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Model Formulation, Experimental Demonstration, and an Open
Software Tool
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Low C-rate charge and discharge experiments, plus complementary differential voltage or differential capacity analysis, are among the
most common battery characterization methods. Here, we adapt the multi-species, multi-reaction (MSMR) half-cell thermodynamic
model to low C-rate cycling of whole-cell Li-ion batteries. MSMR models for the anode and cathode are coupled through whole-cell
charge balances and cell-cycling voltage constraint equations, forming the basis for model-based estimation of MSMR half-cell
parameters from whole-cell experimental data. Emergent properties of the whole-cell, like slippage of the anode and cathode lithiation
windows, are also computed as cells cycle and degrade. A sequential least-square optimization scheme is used for parameter
estimation from low-C cycling data of Samsung 18650 NMC∣C cells. Low-error fits of the open-circuit cell voltage (e.g., under 5 mV
mean absolute error for charge or discharge curves) and differential voltage curves for fresh and aged cells are achieved. We explore
the features (and limitations) of using literature reference values for the MSMR half-cell thermodynamic parameters (reducing our
whole-cell formulation to a 1-degree-of-freedom fit) and demonstrate the benefits of expanding the degrees of freedom by letting the
MSMR parameters be tailored to the cell under test, within a constrained neighborhood of the half-cell reference values. Bootstrap
analysis is performed on each dataset to show the robustness of our fitting to experimental noise and data sampling over the course of
600 cell cycles. The results show which specific MSMR insertion reactions are most responsible for capacity loss in each half-cell and
the collective interactions that lead to whole-cell slippage and changes in useable capacity. Open-source software is made available to
easily extend this model-based analysis to other labs and battery chemistries.
© 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
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Widespread electrification of new economic sectors is driving the
demand for reliable, safe, and affordable high energy and power-
density batteries. To meet this demand, battery materials are
continually advancing, separators are getting thinner, the ratio of
electrolyte to active material is falling, and ever larger cell formats
are being introduced.1 The reality of these modern battery engi-
neering strategies is that the response of an engineered cell
increasingly requires the analysis of two strongly-interacting active
electrodes, not simplified half-cells. Nonetheless, battery science is
largely half-cell science carried out in small button cell (CR2032)
geometries, providing key properties of pristine active materials
without the complicating, but important, implications of a second
active electrode microns away.2–4

Deconvoluting fundamental physicochemical parameters for each
electrode during operation of an engineered whole-cell is critical for
understanding device performance, especially aging, but it is
fundamentally challenging.5–8 The differences between character-
izing battery half-cells and whole-cells can be profound: coin cells
use excess electrolyte whereas engineered whole-cells are lean on
electrolyte; the two classes of cells have different thermal and
current distribution behaviors, and it also matters if the whole cell is
a cylindrical, pouch, or prismatic configurations under (nominally)
identical electrochemical testing.2,9 One way to extract half-cell
electrochemical data from engineered whole-cells is destructive
analysis. In this case, the (usually aged) whole-cell is disassembled
to harvest electrodes for more traditional half-cell studies and
materials analysis, but this introduces uncertainties such as cell
compression effects, differences in electrolyte composition and
amount, and possible damage to electrode surfaces and pores
structure.10 The alternative is to apply appropriate physics-based
modeling to analyze whole-cell measurements, then use

sophisticated estimation methods to determine fundamental physi-
cochemical parameters of the half cell.

Here we adapt a half-cell physics-based thermodynamic model,
and share open-source software, that can be used to parameterize
whole-cell measurements, resulting in low residual error half-cell
data. For insertion electrodes, solid-state thermodynamics dictate
material phases and reactions that underpin the potential achievable
at any given state-of-charge.11 The thermodynamic open-circuit
voltage (OCV) in a battery is the electrochemical potential differ-
ence between the anode and the cathode in a common electrolyte.8

Common experimental techniques to measure the OCV at different
intercalation states involve low C-rate galvanostatic cycling,12–14

complementary differential voltage (dV/dQ) or differential capacity
(dQ/dV), as well as galvanostatic or potentiostatic intermittent
titration techniques.15,16 Because an engineered whole-cell operates
without a reference electrode, OCV vs state-of-charge data alone is
insufficient to estimate potentials of either electrodes against a
known thermodynamic reference.7,17,18 However, we show that
whole-cell OCV measurements combined with a physics-based
solid-state thermodynamic model that is “seeded” with half-cell
parameters referenced to lithium metal, can be used to self-
consistently decouple and quantify individual electrode thermody-
namic parameters from the whole-cell response. We offer a
quantitative approach that goes beyond using half-cell studies as a
basis for assigning peaks in whole-cell differential analysis,19–24

while avoiding destructive postmortem analysis.25 Whole-cell para-
meter estimation using differential voltage and differential capacity
data from aging cells helps understand inhomogeneous material
degradation and slippage.26–28 Open software used for the analysis
of engineered whole-cells is provided as a Jupyter notebook.29

Physics-Based Modeling and Parameter Estimation Approach

Thermodynamic model attributes.—The Multi-Species, Multi-
Reactions (MSMR) model describes the electrochemical thermo-
dynamics of solid-state reactions and phase transitions that insertionzE-mail: dts@uw.edu
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materials go through at different lithiation states.30–32 The model has
been shown to nicely match experimental half-cell open-circuit
potential data, and it captures a wide range of solid-state complexity,
including phase changes. Because the model has a simple determi-
nistic form with easily interpretable parameters, it can be tuned to
explore the effects of parameters on OCP and differential voltage
and, as shown here, used in optimization software for robust
parameter estimation. Studies of open-circuit and differential voltage
spectra of whole-cells typically build from half-cell experimental
data and models.33–35 As a result of having physically interpretable
parameters, the MSMR model has been used to gain insight into
interfacial resistances in graphite,36,37 interfacial reactions in Li-Si,32

and the effect of scan rate in linear sweep voltammetry
experiments.30,31

Mathematically, the MSMR model describes potential-dependent
lithium occupancy of different insertion reactions in a half-cell
electrode under study (each reaction is denoted by subscript j). To
directly align with experimental quantities, we write the MSMR
model with extensive variables, representing the inserted Li+ charge
with Q (Ah units), rather than site occupancy fraction (an intensive
variable):
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where f = F/(RT), U is the half-cell potential (vs a lithium metal
reference), Uj

