30-50 Myr (Silverberg et al.
2016). GJ 1243 has a luminosity of log Lge, = 30.68 £ 0.04
erg s~ ' in the Kepler bandpass (Davenport et al. 2020), an
estimated effective temperature of 2661 K, and an estimated

Mendoza et al.

mass of 0.094 M., (NASA Exoplanet Archive 2016). We used
11 months of the PDCSAP_FLUX (Smith et al. 2012), 1-minute
short-cadence light curves from Kepler Data Release 25° and
required that the Quality flag be set to O to minimize the
number of errors from spacecraft events. The Kepler short-
cadence data were released in months, as opposed to the long-
cadence data, which were released in quarters (1 quarter = 3
months). Therefore, we stitched 11 months of data together in
order to create one light curve. We accounted for the quarterly
discontinuities by taking the median of the fluxes across each
of the months of data and then normalized the light curve by
dividing by the total median.

We use the GJ 1243 flare sample from D14 to study the
morphology of white-light flares. To create the sample, D14
developed an IDL tool, Flares By EYE (FBEYE), that ran a
smoothing and auto-finding algorithm to identify candidate
flares. Users would then manually analyze the light curve to
verify and classify flares. The final sample contained 6107 flare
events, which is the largest flare sample for a single star to date.

Since the D14 study, there has been a new Kepler data release
(DR25). DR25 included improvements in light-curve processing,
which altered the classifications of previously identified flare
events. For instance, some flare events in DR23 that were used
in D14 now appear to be within the 3¢ noise limit and/or now
appear to be complex events in DR25. We manually inspected all
885 classical flares defined in D14 with the new DR25 light
curves. The new DR25 data had 379 flares that were reclassified
as complex flare events, as well as smaller flare events that were
within the noise limit. These flares were removed from our sample
since, as in D14, we are only using classical (single-peak) flare
events to derive the flare template. Furthermore, we only used
classical flares that had a total duration of at least 20 minutes and
omitted any flares whose duration was longer than 75 minutes,
since these flares have a higher likelihood of being complex
events as found in D14. This yielded a total of 414 classical flare
events that were used to construct the flare template, compared to
885 flares used in D14. The main reason for the discrepancy has
to do with the different data releases used for each study. The new
vetted flare list provides a cleaner sample of classical flares that is
then used to derive our updated flare template.

3. Modeling Starspot Variability

In the GJ 1243 light curve, we observe modulations that
indicate the presence of two primary groups of long-lived
starspots (Davenport et al. 2020). It has been shown that
complex spot patterns can create nonsinusoidal variations as
they rotate in and out of view (Angus et al. 2018). The
evolution of such active regions, combined with differential
rotation on the star’s surface, can create quasi-periodic signals
(Dumusque et al. 2011). Therefore, a strictly periodic model is
not a robust or realistic model to use to account for the time
series variations. Instead, we need a model that is flexible
enough to capture the evolving quasi-periodic behavior that is
present.

3.1. Gaussian Process Regression

GPs are powerful models that allow us to make predictions
about our data even when we do not know the functional form
of the model. GPs fit the correlation between points and are

© hitps: //archive.stsci.edu /kepler/release_notes /release_notes25 /KSCI-
19065-002DRN25.pdf


https://github.com/lupitatovar/Llamaradas-Estelares
https://archive.stsci.edu/kepler/release_notes/release_notes25/KSCI-19065-002DRN25.pdf
https://archive.stsci.edu/kepler/release_notes/release_notes25/KSCI-19065-002DRN25.pdf

THE ASTRONOMICAL JOURNAL, 164:17 (12pp), 2022 July

1.06

5

[

= 1.04

(0]

N

©

£ 1.02—)*«\\ ol

= \ » \\ J\
1.001 e i R WP

545.0 5452 5454  545.6  545.8  546.0

Mendoza et al.

\‘ it v
\ A\ W, | /
NI, Jot’ \ thesis”’
1251.0 1251.2 12514 1251.6 1251.8  1252.0

Time - 2457000 [BKJD days]

Figure 1. Two days of GJ 1243 Kepler 1-minute observations are shown in blue. The identified classical flares (red), the GP mean (orange), and variance are all
overlaid. Left: we identified three classical flares during this window. Right: we identified two classical flares that were used to derive the flare model. Note that there
are two complex flares (gray), one in each panel, but these were not used to construct the flare template. To accurately model the underlying starspot modulations, we
masked out all flares that allowed the GP to model the starspot variability without being skewed by frequent flaring events. Therefore, we expect the GP to have the

highest variance in areas where flares are occurring.

defined by a mean function and a covariance matrix
(Rasmussen & Williams 2006). In astrophysics, GPs have
been used as a model for stochastic variability in light curves of
stars and to model instrumental systematics (e.g., Kipping 2012;
Haywood et al. 2014; Barclay et al. 2015; Angus et al. 2018;
Barros et al. 2020). In the case of stellar variability, GP kernels
can be defined to accurately model the photometric variability
and temporal evolution of starspot groups. Here we use a GP to
improve the detrending of GJ 1243’s starspots. In addition, GPs
provide the variance of the modulation, which allows us to
include the uncertainty resulting from this starspot detrending
into our flare model. We can also use the linear component of
the GP to account for the monthly variations in the data.

