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Abstract

We derive efficient, closed-form, differentiable, and numerically stable solutions for the flux measured from a
spherical planet or moon seen in reflected light, either in or out of occultation. Our expressions apply to the
computation of scattered light phase curves of exoplanets, secondary eclipse light) curves in the optical, or future
measurements of planet–moon and planet–planet occultations, as well as to photometry of solar system bodies. We
derive our solutions for Lambertian bodies illuminated by a point source, but extend them to model illumination
sources of finite angular size and rough surfaces with phase-dependent scattering. Our algorithm is implemented in
Python within the open-source starry mapping framework and is designed with efficient gradient-based inference
in mind. The algorithm is ∼4–5 orders of magnitude faster than direct numerical evaluation methods and ∼10
orders of magnitude more precise. We show how the techniques developed here may one day lead to the
construction of two-dimensional maps of terrestrial planet surfaces, potentially enabling the detection of continents
and oceans on exoplanets in the habitable zone.6

Unified Astronomy Thesaurus concepts: Exoplanets (498); Light curves (918); Occultation (1148); Eclipses (442);
Analytical mathematics (38)

1. Introduction

Despite recent advances in instrumentation and the dawn of
thirty-meter-class telescopes and kilometer-wide interferomer
arrays, extrasolar planets will remain unresolved point sources
for decades to come. Nevertheless, modulations in the light
received from these distant bodies due to their rotation,
changing illumination, and eclipses by their host stars or other
bodies in the system can be harnessed to reconstruct two-
dimensional views of their surfaces. In particular, next-
generation space-based telescopes such as the Large UV/
Optical/IR Surveyor (LUVOIR) may enable us to measure
variations in the reflected light signature of terrestrial planets in
the habitable zone, which can be used to map their surfaces and
indirectly infer the presence of clouds, continents, oceans, and
perhaps even life.

There is an extensive literature on techniques for mapping
exoplanet surfaces based on their phase curves (e.g., Rus-
sell 1906; Lacis & Fix 1972; Knutson et al. 2007; Cowan &
Agol 2008; Oakley & Cash 2009; Berdyugina & Kuhn 2017;
Heng et al. 2021; Luger et al. 2021b, 2021c) and occultation
light curves (e.g., Williams et al. 2006; Rauscher et al.
2007, 2018; de Wit et al. 2012; Majeau et al. 2012), both in
thermal and reflected (scattered) light. In particular, much
attention has been given to techniques for mapping Earth-like
planets from visible-light reflected phase curves (e.g., Ford et al.
2001; Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012;

Aizawa et al. 2020; Kawahara 2020). Unlike thermal phase
curves, which primarily encode (often degenerate) information
about longitudinal surface brightness variations (Russell 1906),
reflected light curves often contain information about the full
two-dimensional surface albedo distribution (e.g., Kawahara &
Fujii 2010).
Occultation light curves in reflected light can encode even

more information about the surface. Thus far, these have been
studied primarily within our solar system. Mutual occultations
among the Galilean moons of Jupiter have been extensively
studied to infer surface properties of the moons and to refine
their ephemerides (e.g., Arlot et al. 1974, 2014; Aksnes et al.
1984; de Kleer et al. 2017; Saquet et al. 2018; Morgado et al.
2019; Bartolić et al. 2022). Farther out in the solar system,
mutual occultations of Pluto and Charon in the late 1980s were
used to confirm Charon’s existence (Stern 1992), establish the
sizes and orbital parameters of the two bodies (Tholen &
Buie 1990), and infer their surface properties (Marcialis 1990).
In particular, Dunbar & Tedesco (1986) developed an efficient
analytic algorithm to model Pluto–Charon occultation light
curves in reflected light assuming uniform surfaces and used it
to infer the two body’s average geometrical albedos. Later,
Buie et al. (1992) used a maximum entropy approach to
reconstruct two-dimensional maps of the two bodies and
Reinsch et al. (1994) analyzed the complete mutual occultation
data set to infer longitudinal maps of Pluto’s albedo.
Many studies have analyzed real Earth reflected light curves

to infer surface properties of our planet as an exercise in
preparation for the mapping of exoplanets. Cowan et al.
(2009, 2011) analyzed visible-light disk-integrated light curves
of the Earth taken by the Deep Impact spacecraft to produce
longitudinal maps of the surface, harnessing multiband
observations to disentangle static surface brightness features
from temporally variable clouds. A transit of Earth by the
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Moon was observed as well (Livengood et al. 2011), although
this data has yet to be exploited for mapping purposes. More
recently, Jiang et al. (2018) and Fan et al. (2019) used data
from the L1-stationed DSCOVR satellite to infer surface and
cloud properties of the Earth, and Luger et al. (2019b) analyzed
background scattered light in TESS photometry to reconstruct a
cloud map of the Earth.

There have also been many developments on the open-
source software front. These include ReflectDirect, a reflected
light-curve analysis suite (Schwartz et al. 2016); samurai, a
tool for rotational unmixing of reflected light curves (Lustig-
Yaeger et al. 2018); spiderman, an efficient discretization
scheme on the sphere that enables fast computation of
exoplanet phase curves and occultation light curves (Louden
& Kreidberg 2018); exocartographer, a Bayesian framework
for doing inference on exoplanet phase curves based on a
HEALPix (Górski et al. 2005) discretization scheme (Farr et al.
2018); the sot package for spin–orbit tomography of exo-
Earths (Kawahara 2020; Kawahara & Masuda 2020); and
neural_exocartography, a tool for mapping exoplanet
surfaces with neural learned regularization (Asensio Ramos
& Pallé 2021). Of particular relevance to the present work,
Haggard & Cowan (2018) presented EARL (Exoplanet
Analytic Reflected Lightcurves), a Mathematica code for
computing analytic, closed-form solutions for the phase curve
of a Lambert sphere, i.e., one that scatters light isotropically, in
the case that the surface albedo distribution is characterized by
either a sum of delta functions or a sum of spherical harmonics.
And finally, Luger et al. (2019a) introduced starry, a light-
curve-modeling package that computes thermal phase curves
and occultation light curves, as well as their derivatives,
analytically from a spherical harmonic expansion of the surface
brightness.

The present paper is an extension to the starry algorithm,
adapting it to model phase curves and occultation light curves
in reflected light. The expressions we derive are analytic: they
may all be expressed in closed form in terms of algebraic
operations involving trigonometric functions and (at times)
elliptic integrals. We derive numerically stable recursion
relations for the efficient evaluation of all expressions and
code them within an autodifferentiation framework to enable
the computation of accurate derivatives for use in gradient-
based inference and optimization schemes. Our code is fully
open source, comprehensively unit tested, and supplemented
with an extensive API documentation and suite of tutorials. As
in all papers in the starry series, in the caption of each of the
figures we provide links (inside parenthesis) to the exact
Python scripts that generated them. Next to many of the
equations we also provide links (as footnote) to Jupyter
notebooks containing detailed derivations and/or validations.7

2. Overview

Our goal in this paper is to derive analytic expressions for
the flux received by a distant observer from a sphere of non-
uniform albedo illuminated by a monochromatic source that
may or may not be occulted by a (possibly different) spherical
body. This applies, for example, to the case of planetary phase
curves, secondary eclipse (occultation) light curves, and moon–
moon, planet–moon, and planet–planet occultations (in the
solar system or not; e.g., Cabrera & Schneider 2007;

Luger et al. 2019b), all seen in reflected light. We derive all
expressions in the limit that the reflecting body is Lambertian,
i.e., it scatters light isotropically, but we relax this assumption
in later sections. We model the general case of an intensity that
varies across the surface of the body according to a spatially
dependent albedo A. Throughout this paper, we will take A to
mean the spherical albedo, the fraction of power incident on a
body at a given wavelength that is scattered back out to space
(in all directions). Note that the spherical albedo is closely
related to the Bond albedo: the Bond albedo is the stellar flux-
weighted integral of A(λ) over all wavelengths λ (see, e.g.,
Seager 2010).
As in Luger et al. (2019a), we compute fluxes by first

expanding the surface in terms of spherical harmonics. While
in Luger et al. (2019a) we expanded the emissivity of the
surface, here we instead expand the spherical albedo A.
Specifically, if y is the vector of spherical harmonic coefficients
describing the albedo anywhere on the surface and ỹ is the
spherical harmonics basis (Equation (A1)), the albedo A at a
point (x, y) on the sky-projected disk of the body is given by the
dot product

= ( ) ˜ ( ) ( )y yA x y x y, , . 1

The flux measured from this body is proportional to the surface
integral over the projected disk of the albedo A times the
illumination profile  of the surface, given by Lambert’s law as

J J= ( ) ( ) ( )max 0, cos , 2i 0 i

where ϑi is the angle between the incident radiation and the
surface normal, and 0 is the peak illumination. We show in
Appendix A.2 that in the case of, say, a planet illuminated by
its host star,

p
= ( )f

r
3s

0
s
2

where rs is the distance between the planet and the star (in units
of the planet’s radius) and fs is the stellar flux measured at the
observer (in arbitrary units). Following the convention in Luger
et al. (2019a), we assume throughout this paper that fs= 1, so
all fluxes are defined as a fraction of the flux of the illumination
source at the observer.
The piecewise nature of the illumination function at the day/

night terminator makes the problem of computing the visible
flux particularly difficult; most studies to date have tackled the
problem numerically, either via Monte Carlo integration (e.g.,
Ford et al. 2001) or by discretizing the surface and computing
the relevant integrals by summing over the visible pixels (e.g.,
Kawahara & Fujii 2010; Fujii & Kawahara 2012). Recently,
Haggard & Cowan (2018) developed an analytic framework for
computing light curves of unocculted bodies illuminated by a
point source. In this paper, we rederive their solution under the
starry framework and extend it, for the first time, to the case
where the body is occulted by another spherical body, which
may or may not be the illumination source. We also extend the
solution to the case of an extended illumination source and to
non-Lambertian scattering.
In Luger et al. (2019a), we reduced the problem of

computing the flux from an occulted body in thermal (emitted)
light to a series of efficient, analytical operations involving
trigonometric functions of the position and size of the occultor
and certain complete elliptic integrals. In the case of reflected7 https://github.com/rodluger/starrynight/blob/5f79
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light, however, the change in the limits of integration due to the
unilluminated nightside breaks many of the symmetries that
simplified the flux calculation. In particular, the limits of
integration now depend on the solution to a quartic equation
specifying the points of intersection between the occultor and
the day/night terminator, and the solution to those integrals is
now a function of incomplete elliptic integrals. The procedure
for computing the flux is therefore significantly more complex.
We therefore defer all calculations to the Appendix, and devote
the body of the paper to validating and demonstrating
applications of our approach.

This paper is organized as follows. In Section 3 we present
sample light curves computed using our algorithm, validate it
against numerical integration, and discuss its performance in
terms of computational speed and precision. In Section 4 we
extend the model to apply to illumination sources of finite size
and surfaces that scatter light anisotropically. We discuss
implications, applications, and limitations of our model in
Section 5 and summarize our findings in Section 6. For
convenience, Tables 1–4 at the end list all symbols and
variables used in the text, with descriptions and links to the
equations in which they are defined.