0 is the standard potential of any reaction j, and ωj

captures non-ideality associated with intercalation reaction j. Ideal
Nernstian behavior is represented by ωj = 1, whereas attractive
interactions in the lithiated solid occurs with ωj < 1. Strong
attractive interactions can represent complex phase behavior such
as staging seen in graphite anodes. Alternatively, repulsive interac-
tion occurs with ωj > 1. Each of the j reactions has a total insertion
capacity denoted Q .j tot, To calculate the overall insertion capacity
and differential capacity of an electrode at any given voltage, the set
of independent intercalation reactions are summed over all J
reactions that occur in the insertion half-cell:

∑( ) = ( ) [ ]Q U Q U 3
J

j
1

and

∑( ) = ( ) [ ]dQ

dU
U

dQ

dU
U . 4

J
j

1

The total insertion capacity of all electrode reactions is
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The MSMR half-cell equations work equally well for the typical
positive and negative insertion electrodes used in many Li-ion
chemistries, and later we add a (+) or (–) superscript to variables
and parameters to assign them to a particular electrode in the whole-
cell.

Utilizing half-cell models to create a whole-cell response.—
Qualitatively, the difference between half-cell and whole-cell
models is the coupling of charge transfer in each electrode, where
incremental insertion in one electrode (δQ) is complemented,
ideally, by an equal and opposite extraction from the other electrode.

For safety and durability, this simultaneous insertion/extraction
process is bounded by upper and lower whole-cell voltage limits.
Consequently, for typical Li-ion chemistries, positive electrodes are
cycled between intermediate lithiation states,38 whereas graphite
anodes cycle to near their fully-delithiated state. The usable capacity
(ΔQ) achieved by cycling between the upper (charged) and lower
(discharged) cell voltage limits is lower than the total insertion
capacity of either the positive or negative electrode (denoted +Qtot and

−Q ,tot respectively) as defined in Eq. 5.
Mathematically, the relationship between each half-cell’s lithia-

tion state at the upper voltage limits can be written

= ( ) − ( ) [ ]+ + − −V U Q U Q 6upper min max

for a nominally charged cell, and for the lower cell voltage

= ( ) − ( ) [ ]+ + − −V U Q U Q 7lower max min

in a nominally discharged cell. The superscripts (+) and (–) denote
the positive and negative half-cell variables computed from
Eqs. 1–5, and the subscripts max and min describe the maximum
and minimum inserted lithium ion in each electrode during a single
charge/discharge cycle. The useable charge capacity (ΔQ) of an
ideal cell operating between the specified upper and lower voltage
bounds is defined by the relationship

= + Δ [ ]± ±Q Q Q 8max min

for both the positive and negative electrodes. Of course, batteries are
not ideal and age over many cycles (by many mechanisms), slowly
reducing the useable charge, resulting in a shift of ±Qmax and

±Qmin to
simultaneously satisfy the constraints set by Eqs. 6–8 with Vupper and
Vlower fixed. The consequences of loss of capacity, and the resulting
“slippage” of the lithiated states for nominally fully-charged and
fully-discharged cells propagate through the estimation of all
parameters in Eqs. 1–8.

Formulating a charge conserving full-cell model to optimize
against experimental data.—Experimentally, we use standard cell
testing methods, namely, low-rate constant-current charge and
discharge (low C-rate), to determine the equilibrium cell voltage
over the accessible range of lithiation states between the discharged
and charged cell. Experimental whole-cell voltages, at any state-of-
charge, are represented in model variables as

= ( ) − ( ) [ ]+ + − −V U Q U Q 9

where the measured voltages are related to state-of-charge in each
electrode. Each increment of measured charge (δQexp ) has a
concomitant Li-ion insertion/extraction charge, such that δQexp =
δQ+ = −δQ− for ideal faradaic efficiency. The differential voltage is
also often used as a highly sensitive method for identifying multiple
solid-state insertion reactions. With the nomenclature of this work,
differential voltage experiments can be represented as:

= ( ) + ( ) [ ]
+ + − −dV

dQ

dU Q

dQ

dU Q

dQ
10

with the continuing assumption of ideal faradaic efficiency for a
given cycle.

The MSMR model, Eqs. 1–5, uses half-cell potential as the
independent variable, with extent of solid lithiation as the dependent
variable, whereas typical experiments, represented by Eqs. 9 and 10,
control lithiation state and measure the resulting voltage. Though the
natural independent and dependent variables from modeling and
experiments are not identical, both formulations behave well when
inverted (since voltage and charge are monotonic functions in Li-ion
batteries). Thus, there are several options for formulating the
optimization problem when seeking to estimate model parameters
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against data. As represented in the Jupyter Notebook used for this
work,29 we have found robust model fitting to experimental data
from minimization of the Cost function,
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as a function of cell voltage, where the brackets 〈〉 denote average
values. In the initial work, we used 1000 evenly spaced points in
voltage to define incremental charge and differential voltage in the
experiment and modeled system (even spacing was relaxed in later
bootstrap analysis). Moreover, if we assume the experimentally
measured useable charge ΔQexp is ideally related to the modeled
insertion/extraction in any given cycle, so that,

Δ = Δ = −Δ [ ]+ −Q Q Q , 12exp

then we can use +Qmin and
−Qmin as parameters of the model and apply

Eq. 8 to determine ±Qmax for the positive and negative electrodes. We
also constrain our fits by enforcing Eqs. 6 and 7, so that model and
experiments agree exactly at the upper and lower cell voltages

= ( ) − ( ) [ ]+ + − −V U Q U Q 13upper
exp

min max
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exp

max min

Finally, if the total positive and negative electrode capacities are
known reliably by independent experimental measurements, i.e.,
Qtot

exp is known for both electrodes, then Eq. 5 can be used to
constrain the modeled values ofQj tot, for each electrode by enforcing
an exact match to the experimental values. When doing parameter
estimation, we allowed total capacity of both electrodes to be
determined by the fit, rather than imposed as a constraint. This
choice has several reasons and consequences. First, we are using
commercial cells for our experiments, with imprecisely known total
active material loading, so it is unclear how accurately we can know
Q .tot

exp Second, as cells degrade with cycling, the total capacity of
each electrode evolves into an unknown, even if there is good data
on the fresh cell. Finally, determining the total capacity based on the
fit parameters can allow a physics-informed evaluation of the
reasonableness of the fitting process.

