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Fig. 1. Computer-generated holography (CGH) results captured with a display prototype that uses a fast, low-precision (i.e., 4 bit) phase spatial light modulator
(SLM). When supervised with 2.5D RGBD images, our approach (2nd column) provides a better image quality than the state-of-the-art neural 3D holography
algorithm [Choi et al. 2021a] (1st column) using this low-precision SLM. Our CGH framework is flexible in not only enabling 2.5D but also 3D focal stack and
4D light field supervision. The former approach (3rd column) results in the best in-focus (red boxes) and out-of-focus (white boxes) image quality among 2.5D
and 3D CGH algorithms. Our 4D light field–supervised approach (5th column) outperforms the recently proposed OLAS method [Padmanaban et al. 2019]
(4th column) by a large margin and utilizes the space–bandwidth product more effectively, as shown by the simulated light fields in the lower right images.

Holographic near-eye displays offer unprecedented capabilities for virtual
and augmented reality systems, including perceptually important focus cues.
Although artificial intelligence–driven algorithms for computer-generated
holography (CGH) have recently made much progress in improving the
image quality and synthesis efficiency of holograms, these algorithms are
not directly applicable to emerging phase-only spatial light modulators
(SLM) that are extremely fast but offer phase control with very limited
precision. The speed of these SLMs offers time multiplexing capabilities,
essentially enabling partially-coherent holographic display modes. Here we
report advances in camera-calibrated wave propagation models for these
types of holographic near-eye displays and we develop a CGH framework
that robustly optimizes the heavily quantized phase patterns of fast SLMs.
Our framework is flexible in supporting runtime supervision with different
types of content, including 2D and 2.5D RGBD images, 3D focal stacks, and
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4D light fields. Using our framework, we demonstrate state-of-the-art results
for all of these scenarios in simulation and experiment.

CCS Concepts: • Hardware → Emerging technologies; • Computing
methodologies→ Computer graphics.

Additional Key Words and Phrases: computational displays, holography,
virtual reality

1 INTRODUCTION
Holographic near-eye displays for virtual and augmented reality
(VR/AR) applications offer many benefits to wearable computing
systems over conventional microdisplays. These include high peak
brightness, power efficiency, support of perceptually important fo-
cus cues and vision-correcting capabilities [Kim et al. 2021], as well
as thin device form factors [Kim et al. 2022; Maimone and Wang
2020]. Yet, the image quality achieved by computer-generated holog-
raphy (CGH) lags far behind that of conventional displays, requiring
further advancements in the algorithms driving holographic dis-
plays.

Recently, artificial intelligence (AI) methods have enabled signif-
icant improvements in image quality [Chakravarthula et al. 2020;
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Choi et al. 2021a; Peng et al. 2020] and speed [Horisaki et al. 2018;
Peng et al. 2020; Shi et al. 2021] of holographic displays. These
algorithms, however, are primarily applicable to slow liquid crystal–
based (LC) spatial light modulators (SLMs) that offer control of
the phase of a coherent light source at high precision. Emerging
micro-electromechanical (MEMS) phase SLMs [Bartlett et al. 2019]
offer potential benefits over LC-based systems in being more light
efficient, significantly faster, better suited to operate across a wide
range of wavelengths, and more stable for varying temperatures.
Indeed, MEMS-based amplitude SLMs are one of the most popular
technology choices for many display applications, including pro-
jectors, so MEMS-based phase SLMs may also become increasingly
important for holography applications. Unfortunately, the algo-
rithms developed for high-precision LC-based phase SLMs suffer
from a degradation in image quality and fail to fully utilize time-
multiplexing when used with the high framerate, heavily quantized
phase control that MEMS-based SLMs offer. For example, DLP’s
phase SLM by Texas Instruments only offers up to 4 bits of precision
or, similarly, 16 unevenly distributed discrete levels of phase control
at frame rates of 1440 Hz [Bartlett et al. 2019; Ketchum and Blanche
2021].
The focus of our work is to extend AI-driven CGH algorithms