3. Reflected Light Curves in Starry

3.1. Sample Light Curves

Figure 1 shows a sample application of the algorithm
developed in this paper: a reflected light phase curve of the
Earth over the course of one year. The model is computed
using the methodology in Appendix B from an l= 25 spherical
harmonic expansion of the cloudless Earth, where the oceans
are given an albedo of zero and the continents an albedo of
unity (note, however, that since the light curve is normalized,

the model does not depend on the value of the latter). The Earth
is assumed to be a perfect Lambertian scatterer, so effects like
the phase dependence of Rayleigh scattering and specular
reflection (glint) from the oceans are neglected (but see
Section 4 for an extension of the model to non-Lambertian

Table 1
List of Common Symbols Used in this Paper

Symbol Description References

Frames of reference

0 frame in which surface map is specified Appendix A.1
 observer (sky) frame Appendix A.1
¢ integration frame (occultor present) Appendix C
 integration frame (no occultor) Appendix B

Lines and surfaces

S region of integration enclosed by  Appendix C
 integration path along occultor limb Appendix C
 integration path along body limb Appendix C
 integration path along terminator Appendix C

Special functions

arctan 2 quadrant-aware arctangent (A10)
F incomplete elliptic integral of the first kind (C47)
2F1 Gauss hypergeometric function Appendix C.6.4
E incomplete elliptic integral of the second kind (C48)
Γ gamma function Appendix B
Π incomplete elliptic integral of the third kind (C69)

Operators and symbols

V Vieta summation operator (C40)
Δ pairwise difference operator (C32)
∫f vectorized integral (C31)

Table 2
List of Common Scalar Quantities Used in this Paper

Symbol Description References

Integers

l spherical harmonic degree (A2)
m spherical harmonic order (A2)
n vector index L
μ spherical harmonic index, μ = l − m (A5)
ν spherical harmonic index, ν = l + m (A5)

Coordinates

x Cartesian x coordinate on the plane of the sky L
y Cartesian y coordinate on the plane of the sky L
z Cartesian z coordinate, = - -z x y1 2 2 (A6)

Geometrical parameters

b semiminor axis of terminator ellipse (A9)
bc complement of b, º -b b1c

2 Appendix A.2
bo occultor impact parameter, = +b x yo o

2
o
2 Appendix A.1

k2 elliptic parameter (C46)
I bodyinclination Appendix A.1
n elliptic characteristic (C70)
ro occultor radius Appendix A.1
rs distance to illumination

source, = + +r x y zs s
2

s
2

s
2

Appendix A.2

xo occultor x position Appendix A.1
xs illumination source x position Appendix A.2
yo occultor y position Appendix A.1
ys illumination source y position Appendix A.2
zs illumination source z position Appendix A.2
Λ body obliquity Appendix A.1
θ angle of rotation of the terminator ellipse (A19), (A21)
Θ body rotational phasse Appendix A.1

Intensities and fluxes

a orbital semimajor axis Section 4.1
A albedo (spherical) (1)
f reflected flux during an occultation Appendix C
f0 reflected flux outside of an occultation (B6)
f̂0 complement of reflected flux outside of an

occultation
(B7)

f1–f14 case-dependent reflected flux during occultation Appendix C
fI intensity-weighted flux during an occultation (C5)
fT thermal flux during an occultation (A3)
fT0 thermal flux outside of an occultation (A7)
fS reflected flux over integration region S (C12)
I polynomial intensity at a point on the surface (A12)
 true intensity at a point on the surface (A11)
Rp planet radius Section 4.1
Rå stellar radius Section 4.1
ϑi polar angle of incidence Figure 9
ϑr polar angle of reflection Figure 9
σ Oren–Nayar surface roughness coefficient Section 4.2
τ Angular extent of terminator past π/2 (4)
fi azimuthal angle of incidence Figure 9
fr azimuthal angle of reflection Figure 9
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scatterers). The observer is assumed to be along the ecliptic, so
the illumination source is along the x–z plane of a right-handed
Cartesian coordinate system, with ẑ pointing toward the
observer and x̂ pointing to the right on the sky. The axis of
rotation of the Earth is therefore tilted clockwise away from ŷ
by 23°.5. The images at the top show snapshots of the disk of
the Earth throughout the observation; below each one, we plot
in blue the normalized phase curve at that phase over a single
rotation. The orange dots correspond to a brute force numerical
solution, obtained by discretizing the disk on a grid of ∼105

points and summing over the dayside. The models agree to
within the numerical precision of the brute force solution
(about 100 ppm of the planetary flux in this case).

While the dominant signal in the phase curve is the sine-like
envelope due to the changing phases of the Earth, the local
behavior of the light curve at each phase is complex and varies
significantly over the course of the year. Unlike phase curves in
thermal light, which primarily encode low-order spatial
information (since the region of integration is always the full
disk), phase curves in reflected light encode information at
different scales depending on the phase. At crescent phase, the
region of the disk contributing to the total flux is a narrow lune;
these measurements therefore encode information primarily
about high-l modes. At full phase, the region of integration is

the full disk, so these measurements encode information about
low-l modes. Furthermore, because of the obliquity of the
Earth, the orientation of the crescent lune changes relative to
features on the surface over the course of one orbit, changing
the relative contribution of different portions of the surface to
the flux and increasing the overall information content of the
observation. As we will show in Section 5.2, the information
content of reflected light phase curves is overwhelmingly
higher than that of phase curves in thermal light, particularly
for planets with significant obliquity.
Figure 2 shows another light curve of the rotating Earth, but

this time taken during an occultation by the Moon. The map of
the Earth is the same as before, but the observer is now along
the equatorial plane of the Earth. The top panel is a
reproduction of Figure 7 in Luger et al. (2019a) for the case
of thermal light, where the Moon is seen to travel across the
disk of the Earth from southwest to northeast, progressively
occulting South America (dip), the Atlantic (peak), and Africa
(dip). As before, the blue curve is the analytic solution and the
orange dots correspond to the numerical solution.
The bottom panel of the figure shows a light curve for the

same occultation geometry, but seen instead in reflected light,
with the Sun to the top left and slightly out of the page,
corresponding to some point during northern summer. Note the
same dip-peak-dip pattern, albeit with significantly different
amplitudes. In particular, the transit across South America is
deeper, because it occurs close to local noon, when the
illumination is highest; conversely, the transit across Africa
occurs close to local dusk, when the illumination is close to
zero. As before, the light curves computed using starry agree
to within the numerical precision of the brute force solution.
Our last sample light curve is Figure 3, which shows a

secondary eclipse light curve of the Earth as it is occulted by
the Sun. The model for the Earth is the same as above, and the
observer is now close to the ecliptic, but slightly misaligned so
that the Earth is occulted behind a solar latitude of 30° (i.e., at a
solar impact parameter of 0.5). The observation takes place at

Table 3
List of Common Vector Quantities Used in this Paper

Symbol Description References

Bases

g̃ Green’s basis (A4)
p̃ polynomial basis (A8)
ỹ spherical harmonic basis (A1)

Angles and angular parameters

q cosine-like parameter of α (C51)
α modified angle along occultor limb (C43)
λ angle along occulted body limb Appendix C.9
f angle along occultor limb Appendix C.6
ξ angle along terminator Appendix C.8

Integrals

r unocculted solution in emitted light Appendix A.1
s occultation solution in emitted light Appendix A.1
 helper integral (C42)
 helper integral (C45)
 helper integral (B3)
 primitive integral (C27)
 primitive integral (C29)
 unocculted solution in reflected light (B1)
 occultation solution in reflected light (C26)
 primitive integral (C28)
 helper integral (C56)
 helper integral (C58)

Other vector quantities

a vector of albedo values on a discrete surface grid (12)
d data vector Section 5.1
f vector of flux values Section 5.1
i illumination profile in polynomial basis (A15)
x″ solution to quartic in terminator frame (C3)
y vector of spherical harmonic coefficients Appendix A.1
μ prior mean Section 5.1

Table 4
List of Common Matrices Used in this Paper

Symbol Description References

Linear operators

A change-of-basis matrix: ˜ ˜y g Appendix A.1
A1 change-of-basis matrix: ˜ ˜y p Appendix A.1
A2 change-of-basis matrix: ˜ ˜p g Appendix A.2
C posterior covariance matrix Section 5.1
I illumination operator (A17)
P pixelization operator (12)
P+ inverse pixelization operator (14)
R rotation matrix:  0 Appendix A.1
¢R rotation matrix:  ¢  Appendix A.1

R″ rotation matrix:    Appendix A.1
X starry design matrix Section 5.1
Λ prior covariance matrix Section 5.1
Σ data covariance matrix Section 5.1

Integrals

G anti-exterior derivative of g̃ (C25)
 helper integral (C75)
 helper integral (B3)
 helper integral (B3)

4
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the June solstice, so the Earth is tilted by 23°.5 out of the page.
As before, the top panel shows the light curve in thermal light;
this is similar to the top panel of Figure 13 in Luger et al.
(2019a). The orange dots again correspond to the numerical
solution. The center panel shows the same light curve in
reflected light. Because the observation occurs very close to
full phase, the normalized light curves look very similar to each
other. The bottom panel shows the difference between the two
(reflected minus thermal), which is only on the order of a few
percent. In fact, because the illumination profile is proportional
to the cosine of the viewing angle, μ, and the reflection is
assumed to be isotropic, the (normalized) secondary eclipse
light curve in reflected light is to good approximation equal to a
limb-darkened thermal occultation light curve with linear limb
darkening coefficient u1= 1. As we will see later, for very
close-in planets, this approximation breaks down, since the
illumination phases at secondary eclipse ingress and egress are
sufficiently different from full phase.

3.2. Performance

As we discuss in the Appendix, the model for phase curves
and occultation light curves in reflected light may be expressed
analytically in terms of purely algebraic and trigonometric
functions and in some cases incomplete elliptic integrals of the
first, second, and third kinds. We have derived efficient and
numerically stable recursion relations to compute the relevant
expressions and their derivatives. At times, these involve the
evaluation of certain expressions numerically, especially when
doing so leads to either a speed-up or a significant gain in
numerical precision. In particular, as we discuss in

Appendix C.1, the integration boundaries during an occultation
sometimes depend on the solution to a quartic equation. While
this can be solved in closed form, the analytic solution can
often be very unstable. We therefore solve the quartic
numerically, attaining a precision for the roots within a few
orders of magnitude of machine (double) precision.
Figures 4 and 5 summarize the precision and computation

time of the starry algorithm for two typical scenarios: a phase
curve evaluation (Figure 4) and an occultation evaluation
(Figure 5). Blue points correspond to the reflected light
algorithm developed in this paper, while purple points
correspond to the thermal light algorithm from Luger et al.
(2019a) for the same occultation geometry, but without an
illumination source. Solid and dashed lines correspond to
evaluations without and with gradient propagation, respectively
(see Section 3.3 for details). The orange and red dots correspond
to numerical evaluation of the flux: brute force integration by
summation on a grid of ∼106 points (orange) and two-
dimensional adaptive Gaussian quadrature using the dblquad
function in scipy (Jones et al. 2001) with both absolute and
relative error tolerances set to 10−3 (red). In both figures, the
vertical axis corresponds to the evaluation time in seconds for a
single flux computation, while the size of the points is
proportional to the base-10 log of the relative error. For the
starry solutions, the latter is estimated as the max-min difference
in the flux over one thousand evaluations in which the input
parameters are perturbed within an order of magnitude of
machine epsilon; this is therefore a probe of the condition
number of the starry algorithm and captures only error due to
numerical instabilities. It is worth emphasizing that this is a
measurement of the precision of the algorithm, rather than the
accuracy, because it would be computationally intractable to
compute a solution more accurate than this using a different

Figure 1. Mock reflected light phase curve of the cloudless Earth expanded to spherical harmonic degree l = 25, viewed along the ecliptic. The main plot shows the
phase curve over the course of one year. The images at the top show the corresponding progression of the phases of the Earth, from new phase to full phase and back
to new phase. Below each image we show a normalized 24 hr segment of the light curve at that phase (blue). Orange dots correspond to the flux computed from brute
force numerical integration on a grid of ∼105 points.8

8 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/earthphase.py
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algorithm. We argue that this measurement can be interpreted to
mean that the algorithm is also accurate, but detailed quantifica-
tion of this difference is beyond the scope of this paper. For the
numerical solutions, the error is estimated as the difference
between the numerical flux and the starry flux.

For both phase curves and occultations, the starry reflected
light algorithm is 1–2 orders of magnitude slower than the
emitted light algorithm, owing primarily to the increased
complexity of the reflected light model. For phase curves
(Figure 4), the thermal solution vector r (Equation (A7)) is a
constant that can be precomputed, while the analogous vector
in the reflected light case,  (Equation (B2)), must be
evaluated recursively each time. For occultations (Figure 5),
the slower evaluation in the reflected light case is primarily due
to the time spent solving the quartic equation for the points of
intersection between the occultor and the day/night terminator

of the illuminated body (Appendix C). This contributes the
same overhead at all map degrees l, resulting in a gentler
scaling in l than for the thermal case; for large l, the evaluation
time for the two algorithms is within a factor of 2–3. In terms of
precision, the algorithms are comparable, particularly for
occultations. For both phase curves and occultations, the
numerical error up to l= 10 is less than one part per trillion
(10−12) for both thermal and reflected light curves.
Compared to either numerical evaluation method, the starry

reflected light solutions are 4–5 orders of magnitude faster and
about 10 orders of magnitude more precise. While different
grid sizes and different error settings for the numerical
integration change the balance slightly between these numbers,
the starry solution is always many orders of magnitude faster
and more precise than either method. In particular, because of
the complicated integration boundaries (see, for example,
Figure 15), two-dimensional Gaussian quadrature struggles to
reach adequate accuracy in a reasonable amount of time, while
integration on a grid fails to capture the curvature of the

Figure 2.Mock light curves of the Moon occulting a rotating, cloudless Earth expanded to spherical harmonic degree l = 25. Black curves show the analytic solution;
orange dots correspond to brute force numerical integration on a grid of ∼105 points. The top panel shows the light curve in emitted light and is the same as in Figure 7
in Luger et al. (2019a). The bottom panel (this work) shows the same light curve in reflected light during northern summer.9

9 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/earthmoon.py

6

The Astronomical Journal, 164:4 (32pp), 2022 July Luger et al.

https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/earthmoon.py
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/earthmoon.py


integration boundaries. Moreover, neither method yields the
gradient of the solution with respect to the input parameters,
which can be extremely useful for optimization and inference
problems (see Section 3.3) below.