Seeding initial parameters and establishing physical bounds for
parameters.—The procedure for initiating the best-fit of half-cell
parameters (Qj.tot, Uj

0, ωj) in fresh cells begins with reference
parameters determined by Verbrugge et al.39 for a variety of cathode
and anode materials measured in half-cells. As shown in the Results
and Discussion section, the reference parameters give reasonable
representations of the carbon and blended NMC/LMO electrodes in
our experimental cell, when normalized by an appropriate initial
guess for the positive and negative electrode total capacities Q ,tot

along with enforcement of conditions (8), (12)–(14) at the beginning
and end of discharge. Because the MSMR model parameters are
physically intuitive and have easily predicted effects on half-cell
behavior, we normally make small user adjustments to the reference
parameter set to help ensure rapid convergence to low mean absolute
error fits of the fresh cell experimental data. Fitting bounds were
placed on each type of parameter: Uj

0 was allowed to vary by 20 mV

from the initial value; Qj,tot was allowed to vary by 25% of the initial
value, and ωj was allowed to vary by 25% of the initial value. The
one exception was allowing only 5% variation on the Qj,tot

parameters for the LMO reactions, to ensure the proportion of
NMC to LMO in the blended electrode was close to the value we
measured experimentally.

Our implementation of parameter estimation (see Jupyter
notebook29) involves Cost function minimization using fmin_slsqp,
a sequential least-squares optimization scheme in the Python
package SciPy, based off the formalism and algorithm developed
by Dieter Kraft.40 We evenly weight the Cost function between the
capacity and differential voltage terms in Eq. 11. Our basic
procedure is to optimize over 1000 evenly spaced points in voltage
over the range of 3.49 V to 4.15 V. This optimization window is less
than the lower and upper cell voltage cycling limits (set as Vlower =
2.56 V and Vupper = 4.2 V in the charging experiments described
below). By limiting the Cost function minimization to this window,
the fit focuses on the major features in the differential voltage data,
without overly biasing the fit by extreme differential voltages seen at
the boundaries of the charging curves. Nonetheless, the full cycling
window is part of the optimization through the constraints set by
Eqs. 8, ensuring that the modeled full-cell voltages and useable
charge matches the experimental voltages at the beginning (2.56 V)
and end (4.2 V) of a charge cycle.

When doing a full parameter estimation, with model parameters
Uj

0, Qj,tot, and ωj determined for low C-rate charging of fresh cells,
those parameters become the initial guesses for fitting the next
dataset after the cells are aged. Here we reevaluated the cells after
300 aggressive cycles. For data from 300 aging cycles (and all
subsequent cycles), the tight bounds on LMO capacity parameters
are relaxed to match the ±25% bounds on NMC values of Qj,tot.
Likewise, the best-fit model parameters from 300 cycles become the
initial guess for fitting low C-rate testing after 600 total cycles. For
the fits of the 600-cycle aged cell, the Uj

0 parameters are bounded
within ±10 mV of the values 300 cycle best-fit values.

Because the experimentally measured useable capacity declines
during cell cycling, Eqs. 8 show the fundamental origin of so called
“slippage” in Li-ion batteries. Slippage arises naturally when there is
model agreement with the experimental voltage constraints and
(changing) useable charge values. Here, we allow the minimum
inserted lithium in each electrode, +Qmin and −Q ,min to provide the
degrees of freedom that allow the meeting of constraints at the upper
and lower voltage bounds of our experimental measurements. For
the positive electrode, we set an upper bound for fitting of +Qmin to
the value from the last best-fit of data. The lower bound for +Qmin is
set as if all the measured experimental capacity loss is in slippage of

+Q ;min the best fit must fall between these physically-reasonable
bounds. For the negative electrode, the fitting bounds were set
between fully delithiated carbon and 0.5% lithiated carbon (for our
fresh cells, that means ⩽ ⩽−Q0 0.0108 Ahrmin ).

Bootstrapping analysis.—To further explore the statistical sen-
sitivity of our analysis to details of experimental sampling and noise,
we performed a bootstrapping analysis. Instead of using 1000 evenly
spaced points within the optimization voltage range, the boot-
strapping process takes 1000 random points (out of roughly 6000
for each dataset), and then performs the parameter estimation,
repeating the process (with replacement) through 500 iterations.
These bootstrapped data are first filtered to remove any fit iterations
with differential voltage MAE > 0.04 V Ah−1, as these represented
outlier fits that do not accurately capture the features of the datasets.
These filtered data are then used to calculate the population median
and confidence interval for each parameter. All data shown in the
main body of this manuscript are computed and fit against experi-
mental charging data from the lower voltage limit to the upper
voltage limit. In the Supplementary Information, the complementary
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experimental data for cell discharge, discharge best-fit parameters,
and bootstrapped results are presented.

Experimental Methods

Cycling experiments were performed on commercially available
Samsung 1.5 Ahr LiNMC ∣ C cells (INR 18650–15 M) using a
Maccor 4000 M battery cycler in a Maccor MTC-020 environment
chamber set at 25 °C. All cells were first subjected to five initial
cycles with a C/2 charge and discharge rate within the specified
voltage windows (2.5 V to 4.2), where the cell capacity stopped
increasing. To evaluate cell degradation in these batteries, individual
cells were cycled to 300 and 600 cycles, where a full cycle included
a 2.67 C (4 A) charge to 4.2 V, a constant voltage hold at 4.2 V until
current drops to 100 mA, and then a 2.67 C discharge down to 2.5 V.