D14 used a local spot detrending technique to subtract the
starspot features around each flare event. Their approach used a
custom smoothing function to smooth the light curve, and any
data that were more than 1o away from the defined boxcar
kernel were removed. The resulting light curve was then fit
using a cubic spline, and the starspot curve was subtracted from
the original light curve. While this approach allows for a quick
way of identifying flares in the presence of spots, the resulting
starspot model can still have contaminant flares present,
causing us to miss the curvature of the starspot modulation
happening under the flare. This is important to highlight
because the starspot model is what gets subtracted from the
original light curve, which then is used to identify the flares that
are used to construct the flare template. Therefore, if the
underlying starspot variability is not accurately modeled, there
is no quantitative uncertainty that can be included into the flare
model.

Here we use a GP for the starspot detrending. The GP was
applied to each of the individual 11 months of data to model
the underlying variability caused by starspots. Specifically, we
use the stochastically driven, damped simple harmonic
oscillator described in Foreman-Mackey (2018) as the kernel
to model the variability. In general terms, the kernel is the
equation that defines the correlation between the given points
and is chosen by the user to then define the covariance matrix.
We note that newer kernels such as those described in Gordon
et al. (2020) include additional terms that account for various
noise components that are particularly useful for improving
measurements of stellar rotation or transit parameters. How-
ever, for our case, the simple harmonic oscillator kernel is
suitable for describing the correlated noise since the shape of

the starspot evolves over timescales much longer than flares,
and thus the choice of kernel should not have a significant
impact on our results. The initial parameters used for the GP
follow those described in Foreman-Mackey (2018), where
0=0.01 and w = 2T We use a rotation period of 0.59 days,

which was measured from light-curve modulations of the
starspots (Savanov & Dmitrienko 2011) and again with
ground-based data by Irwin et al. (2011). The kernel parameters
were optimized by maximizing the likelihood over each month
of Kepler data.

To ensure that the GP was not skewed by the frequent flaring
events, we masked out all of the flares (classical and complex)
present in the data. To account for any flare events that might
have been cut off (i.e., flares with long decay phases), we added
a buffer of 0.25 X fg.. to the start time and 0.5 X fq,. to the
stop times of each flare defined in D14, where #g,, refers to the
duration of the flare event. The result was a mean GP model
describing the starspot variability for GJ 1243, with the
corresponding variance of the model as highlighted in Figure 1.
The variance envelopes (i.e., areas where the model has the
highest uncertainty) correspond to places where flare events
have been masked out, which is what we expect. The larger
flares give rise to a higher GP error and are also more evident
because they have a longer duration. However, even in the
presence of large complex flares, we can still see the substantial
curvature of the starspot modulation traced by the GP. In areas
where small flares occur, the GP variance is significantly
smaller.

4. Continuous Flare Model

Flares share a common underlying formation mechanism;
therefore, a time-dependent profile can be derived to model the
observed flare morphology, as shown in D14. The median flare
template can be described by an analytic function. To improve
on the flare profile from D14, we use the convolution of a
Gaussian and a double exponential to model the morphology of
the flares as shown in Jackman (2020). This improves on the
work of Gryciuk et al. (2017), who fit data of X-ray solar flares
using the convolution of a Gaussian and a single exponential.
Both approaches avoid the sharp flare peak (discontinuity) that
is present in the D14 model.
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Mathematically, the flare profile, f(¢), is defined as

fo=[" g@ht - ax (1)

The Gaussian term, g(x), accounts for the impulsive heating
that occurs during the rise phase of the flare, which has been
used to model solar flares (Aschwanden et al. 1998), and takes
the form

o) = A ). 2)

Meanwhile, the double exponential, A(x), accounts for the
rapid and gradual cooling phases of the flare event that are
described in D14:

h(x) = FeCP + Fe=P29), 3)

By taking the convolution of these two functions, we can
account for the heating and cooling processes happening during
each flare. Therefore, the updated flare template is based on a
continuous function,

f@zﬁ?§
(Fih(t, B, C, Dy) + F2h(t, B, C, D)), 4)

where
h(t, B, C, D) = e*Dt+(g+%)2

xerfc(B — ! + DTC),

)

where erfc(f) is the complementary error function defined as
1-erf(#). The error function is commonly used in statistics and is
defined as erf(r) = % f exp(—s2)ds. It is available in the

SciPy package (scipy.special.erf) for numerical
evaluation.