Note, importantly, that as we mentioned above, the reported
error of the starry solution is only the numerical error of the
algorithm: it does not capture any systematic error due to, say,
an error in the derivation of the method. To this end, we rely on
the Jupyter notebooks containing derivations and validations of
the main equations in the Appendix, whose links (as footnote)
appear below to the equation.We have also developed an

Figure 3. Mock secondary eclipse ingress light curves of the cloudless Earth expanded to spherical harmonic degree l = 25, viewed from an orientation where the
Earth is occulted behind a solar latitude of 30°. Black curves show the analytic solution; orange dots correspond to brute force numerical integration on a grid of ∼105

points. The top panel shows the light curve in emitted light and is similar to Figure 13 in Luger et al. (2019a). The middle panel (this work) shows the same light curve
in reflected light. The bottom panel shows the difference between the normalized reflected and emitted light curves.10

10 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/earthsun.py
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extensive suite of unit tests comparing the starry solution to the
numerical solution over a large grid of input parameter values,
and verified that the solutions agree to within the precision of
the numerical method. That said, there are specific cases in
which the algorithm presented in the Appendix suffers from
numerical instabilities. These generally happen due to division
by small numbers or catastrophic cancellation in the recursion,
and often occur near configurations involving grazing occulta-
tions, near-total occultations, terminator semiminor axis b≈ 0
or b≈ 1, etc. To mitigate these, we introduce various tolerance
parameters in the code to either nudge the inputs away from
these singular points or switch to a different evaluation method.

Figure 4. Evaluation time (vertical axis) and numerical precision (point size) for a single flux evaluation in the absence of an occultor as a function of spherical
harmonic degree for different methods. In purple we show results for the emitted light starry algorithm from Luger et al. (2019a; solid: no gradient; dashed: with
gradient), and in blue we show results for the reflected light algorithm from this paper (solid: no gradient; dashed: with gradient). For comparison, in we also show
results for discrete integration on a grid (orange) and for numerical integration using two-dimensional Gaussian quadrature (red); neither of these include gradient
evaluations. The reflected light algorithm is comparable in efficiency and precision to the emitted light algorithm. It is ∼5 orders of magnitude faster and ∼10 orders of
magnitude more precise than numerical integration.11

Figure 5. Same as Figure 4, but for an occultation evaluation in which the occultor intersects the terminator (case 6 in Appendix C). The reflected light algorithm is
around one order of magnitude slower and comparably precise to the emitted light algorithm. It is ∼4 orders of magnitude faster and ∼10 orders of magnitude more
precise than numerical integration.12

Table 5
Tolerance Parameters Used in the Code

Symbol Description Value

ò0 If ξ is this close to pn
2
, compute 2 in the limit x = pn

2
10−13

ò1 If q∣ ∣sin or q∣ ∣cos are less than this value, set to this value 10−12

ò2 If k2 is within this value of unity, nudge it away 10−12

ò3 If |bo − ro| is less than this value, nudge bo away from ro 10−8

ò4 If bo is within this amount of ro − 1, nudge it away 10−8

ò5 If bo is within this amount of ro + 1, nudge it away 10−8

ò6 If a∣ ∣sin is less than this value, set to this value 10−8

ò7 If b is within this value of zero, nudge it away 10−8

ò8 If bo is within this amount of 1 − ro, nudge it away 10−7

ò9 If two quartic roots are this close, eliminate one of them 10−7

ò10 If b is within this value of unity, set it to unity 10−6

ò11 If θ is within this amount of p
2
when ro = 1, nudge it away 10−5

11 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py
12 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py

8

The Astronomical Journal, 164:4 (32pp), 2022 July Luger et al.

https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/speed.py


These parameters are outlined in Table 5 at the end. In the
vicinity of the cases described in that table, the precision of the
starry algorithm will be reduced to (roughly) the value of the
tolerance parameter, which in extremely rare cases can be as
high as 10−5.14

3.3. Implementation and Usage

The algorithm presented in this paper has been implemented
in the Python package starry, which can be installed from
GitHub or via the Python package manager pip. The algorithm
is coded in a mixture of C++ with forward automatic
differentiation using the Eigen library (Guennebaud &
Jacob 2010) and Python with backward differentiation using
just-in-time compiled theano operations (Theano Develop-
ment Team 2016). The user interface, however, is purely in
Python. The theano backend facilitates integration with the
exoplanet modeling package (Foreman-Mackey et al. 2020)
and in particular with pymc3 (Salvatier et al. 2016) for
inference with gradient-based Markov Chain Monte Carlo
(MCMC) schemes such as Hamiltonian Monte Carlo (HMC;
Duane et al. 1987) and No-U-Turn Sampling (NUTS; Hoffman
& Gelman 2011). Complete documentation and an extensive
library of tutorials is available online. The links next to each of
the figures (inside parenthesis) point to the Python scripts used
to generate them and may also help in learning how to use
starry.15,16

4. Extensions

The algorithm discussed above and derived in the Appendix
computes light curves in the limit that (1) the body is
illuminated by a point source and (2) the body is an ideal
Lambertian scatterer. Both of these assumptions can be relaxed
within starry, and below we discuss modifications to the code
to allow for this.

4.1. Extended Illumination Source

In the limit that the angular size of the star as seen from the
planet is small, the illumination profile on the surface of the
planet will decrease as the cosine of the angle between the
surface normal and the star, reaching zero at the day/night
terminator, an angle π/2 away from the substellar point.

However, if the star is sufficiently large and the planet is
sufficiently close-in, rays originating from near the limb of the
star will reach points on the planet surface beyond this angle. If
the stellar radius Rå is larger than the planet radius Rp, the
angular extent of the true day/night terminator past π/2 is
given by

t =
- 


( )R R

a R
arcsin

1
, 4p⎜ ⎟⎛⎝ ⎞⎠

where a the semimajor axis of the orbit (where we implictly
assume the eccentricity is zero). For planets like the Earth, this
quantity is only about 0°.26, resulting in a negligible effect on
the planet’s light curve. However, for very close-in planets, the
effect can be significant (Knuth et al. 2017; Carter 2019). For
instance, the hot Jupiter Kelt-9b has Rp/Rå= 0.083 and
a/Rå= 3.16 planet (Wong et al. 2019). Assuming zero
eccentricity and ignoring any stellar oblateness (see Ahlers
et al. 2020), the day/night terminator extends τ≈ 17° past the
limb of that planet. Figure 6 shows the illumination profile of
this planet in a Mollweide projection, with the substellar point
at the center, for the point-source approximation (left) and
accounting for the finite size of the star (right). In addition to
the displaced day/night terminator, the main difference
between the two profiles is the substellar intensity, which is
significantly higher in the extended source case. This is due to
the simple fact that, in the point-source case, the illumination
source is placed at the center of the star, which is one stellar
radius farther from the planet than the point closest to the planet
(the subplanetary point) in the extended source case. Once
accounting for this difference, the fractional change in the
intensity on the planet away from the substellar point is similar
in both cases, and the intensity anywhere beyond π/2 is less
than one-tenth the peak value.17

The illumination profile in the extended source case may be
computed as the two-dimensional integral of the point-source
illumination profile over the visible portion of the stellar disk.
While this integral may in theory be computed analytically
(see, for instance, Kopal 1954, who derived series solutions to
this problem), the resulting profile on the planet surface will not
in general be exactly expressible in terms of spherical
harmonics, a necessary condition for the starry algorithm.
For simplicity, we therefore compute the illumination profile
for extended sources by averaging the contribution of

Figure 6. Normalized surface intensity on Kelt-9b viewed in a Mollweide projection assuming a point illumination source (left) and accounting for the finite extent of
the star (right). The day/night terminator extends about 17° past where it is in the point-source case. The substellar intensity is higher in the extended source case,
because the subplanet point on the star is closer to the planet than in the case where the star is a point source located at the center of the star.13

13 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/extended.py
14 https://github.com/rodluger/starry/tree/master/tests
15 https://github.com/rodluger/starry
16 https://starry.readthedocs.io

17 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/tau.ipynb
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source_npts point sources uniformly distributed across the
projected disk corresponding to the portion of the stellar
surface visible from the planet, where source_npts is a user-
supplied value. In the limit Rp= Rå, this is a spherical cap
centered at the subplanet point with radius tR cos . In Figure 6
we set source_npts= 300, but in practice we find that ∼30
points are sufficient for even the most extreme cases such as
Kelt-9b. Note, importantly, that while this method allows one
to account for the effect of stellar limb darkening on the
illumination profile of the planet, this has not been implemen-
ted in starry.

Figure 7 shows the practical implications of the finite stellar
size for the phase curve of Kelt-9b. The left panel shows the
reflected light phase curve of the planet in parts per million,
assuming a spherical albedo of 0.2, for the point-source
approximation (blue) and including the effect of the extended
source with source_npts= 300 (purple). The increased
illumination at the substellar point results in a ∼30 ppm
increase in the value of the phase curve close to full phase (±1/
2). Close to a phase of zero, the extended source results in
decreased flux, since the portion of the star illuminating the
planet (the region close to the limb) is slightly farther away, by
a factor of + -

( )a R1 2 . This results in a steeper phase
curve, which can be seen in the right panel, where the light
curves have been normalized to their maximum value.

While modeling the extended size of the star is essential to
getting the shape of the phase curve correct, the same is not true
for secondary eclipse. Figure 8 shows the normalized
secondary eclipse model for Kelt-9b under the point-source
approximation (blue) and the extended source model (purple).
Neglecting the fact that the depth of secondary eclipse is
significantly different between the two models (see the left
panel of Figure 7), the difference in shape between the two
curves is almost negligible. For reference, the figure shows two
additional models one might consider using to fit a secondary
eclipse light curve: a uniform (unilluminated) disk (solid
orange) and a disk whose intensity falls as μ, the cosine of the
viewing angle (dashed orange). Both can be computed using
the classical Mandel & Agol (2002) transit model; the latter

corresponds to a linearly limb-darkened sphere and is
functionally equivalent to a Lambertian sphere seen at full
phase. However, neither approximation is particularly good,
since Kelt-9b changes illumination phase significantly from
ingress to egress owing to its proximity to the star.

4.2. Non-Lambertian Scatterers

The second assumption we now seek to relax is that of
Lambertian scattering. A perfect Lambert sphere reflects light
isotropically, so the measured intensity at a point on the surface
is strictly proportional to the product of the cosine of the angle
of incidence and the cosine of the viewing angle. While this is
convenient from a modeling standpoint, it is hardly ever true in
practice. For planets and moons in particular, there is often a
strong phase dependence in the scattering. Rayleigh scattering
in planetary atmospheres is preferentially in the forward/
backward direction, while clouds and oceans can contribute
strong specular reflection. Moreover, rough surfaces can have
complex scattering behavior due to changes in the orientation
of the surface normal on small scales and effects such as
multiple reflections and self-shading.
In principle, any of these processes can be accounted for in

the starry algorithm by modifying the linear operator I
(Equation (A17)), which in the Lambertian case simply weights
the spherical harmonic expansion of the albedo by the cosine-
like illumination profile to obtain the observed intensity at a
point on the surface (see Equations (A18) and (A20)). For non-
Lambertian scattering, this matrix must also account for the
phase dependence of the reflection: in particular, it will depend
not only on the angle between the surface normal and the
incident radiation, ϑi, but also on the angle between the surface
normal and the reflected radiation (i.e., the direction toward the
observer), ϑr. It may also depend on the azimuthal angles of the
incident and reflected rays, fi and fr, respectively. These four
angles are shown in Figure 9, showing the incoming radiation
(source) vector s and the outgoing radiation (viewer) vector v in
a frame in which the z-axis points along the surface normal.
Treatment of a generalized, flexible scattering model is

beyond the scope of this paper; see Heng et al. (2021) for
recent results on this front. However, as an example of how a
scattering model may be incorporated into the starry algorithm,
we consider in detail the case of the rough surface scattering

Figure 7. Reflected light phase curve model for Kelt-9b, assuming a spherical albedo A = 0.2. The transit (phase zero) is not included. Blue is the starry model
assuming a point-source illumination; purple accounts for the finite size of the star. The left panel shows the two models in parts per million of the stellar flux; the right
panel shows the models normalized so their maximum value is unity. The primary effect of the extended source size is to increase the planet flux near full phase, since
the stellar surface is on average slightly closer to the planet, and to change the overall curvature of the phase curve. The shape of secondary eclipse, however, is
relatively insensitive to the point-source approximation (see Figure 8).18

18 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/kelt9b.py
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model of Oren & Nayar (1994), commonly used in computer
graphics applications and solar system body modeling (e.g.,
Morgado et al. 2019). In this model, the surface is treated as a
collection of a large number of Lambertian facets oriented at
random angles relative to the average surface normal, whose
net contribution to the total intensity can depart significantly
from the Lambertian case. While the general model accounts
for interreflections, shadowing, and an arbitrary distribution of
facet orientations, in its simplest form the intensity observed at
a point (x, y) on the (projected) surface of a body of unit
spherical albedo may be approximated as (see Equation (30) in