Once the batteries had completed the specified cycling profile,
the cells were then discharged at a C/10 rate to 2.5 V. The cells were
then subjected to a low galvanostatically controlled (C/20) charge
and discharge to estimate the open-circuit voltage data, with data
points collected every 10 seconds. To get the differential voltage
(dV/dQ), a smoothing filter was applied for each dataset to reduce
differentiation noise and error.41 A Savitzy-Golay filter with a third-
order polynomial was applied around a central voltage with n data
points in the window length, resulting in (n − 1)/2 points before and
after the central voltage.. The smoothed values at the edges were
calculated from the polynomials fit at the first and last central
voltages that satisfy the window length. After preliminary evalua-
tion, we selected a value of n = 99 points, resulting in a window
with a central voltage that has 49 points before and after so that all
the major features of the differential voltage were easily distinguish-
able, but not overly smoothed.

To estimate the total insertion capacities of the electrodes for the
cells under test, we discharged the cells to 0.00 V and then opened
the cell casing in a glove box to extract the electrodes and separator.
The positive and negative electrode sheets were peeled from the
separator and placed into a vacuum oven set at 80 °C overnight to
remove solvents. Cathode disks were punched from the dried sheet
using a 15 mm arc punch and weighed. Active material from the
cathode was removed using N-methyl-2-pyrrolidone (NMP, Sigma-
Aldrich) to reveal the bare current collector, which was then dried
overnight in the vacuum oven and weighed. The mass difference
between the coated and bare current collector was the weight of the
active material, binder, and other additives; standard ratios were
used to estimate a total cathode insertion capacity of =+Q 1.8 Ah.tot
Anode materials were less reliably measurable, owing to poor
adhesion of the coating to the current collector, resulting in material
losses when peeled from the separator and when punched. Initial
differential voltage analysis measurements indicated that these
commercial NMC cells were a blended cathode system, composed
of both NxMyCz and spinel MnO2.

25,42 This was confirmed with X-
ray diffraction (XRD) and energy dispersive X-ray spectroscopy
(EDX) along with the composition of the NMC and fractional
MnO2. Electrode capacities were then estimated from the mass and
composition data combined with literature values for published
capacities for NMC,43–46 and MnO2,

43,47 along with common
formulations for the ratio of active electrode material to binder
and additives.

Results and Discussion

Verbrugge et al., determined MSMR parameters for a wide
variety of insertion electrodes based on fits to half-cell experiments.
For our cells under test, X-ray diffraction and energy dispersive X-
ray analysis showed that the cathode material is a blend of 66%
NMC532 and 34% spinel-MnO2, combined with a graphite anode.
Verbrugge et al. have provided best-fit half-cell parameters for NMC
622, LMO, and carbon, and thus, provides a good initial set of
thermophysical parameters for our cathode and anode material
classes. The MSMR model easily accommodates a blended

electrode, since the total capacity is additive at a given potential, per
Eqs. 1 and 5. Consequently, the appropriate reactions for both LMO
and NMC were added together, using reaction capacities commen-
surate with the measured blending ratio, to achieve the half-cell
thermodynamics of the cathode.

Implementing the MSMR half-cell model into the whole-cell
paradigm.—To illustrate how experimental whole-cell usable
charge and voltage constraints, Eqs. 8 are implement with MSMR
half-cell models, we start by describing a single degree of freedom
fitting of the model-to-measurements, then successively relax
assumptions to achieve a higher degree of freedom best-fit of
model-to-measurements.

To reduce the model degrees of freedom, we use the MSMR half-
cell thermophysical parameters reported in Verbrugge et al. to
represent our blended NMC/LMO (66/34) cathode and graphite
anode; this removes all the MSMR model parameters as unknowns
(there are six insertion reactions per electrode). Further, we scale the
thermophysical parameters with an estimate of total insertion
capacity for each electrode, ±Qtot in the experimental cell under
test. Specifically, we estimate the total cathode capacity

=+Q 1.8 Ahtot for our 1.5 Ah-rated Samsung cells, based on
weighing of the cathode loading in disassembled cells, along with
reasonable estimates of binder and other additive masses, as well as
specific capacities for the blended cathode materials (200 mAh g−1

and 120 mAh g−1 for NMC532 and LMO, respectively), A typical n/
p ratio of 1.1 was used to estimate the negative electrode capacity

=−Q 1.96 Ah.tot
With these half-cell and cell-under-test parameters estimated

through independent means, and not allowed to vary, the whole-cell
MSMR model has a single degree of freedom—chosen from among
the parameters, +Q ,min

+Q ,max
−Q ,min

−Qmax—to fit the measured usable
charge (ΔQ = 1.48 Ah) from C/20 experiment charging from a cell
voltage of 2.56 V to 4.2 V. We chose to vary +Qmin and used Eqs. 8,
along with the MSMR model (and Verbrugge et al. parameters), to
search for a model that matched with whole-cell experimental data.
It was not known a priori whether the highly constraining set of
modeling assumptions and estimated values used to reduce the
whole-cell MSMR model to a single degree-of-freedom would
produce one, none, or multiple fits to the whole-cell data. Perhaps
surprisingly, we found a single value of +Qmin for the model that
permitted all whole-cell Eqs. 8, 12-14 to be satisfied between the
experimental voltage window and measured usable charge. The
single experimentally-aligned whole-cell fit of the MSMR model
parameters is shown in Fig. 1 as the differential capacity (dQ/dU) for
each electrode as a function of the half-cell potential U vs Li+/Li
reference.