The complete formula, f(¢), depends on the values of eight
parameters that help define the overall flare shape. These are

t = relative time;

A = amplitude;

B = position of the peak of the flare;

C = Gaussian heating timescale;

D, = rapid cooling phase timescale;

D, = slow cooling phase timescale; and

F, = 1 — Fy, which describe the relative importance of the
exponential cooling terms.

We note that the limits of integration in Equation (1) are
different from those in Gryciuk et al. (2017). Here we evaluate
the model from —oo < x < ¢ to correct for the fact that Gaussian
functions are defined from —oo < x < co. This mathematical
correction also helped account for the divergent behavior that
was present with the previous parameterization implemented in
Jackman (2020).

4.1. Comparing Flare Model Parameterizations

Fitting a continuous flare model to photometric observations
gives us the ability to parameterize flare events. The
convolution of a Gaussian and a single exponential template
has been used to model flares and other explosive events such
as supernovae (Papadogiannakis et al. 2019). Many of these
events have a characteristic FRED profile. A single exponential
decay model has been used frequently, especially while
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Figure 2. Comparison of the piecewise flare template from D14 (black curve)
and the initial version of our continuous flare model (blue curve). For reference,
we show the full 885-flare sample stacked using the D14 procedure (gray
points), which produces significant scatter in flux from forcing each flare to a
peak of exactly 1. We also note the aliasing from improperly estimating the
FWHM for short-duration events (vertical bands) from the 1-minute cadence
Kepler data.

searching for flares among large catalogs (e.g., Walkowicz
et al. 2011; Loyd & France 2014). While this model accounts
for the heating phase, it does not accurately model the decay
phase of flare events. A two-phase cooling profile for flares on
M-type stars was proposed by Andrews (1965), which
consisted of a sharp linear decline followed by an inverse
square shape. The decay phase was later parameterized
observationally by Hilton (2011) with an initial linear decline
and exponential profile. Spectroscopic analyses by Kowalski
et al. (2013) also found emission components that suggest that
there are two distinct regions during the flare decay: one that
cools more rapidly, and another that cools more slowly. More
recently, D14 used a double exponential to model the thermal
and nonthermal cooling processes happening during the decay
of stellar flares.

The convolution of a Gaussian and a double exponential has
been shown to more accurately represent the heating and two-
phase cooling processes that occur during flare events (e.g.,
Jackman et al. 2018, 2019). Physically, we get a continuous
and analytic model that allows us to parameterize classical,
single-peaked flare events and later decompose complex events
into a series of classical events as seen in D14. Figure 2 shows
the comparison between the D14 flare template and our new
template. In comparison to the D14 piecewise model, the
updated analytic model does a better job at modeling the peak
of the flare events and does not pin each flare to a relative peak
flux of 1. By using the new parameterization, updated
detrending, and new starspot modeling techniques, the updated
flare model greatly improves our ability to parameterize flare
events.

5. Stacking the Flares

Following the work of D14, we stacked all of the classical
flare events onto a common time and flux axis to construct the
flare template. The large sample of flares helps us achieve fine
sampling. For instance, if the typical flare event is about 30
minutes long, we can get less than 1 s resolution by stacking
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hundreds of flares onto each other. By stacking the flares, we
get higher sensitivity to short-timescale features.

We start by replicating the stacking procedure from D14. For
each of the flares we first subtract off the starspot modulations
from the mean GP, described in Section 3.1. Once the
continuum is subtracted, we divide each flare by the maximum
flux (peak) within each event. Each flare was therefore
normalized to a relative flux scale between O (before and after
the flare occurs) and 1 (peak flux). Each flare was also set to a
relative timescale. To account for the rapid rise and decay
phases, we linearly interpolated each flare to a time resolution
that was 10 times higher to yield a more accurate value of the
full time width at half the maximum of the flux (FWHM), also
known as t, 5 in previous studies (Kowalski et al. 2013). This
allowed us to reproduce the same flare stack that D14 created
(see Figure 2), which was based on three free parameters: peak
time, scale time, and amplitude.