Oren & Nayar 1994)

f f a b= + -  { ( ( )) } ( )c c max 0, cos sin tan , 5Lamb 0 1 r i

where
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s

a J J

s
s

b J J

= -
+

=

=
+

=

( )

( ) ( )

c

c

1 0.5
0.33

max ,

0.45
0.09

min , , 6

0

2

2 r i

1

2

2 r i

⎜ ⎟

⎜ ⎟

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
and the angles ϑi, ϑr, fi, and fr are all implicit functions of x, y,
and the illumination source position. The term Lamb is the
Lambertian illumination profile, given by Equation (2). At a
given point on the surface, and for a given source position, the
intensity  is therefore a function of a single parameter, σ,
defined as the standard deviation in radians of the distribution
of facet angles (which is assumed to be a zero-mean
Gaussian).21,22

In order to incorporate this scattering model into starry, we
must weight the spherical harmonic expansion of the albedo, y,
by Equation (5) instead of Equation (2). Weighting by
Equation (2) is (relatively) straightforward, since Lamb is a
piecewise function of the l= 1 spherical harmonics (see
Appendix A.2). The function we must integrate when
computing fluxes is therefore exactly expressible in terms of
spherical harmonics and thus starry-integrable. However,
Equation (5) cannot be expressed exactly in terms of spherical
harmonics, so we must instead approximate it. To this end, we
evaluate Equation (5) on a grid of x and y spanning the unit
disk, as well as the illumination phase, parametrized by b, the
semiminor axis of the elliptical segment defining the day/night

Figure 8. Normalized reflected light secondary eclipse model for Kelt-9b, assuming a spherical albedo A = 0.2. Blue is the starry model assuming a point source
illumination; purple accounts for the finite size of the star. The orange curves show approximate models computed using the Mandel & Agol (2002) model: a sphere of
uniform intensity (solid orange) and a sphere whose intensity falls as the cosine of the viewing angle from the center of the planet disk (dashed orange). Because Kelt-
9b is so close to its host star, the illumination phase changes significantly from ingress to egress, and neither approximation accurately captures the behavior of the
light curve. On the other hand, the point-source approximation agrees well with the extended source solution, modulo the difference in the depth (see Figure 7).19

Figure 9. Scattering geometry for non-Lambertian reflection. Based on Figure
3 of Oren & Nayar (1994). The incident radiation is labeled s and the outgoing
radiation is labeled v. The shaded region is a small patch of surface, oriented so
that the normal vector points along ẑ . The four angles relevant to the
computation of the emergent intensity are also indicated.20

19 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/kelt9b.py
20 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/scattering.py

21 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/OrenNayar.ipynb
22 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/OrenNayar.ipynb
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terminator (see Appendix A.2). We then fit to this a polynomial
of total degree 5 in x, y, and º - -z x y1 2 2 and degree 5

in b and degree 4 in º -b b1c
2 . Then, for a given value of

b and bc, we construct the operator I out of the polynomial
coefficients in the same way as we constructed the Lambertian
operator in Appendix A.2. More details about our approx-
imation can be found in the Jupyter notebook accompanying
Equation (5).

Figure 10 shows spheres of unit albedo with different surface
roughness coefficients σ and their corresponding phase curves.
The sphere in the top row is perfectly Lambertian; its phase
curve (blue) peaks at a value of 2/3, equal to the geometric
albedo of a Lambert sphere. Increasing the surface roughness
results in a greater relative contribution of flux from the limb of
the object near full phase, since there now exist facets reflecting
light directly back toward the observer (remaining rows and
curves in the phase curve plot). Conversely, less light is
scattered back to the observer at the subillumination point.
These competing effects lead to phase curves that peak at a
super-Lambertian value for small roughness coefficients
(σ= 15°, orange) and at a sub-Lambertian value for large
roughness coefficients (σ= 45°, red). We validate our calcula-
tions by computing the phase curves by numerically integrating
the Oren & Nayar (1994) model over the visible disk; these are

shown as the small dots in the figure, which agree to within
350 ppm of the body’s flux for σ= 45°.
Our implementation of the scattering model extends just as

easily to occultations and to cases where the surface does not
have uniform albedo. Figure 11 shows a visible-light observa-
tion of the occultation of Io by Europa on 2009 December 4
taken by the PHEMU09 campaign (Arlot et al. 2014). The
trajectory of Europa relative to Io, computed from the JPL
Horizons database using ephemerides from Folkner et al.
(2014) is shown at the top. We fit to this data a starry
occultation model with the scattering law discussed above. For
simplicity, we set the surface map equal too an l= 15 spherical
harmonic expansion of the Galileo global color mosaic of Io
(Becker & Geissler 2005) and use ephemerides from the JPL
Horizons database, allowing for a small static x–y offset
between Europa and Io as in Arlot et al. (2014) due to the
uncertainty in the database. In total, we fit for five parameters:
the two Cartesian offset terms, the flux contribution from
Europa, the average albedo of Io, and the average surface
roughness of Io, σ. The model is displayed in blue and closely
matches the data. Note, however, that this is meant simply as a
demonstration of the starry algorithm, as our model for the
surface is approximate at best, given differences in the
wavelength band between the Galileo observations and those
of the PHEMU09 campaign, changes in the albedo of Io since
the Galileo measurements, and the fact that the orientation and
extent of any shadows due to volcanoes on the surface are
likely different between the Galileo and PHEMU09

Figure 10. Intensity measured from a sphere at varying illumination phase under the Oren & Nayar (1994) scattering model. The top panel shows spheres rendered
with different surface roughness coefficients ranging from σ = 0° (the Lambertian case) to σ = 45°. The bottom panel shows the corresponding phase curves for a
sphere of unit spherical albedo illuminated by a point source, computed analytically from a degree 5 expansion of the scattering law. Dots correspond to the intensity
computed numerically directly from Equation (30) in Oren & Nayar (1994).23

23 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/oren_nayar.py
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observations. Furthermore, proper modeling would entail the
joint analysis of all light curves of Io taken in a given season,
for which we can afford to simultaneously fit for the surface
map without risk of overfitting (Bartolić et al. 2022).25

5. Discussion

5.1. Linearity

In the Appendix we derive closed-form expressions for the
flux as a function of the spherical harmonic expansion of the
albedo, y: Equation (A18) for occultations and Equation (A7)
for phase curves. Inspection of those equations reveals that they
are both linear in y: the flux is simply the dot product of several
matrices and the vector of spherical harmonic coefficients. We
may therefore write both expressions in the form

=  ( )x yf , 7

where f is a scalar representing the model for the flux at a
particular point in time and x is a row vector equal to
 ¢A IA R R2 1 (in the case of an occultation) or  IA R R1 (in the
case of a phase curve; see Appendix A.2 for details on what
each of the terms represent). Now, if we let f be the vector of
values of f for each point in the timeseries and construct the
matrix X out of the stacked row vectors x, we may write our
model for the entire timeseries as the dot product

= ( )f Xy. 8

The linearity of the starry model is useful in several ways. For
one, it can be exploited to cheaply compute the same model for
different input vectors y. This is useful for multiband light
curves, where the same matrix X dots into several vectors y,
one for each observation band, or for time-dependent models,

in which the model for the flux might be the Taylor series
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where y(t) is a time-dependent representation of the surface
map, which we expand about t= t0 (Luger et al. 2019b); see
also Kawahara & Masuda (2020) for an alternative linear
model for time-dependent maps. But perhaps even more
importantly, linear models are particularly useful for inference,
since under Gaussian noise properties the posterior is analytic.
In particular, if our light-curve measurements are given by the
data vector d whose noise model is specified by the covariance
matrix Σ, and we place a Gaussian prior on y with mean μ and
covariance Λ, the posterior mean may be written

mS L= +- -ˆ ( ) ( )y C X d , 101 1

where C is the posterior covariance, given by

S L= +- - -( ) ( )C X X . 111 1 1

Because of this linearity, and the analyticity of the starry
model, inference on data sets comprising thousands of points
and spherical harmonic degree l� 20 takes a fraction of a
second on a typical computer. Full posterior inference with
starry can thus be faster than the numerical evaluation of a
single forward model (see Figure 5).
It is important to note, however, that the starry model is

linear only in the map coefficients y. In any real application,
there will be uncertainty in the inputs of X, such as the orbital
parameters, the occultor parameters, the scattering law, etc.
These parameters must typically be sampled over, since the
model is a nonlinear function of them. However, the analyticity
—and in particular, the differentiability—of the starry model
makes sampling via gradient-based MCMC easy. Moreover,
the linearity of the model with respect to y allows one to
efficiently marginalize over those parameters when sampling

Figure 11. Visible-light occultation of Io by Europa observed on 2009 December 4 by the PHEMU09 campaign (Arlot et al. 2014). The blue line is the starry model,
based of an l = 15 spherical harmonic fit to the Galileo global color mosaic of Io (Becker & Geissler 2005), an l = 5 expansion of the Oren & Nayar (1994) scattering
law, and orbital information from the JPL Horizons database. See text for details.24

24 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/io_europa.py
25 https://ssd.jpl.nasa.gov/horizons.cgi
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over the nonlinear parameters. Tutorials on how to do this can
be found in the starry documentation.27

5.2. The Information Content of Reflected Light Curves

One of the fundamental difficulties with the mapping
problem is that the process of inferring a two-dimensional
map from a light curve is almost always ill-posed. This has
been known since at least the turn of the last century, when
Russell (1906) discussed how, because of symmetry, all odd
harmonics above l= 1 are in the null space for thermal phase
curves of spherical bodies, meaning those terms do not
contribute at all to the disk-integrated flux. As discussed in
Luger et al. (2019a, 2021c), the problem is even more ill-posed
than that: for any even degree l> 0, there are 2l+ 1 modes on
the surface (one for each value of m), but only 2 Fourier modes
in the light curve (i.e., a sine and a cosine). Thus, for every
mode that can be constrained from the light curve, there are far
more modes that cannot, a problem that only gets worse as l
increases.

The left panel of Figure 12 shows this issue in practice. We
generate a mock thermal light curve (center left) from an l= 20
expansion of the Earth (top) with 1000 points over the course
of one year with an exquisite photometric precision of 1 ppm.
The Earth is given an obliquity of 23°.5 on the plane of the sky
but is viewed along the ecliptic, rotating edge-on with an

inclination of 90°. The data are shown in black, and in blue is
the posterior mean model (Equation (10)), in which we assume
a prior variance of 10−3 for all spherical harmonic coefficients
(and zero covariance). The corresponding surface map is
shown at the bottom. As expected, this looks nothing like the
true map of the Earth. For a body seen rotating edge-on, the
information content of the light curve is strictly longitudinal.
While the inferred map captures the average brightness of the
Earth at each longitude fairly well, it is missing all latitudinal
information. This is independent of the signal-to-noise or the
cadence of the data set—it is a fundamental limitation of phase
curves in thermal light.28

The same is not true for the case of reflected light phase
curves. In the right panel of Figure 12 we show the same mock
light curve and perform the same inference step, but this time for
observations in reflected light; the light curve is similar to that in
Figure 1. Because of the presence of a day-night terminator
beyond which features on the surface contribute zero flux, none
of the symmetry arguments above apply. In particular, the facts
that (1) the Earth is seen at different phases and (2) the
terminator is inclined relative to the rotational axis mean that the
region of the surface contributing to the phase curve is always
changing, resulting in a complex light curve that encodes

Figure 12. Example of an inference problem for a thermal phase curve (center left) and a reflected phase curve (center right). In both cases, a mock phase curve is
generated from an l = 20 expansion of the cloudless Earth (top) with 1000 evenly spaced points over the course of one year and an extremely small photometric
uncertainty of 1 ppm. The observer sits along the ecliptic and the obliquity of the Earth is set to 23°. 5. Data is shown as the black points, and the maximum likelihood
starry model is shown in blue. While both models fit the data equally well, the same is not true of the inferred surface maps (bottom row): only in the reflected case are
the continental outlines recovered. The thermal phase curve problem is extremely ill-conditioned, but the analogous problem in reflected light is much better posed.26

26 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/inference.py
27 https://starry.readthedocs.io

28 This choice is equivalent to assuming a flat prior on the power spectrum
with power 10−3 in each degree l of the surface map. This particular value is
roughly the average power per degree in the input map, although the results in
the figure are not sensitive to this choice. For a detailed discussion of how to set
one’s priors in a realistic setting in which the true map is not known, see Luger
et al. (2021a).
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significantly more information than its thermal counterpart. The
result is an inferred map that is largely faithful to the true map
(bottom). While the continental outlines are somewhat fuzzy and
some artifacts are present at high latitudes, it is clear that the
inference problem is much less ill-posed in this case.