Figure 1 is a representation of the MSMR model that shows the
density of lithiation states in each electrode as a function of potential
(against the reference electrode). Filled lithiation states in the
blended cathode (red, at more positive potentials) and graphite
electrodes (blue, at more negative potentials) are shown as shaded
areas in the discharged state with cell voltage of 2.56 V, Fig. 1a, and
the charged state, Fig. 1b, with cell voltage of 4.2 V. The quantity of
charge extracted from the cathode in going from the lower-to-upper
cell voltage matches the experimental usable capacity (1.48 Ah)
measured in the fresh Samsung cells. Likewise, the charge inserted
into the anode going from the lower-to-upper voltage is equal and
opposite to the extracted charge and matches the experiments for a
fresh cell. The cell voltage in the discharged and charged states has
half-cell potentials at each lithiated state of the electrodes that, when
subtracted, exactly match the lower and upper cell voltage bounds
used in the experiments. Thus, Eqs. 8, 12-14 can be satisfied when
we use literature parameters for the MSMR model and our
experimental estimates of each electrode’s total capacity. Based on
the Verbrugge et al. model parameters and whole-cell values
described here, we found the minimum lithiation for the positive
electrode to be 0.185 Ahr ( +Qmin) and 0.001 Ahr for the negative
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electrode ( −Qmin), with the maximum values simply being 1.48 Ah
greater, per Eq. 8.

For the blended cathode system, Fig. 1 shows that the peaks in
the differential capacity are broad, indicative of single-phase
reactions. It has been shown that NMC follows this behavior, but
the reactions at 4.0 and 4.15 V are typically two-phase reactions
caused by the redistribution of the lithium ions in the LMO
material.8,22,48 However purely crystalline, two-phase behavior is
hard to maintain for real world applications of LMO, leading the
electrode reactions to exhibit more single-phase behavior.39 In
contrast, the differential capacity of the graphite electrode has very
sharp peaks, due to the different staging reactions that store a large
fraction of capacity over a narrow potential range.49 These derived
differential capacity plots exhibit qualitatively similar features at the
potentials found in half-cell experiments for blended NMC ∣ MnO2

cathodes and graphite anodes in the literature.25,42

With this single degree-of-freedom MSMR model fit to the
experimentally-measured useable capacity (over the experimentally-
prescribed voltage window), and estimated total capacities of each

electrode, it is now possible to examine experimentally-relevant
half-cell and whole-cell responses over the entire range of capacities
(state-of-charge) and cell voltages. Figure 2a shows the whole-cell
voltage and half-cell potentials of each electrode as a function of
incremental charging (δQ), where the usable state of charge is

simply
δ( ) = *SOC
Q

%
1.48 Ah

100% for our fresh cell. At any given

cell incremental charge, the whole-cell voltage is the difference
between the positive and negative electrode half-cell potentials at the
given state of charge. Similarly, Fig. 2b shows the differential
voltage and differential half-cell potentials as a function of cell
voltage. In this case, the whole-cell differential voltage is the sum of
the half-cell potentials at each given cell potential.

Through our single parameter fit, we are assured that the two end-
points of the whole cell charging curve, Fig. 2a, match experiments.
However, none of the intermediate points, nor any of the differential
voltages, have been shaped by our experiments. Instead, they
represent Verbrugge’s half-cell data scaled to our cell.
Nonetheless, the whole-cell responses in Figs. 2a and b have all

Figure 1. Differential capacity of a simulated blended Li NMC ∣MnO2 cathode (bottom) and graphite cathode (top) in a discharged (a) and charged (b) state that
meets the voltage limit constraints in our experimental data. The shaded portions denote the lithiated capacity in the positive electrode (red) and the negative
electrode (blue) at each state of charge. The maximum differential capacity for the anode is more than an order of magnitude larger than the cathode maximum,
so anode peaks are cut-off for clarity; this makes it difficult to see that the quantity extracted charge from the cathode exactly equals the inserted charge for the
anode in going from (a) to (b).
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the qualitative features expected from experimental results, with the
sharp peaks at 3.5 V and 3.85 V associated with the graphite
reactions, and the broader peaks at 3.7 and 4.0 V corresponding to
the phase transitions in NMC and LMO, respectively.

Adding model degrees-of-freedom for parameter estimation
from whole-cell experiments.—The single degree-of-freedom
whole-cell model presented in Figs. 2a and 2b is compared to the
experimental dataset for a fresh Samsung cell in Figs. 3a and 3b.
One sees that the data and model match perfectly at the end points of
Fig. 3a, as enforced by our single model parameter-fit that satisfies
Eqs. 8, 12-14. Across the whole dataset, the mean absolute error
(MAE) between the data and model in Fig. 3a is 27 mV. Generally,
one would like to see a sub-10 mV error between model and fit.
Thus, fixing all of Verbrugge et al.’s parameters (for a NMC 622
composition) does not meet a satisfactory level of fit for this blended
NMC 532/LMO cell.

The differences between experimental and modeled differential
voltages are more dramatic, as seen in Fig. 3b. While many of the
differential voltage peaks are present in both experimental and
modeled curves, their locations and relative sizes are quite different.
Overall, the MAE for differential voltage is 0.1497 V Ah−1 between

the data and model; the results are clearly an inadequate representa-
tion of the experimental cell. One of the attributes of the differential
forms of the MSMR model (Eq. 2 or its inverse) is that it describes a
series of independent insertion reaction “peaks,” as in Fig. 1, akin to
an optical spectrum. In particular, Eq. 2 shows that each of the j
insertion reactions has an energy centered atU ,j

0 width controlled by
ω ,j and integrated size set by Q .j tot, Using either a differential
capacity or differential voltage formulation, with potential as
independent variable, it is fairly intuitive to relax our use of
Verbrugge’s thermophysical parameters and improve the MAE
between experimental and modeled differential voltages.
Figures 3c and 3d show the consequences of manually manipulating
the MSMR parameters to better align the same set of MSMR
insertion reaction peaks to the data in Fig. 3d, without changing any
of whole-cell design parameters (ΔQ, ± ±QQ ,min tot).