However, the stacking procedure used in D14 has a number
of limitations. One major limitation is that all of the flares were
pinned at an infinitesimal peak of exactly 1. This means that the
peaks of flare events were systematically underestimated, and it
also increased the relative flux scatter in the stack, which can be
seen in Figure 2. By forcing all of the flares to align to a center
time, there is an additional source of scatter added to the
relative time. Furthermore, the stacking procedure used in D14
imprecisely estimated the FWHM of flares by using an
arbitrary linear up-sampling of the light curve. This caused
scatter in the relative time, which created aliasing or overdense
regions of the stack as seen in Figure 2 (vertical gray bands).
These features are present in D14 but cannot be seen owing to
the logarithmic contour map used to present the data in Figure
4 of D14. D14 also used local polynomials to detrend the
starspots, which are dependent on the order of the polynomials
and the flare masking. This technique also did not provide the
associated starspot model uncertainties, which were therefore
not incorporated into the D14 model.

5.1. Improving the Stacking Procedure

Here we present an updated stacking procedure that
addresses the limitations of the D14 stacking procedure. First,
we used a nonlinear least-squares optimization to fit the initial
version of our flare model shown in Figure 2 to each of the 414
flares in our sample. We used the parameters of the individual
flares from D14 to initialize our fits. Our least-squares fitting
was weighted by the photometric and GP errors added in
quadrature. We then conceptually used the same alignment
procedure as D14 to stack the flares, scaling each flare by the fit
amplitude and FWHM and aligning each event by the center
time. Note that this center time may not exactly correspond to
the observed peak. By using these fits to align the flares, we are
able to produce a stack that is not dependent on the peak
estimate from the light curve, as in D14.

In Figure 3, we can see the updated model overlaid onto the
stack of 414 classical flares that uses the new stacking
procedure. In total, there are 13,421 epochs of data represented
among the stacked flares. We also show the binned median of
the data (bins = 200), and we can see that the updated model
traces the underlying shape of the flares. The stack of flares is
much cleaner and has a reduced scatter in comparison to the
stack of flares used in D14 (see Figure 2). The updated model
therefore uses an updated stacking procedure that is less
sensitive to sampling effects.
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To quantitatively compare the two stacking procedures, we
first fit a rolling median to each of the flare stacks. Then, we
calculated and compared a reduced x? for each of the resulting
rolling medians. For the D14 rolling median we compute a
reduced X2 of 16.5. Meanwhile, we calculated a reduced x2 of
10.8 for the rolling median of the latest stack of flares. The
lower x* values that we calculated quantitatively demonstrate
the improvements to the stacking procedure.

We also tried other stacking procedures to test which
approach would further improve the flare model. Specifically,
we drew from work in the exoplanet community that uses
cumulative distributions to understand the distributions of
planet eccentricities (Moorhead et al. 2011). However, this
technique of using a cumulative distribution did not produce
the correct center time and scale time alignments for flares. In
comparison to the D14 model, we found that the updated
stacking procedure used in this work both qualitatively and
quantitatively improved the flare model.

6. Fitting the New Model

We use the Python package EMCEE (Foreman-Mackey et al.
2013) to perform a Markov Chain Monte Carlo analysis, which
fits the stacked flare sample. To initialize the walkers, we used
our flare fits (see Section 5.1). We ran EMCEE using 256
walkers and 30,000 steps, and we discarded the first 10% as
burn-in, which we found was sufficient to reach convergence.
The acceptance fraction was 0.516, with a mean autocorrelation
time of 65.01 steps. We used a x> test with a tight boundary
(D1 > 0) for our log likelihood model and assumed a flat prior
on all parameters. In addition, we used both the photometric
and GP uncertainties added in quadrature. We note that the
photometric errors are the ones that primarily contribute to the
scatter, and the GP errors do not exceed the photometric errors.
In the bottom panel of Figure 3, we include the residuals of the
model and find that they are mostly uniformly scattered and
flat. This tells us that the data are well fit by our model. We see
some structure in the residuals that correspond to the decay
phase of the flare events. This structure is a result of
uncertainties in the stop times of flares and uncertainties with
the GP. During the end of the decay phases, we reach
comparable timescales with the starspots’ evolving and long-
tailed flares. Therefore, this is the regime where we are most
affected by the GP detrending and the manual identification of
the stop times of flares.

The best-fit parameters from Equation (4) and their respective
errors are presented in Table 1. In Figure 4, we present the
typical corner plot of the resulting MCMC analysis, which
shows the posterior probability distributions for each of the six
model parameters. This fit defines the new flare template shape.