Unlike thermal light curves, reflected light phase curves have
the potential to robustly constrain two-dimensional maps of

exoplanets. This result is not new, and has been discussed at
length in the literature (e.g., Fujii & Kawahara 2012;
Berdyugina & Kuhn 2017; Luger et al. 2019b; Aizawa et al.
2020; Kawahara 2020). In particular, Kawahara & Fujii (2010)
demonstrated the uniqueness of their inferred map from mock
reflected light curves of the Earth. As we argued above, for
specific geometrical configurations, the mapping problem in
reflected light can actually be well-posed, meaning it has no
null space up to a certain degree l. Reflected light phase curves
of terrestrial planets with James Webb Space Telescope

Figure 13. Similar to Figure 12, but for 500 high signal to noise observations taken over ten days near quadrature. At the top we show the thermal and reflected phase
curves and the corresponding inferred maps. At the bottom, we show the same light curves but this time including seven equatorial occultations by a (very) short
period moon one-quarter the size of the planet. The presence of the occultations significantly increases the fidelity of the recovered maps near the equator (the path of
the occultor). While in the thermal case there is significant overfitting at high latitudes, in the reflected case the map accurately recovers features across the entire
planet.29

29 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/inference_occ.py
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(JWST) and future direct imaging missions thus have the
potential to reveal detailed information about their surfaces.

Nevertheless, at finite signal to noise and for limited
observation duration or cadence, there may still be significant
degeneracies in the reflected phase curve problem. In Luger
et al. (2019a), we argued that occultations can be used to break
many of these degeneracies, since they directly probe the
surface at scales inaccessible to phase curves. The same is true
in reflected light. Figure 13 demonstrates this for mock
observations of the same Earth-like planet as in Figure 12,
but this time taken over ten days near quadrature, when the disk
of the planet is seen at half phase. The top rows show the
thermal and reflected phase curves and the inferred maps,
which look similar to those in the previous figure. At the
bottom we show the same light curve, but this time including
seven equatorial occultations by a moon one-quarter the size of
the planet. The moon’s period and occultation duration are
unrealistically short, but the inferred maps at the bottom show
the exquisite constraining power of these occultations. In the
thermal case, the presence of the moon allows us to infer the
two-dimensional distribution of surface features along its
equatorial occultation path; however, there is little information
in the light curve about features at higher latitudes, and the
starry model overfits. Conversely, in the reflected light case,
there is information about all latitudes and longitudes, and the
inferred map is largely faithful to the true map.

It should be kept in mind that the kinds of observations
mentioned above will be very challenging for exoplanets, even
with next-generation observatories such as HabEx or LUVOIR.
Observations of occultations of planets by moons, in particular,
are likely several decades away at least. There is some hope
that planet–planet occultations may be detectable in the near
future for specific planetary systems such as TRAPPIST-1
(Luger et al. 2019b), but at extremely limited signal-to-noise.
Even phase curve observations will be difficult because of their
limited signal-to-noise, and in practice many degeneracies will
likely remain. Several studies have found that color information
can greatly help in the interpretation of reflected phase curves
(Cowan et al. 2009; Kawahara & Fujii 2011; Lustig-Yaeger
et al. 2018; Kawahara 2020), while others have explored in
detail the best kinds of priors to assume (e.g., Aizawa et al.
2020; Asensio Ramos & Pallé 2021). Future maps of
exoplanets—particularly terrestrial ones in the habitable zone
—will require every tool in the toolbox.

5.3. Limitations

There are a few limitations to the starry model that are
important to bear in mind. The primary limitation concerns the
maximum spherical harmonic degree of the model. While the
expressions derived here are valid at arbitrary degree, we find
that their numerical stability quickly degrades above l∼ 20–25
for occultations and l∼ 35–40 for phase curves. The same is
true for the model in thermal light (Luger et al. 2019a), and is
due to (1) the large condition number of the change-of-basis
matrix from spherical harmonics to polynomials and (2)
instabilities in the many recursion relations used to evaluate
the solution vectors  and . In principle, one could improve
the numerical stability by evaluating all expressions at higher
floating-point precision, but in practice the computational cost of
this becomes quickly prohibitive. However, it is important to
keep in mind that our current best image of an exoplanet is the
l= 1 map of HD189733b (Knutson et al. 2007; de Wit et al.

2012; Majeau et al. 2012). Next-generation facilities such as
JWST may allow us to probe surface modes as small as l= 5 for
some planets (R. Luger et al. 2022, in preparation), but even with
future telescopes such as LUVOIR, it is extremely unlikely we
will do better than l= 20. If cases arise requiring a resolution
smaller than about 180°/20= 9° on the surface, the starry
algorithm will have to be revisited.
The second limitation concerns the flexibility of the starry

model. While we presented ways to capture non-Lambertian
scattering in starry (Section 4.2), there are certain aspects of
light curves in reflected light that cannot be captured by the
model. One example of this is shadowing. Craters on the moon
or volcanoes on Io can cast large shadows visible from space,
particularly if viewed near crescent phase. Unfortunately, there
is no way to model this within the starry framework. Another
example is multiple scattering, as in optically thick atmo-
spheres, for which a proper radiative transfer model must be
used. There is also the case of specular reflection, or “glint,”
which is a pronounced signal for the Earth due its oceans
(Robinson et al. 2014) and on Titan due to its hydrocarbon
lakes (Barnes et al. 2011). In principle, glint could be modeled
in the same way as non-Lambertian scattering, by constructing
the linear operator I in such a way as to downweight portions of
the projected disk where ϑi≠ ϑr. In practice, however, if the
size of the glint spot is small (which is typically the case), an
expansion at extremely high l (l∼ 360 in the case of the Earth)
would be required, which would not work for the reasons
above. Instead, it may be possible to combine the starry
algorithm with the formalism of Haggard & Cowan (2018),
who derived analytic expressions for phase curves of delta
function maps (δ-map), to model glint. As discussed in Lustig-
Yaeger et al. (2018), glint mapping is an extremely powerful
way to not only map terrestrial planets but also to confirm their
habitability via the presence of an ocean. Lastly, the presence
of time-variable features, such as clouds, dust storms, or
seasonal variations of vegetation are not accounted for in the
model, although the documentation discusses how one may
approach the modeling of temporal features.30

We would also like to emphasize that while spherical
harmonics are a convenient basis for the purpose of computing
light curves, they have a significant drawback when it comes to
modeling real planetary surfaces: it can be difficult to strictly
enforce physical values of the albedo everywhere on the
surface map when doing inference. That is because there is no
analytic way to determine whether a spherical harmonic
representation is positive-valued (or restricted to a given range)
everywhere on the sphere. Instead, this must be checked
numerically, by evaluating the function on a discrete grid. This
makes it somewhat cumbersome to implement positivity as a
prior when doing inference; in particular, this prior cannot be
expressed as a Gaussian, so the analytic expression for the
posterior discussed in Section 5.1 will generally have nonzero
support for negative albedo values. This is particularly
problematic when the data is not very constraining and the
posterior is prior-dominated, as positivity can be an extremely
informative prior (e.g., Fienup 1978). We therefore recommend
that in such cases users of the starry algorithm use HMC/
MCMC to do inference, either (1) sampling over the spherical
harmonic coefficients y and imposing a uniform prior in the
range [0, 1] on the albedo values a evaluated on a discrete grid

30 https://starry.readthedocs.io
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on the sphere or (2) sampling over the albedo values a with the
same uniform prior, but using y to compute the actual light
curve model (Bartolić et al. 2022). In both cases, there exists a
linear operator that transforms between y and a:

= ( )a Py 12

and

= + ( )y P a, 13

where

l= ++ - ( ) ( )P P P P 141I

is the pseudoinverse of P, with (small) regularization parameter
λ and where I is the identity matrix. Each row of the matrix P is
constructed from the value of each of the spherical harmonics
at the corresponding point on the grid; both P and its inverse
may be precomputed for efficiency. In both cases, the grid
should be fine enough to ensure positivity over most of the
sphere but not so fine as to throttle the computation; as a rule of
thumb, we find that grids with ∼4 times as many pixels as
spherical harmonic coefficients are sufficient. The documenta-
tion includes tutorials on how to implement this in practice.31

Finally, while the algorithm presented here can be used to
model planet–planet and planet–moon occultations in reflected
light, we only account for the physical blocking of light rays
from the planet by the occultor; we do not account for the
attenuation of the reflected light due to the shadow of the
occultor on the planet. This can be an important effect at certain
orbital phases (e.g., Cabrera & Schneider 2007). However,
since the shadow of the occultor is not necessarily circular, it is
significantly harder to model in closed form. A proper
treatment of this and other effects, such as occultations and
shadows due to rings (e.g., Arnold & Schneider 2004), is
deferred to future work.

6. Conclusions

We have presented an efficient, numerically stable, closed-
form algorithm for computing phase curves and occultation light
curves of spherical bodies in reflected (scattered) light. This
algorithm is an extension of the algorithm presented in Luger
et al. (2019a) for light curves in thermal light and is generally
applicable to exoplanetary phase curves, secondary eclipses, and
occultations by moons and other planets, as well as to light
curves of planets and moons in our solar system. We derive the
solution for the case of a Lambert sphere illuminated by a point
source, but extend it to the case of an extended illumination
source and non-Lambertian scattering parametrized by a surface
roughness coefficient. The algorithm is ∼4–5 orders of
magnitude faster and ∼10 orders of magnitude more precise
than other numerical approaches for computing these light
curves. The algorithm is also differentiable in all of the model
parameters, enabling inference with efficient gradient-based
samplers such as HMC, and linear in the spherical harmonic
coefficients describing the surface albedo, enabling fast, closed-
form solutions for the albedo posterior distribution under a
Gaussian noise model. We implement the algorithm within the
starry software, an open-source Python package for inferring
surface maps of unresolved celestial bodies. The algorithm is
coded in a combination of C++ and Python compiled using the

theano package (Theano Development Team 2016). The
interface was designed specifically for compatibility with the
exoplanet modeling package (Foreman-Mackey et al. 2020) and
the pymc3 inference suite (Salvatier et al. 2016).
Upcoming telescopes will enable measurements of exoplanet

phase curves and secondary eclipses at unprecendented precision.
While the JWST will be primarily sensitive to thermal emission
from exoplanets (which can currently be modeled with starry),
next-generation direct imaging facilities such as the LUVOIR
will enable measurements in reflected light, in particular for
terrestrial planets in the habitable zone. Because of the changing
illumination pattern over the course of an orbit of the planet,
phase curves and occultation light curves in reflected light
contain vastly more information about the two-dimension albedo
distribution of the body than their thermal counterparts. With
careful modeling, light curves in reflected light are likely to give
us the first images of potentially habitable exoplanets, enabling
the detection of clouds, continents, oceans, and perhaps even life.
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the Astronomical Data Group at the Center for Computational
Astrophysics for many thought-provoking discussions that helped
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readthedocs.io. The code used to generate the figures in this paper
is hosted at https://github.com/rodluger/starrynight.
Software: astroquery (Ginsburg et al. 2013, 2019), Eigen v3

(Guennebaud & Jacob 2010), exoplanet (Foreman-Mackey
et al. 2020), pybind11 (Jakob et al. 2017), pymc3 (Salvatier
et al. 2016), scipy (Jones et al. 2001), starry (Luger et al. 2018),
theano (Theano Development Team 2016).

Appendix A
The Problem

This paper closely follows the notation and formalism
introduced in Luger et al. (2019a). While we include all of the
relevant equations and definitions below, the reader is encouraged
to review Luger et al. (2019a) before proceeding. To improve the
readability of this paper, Tables 1–4 at the end list the principal
symbols and quantities used throughout the text, with links to the
sections and equations in which they are defined. Because of the
large number of symbols used in this paper, we adopt the
following conventions: scalars are represented by regular lower-
case or occasionally uppercase letters (i.e., x or X), vectors are
represented by boldface lowercase letters (x), and matrices and
other linear operators are represented by boldface capital letters
(X). With a few exceptions, Greek letters are reserved for angular
quantities and may be either scalars (α) or vectors (α). Script font
is typically used to denote curves or frames of reference ( ).
Primes are used to distinguish between frames of reference (x and
¢x are used to denote the same quantity, but in frames  and ¢ ,

respectively). Tildes are used to denote basis vectors ( ỹ). Finally,
blackboard vectors () correspond to solutions to the various
“primitive” integrals that arise in the occultation problem.

A.1. Review of the starry Algorithm in Emitted Light

Without loss of generality, assume the body whose flux we
wish to compute has radius unity and sits at the origin of a31 https://starry.readthedocs.io
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right-handed Cartesian coordinate system in some frame 0. In
this frame, the surface (emitted) intensity field of the body is
described by a vector y of coefficients in the spherical harmonic
basis ỹ:

= - - -
( )

˜ ( )
···

( )

y x y

Y Y Y Y Y Y Y Y Y

,

,

A1
0,0 1, 1 1,0 1,1 2, 2 2, 1 2,0 2,1 2,2

where the component at index n is the spherical harmonic
Yl,m(x, y) with

=
= - -

⌊ ⌋
( )

l n

m n l l. A22

The spherical harmonics are traditionally expressed in spherical
coordinates, but for our purposes it is more convenient to
express them in Cartesian coordinates on the sky-projected
disk, in which case they are simply polynomials in x, y, and z
(see Appendix A in Luger et al. 2019a).