A distinct set of modeled features are seen to emerge between
Figs. 3b and 3d through intuitive manipulations of parameters. In
particular, three peaks associated with different graphite staging
events can be coaxed from the model over a cell voltage range of
3.5 V to 3.6 V, better matching what is observed experimentally. In
the original fits from Verbrugge et al., they noted an inability to
capture two small peaks of interest in their experimental data. The

Figure 2. Calculated open circuit potentials and cell voltage (a) and differential potentials and voltage (b) from the MSMR model using thermophysical
parameters from the literature, scaled to our cells under test. Whole-cell responses in black are the difference and sum of the positive (red) and negative (blue)
electrodes for the open-circuit and differential voltage, respectively. For the data shown, whole-cell parameters of electrode capacities, N/P ratios, and lithiation
windows were estimated to satisfy Eqs. 12–14.

Table I. Initial parameters from Verbrugge et al.
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Figure 3. Open circuit potential and differential voltage curves of comparing computed to experimental (blue) data, using initial reaction parameters from
literature (a), (b) (black), manually modified reaction parameters (c), (d) (green), and optimized reaction parameters (e), (f) (orange), with their reported mean
absolute values. The computed residuals (g), (h) are being compared to the same experimental data collected from a fresh cell that was charged at a C/20 rate.
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parameters involved in the peak emergence included shifting the
standard voltages lower, reducing the capacity of these insertion
reactions, and decreasing the ωj to sharpen the peaks of the first four
graphite lithiation reactions. A comparison of Figs. 3b and 3d also
shows that the graphite peak at roughly 4.0 V has been shifted to a
lower voltage to better match experiments by adjusting the capacities
(Qj,tot), so that the phase transition between the last graphite staging
reactions occurred earlier in graphite lithiation. Minor adjustments to
the standard potentials in the cathode were also made so that the
peaks between the model and the experimental data matched better.
Qualitatively, these adjusted parameters bring the model much
closer into alignment with experimental data, though the quantitative
MAE only improves a bit. A consequence of adjusting the reaction
parameters and leaving whole-cell design parameters constant is that
the voltage limit constraints (Vupper

exp and Vlower
exp ) are no longer met for

the 1.48 Ah charge, as seen in Fig. 3c. Moreover, the MAE in Fig. 3c
increased slightly to 33 mV compared to Fig. 3a, despite the
improved peak shapes in Fig. 3d.

In short, while the MSMR model is quite intuitive, it is also very
challenging to achieve quantitative whole-cell agreement between
experimental data and the model for a full charge curve (or discharge
curve, see SI) and associated differential voltage curves, while
simultaneously meeting the whole-cell constraints represented by

Eqs. 8, 12-14. Nonetheless, if we hold the number of insertion
reactions per electrode fixed at 6 for the anode and 6 for the cathode,
per Verbrugge et al., but allow the thermophysical parameters to be
degrees of freedom (with bounds), while also letting ± ±QQ andmin tot be
emergent properties that must satisfy Eqs. 8, 12-14, then we can find
low MAE optimal fits and a set of realistic thermophysical
parameters for this specific cell, see Figs. 3e and 3f and its
corresponding parameters in Table III.

Obtaining best-fit parameters starts with the half-cell modeling
data given by Verbrugge, et al., (Figs. 3a and 3b), with small
adjustments to get key features of the differential voltage curves
(Figs. 3c and 3d). The adjusted half-cell parameters are used as
initial guess for fitting the data in Python with the fmin_slsqp
(sequential least-squares programming) function in SciPy. The
optimization included fitting the differential voltage data between
V = 3.49 and V = 4.15 V, with the parameter bounds and voltage
limit constraints described in the Methods section. Figure 3e and 3f
show the whole-cell fully optimized fit to data, with equal weighting
in Eq. 11. The calculated residual plots for each of the three different
parameter sets (Verbrugge et al., tweaked Verbrugge et al., and fully
optimized) are displayed as percent difference from the experimental
value in Figs. 3f and 3g. The residuals are calculated as the deviation
between the model and experiment, with the qualitative trends

Table II. Parameters from manual manipulation for fitting against fresh-cell data.

Table III. Parameters from optimization for fresh cell data.
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discussed in Figs. 3a–3f presented quantitatively through the
residuals. One can see the high degree-of-freedom fitting of the
MSMR model does an excellent job producing low MAE values in
both the voltage and differential analysis results.

Taking the fit parameters and back-calculating the individual
half-cell behavior (akin to Fig. 2) produces results comparable to
half-cell experiments in the literature for these materials. Estimating
half-cell potentials from a two-electrode cell, with no reference, can

only be known up to an arbitrary constant. However, because the U0
j

parameters we seed our initial estimation with are derived from
referenced half-cell measurements by Verbrugge, et al., and are
bounded in the fitting process, the best-fit standard potential
estimates are anchored to referenced half-cell potentials.
Moreover, with six independent reactions in each half-cell, each
constrained to within a neighborhood of 25 mV or less of the initial
parameter, we expect our systematic uncertainty in any given U0

j

Figure 4. Open circuit potential and differential voltage curves of comparing optimized computed (orange) to experimental (blue) data for fresh cells (a), (b),
cells that have been aged over 300 cycles (c), (d), and cells that have been aged over 600 cycles (e), (f), with their reported mean absolute values.
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values to be comparable to, or smaller than, the scale of our potential
bounds. All parameters for the data in Fig. 3 are presented in
Tables I–III.

Fitting MSMR model parameters to data for degraded cells.—
As cells cycle, they degrade, as typically manifested by a declining
useable capacity between the fixed upper and lower cell voltage

limits. The whole-cell modeling paradigm described above allows
one to see the evolution of individual parameters of the model, as
well as whole-cell emergent phenomenon associated with satisfying
overall charge and voltage constraints, i.e., satisfying Eqs. 12–14 as
the cell changes. Figure 4 shows C/20 charging data and optimized
MSMR model fits for a fresh cell, Figs. 4a and 4b, a cell cycled 300
cycles at 2.67 C (followed by the C/20 charge that gets fit, per

Figure 5. Histograms of each +Qtot (left) and
−Qtot (right) over the 500 bootstrapped iterations for 0 (a), (b), 300 (c), (d), and 600 (e), (f) cycles datasets. We show

the 5th and 95th percentiles of the values demarcated by the dashed black lines and the median by the solid black line. Histograms showing the same parameter
are all plotted along the same x-axis for ease for comparison.
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Methods), Figs. 4c and 4d, and a cell cycled 600 times, Figs. 4e and
4f. The 300 cycle cell has a loss of 0.07 Ah of useable capacity (a
4.7% decline), whereas the 600 cycle cell lost 0.12 Ah of useable
capacity (an 8.0% decline) compared to the fresh cell over the same
voltage window.