As in DI14, this new flare template can be applied to
observations via the same three scaling parameters used in
making our stacked flare sample in Figure 3: center time,
FWHM (also known as t,, in Kowalski et al. 2013), and
amplitude. This is similar to the process used to scale supernovae
templates to fit light curves (Papadogiannakis et al. 2019). In
Figure 5, we show both an example of a classical flare profile
that was modeled using our updated analytic flare template and
the three scaling parameters used to fit individual flares (center
time, FHWM, and amplitude). The code for the updated flare
model is made publicly available on GitHub (https://github.
com/lupitatovar/Llamaradas-Estelares).


https://github.com/lupitatovar/Llamaradas-Estelares
https://github.com/lupitatovar/Llamaradas-Estelares
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Figure 3. Top: the updated continuous analytical model (blue) overlaid onto the final vetted sample of 414 classical flares from the DR25 Kepler data release. The
filled black points are the binned median with the respective standard deviation of the points inside of each bin. The flares are overlaid using a new stacking procedure
that is less sensitive to sampling effects and scales each flare to a relative time and amplitude. Bottom: the residuals of the model (gray) and the binned residuals of the
model (black), which are mostly uniform and flat. The structure in the decay phase of the flares is caused by a combination of uncertainties in the stop times of flares
and the starspot detrending. The combination of using a GP to model the starspots + continuous model + vetted flare sample + new stacking procedure has produced

a more robust flare template.

Table 1
Best-fit Flare Profile Coefficients
Parameter Value Uncertainty
A 0.969 7 x 1073
B —0.2513 4%x107*
C 0.2268 6x107*
D1 0.156 1 %1073
D2 1.215 4x107°
Fl 0.127 1x1073

Note. Best-fit coefficients for Equation (4) and their respective uncertainties
from the Markov Chain Monte Carlo analysis, which define the flare shape as
shown in Figure 3.

6.1. Model Comparison

The updated analytic flare model is both qualitatively and
quantitatively more robust than the previous model presented
in D14. In Figure 6, we can see the two flare models overlaid
onto the vetted, 414 classical flares that were stacked using the
new stacking procedure described in Section 5. Qualitatively,
we can see that the scatter from the stacked flares is both
reduced and more uniform in comparison to the stacked flares
shown in Figure 2. With the new stacking procedure we also
account for the aliases that were present in the D14 stacking
procedure, which were a result of the alignment and scaling
procedure used.

To quantitatively compare the two models, we calculated the
reduced x? for each of the stacking procedures that were used
to derive the respective flare models. Using the D14 model and

updated stacking procedure described in Section 5.1, we
calculated a reduced x? of 13.9. Meanwhile, the reduced x>
that uses the updated model derived in Section 6 and shown in
Figure 3 is 9.1. This is a lower value in comparison to D14,
showing that the new model is a better fit to the stack. In
addition, we fit the vetted sample of 414 Kepler classical flares
with both D14 and the new model. This allowed us to compare
the changes between the resulting model fits for the same set of
flares. We calculated the x* of both models for every individual
flare as a function of log flare energy. At higher flare energies
(log E > 31) we find that the updated model shows a lower 2,
indicating that the new model provides a better fit for higher-
energy flares. This is likely due to decreased resolution for
lower-energy flares. Overall, the updated model presented in
this work has a lower x? for an individual flare in comparison
to the D14 model.

6.2. Updated Flare Properties

We use the flare fits described in Section 6.1 of the 414
classical flare events from the Kepler data to explore the
relationships among the various flare parameters. We include
these flare fits in Table 2 so that future studies may use
properties of real flare events as inputs for various simulations.
In Figure 7, we show the relationship between the fit flare
parameters: amplitude, full time width at half of the flux
maximum (FWHM), and duration as a function of the event
energy. The equivalent duration is computed by integrating the
fractional flux under each flare (Gershberg 1972; Hunt-Walker
et al. 2012) and is used to measure the flux event energies. The
correlations between flare energy and flare duration are
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Figure 4. The results from the MCMC analysis showing the posterior probability distributions of each of the model parameters from Equation (4). This figure was

made using corner.py (Foreman-Mackey 2016).

consistent with what we expect: higher-energy events occur
over longer timescales, while short-duration flares typically
have lower energies. Similarly, higher-energy flares have larger
amplitudes. The same trend is true when we consider FWHM
as a function of flare energy; however, there is a larger scatter
in this correlation.

Previous studies have explored the physical interpretation of
the correlation between flare energy and duration. For instance,
Maehara et al. (2021) carried out time-resolved photometry and
spectroscopy of the M-type star YZ CMi and found that the
duration of flares showed a positive correlation with the flare
energy. Specifically, they find that the duration of flares

increases with energy as Tiae X Ef(l)é%el +004 However, this is a

lower correlation than was found for G-type stars, which
suggests a higher coronal magnetic field strength around active
M-type stars like YZ CMi and GJ 1243 (Maehara et al. 2021).
This timescale versus energy relation is consistent with our
FWHM versus energy plot in Figure 7, which is expected since
GJ 1243 and YZ CMi are of similar mass. We note that the
timescales are not exactly the same because we use flare
FWHM and Maehara et al. (2021) use e-folding time.