An observer views the body from a large distance in the sky
frame  , in which the x-axis points to the right, the y-axis
points up, and the z-axis points out of the sky toward the
observer. Following Luger et al. (2019a), if an occultor of
radius ro is located at sky position (xo, yo), we compute the
visible thermal flux fT from

= ¢ ( )s AR Ryf , A3T

where, from right to left, R= R(I, Λ, Θ) is a Wigner rotation
matrix that rotates y from 0 to the sky frame  given the
body’s inclination I, obliquity Λ, and rotational phase Θ
(Appendix C in Luger et al. 2019a), ¢ = ¢( )R R x y,o o rotates the
body on the plane of the sky into the integration frame ¢ , in
which the occultor lies along the + ¢y -axis, A (Equation (B13)
in Luger et al. 2019a) is the change-of-basis matrix from ỹ to
the Green’s basis g̃ in which the integrals are computed, whose
component at index n is

with

m
n
º -
º + ( )

l m
l m A5

and

º - -( ) ( )z x y x y, 1 , A62 2

and s= s(bo, ro) is the vector of solutions to the integral over
the projected visible disk of the body for each term in g̃

(Equation (26) in Luger et al. 2019a), with = +b x yo o
2

o
2 .

If instead no occultor is present, we compute the total visible
thermal flux fT0

from this body as

=  ( )r A R Ryf , A71T0

where, as before, R=R(I, Λ, Θ) rotates the body from 0 to
the sky frame  , R″ rotates the body on the plane of the sky
into the integration frame  , A1 (Equation (B11) in Luger
et al. 2019a) is the change-of-basis matrix from the spherical
harmonic basis ỹ to the polynomial basis p̃ in which the
integrals are computed, whose component at index n is

m n
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and r is the vector of solutions to the integral over the
projected visible disk of the body for each term in p̃ (Equation
(19) in Luger et al. 2019a).32

A.2. Adapting the Algorithm to the Reflected Light Case

In order to compute light curves in reflected light, we must
make two modifications to the starry algorithm. First, the
expressions above assume that the coefficient vector y
describes the emissivity of the body, which (in the absence of
limb darkening) is assumed to be Lambertian, i.e., all points on
the surface emit equally in all directions. Here, we wish to
derive the solution for the flux in the case of Lambertian
reflectance, in which case the vector y is taken to describe the
spherical albedo of the surface, A.
Second, we must explicitly model the illumination of the

body. We assume the body is illuminated by a point-like source
whose flux measured by the observer is unity. In this case, the
observed intensity at any point on the surface is proportional to
the cosine of the angle ϑi between the incident light and the

surface normal. Points for which ϑi� π/2 are unilluminated
and therefore have an intensity of zero. If the point-like
illumination source is placed at sky coordinates (xs, ys, zs) in
units of the radius of the illuminated body, the day/night
terminator on the body is a half-ellipse of semimajor axis unity

m
m n

m n

n m
m n

n m
m m

m

=

+

= =

=
+

- + + =

-
-

-

-
+

-

- - -

m n

m n m n

m n

- - - +

- -

( )

( )
( )

( )( )

( )

( )

g x y

x y

z x y

x yz x y

z x y x x x y

z x y x y x y

x y

,

2
2

, even

, 1

3 , odd, 1,
2

even

, 4 odd, 1, odd

,
3

2
3

2
3

2

otherwise,

A4

n

l

l l l

2

3 1 3 2

2 2

5
2

1
2

5
2

3
2

1
2

1
2

⎧

⎨

⎪⎪⎪⎪⎪

⎩
⎪⎪⎪⎪⎪

⎛⎝ ⎞⎠

32 In Luger et al. (2019a),  = ¢  , so this rotation is trivial: R″ is just the
identity matrix.
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that is fully described by its (signed) semiminor axis,

= - ( )b
z
r

, A9s

s

where = + +r x y zs s
2

s
2

s
2 is the distance to the source, and

the angle by which its semimajor axis is rotated away from
the+ x-axis,

q = - ( ) ( )x yarctan 2 , , A10s s

where ( )a barctan 2 , is the quadrant-aware arctangent of a/b.
Given this formulation, and assuming that rs? 1, it is
straightforward to show that the illumination  at a point (x,
y) on the projected disk of the body is given by the function
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with º -b b1c
2 and = - -( )z x y x y, 1 2 2 . The illumi-

nation  is a unitless quantity, normalized such that the integral
of A over the unit disk is equal to the flux measured by the
observer as a fraction of the flux of the illumination source., In
particular, if we place the illumination source along the+ z-
axis at (0, 0, 1), the body is seen at full phase, so b=−1,
bc= 0, and

p
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Multiplying this by the albedo and integrating over the unit
disk, we obtain the reflected flux measured by the observer in
units of the flux of the illumination source:
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which is precisely the geometric albedo of a Lambert sphere of
spherical albedo A (see, e.g., Seager 2010).33,34,35,36,37,38

In principle, our task is now straightforward: weight each of
the terms in the Green’s basis (Equation (A4)) and integrate
them over the visible portion of the body’s disk to obtain the
reflected light solution vector, . Unfortunately, the piecewise
nature of Equation (A11) makes direct evaluation of these
integrals extremely difficult in practice. We find that it is more
tractable to weight our basis terms by the function I
(Equation (A12)) and to modify the limits of integration to
exclude the nightside of the body, where I is (unphysically)
negative. In particular, since I is just a polynomial in x, y, and z
(x, y), we can express it as a vector i(b, θ) in the polynomial
basis p̃. Recalling the structure of the basis (Equation (A8)), we
may write
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This fact allows us to construct a linear operator I to weight a
map vector in the polynomial basis by the illumination profile.
If we think about how each of the terms in p̃ transforms under
I,
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we can compose I out of these column vectors:
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where the dimensions of the matrix are + +(( ) ( ) )l l2 , 12 2 ,
where l is the spherical harmonic degree of the map (this
operator raises the degree of the map by one). Note, again, that
this weighting is valid only on the dayside hemisphere (see
Equation (A11)), as the operator I weights points on the

33 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
34 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
35 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
36 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
37 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
38 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb

19

The Astronomical Journal, 164:4 (32pp), 2022 July Luger et al.

https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb
https://github.com/rodluger/starrynight/blob/5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.ipynb


nightside by a negative amount, which is clearly unphysical. As
we will see momentarily, we account for this by excluding the
nightside from the integration region in our flux integrals.40,41

We may now re-write Equations (A3) and (A7) to account
for this illumination transformation. The flux during an
occultation is now given by

 q q= ¢ ¢ ¢ L Q( ) ( ) ( ) ( )
( )

A I A R R yf b b r b r x y, , , , , , I, , ,
A18

2 1o o s o o

where

q¢ = -( ) ( ) ( )x y x yarctan 2 , arctan 2 , A19o o s s

is the angle of the terminator in the frame ¢ . Note that we
made use of the fact that A= A2A1 (Equation (14) in Luger
et al. 2019a), where A1 transforms from the spherical harmonic
basis ỹ to the polynomial basis p̃, and A2 transforms from p̃ to
the Green’s basis g̃.

Similarly, the flux when there is no occultation is now given
by

 q=   L Q( ) ( ) ( ) ( ) ( )I A R R yf b b r x y, , , I, , , A2010 s s s

where

q = ( )0 A21

is the angle of the terminator in the frame  , by construction.
The transformation R″= R″(xs, ys) rotates the body through an
angle ( )x yarctan 2 ,s s so the semimajor axis of the terminator is
aligned with the x″-axis; as will become clear in Appendix B
below, this greatly simplifies the integration step.

Note that in both equations we replaced the integral vectors
r and s(bo, ro) with the vectors ( )b and  q¢( )b b r, , ,o o ,
respectively. As we mentioned above, we must modify the
integration limits to exclude the nightside, where the weighting
by I is unphysical. The vectors  and  correspond to these
modified integrals, which we devote the rest of this paper to
computing.
Figure 14 summarizes the transformations involved in the

two equations above. Starting on the right with a map vector y
in the spherical harmonic basis ỹ, defined in some observer-
independent frame 0, we first rotate it via R to the sky frame
 , in which the body is viewed by the observer. If an occultor
is present (upper branch of the figure), we rotate the map from
 via ¢R to the frame ¢ , in which the occultor lies along the
+ ¢y -axis. We then apply A1 to change basis to p̃ and I to
weight the map by the illumination. Finally, we change basis
via A2 to the Green’s basis, in which we compute and dot the
integrals . If, on the other hand, there is no occultation (lower
branch of the figure), we instead rotate the map via R″ to the
integration frame  , in which the terminator is parallel to the x
″-axis. We then apply A1 to change basis to p̃, apply the
illumination transform I, and finally dot in the solutions to the
surface integrals .

Appendix B
The Solution: No Occultation

Before we tackle configurations involving occultations,
we must address the simpler problem of computing the total
visible flux from an unocculted body in reflected light
(Equation (A20)). This problem was originally solved by
Haggard & Cowan (2018) and subsequently by Luger et al.
(2019b), but for completeness we present the detailed
derivation in the starry formalism here.
As we discussed above, we perform the integration in a

frame  in which the semimajor axis of the terminator is
aligned with the x″-axis, with the illumination source at y″� 0.

Figure 14. How starry computes the flux from a body in reflected light, tracking each of the linear transformations from the input map (far right) to the output (far
left). The label below each map denotes the reference frame, while the label above each map denotes the basis in which the map is represented. Arrows indicate linear
operations and are labeled accordingly. The upper branch corresponds to the occulted case (Equation (A18)), while the lower branch corresponds to the case where the
body is unocculted (Equation (A20)). See text for details.39

39 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/frames.py
40 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
41 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/illumination.
ipynb
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The solution vector may then be computed from
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which is identical to Equation (20) in Luger et al. (2019a)
except for the lower integration limit of the inner integral. The
lower limit is now the equation describing the terminator,
which ensures we always exclude the nightside from the
integration region. Equation (B1) may be solved analytically in
terms of purely trigonometric and algebraic functions of b. The
component of  at index n is given by
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where Γ is the gamma function. Given initial conditions
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we may compute all the required higher order terms from the
recurrence relations
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Once  is known, the observed total flux in reflected light is
computed from (see Equation (A20))

 q=   L Q( ) ( ) ( ) ( ) ( )I A R R yf b b r x y, , , I, , . B610 s s s

Finally, for future reference, we can also compute what we will
call the complement of case 0:

 q= -   L Q ˆ ( ( )) ( ) ( ) ( ) ( )r I A R R yf b b r x y, , , I, , . B710 s s s

This is the flux contribution from the unphysical nightside (if
we were to integrate over it), where our polynomial illumina-
tion (Equation (A12)) function yields negative intensities. This
quantity will be useful in negating the unphysical contribution
in the integrals of the following section.42,43,44,45

Appendix C
The Solution: Occultation

The integration in the unocculted case presented above is
relatively straightforward, since the boundaries of integration
are always the half-ellipse defining the terminator and the half-
circle defining the upper limb of the body (Equation (B1)).
When an occultor is present, however, the integration
boundaries are far less trivial, since they may or may not
include sections of the terminator, sections of the limb of the
body, and sections of the limb of the occultor. The integration
regions may also be disjoint; for instance, in case 7 of
Figure 15, the portion of the dayside that is unocculted consists
of two separate regions.
Whereas in Luger et al. (2019a) we compute the observed

flux by always integrating over the unocculted portion of the
disk, here we find that it is often easier and more
computationally efficient to compute the integral of the
intensity over the simplest region—meaning the one with the
fewest boundaries—and combine it with the formalism from
Appendix B to compute the visible flux. These integrals may be
over the unocculted dayside, the occulted dayside, the
unocculted nightside, or the occulted nightside; in the case of
the latter three, a bit of algebra (Appendices C.3–C.4) is needed
to relate these to the observed flux. Additionally, in some cases
we can avoid computing new integrals entirely, as the solution
can be obtained from a combination of the classical starry
solution vector  and the formalism from the unocculted case
(Appendix B).
After exhaustive experimentation, we identified in total 14

families of geometrical configurations for the occultation
problem, each defined by a distinct combination of integration
boundaries; these are shown in Figures 15 and 17. Together,
these cases encompass all possible occultation configurations,
for any illumination angle, occultor size, and occultor position.
Before we discuss how to compute the occultation integrals,

we must first develop a procedure to identify the relevant case
given the occultor impact parameter = +b x yo o

2
o
2 and radius

ro and the terminator semiminor axis b and angle q¢ in the
frame ¢ . Then, once the case is determined, we must identify
the relevant integration boundaries, which depend on the points
of intersection between the limb of the body, the limb of the
occultor, and the terminator. We do so in the following
sections.