The model best-fit for each of the state-of-health condition is
shown in Fig. 4, and the resulting thermophysical parameters are

presented in Tables III–V. Our fits achieve low MAE between the
model and each experimental dataset; replicate cell measurements
and fits for each state-of-health can be found in the Supporting
Information (available online at stacks.iop.org/JES/169/030539/
mmedia). Initial guesses for fitting aged datasets are the parameters
of the previous (less degraded) fit. Just like the fresh-cell scenario,
the optimization for the aged fits are done between the voltage range

Figure 6. Histograms of each ( )+ +U Qmin (left) and ( )− −U Qmax (right) over the 500 bootstrapped iterations for 0 (a), (b), 300 (c), (d), and 600 (e), (f) cycles datasets,
where the difference between the two parameters make up the voltage at the top of charge. We show the 5th and 95th percentiles of the values demarcated by the
dashed black lines and the median by the solid black line. Histograms showing the same parameter are all plotted along the same x-axis for ease for comparison.
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of 3.49 V and 4.15 V with equal weighting between the voltage and
differential voltage curves.

In all our best-fits, we allow the total capacity of each electrode to
be an emergent property of the 6 individual insertion reactions from
the electrode, rather than constraining it to a fixed value, like we did
in Figs. 1 and 2 (to reduce degrees of freedom). We find that the

positive electrode loses capacity as it is cycled, unlike the negative
electrode which remains mostly constant, as shown in Table VI.

As the battery degrades, we experimentally observe that the
three, distinct graphite peaks at lower voltages begin to lose
definition, and eventually coalesce into a single broad peak; this
effect is also captured by the MSMR model parameters. We find that

Figure 7. Histograms of each ( )+ +U Qmax (left) and ( )− −U Qmin (right) over the 500 bootstrapped iterations for 0 (a), (b), 300 (c), (d), and 600 (e), (f) cycles datasets,
where the difference between the two parameters make up the voltage at the bottom of discharge. We show the 5th and 95th percentiles of the values demarcated
by the dashed black lines and the median by the solid black line. Histograms showing the same parameter are all plotted along the same x-axis for ease for
comparison.
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the capacity associated with these three early graphite staging
insertion reactions is under 15% of the total electrode capacity,
consistent with the literature.27 As the battery degrades, we see that
the graphite peaks are shifting towards higher potentials, with the
most prominent peak at 3.88 V merging with the LMO transition
peak at 4.0 V, potentially indicative of the positive electrode slipping
towards higher potentials. The analysis also shows that a large
portion of lithium loss in the positive electrode comes from the
voltage range between 3.7 V and 3.8 V. This region involves the
transition into a specific rock salt phase, where electrodes with
higher nickel content can more easily undergo cation disordering,
where lithium and nickel ions can mix, leading to lithium being
trapped in the lattice and a nickel ion permanently occupying a
lithiation site.25,50

Capacity loss can be associated with changes in the solid state
insertion electrodes35,50–53 and/or faradaic inefficiencies.33 on one
electrode or the other. Most forms of degradation lead to slippage in
the electrodes, meaning that the utilization window over which the
electrodes are cycling shifts as the battery is being degraded. In
differential voltage data, these phenomena can lead to an changes in
peak heights in the differential voltage and peak location shifts along
the voltage axis associated with voltage slippage.33,54

Sensitivity of emergent whole-cell properties on model fitting
and experimental noise.—State-of-art commercial batteries often

have user or testing agreements that forbid opening the cell to
measure parameters such as active material loading, material
composition and structure, and specific electrochemical parameters.
As Figs. 3 and 4 show, the whole-cell modeling approach described
here appears quite useful for disaggregating half-cell thermodynamic
behavior from whole-cell experiments, at least when a suitable
reference thermophysical dataset is available. The features of the fit
that we label “emergent” are the properties that arise from the need
to achieve whole-cell charge and voltage constraints, i.e., the
variables in Eqs. 8, 12-14. likewise, we include the calculated total
capacity for each electrode, Eq. 5, when it emerges from the fit rather
than being known from independent experiments. Emergent whole-
cell properties are important in cell design, especially for under-
standing the nature of degradation and its impact on safety, for
example, through slippage.

We expect emergent whole-cell properties to be especially
sensitive to the robustness of the model optimization process to
experimental variation such as noise and data sampling strategy. To
test this, we performed a bootstrap analysis on the whole-cell
datasets by randomly selecting 1000 points from among the roughly
6000 points in each data set (Figs. 3 and 4 were generated from
evenly spaced 1000 points), then replacing and repeating again 500
times. This bootstrap method generates a distribution for every
parameter, at every state-of-health tested. The histograms for all
these plots can be found in the Supplementary Information.

Table IV. Parameters from optimization for fitting 300 cycles aged cell data.

Table V. Parameters from optimization for fitting 600 cycles aged cell data.
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Generally speaking, the bootstrapping results show that the fitting
process is quite robust to the noise and spacing of points in our
experimental data; the MSMR model converges nicely when the
initial physical parameter set is reasonable for the general class of
materials being used in the cell. Very few outlier fits were generated.

Figures 5–7 show the bootstrapped histograms for the emergent
whole-cell design parameters, such as the maximum capacities for
each electrode, ±Qtot and the estimated half-cell potentials at the
lithiation extremes in each electrode ( ± ±Q and Qmin max). For these
histograms, we show the distribution of each parameter for 0, 300,
and 600 cycles, with black dashed lines demarcating the 90%
confidence interval (5th and 95th percentile), and a solid black
line denoting the median, or the 50th percentile.