To further show how these parameters characterize the flare
event profile, in Figure 8 we consider the correlation between
the equivalent duration and the product of the FWHM and
amplitude. This product effectively gives an equivalent
duration for the impulsive phase of the flare (see Figure 5),
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Figure 5. Example flare from the vetted set of Kepler classical flares with the
analytic model overlaid. We show that the final flare model can be
parameterized using the following three scaling parameters: amplitude;
FWHM, also known as 7, , in Kowalski et al. (2013); and center time (which
is similar to tpeak in D14).

1.2
. w14 Model
101 A me= Analytic Model

Relative Flux

Relative Time

Figure 6. Comparison of the D14 and updated analytic flare templates overlaid
onto the new stacked flares data set (gray points). The scatter in the data is from
nearby, low-energy flares. In black is the piecewise model from Davenport
et al. (2014), and in blue is the new analytic template that uses the convolution
of a Gaussian and a double exponential. The updated analytic model is
continuous and more accurately describes the peak of the flare events.

which D14 showed only encompasses about one-third of the
total event energy. There is a tight correlation of this product
with the flare total energy, which parallels a 1-to-1 trend in
Figure 8. This demonstrates that while there can be a large
scatter in the individual flare properties (e.g., Figure 7), the
total event can be robustly described by these two impulsive
properties (FWHM, Amp), which we use to scale our flare
template when fitting actual events.

7. Applications

To test our new analytic flare model using a different data
set, we turned to the Transiting Exoplanet Survey Satellite
(Ricker et al. 2014). TESS recently revisited the Kepler field,
which included GJ 1243 (TIC 273589987), and provided us
with 50 days of new short-cadence (2-minute) observations
from Sectors 14 and 15 (Davenport et al. 2020). TESS has
provided the most detailed light curve for this star since the end
of the original Kepler mission and has observations that are at

Mendoza et al.

longer and redder wavelengths relative to the Kepler bandpass.
By convolving a 10,000 K blackbody curve with each of the
filters, Davenport et al. (2020) showed that, within typical
uncertainties for distance and flux calibrations, TESS and
Kepler are well suited for comparison since they have similar
flare energy yields. They also found that when the flare
frequency distributions were modeled for each data set the flare
activity remained unchanged from the TESS to Kepler epochs
(Davenport et al. 2020). This provided us with the ideal
opportunity to test our new flare model on a data set that had
both a different cadence and a different wavelength coverage
for the same star.

7.1. GJ 1243 TESS Data

We use the set of 133 flares (classical and complex) from GJ
1243 that were identified using the FBEYE tool by Davenport
et al. (2020) in TESS sectors 14 and 15. We compared the
FBEYE catalog to stella, an algorithm that uses a
convolutional neural network (CNN) to find flares (Feinstein
et al. 2020). To initialize stella, we set a flare-finding
threshold of 0.75, which limits what light-curve features get
classified as flares versus nonflares. We ensemble the 10 CNN
training models provided in Feinstein et al. (2020) and average
over the predictions of each of the training models. Ensembling
provides a more robust flare classification, which reduces false
positives and provides a higher confidence in the true positives.
In the end, stella successfully recovers 75 flares from the
same light curve. We note that GJ 1243 is near the stellar
rotation period limit of stella (0.59 days), which can be a
reason for the discrepancy in the total number of flares that
were identified by each flare-finding technique. However,
stella serves as a fast and reliable tool for finding flare
events in the TESS 2-minute light curves. Further by-eye
analysis is needed to determine which flares are complex versus
classical from the stella catalog. For this data set, we
identified 25 classical flares that were within the 20-to-75-
minute duration range, and we used these flares to test our
model.

As in the procedure used for the Kepler data, we masked
out the flares and used a GP to model the starspot
modulations. We used the same initial parameters and
rotation period as described in Section 3. Once we had
modeled the starspot variability, we stacked the classical
flares onto a common relative time and flux space using our
updated stacking procedure described in Section 5. We were
then able to overlay our analytical model onto the stack of
TESS classical flares. In Figure 9, we see the results of our
analytic flare template from Section 6 overlaid onto the 25
stacked TESS flares. We also show the binned median of the
data. Similar to the case with Kepler, we find that the
residuals are mostly uniform and flat. Again, we find that the
photometric errors primarily outweigh the GP errors. Given
the small sample of TESS classical flares (25), we do not
present a TESS-specific model for this work. Instead, we
apply our existing model to the TESS data to show its
versatility. We find that our flare model can be used to model
the morphology of white-light flare events from other data
sets with differing observation cadences (e.g., 1-minute vs.
2-minute).
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Table 2
Classical Flare Properties
Ipeak FWHM Amp Ipeak Brror FWHM Error Amp Error Source
(days) (days) (relative) (days) (days) (relative)
539.6503088 0.00153389 0.008934698 6.49E—05 0.000213685 0.000716695 Kepler
1685.732989 0.005316529 0.011036421 0.000218928 0.000694793 0.000953418 TESS