42 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/PhaseCurve.
ipynb
43 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/PhaseCurve.
ipynb
44 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/PhaseCurve.
ipynb
45 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/PhaseCurve.
ipynb
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C.1. Case Determination

The key to identifying the case corresponding to a given
configuration is to determine whether or not the limb of the
occultor intersects the terminator of the body, and if so, the
points of intersection. While we perform the integration in frame
¢ , finding the points of intersection with the terminator is easier

if we temporarily switch to the frame  , in which the terminator
is parallel to the x″-axis. In this frame, the equations defining the
terminator and the limb of the occultor are, respectively,

  = - 

  =   -  - 

( )
( ) ( ) ( )

y x b x

y x y r x x

1

, C1

1
2

2 o o
2

o
2

where
q
q

 = ¢
 = ¢ ( )

x b

y b

sin
cos C2

o o

o o

are the coordinates of the occultor in  ., We wish to find
the vector of N points  = -

( ··· )x x x x, , , N0 1 1 for which
  -   =( ) ( )y x y x 0n n1 2 . Following Luger et al. (2017), we

may express this condition as the quartic equation

 +  +  +  + = ( )Ax Bx Cx Dx E 0, C34 3 2

with coefficients
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Although closed-form solutions to quartic equations exist (see, e.g.,
Hughes & Chraibi 2011, who solve for the area of overlap between
two ellipses analytically), they are prone to significant numerical
instabilities. Instead, we solve for the roots of the quartic
numerically by casting it as an eigenvalue problem (e.g., Edelman
& Murakami 1995) and polish the results with a few iterations of
Newton’s method. We find that this is reasonably computationally
efficient and yields roots with precision within a couple orders of
magnitude of machine epsilon (see Section 3.2).47,48,49,50

Figure 15. The 10 principal families of cases of occultations in reflected light. In these figures, the body with the solid outline is the one whose flux we are interested in, and
the body with the dashed outline is the occultor. The nightside of the occulted body is colored black (dark gray if occulted), and the dayside is colored blue (bluish-gray if
occulted). Case 0 is the unocculted case (Appendix B), while cases 1–5 involve configurations in which the limb of the occultor does not intersect with the terminator at any
point, so the visible flux may be computed in terms of classical starry integrals. The remaining cases require integration along the orange boundary (the curves ,  , and
of Appendix C.3), which include the terminator. These involve the evaluation of incomplete elliptic integrals and are derived below. Note, finally, that there are additional
subcases not shown above. For instance, cases 4, 5, 7, and 8 also encompass configurations in which the occultor does not intersect the limb of the occulted body. However,
as this distinction does not affect the procedure for computing the flux in these cases (see text), we omit these subcases from the figure.46

46 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/cases.py
47 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/quartic.ipynb
48 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/quartic.ipynb
49 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/quartic.ipynb
50 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/quartic.ipynb
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In general, the quartic defined by Equation (C3) has N= 4
(potentially degenerate) roots, some of which may be complex,
and some of which correspond to intersections with the wrong
half of the terminator ellipse (i.e., the section of the terminator
on the far side of the body). After excluding the unphysical
solutions, we are still left with anywhere between zero and four
roots.

Cases with zero roots (case 1–case 5) are treated in
Appendix C.2, while cases with one or two roots (case 6–
case 10) are treated in Appendix C.3. Cases with three or four
roots (case 11–case 14) are rarely encountered in practice, but
are possible for some pathological configurations; these are
treated in Appendix C.4.

C.2. Cases 1–5

Cases 1–5 (see Figure 15) involve configurations in which
the occultor does not intersect with the terminator of the
occulted body, and are therefore fairly straightforward to solve.
In particular, we can use the original emitted light solution from
Luger et al. (2019a), provided we weight the map by our
polynomial illumination function:

q= ¢ ¢ L Q( ) ( ) ( ) ( ) ( )s A I A R R yf b r b r x y, , , , I, , , C52 1I o o s o o

where s(bo, ro) is the emitted light solution vector (Equation
(26) in Luger et al. 2019a). The flux fI is the flux one would
measure from a body whose surface map is weighted by the
illumination function q¢( )I b r, , s during an occultation. Note
that this is not necessarily the observed flux, since this may
include the unphysical negative contribution from the night-
side. We must compute the actual observed flux on a case-by-
case basis.

Case 1 corresponds to any complete occultation of the body
(bo� ro− 1), so the solution for the flux is trivial:

= ( )f 0. C61

Case 2 corresponds to occultations in which the occultor blocks
all of the dayside of the body and some of the nightside. In this
configuration, the unocculted part of the disk consists only of
nightside, so the solution is again trivial:

= ( )f 0. C72

Conversely, case 3 corresponds to occultations in which the
occultor blocks all of the nightside of the body and some of the
dayside. Since the visible portion of the disk consists only of
dayside, we can simply use the weighted solution in emitted
light (Equation (C5)):

= ( )f f . C83 I

Case 4 involves any occultation in which the occultor blocks
only the nightside of the body (regardless of whether or not it
intersects with the limb of the body). Since the nightside
intensity is zero everywhere, this case is also trivial, as the flux
is equal to the flux in the no occultation case (Equation (B6)):

= ( )f f . C94 0

Finally, case 5 involves any occultation in which the occultor
blocks only the dayside of the body (regardless of whether or
not it intersects with the limb). We first compute the
illumination-weighted flux fI as above, then negate the
unphysical nightside contribution using Equation (B7):

= - ˆ ( )f f f . C105 I 0

C.3. Cases 6–10

Cases 6–10 (see Figure 15) correspond to configurations in
which the limb of the occultor intersects with the terminator at
either one point (case 6) or two points (cases 7–10). Because of
these intersections, we cannot simply reweight the emitted light
solution, as the integration boundaries are now different. In
general, we may compute the flux by integrating the
components of the Green’s basis g̃ over the region S bounded
by three curves, which we denote  ,  , and . These are
shown in orange in Figure 15 and presented in more detail in
Figure 16. Curve  is a segment of the limb of the occultor,
parametrized by the angle fä [f0, f1]; curve  is a segment of
the terminator, parametrized by the angle ξ ä [ξ0, ξ1]; and curve
 is a segment of the limb of the occulted body, parametrized
by the angle λ ä [λ0, λ1]. The endpoints f0, f1, ξ0, ξ1, λ0, and
λ1 are functions of the solutions to the quartic from
Appendix C.1 and will be presented in Appendix C.5.
Let  be the integral of g̃ over S:

 q
q

¢ =
¢

¢ ¢ ¢ ¢ ∬( )
( )

˜ ( ) ( )gb b r

S b b r

x y dx dy, , ,

, , ,

, . C11o o

o o

Figure 16. Geometry of an occultation in reflected light, corresponding to case 6 in Figure 15. The surface integral over the occulted portion of the dayside (bluish-
gray region) is computed from the line integrals of the antiderivatives of the surface intensity map along the boundary curves  ,  , and. See text for details .51

51 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/geometry.py
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We defer the solution to Equation (C11) to Appendix C.5
below, as it is quite lengthy. Given , the flux fS over the
integration region S is computed from Equation (A18):

 q q= ¢ ¢ ¢ L Q( ) ( ) ( ) ( )
( )

A I A R R yf b b r b r x y, , , , , , I, , .
C12

2 1S o o s o o

Note again that this is not necessarily the observed flux, which
we must compute on a case-by-case basis below.

Case 6 corresponds to configurations in which the limb of
the occultor intersects the terminator at a single point. The
integration region (see Figures 15 and 16) is the occulted
portion of the dayside, which is bounded by all three curves  ,
, and  . The total flux may be computed by subtracting the
occulted flux fS from the total dayside flux f0:

= - ( )f f f . C136 0 S

Cases 7–10 involve two points of intersection between the
occultor limb and the terminator. Cases 7 and 8 correspond to
occultors that block some of the nightside and some of the
dayside, but neither of the extrema of the terminator ellipse. In
case 7 a lens-shaped region is formed by the intersection of the
occultor limb and the terminator on the nightside, while in case
8 this region is formed on the dayside. In case 7, we begin by
computing the flux over the unocculted region, fI, which
includes the spurious nightside contribution. We then remove
this contribution by noting that it is equal to the total nightside
contribution, f̂0, minus the occulted nightside flux, fS:

= - -( ˆ ) ( )f f f f . C147 I 0 S

Case 8, on the other hand, is equivalent to case 6, since the
integration region consists of occulted dayside:

= - ( )f f f . C158 0 S

Cases 9 and 10 correspond to occultors that also block some
nightside and some dayside, along with both of the extrema of
the ellipse; these are therefore exclusively for large occultors
(ro> 1). Case 9 involves occultations in which only a small
lens-shaped region of the nightside is visible. The total flux is
the visible dayside plus unphysical nightside contribution, fI,
minus the nightside contribution, which we compute from
Equation (C12):

= - ( )f f f . C169 I S

Conversely, case 10 involves occultations in which only a
small lens-shaped region of the dayside is visible. In this case,
we may compute the observed flux from Equation (C12)
directly:

= ( )f f . C1710 S

C.4. Cases 11–14

Cases 11–14 correspond to (rare) configurations involving
three or four roots to Equation (C3) and are illustrated in
Figure 17. All four involve integration over two disjoint
regions (see the figure). Cases 11 and 12 involve three points of
intersection between the terminator and the occultor limb. In
case 11, the regions of integration S1 and S2 are the occulted
portion of the dayside, so the solution is similar to that of cases
6 and 8:

= - +( ) ( )f f f f , C1811 0 S S1 2

where fS1
and fS2

are computed from Equation (C12) for each of
the integration regions. Conversely, in case 12 the two regions
are the occulted portion of the nightside, so the solution is
similar to that of case 7:

= - - +( ˆ ( )) ( )f f f f f . C1912 I 0 S S1 2

Figure 17. Four additional families of occultations in reflected light, involving rare triple (cases 11 and 12, top) and quadruple (cases 13 and 14, bottom) intersections
between the limb of the occultor and the terminator of the occulted body. All four cases involve integration over two disjoint regions (bounded by the orange curves in
the figure). The insets next to each case show a zoomed-in version of four such regions. See text for more details.52

52 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/figures/pathological.py
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Finally, cases 13 and 14 involve four points of intersection
between the terminator and the occultor limb. The regions of
integration in case 13 are the visible portion of the nightside, so
this case is equivalent to case 9:

= - +( ) ( )f f f f . C2013 I S S1 2

Conversely, the regions of integration in case 14 are the visible
portion of the dayside, so this case is equivalent to case 10:

= + ( )f f f . C2114 S S1 2

C.5. Computing the Integrals 

In the previous sections, we discussed how to identify the case
corresponding to a specific configuration of the occultor and the
illumination source. We showed how in some cases (1–5;
Appendix C.2) the total flux may be computed by exploiting the
classical starry integrals (Equation (C5)). In all other cases (6–14;
Appendices C.3 and C.4), however, the flux computation involves
evaluation of Equation (C12), where the solution vector  is the
vector of integrals (in the frame ¢ ) of each of the terms in
the Green’s basis g̃ over a region S of the projected disk of the
occultor (Equation (C11)). As in Luger et al. (2019a), the
approach to computing  is to use Green’s theorem to transform
the surface integrals into line integrals along the curves ,  , and
 (see Figure 16). Specifically, we write

 = ¢ ¢ ¢ ¢

= ¢ ¢ ¢ ¢

 



∬

∮

˜ ( )

( ) · ( ) ( )

g

G r

x y dx dy

x y d x y

,

, , , C22
S

where ¢ ¢( )G x y, is a vector of two-dimensional Cartesian
vectors chosen such that its exterior derivative is g̃,

¢ ¢

¢
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¢ ¢
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, , C23y x

and

j
j

j
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¢ +
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¢( ) ˆ ˆ ( )r x yd x y

dx
d

d
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d

d, , C24⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠
where j is the parametrized angle along the integration path
and the integral is taken in a counter-clockwise direction
relative to the center of the integration region. Luger et al.
(2019a) showed that one possible solution to Equation (C23)
consists of the vector whose nth component is given by
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where the indices l, m, μ, ν are given by Equations (A2)
and (A5).53

We showed in the previous sections that there are at most
three curves  ,  , and bounding a given closed surface of
integration (see Figure 16). We may therefore express
Equation (C22) as

   = + +    ( ), C26

where we define the primitive integrals

 ò= ¢ ¢ ¢ ¢
f

 ( ) · ( ) ( )G rx y d x y, , , C27p p p p

 ò= ¢ ¢ ¢ ¢
x

 ( ) · ( ) ( )G rx y d x y, , , C28t t t t

 ò= ¢ ¢ ¢ ¢
l

 ( ) · ( ) ( )G rx y d x y, , C29q q q q

to be the line integrals of G along each of the curves  ,  , and
, respectively,,, where the coordinates along each curve are
parametrized in terms of j as follows:
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to be the sum of definite integrals between pairs of limits ji

arranged in a vector j of length N. For future reference, it will
also be useful to define the operator