One insight from performing these bootstraps is to compare their
results with capacities from the single fit of evenly spaced points
(Table VI). The single fits suggests that the positive electrode’s
capacity remains largely constant between 0 and 300 cycles, but
there is inherently some uncertainty in our fits that is not captured
until we employ more statistically driven methods. Figure 5 shows
the histogram of the two electrode capacities, +Qtot and −Q ,tot

calculated from the summation of their respective ±Qj tot, for each
bootstrap iteration, where we see a systematic shift towards lower
positive electrode capacities with aging, whereas the negative
electrode narrows into a tightly defined capacity with no significant
loss. This behavior is congruent with literature that the positive
electrode materials deteriorate at a quicker rate than graphite
electrodes, especially more Ni-rich NMCs.52,55,56 Moreover, when
looking at Fig. 1, it is clear that the high density of states provided by
staging in the anode means that the sensitivity of the negative
electrode half-cell potential is fixed, so achieving the high voltage
constraint equations is largely accomplished by slippage in the
positive electrode minimum intercalation state.

Furthermore, to quantify slippage of the materials, we took each
set of fit parameters from the bootstrapped iterations and calculated
the potentials at the respective ± ±Q and Qmin max that satisfied Vupper

and Vlower. Figure 6 shows the distributions of +Qmin and −Qmax that
satisfy the constraint at top of charge. Here, we do not detect any
appreciable differences in the distributions, and this could be
expected. Based on our parameters for the graphite electrode
(Tables III–V), any usable capacity greater than 1.0 Ahr will have
the negative electrode in the final reaction, which can store more
than half of the total negative electrode capacity over the half-cell
potential window of 0.04 to 0.10 V vs Li/Li+. Since the negative
electrode capacity does not change appreciably as it is cycled, one
finds the half-cell potential one the charged negative electrode does
not drift, forcing the positive electrode to also have a nearly constant
potential, in order to satisfy whole-cell upper voltage limit of 4.2 V.
Examining the capacities +Qmax and −Qmin for the discharged cell, as
shown in Fig. 7, shows that the lower voltage constraint we observe
is shifting towards higher potentials as the battery degrades, again,
aligning with the literature for this chemistry.33,55 At the bottom of
discharge, the negative electrode is effectively empty, so even
minute changes in the capacity could yield large changes in the
potential response, whereas the positive electrode is operating in a
region where an appreciable amount of capacity must be added or
removed to induce a potential shift.

Conclusion and Implications

Battery degradation is intrinsically complex, as there are several
physical and chemical phenomena that can occur, resulting in
electrode imbalance, electrode deformation and degradation, and
other modes of loss of lithium inventory. Using open-circuit voltage
data in conjunction with differential voltage data can be powerful
tools in noninvasively probing these phenomena in fully assembled
commercial batteries. While teardown, postmortem analyses, and
reassembly of half cells can provide useful insight into the electrode
properties and capacity loadings, it is not always feasible or allowed.
Here, we extend the easy, generalizable mathematics laid out by the
MSMR model to include cell design parameters and the thermo-
dynamic relationships of the two electrodes to allow for the
modeling of whole cells. This gives us the unique advantage of
interpreting the evolution of fundamental reactions and transitions of
each electrode, information that is often only extractable from
separate half-cell and crystallography studies.

We show that by employing the thermodynamics framework in
the MSMR model, we can fit whole-cell experimental thermody-
namic data with low errors, allowing us to extract information about
the degradative states of the half-cell electrodes without having to
perform postmortem testing. Using the MSMR model, we can
identify the specific reactions of the NMC, LMO, and the graphite
electrodes that are degrading as the cell ages, and how those losses
of capacity and deviations from their original one or two-phase
behavior affects the resulting thermodynamic response. It is con-
ceivable to perform crystallography experiments in operando to
confirm the compositions of each of these phases in cathode
materials, to test the validity of the ability of this model to predict
how these phase transitions evolve over aging so that future
experiments may not need XRD or time-intensive synchrotron
experiments. Furthermore, this work strictly focuses on the thermo-
dynamics of the MSMR model, but the framework has been
established by Baker et al., to use these principles to model transport
and kinetic phenomena, allowing for incredible, fundamental insight
opportunities.30,31

This present work is aiming to provide the community with a
user-friendly tool that allows researchers to gain insights into state-
of-health of their cells without having to perform half-cell studies
from postmortem procedures. Instead, researchers can utilize a base
knowledge of the battery chemistry and the parameters that
Verbrugge et al. have published for a variety of electrodes.39 Here,
we have used the C/20 voltage data as a proxy for the thermodynamic
OCV. Of course, small deviations from OCV occur at any finite C-
rate because the cell has impedance. We leave the rigorous correction
of these deviations to future work, since properly calculating the
impact of small, but finite, C-rates on these whole-cell MSMR model
fits requires detailed knowledge of the ohmic, kinetic, and diffusive
contributions to cell impedance from both electrodes.57 It is
important to reiterate though, that in the absence of teardown and
half-cell data. the MSMR model yields an inherent uncertainty since
neither the total capacities nor the true open-circuit potentials are
typically known. Uncertainty in the active material loading for each
electrode creates an unfortunate coupling between the extrinsic cell
design and our estimation of intrinsic thermodynamic properties. We
expect if the electrode total capacities were known accurately for
each electrode, either from the original fabrication of the cell or

Table VI. Capacity of electrodes from fits.
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independent destructive postmortem measurement, this would sig-
nificantly reduce the variance in all the bootstrap results presented
here. Additionally, the MSMR model assumes that all reactions are
occurring in a uniform electrode, which does not always hold true for
degraded electrodes where there could be inhomogeneous particle
sizes, cracks, and deformations, which is why we allow for flexibility
in the standard potentials to help account for some of these variations.
All the data files, code, and instructions on how to use this tool are
available on GitHub and Zenodo.29
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