Note. Flare properties of 414 classical Kepler flares and 25 classical TESS flares. These are the results of our model fits as described in Section 6.2.

(This table is available in its entirety in machine-readable form.)
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Figure 7. Top: the top two panels follow the correlation we expect. Flares with
higher energies occur over longer timescales and also have higher amplitudes.
Meanwhile, lower-energy flares occur over shorter timescales and have shorter
amplitudes. Bottom: there is significant scatter among the FWHM plots, which
shows that there are both flares that are tall and narrow and flares that are short
and wide. The combination of FWHM and flare amplitudes allows us to
characterize the flare profile. The orange lines represent the binned medians for
each of the data sets. The color gradient shows flares with different durations
(yellow = longer flares; purple = shorter flares).

7.2. Flares at Different Cadences

TESS also provides 20 s observations for a subset of stars.
This presented an opportunity to study how flares change
across observational cadences. For instance, Shibayama et al.
(2013) showed that Kepler superflares at 1-minute and 30-
minute cadence have similar measured flare energies within the
errors. Here we select a low-mass flare star (similar to GJ 1243)
from TESS and use our flare template to model one of the
highest signal-to-noise ratio, classical flare events in the light
curve. The target (TIC 197829751) is an M3.5 star (Schneider
et al. 2019) with a rotation period of about 3.1 days. TESS
observed the star at 20 s, 2-minute, and 10-minute cadence
modes in Sector 29 (see Figure 10). In the 20 s cadence data we
are able to see the finer structure and complexity of the flare
event that is revealed. Meanwhile, the 2-minute data do not
show as much detail, especially in the decay phase of the flare
event. The 10-minute data show even less structure of the flare
than the 2-minute data. It is interesting to note that the flare
event complexity revealed in the 20 s cadence TESS data might
provide further examples of late-phase EUV brightening (e.g.,
Liu et al. 2015; Chen et al. 2020) and also quasi-periodic
pulsations (QPPs; e.g., Pugh et al. 2016; Howard &
MacGregor 2022).

Higher time resolution observations allow us to both detect
smaller flares and understand the complexity of the events.
Longer-cadence data miss short flares or confuse them for
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Figure 8. Here we show the product of FWHM and amplitude vs. the
equivalent duration of flare events, both in units of seconds. The data points are
color-coded by time durations in units of minutes, where lighter colors
correspond to longer flare events and darker colors correspond to shorter flare
events. The tight correlation between these parameters indicates that the
combination of flare amplitude and FWHM is sufficient to characterize the flare
event profile with our model.

classical events instead of resolving the multipeak, complex
structure. In Figure 10, we use our flare template to model the
same flare event at three different cadences. We provide the
best-fit parameters for each of the three cadence modes in
Table 3. At the 2-minute and 10-minute cadence modes our
template is able to describe the morphology of the flare.
However, at the 20 s cadence mode it becomes clear that even
classical flares reveal complex behavior given high enough
time resolution (Howard & MacGregor 2022). Overall, this
example highlights the flexibility of our flare model when used
with data taken at various cadences.

8. Discussion and Conclusions

We have developed an updated analytic flare template to
describe the morphology of white-light flares in precise, space-
based photometry. The analytical model is an update to the
piecewise model generated in Davenport et al. (2014). Using a
combination of improved Kepler light-curve processing, an
improved flare parameterization from Jackman et al. (2018),
and new detrending techniques to account for background
starspot variability, we generated an analytic and continuous
flare template that can be used to model the white-light flare
events on active stars. The flare model shape is described by a
function that uses the convolution of a Gaussian and a double
exponential, with six coefficients defining the flare morph-
ology. We used a total of 414 unique classical flares from 11
months of GJ 1243 Kepler data to derive the model. Our
updated stacking procedure avoids using the peak flare time or
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Figure 9. We test the GP modeling, stacking procedure, and flare identification on TESS data. Top: overlay of the updated flare template (purple) onto 25 classical
flares from sectors 14 and 15 of GJ 1243 TESS data (gray) that are all scaled to a relative time and amplitude. The black points are the binned median of the data, with
the respective standard deviation of the points inside of each bin. Bottom: the residuals of the model (gray) and the binned median of the residuals (orange). The scatter
is fairly uniform and the residuals are low, suggesting that the data are well fit by the model. The flare template can be used to model flares from different data sets and

observations at different cadences.