åD º -
=

-

+( ) ( )x x x , C32
i

i i
0

1

2 1 2

N
2

which sums the difference of successive pairs of values in a
vector = -

( ··· )x x x x x x, , , , , N0 1 2 3 1 . This will come in handy
when computing definite integrals. Specifically, if g is the
antiderivative of some function f, we may use the fundamental
theorem of calculus to compute the integral of f over the
interval(s) given by the vector of limit pairs j:
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53 In this section, we deliberately drop the dependence of  and the primitive
integrals on the geometrical parameters q¢b b r, , ,o o for clarity.
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Note that most of the cases (1–10) involve integration over a
single closed region, so Equations (C31) and (C32) reduce to

ò òºj j

j
( )C35

0

1

and

D º - ( )x x x . C361 0

For cases 11–14, we must integrate over two disjoint regions,
so we sum over two pairs of limits. In the next three sections,
we derive the solutions to each of the primitive integrals , ,
and .54,55,56,57,58,59

C.6. The Integral Along the Occultor Limb, 

In this section we present a solution to Equation (C27). The
first order of business is to derive expressions for the
integration limits f. Depending on the integration case, these
limits will correspond to the point of intersection between the
limb of the occultor and the limb of the occulted body and/or
the point of intersection between the limb of the occultor and
the terminator of the occulted body. The former is given by (see

Equation (24) in Luger et al. 2019a)

f
p p

= 
- -

- ( )r b
b r2

arcsin
1

2 2
, C370

o
2

o
2

o o
⎜ ⎟⎜ ⎟⎛⎝ ⎛⎝ ⎞⎠ ⎞⎠

where the sign is chosen such that the point
f f+( )r b rcos , sino 0 o o 0 is on the dayside of the occulted

body, and the latter (of which there may be multiple) is given
by

f q= ¢ + -  -   - ( ) ( )x xb y xarctan 2 1 , , C381
2

o o

where x″ are the roots of the quartic (Equation (C3)). These
angles are then wrapped to the range [0, 2π) and sorted into the
vector f such that the integration is always performed in a
counter-clockwise sense about the center of the integration
region. The left panel in Figure 16 shows a configuration in
which the lower integration limit f0= 158°.2 corresponds to
the point of intersection between the limbs of the two bodies
and the upper integration limit f1= 223°.3 corresponds to the
limb-terminator intersection. Both angles are measured coun-
ter-clockwise from the line ¢ =x bo.

60,61

In order to evaluate the integral in Equation (C27), we follow
the reparametrization tricks of Appendix D.2.3 in Luger et al.
(2019a). The algebra is long and tedious, so we merely present
the result (alongside the usual validation links). The nth
component of  is

where b = - -( ( ) )b r1 o o
2 3

2 and we define the Vieta operator

åº
=

+

+ +( ) ( )xV u v w x, , ; C40
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as the dot product of a vector x and the vector of Vieta’s theorem
coefficients, where (see Equation (D34) in Luger et al. 2019a)
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54 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/Greens.ipynb
55 The components of the vectors  and  are analogous to the primitive
integrals  and  defined in Equations (30)–(32) in Luger et al. (2019a),
although the integration limits of both and the sense of integration of  are
different.
56 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/Greens.ipynb
57 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/Greens.ipynb
58 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/Greens.ipynb
59 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/Greens.ipynb

60 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/pT.ipynb
61 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/pT.ipynb
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The vectors , , , and  are solutions to specific integrals,
which we compute recursively below. As in Luger et al.
(2019a) the n= 2 term of , 2, is handled separately; we also
compute this below.62,63,64

Note that several of the cases in Equation (C39) are identical
to those in Equation (D35) of Luger et al. (2019a), provided we
replace their integrals  and  with our integrals  and ,
respectively. The integrals themselves are similar, except for a
change in the limits of integration, which are no longer
symmetric about zero. As we will see, this leads to the
dependence of these expressions on incomplete elliptic
integrals. Note also that the integrals  and  are new, as
certain cancellations in Luger et al. (2019a) resulted in the
corresponding cases contributing zero net flux (last case in
Equation (D35) of Luger et al. 2019a).

C.6.1. The Vector 

The components of the vector  are given by the integral

 òa j j=
a

( ) ( )dsin , C42v
v2

for Î [ ]v v0, max , where we define the helper angle

a f p
º + ( )

2 4
. C43

The integral in the expression above is the same as that in
Equation (D38) of Luger et al. (2019a), except for a change in
the limits of integration. As in Luger et al. (2019a), we can
compute the vector  recursively given a trivial lower boundary
condition:


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v v
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where the last expression is valid for all v> 0. We find that this
algorithm is generally stable, except when asin is small. In that
limit, we evaluate  a( )vmax by numerical integration of
Equation (C42) using Gauss–Legendre quadrature with 100
points. We then recurse downward by substituting v→ v+ 1 in
Equation (C44) and solving for  a( )v .65

C.6.2. The Vector 

The components of the vector  are given by the integral
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The integral in this expression is again the same as that in Equation
(D39) of Luger et al. (2019a), except for a change in the limits of
integration. In that paper, we computed all terms  { ··· }, , v0 max

from a three-term recurrence relation and two boundary conditions.
In the case of upward recursion, the boundary conditions 0 and 1
were computed analytically from the complete elliptic integrals
K(k2) and E(k2). In cases where upward recursion was not
numerically stable, we evaluated vmax

and  -v 1max
via a quickly

convergent series expansion and recursed downward.
In order to solve Equation (C45), it is possible to replace the

complete elliptic integrals K(k2) and E(k2) in the lower
boundary conditions (Equation (D46) in Luger et al. 2019a)
with the incomplete elliptic integrals
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which we compute from the el2 parameterization of Bulirsch
(1965), then use the same upward recursion relation to obtain
analytic solutions for all v:
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Note that when k2< 1 we use the reciprocal-modulus
transformation to evaluate the elliptic integrals:
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62 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/pT.ipynb
63 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/pT.ipynb
64 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/pT.ipynb
65 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/I.ipynb
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with66,67
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In practice, however, we find that this procedure is even

more numerically unstable than it was in Luger et al. (2019a).
To address this, we express the recurrence structure of the
problem as a tridiagonal system with one lower boundary
condition 0 and one upper boundary condition vmax

:














  

=

-

-
-

··· ···

( )

a
b a

b a
b a

b a

c b
c
c
c

c

1
1

1
1

,

C54

v v v
v v

0

1 1

2 2

0 3

1

2

3

4

1

0 0 0

1

2

3

max max max
max max

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

where the recursion coefficients are given by
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Solving this matrix system yields values for all intermediate
  -{ ··· }, , v1 1max

. While efficient algorithms exist for solving
tridiagonal problems, we obtain far better numerical stability by
instead performing traditional LU decomposition. We find that
this algorithm is stable in all the regimes that we tested.68,69

We evaluate the upper boundary condition vmax
by numerical

integration of Equation (C45) via Gauss–Legendre quadrature
with 100 points. While the lower boundary condition may be
computed analytically from Equation (C49), in practice we
achieve better precision via numerical integration (as above),
with negligible effects on computational performance.

C.6.3. The Vector 

The components of the vector  are given by the integral
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This integral has an analytic solution for all v:70
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C.6.4. The Vector 

The components of the vector  are given by the integral
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We may compute it by either upward or downward recursion.
In both cases, we compute each of the v from

 a a= D( ) ( ) ( )bk k, , . C59v v
2 2

In the upward case, we start with the lower boundary
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and recurse upward in b and c simultaneously:
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for v> 0. In the case of downward recursion, we start with the
upper boundary conditions
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and 2F1(a, b; c; z) is the Gauss hypergeometric function,71

which we compute via its series definition. We recurse
downward in b and c simultaneously:
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C.7. The Term 2

The final integral we must solve is that corresponding to 2
(μ= ν= 1). As in Luger et al. (2019a), this is the integral of the
linear limb darkening term, whose solution must be handled
separately due to the fact that the corresponding antiderivative
in Equation (C25) is not a polynomial in x, y, and z(x, y); also

66 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/J.ipynb
67 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/J.ipynb
68 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/J.ipynb
69 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/J.ipynb
70 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/U.ipynb

71 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/W.ipynb
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see Agol et al. (2020). The integral we must solve is
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where z is the usual Cartesian coordinate (Equation (A6)). The
solution is tricky, but fortunately a similar integral was solved
in Equation (34) of Pál (2012). Adapting their solution to our
formalism, we obtain
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The quantities F(α | 1/k2) and E(α | 1/k2) are the same
incomplete elliptic integrals as those in Appendix C.6.2,74
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While stable algorithms exist to evaluate Π(n; ψ |m) (e.g.,
Bulirsch 1969),75 we find that the parameterization above has
poor numerical stability, particularly in the vicinity of the
singular points bo= ro and bo= 1+ ro. In practice, we find that
numerical evaluation of Equation (C65) via Gaussian quad-
rature is more numerically stable and just as computationally
efficient as the procedure outlined above.

C.8. The Integral Along the Terminator, 

In this section we present a solution to Equation (C28), the
line integral along the day/night terminator of the occulted
body. As before, the first thing we must do is derive
expressions for the integration limits ξ. Depending on the
integration case, these limits will corresponds to the point of
intersection between the terminator and the limb of the occultor
and/or the point of intersection between the terminator and the
limb of the occulted body. The former is given by

x = -  ( ) ( )x xarctan 2 1 , , C710
2

where x″ are the roots of the quartic (Equation (C3)).76 The
latter is given by

x
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As before, these angles are then wrapped to the range [0, 2π)
and sorted into the vector ξ such that the integration is
performed counter-clockwise about the center of the integration
region.77 The middle panel of Figure 16 shows a case where
ξ0= 96°.5 corresponds to the point of intersection between
the occultor limb and the terminator and ξ1= 0° corresponds to
the point where the terminator extends onto the backside of the
body. Note, importantly, that unlike f, the angle ξ is not
measured between the horizontal and a point on the curve of  .
Recall that ξ is an angular parameter of the ellipse, so it is
measured in the same way as the eccentric anomaly in a
Keplerian orbit: it is the angle between the semimajor axis of
the ellipse and the perpendicular projection of a point on the
ellipse onto the unit circle (see Figure 16).
The solution to Equation (C28) involves repeated application

of the binomial theorem. If we define the quantities
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b, 1 sin cosj k
u v v k u v j k v j k u j k
,
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72 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/p2.ipynb
73 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/p2.ipynb
74 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/p2.ipynb

75 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/p2.ipynb
76 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/tT.ipynb
77 https://github.com/rodluger/starrynight/blob/
5f79b24026133db207a88bee465e5e5080b64bcf/tex/proofs/tT.ipynb
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we may express the solution78 to the n integral as79

The solution to Equation (C74) depends on the matrix ,
whose components are given by the integral

òx j j j=
x

 ( ) ( )dcos sin . C75u v
u v

,

The  integral is the same as that in Equation (D27) of Luger
et al. (2019a), except for a change in the limits of integration.

We can compute this integral recursively given four lower
boundary conditions:
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The remaining terms may be computed80 by upward recursion
using the relations
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for all remaining terms.81,82

C.9. The Integral Along the Occulted Body Limb, 

The final line integral we must solve is the integral along the
boundary of the occulted body, Equation (C29). Fortunately,
this is also the easiest of the three. The limits of integration λ
correspond to the point at which the terminator crosses from the
dayside to the nightside,

l q q q
q p

= ¢ ¢ + ¢ - <
¢ +

( ) ( )b rcos sin
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C790
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and the point of intersection between the limb of the occultor
and the limb of the occulted body,83

l
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where the sign is chosen such that the point l l( )cos , sin1 1 is on
the dayside of the occulted body.84 As before, these angles are
wrapped to the range [0, 2π) and placed in the vector λ such
that the line integral is taken in the counter-clockwise direction
about the center of the integration region. The right panel of
Figure 16 shows a case where λ0= 75° and λ1= 130°.5. Both
angles are measured counter-clockwise from the x′-axis.

Given λ, the solution to Equation (C29) is straightforward:
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where the matrix  is given by Equation (C75).85

Appendix D
Caveats

The starry code includes a large suite of unit tests that
compare the flux computations to numerical models and to
various benchmarks for a wide variety of inputs. While we
have done our best to develop tests over the full range of
occultation configurations, there may be edge cases in which
the starry algorithm fails and returns the wrong flux. This
could happen, for instance, if the quartic root solver
(Appendix C.1) fails to find the points of intersection between
the occultor and the day/night terminator, leading to an
incorrect case identification (Figure 15) and thus the wrong
value for the flux. In the development of the algorithm, these

cases would occasionally show up as a single, obvious outlier
in a light-curve model. All such cases we encountered have
been fixed by adding consistency checks in the root solver and
switching to alternate evaluation methods near known
singularities. However, it is possible that there may still be
rare cases in which this happens, in which case we ask that
users raise an issue86 on GitHub so that we can provide a fix.
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