height as parameters, as these are sensitive to sampling effects
and cause us to systematically underestimate the peak of the
flares. Instead, we used a center time that leverages all the flare
profile data, which reduced the uncertainty in the stacking
procedure. By stacking hundreds of flares together, we were
able to get fine sampling (e.g., less than 1 s effective resolution)
and higher sensitivity to short-timescale features (e.g., a smooth
turnover at the peak of flares). The final analytic model can be
used to fit individual flare events using the following three
scaling parameters: amplitude, center time, and FWHM, which
is also known as 1, s in previous studies (Kowalski et al. 2013).
The model can also be used to model white-light flare events on
other stars and with different data sets.

We also studied the morphology of GJ 1243 flares in both
the Kepler and TESS data sets. The data set of 133 flare events
detected by TESS allowed us to test our updated analytic flare
template using a new data set. We see more scatter in the
2-minute TESS sample in comparison to the 1-minute Kepler
data due to cadence and signal-to-noise ratio differences but
find that our updated flare template is able to model the flares
from a different data set. Our model can be applied to data from
different photometric observations at different cadences, which
will prove useful when coupled to other stellar variability and
transit modeling algorithms.

In addition to GJ 1243, we analyzed another low-mass star
(TIC 197829751) that was observed by TESS at three different
cadences. We were able to use our analytic flare template to
model one of the classical flares on the star. We find that our
model works well at modeling the flares on other active stars. It
also can be used to model flares from different data sets and
observation cadences. In the 20 s cadence observations, finer

flare structure is revealed within a single flare event, whereas in
the 10-minute cadence observations the data are more sparse,
making it more difficult to see the entirety of the flare shape.
However, in all cases our model was able to characterize the
underlying flare shape.

Future studies will be able to use the analytical template to
model complex (multipeak) flare events. In the updated flare
sample we classified 379 complex flare events that have not yet
been modeled with our flare template. Similar to the work
in D14, our template can be used as a model to decompose
complex flares. This is under the assumption that complex
events can be described as the superposition of many classical
flares. By linearly adding the models, one could use a series of
analytic templates to describe the multipeak flare events.
Modeling complex flares will be important especially as we get
shorter-cadence observations (e.g., TESS 20 s targets) that are
capable of resolving additional complexity present during the
flare event. For instance, Howard & MacGregor (2022)
sampled 226 flare stars using TESS 20 s data and found that
49 candidates experienced QPPs and 42.3% of the sample
showed complex flare morphology. By decomposing the
complex flares using the updated model, we can compare and
model the QPPs and complex structure revealed from new
observations.

Beyond flare studies, our analytic flare template will also be
a powerful tool for modeling transits in the presence of flares.
Currently, many planet detection algorithms account for
transits and flares separately (e.g., Luger et al. 2017), or the
flare is simply masked out (e.g., Plavchan et al. 2020), which
increases the uncertainty in the transit profile. More recent
studies have simultaneously modeled the stellar activity within

10
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Figure 10. We use the new analytic flare template to model one of the flare events occurring on the M3.5 star (TIC 197829751) that was observed by TESS. We
compare how our model works at different time resolutions. Shown are the 20 s data (left), the 2-minute data (middle), and the 10-minute data (right) for the same
target. Note the increased amount of structure that is revealed in the 20 s flare data vs. the 10-minute data. The higher resolution highlights some secondary features in
the cooling phase of this particular flare that are not as apparent in the 2-minute or 10-minute data, hence the different model fits. A table of the best-fit values for each

cadence mode can be found in Table 3.

Table 3
TIC 197829751 Flare Properties
Cadence Ipeak FWHM Amp
20s 0.0692 0.0015 0.2408
2-minute 0.0691 0.0016 0.2363
10-minute 0.0702 0.0011 0.3789

Note. Best-fit coefficients for the example M3.5 TESS flare at three different
cadence modes (see Figure 10).

the planet search algorithm (Gilbert et al. 2021); however, the
flare template used in the analysis is from D14, which is
improved on in this work. Our new flare template can be
incorporated into existing detection and characterization tools
(e.g., Giinther & Daylan 2021; Gilbert et al. 2022). By
combining the stellar flare and starspot analysis methods
described here with transit models, we will be able to both
refine existing star—planet parameters and search for transiting
exoplanets around active stars that have not yet been detected.
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