to operate with emerging fast but heavily quantized phase SLMs.
This is a non-trivial task, because quantization is non-differentiable,
so the standard machine learning toolset does not directly apply
in these settings. Moreover, most of the degrees of freedom of a
holographic display stem from their ability to create constructive
and destructive interference, which can only be achieved instanta-
neously in time but not between time-multiplexed frames. It is thus
not clear whether the partially-coherent holographic display mode
enabled by the fast SLM speed is actually beneficial when combined
with a limited precision of phase control or how it affects image
quality. We propose an algorithmic CGH framework that robustly
optimizes holograms in these mathematically challenging scenarios
and explore the aforementioned tradeoff, demonstrating significant
benefits in image quality and space–bandwidth utilization [Yoo et al.
2021] of higher-speed phase SLMs. Moreover, we develop a learned
propagation model that is more flexible than previously proposed
alternatives in allowing us to calibrate it using 3D multiplane su-
pervision but leverage a variety of target content, including 2D
images, 2.5D RGBD images, 3D focal stacks, and 4D light fields, for
supervision during runtime.

Specifically, our contributions include the following:

• a new variant of a camera-calibrated wave propagation model
for holographic displays, which is flexible in enabling runtime
supervision by 2D, 2.5D, 3D, or 4D content;
• a framework for robust CGH optimization with fast but heav-
ily quantized phase-only SLMs;
• experimental demonstration of improved image quality and
better utilization of the SLM’s space–bandwidth product en-
abled by our framework.

Source code for this paper is available at computationalimaging.org.

2 RELATED WORK
Many aspects of holographic displays, including optics, SLMs, and
algorithms, have advanced considerably over the last few years.
Detailed discussions of many of these advancements can be found
in the survey papers by Yaras [2010], Park [2017], and Chang et
al. [2020]. A recent roadmap article by Javidi et al. [2021] also out-
lines current and future research efforts of digital holography in
non-display areas, including 3D imaging and microscopy.
Our work primarily focuses on advancing the algorithms driv-

ing holographic near-eye displays. In a nutshell, the CGH problem
comprises several parts. First, the target content is specified in some
format that needs to be converted to a complex-valued wavefield,
such as point clouds [Fienup 1982; Gerchberg 1972; Maimone et al.
2017; Shi et al. 2017, 2021], polygons [Chen and Wilkinson 2009;
Matsushima and Nakahara 2009], light rays [Wakunami et al. 2013;
Zhang et al. 2011], image layers [Chen et al. 2021; Chen and Chu
2015; Zhang et al. 2017], or light fields [Benton 1983; Kang et al.
2008; Lucente and Galyean 1995; Padmanaban et al. 2019; Ziegler
et al. 2007]. Second, this wavefield needs to be encoded by a phase-
only SLM, which can be achieved by fast, direct phase coding ap-
proaches [Hsueh and Sawchuk 1978; Lee 1970; Maimone et al. 2017]
or slow, iterative solvers, such as classic Gerchberg–Saxton-type
algorithms [Fienup 1982; Gerchberg 1972] or variants of stochastic
gradient descent [Chakravarthula et al. 2019; Peng et al. 2020].

Yet, the simulated wave propagation models used by most of these
CGH algorithms do not always model the physical optics faithfully,
thereby degrading image quality. Moreover, the computational com-
plexity of these algorithms often prevents them from being practical
in the power-constrained settings of a wearable computing sys-
tem. Emerging artificial intelligence–driven CGH approaches have
focused on addressing these limitations. For example, surrogate
gradient methods that use a camera in the loop (CITL) for holo-
gram optimization can significantly improve image quality [Choi
et al. 2021b; Peng et al. 2021, 2020]. Alternatively, differentiable
wave propagation models can be learned to calibrate for the gap
between simulated models and physical optics [Chakravarthula
et al. 2020; Choi et al. 2021a; Kavakli et al. 2022; Peng et al. 2020].
Moreover, neural networks can be trained to enable real-time CGH
algorithms [Horisaki et al. 2021, 2018; Peng et al. 2020; Shi et al.
2021].

Note that our work is concurrently and independently developed
from the very recent work by Lee et al. [2022]. Although both works
share some similarity in applying constrained gradient descentmeth-
ods to optimize binary or heavily-quantized phase holograms, our
framework outperforms the counterpart with the use of a learned
propagation model for better image quality, the ability to effectively
handle SLMs with varied bit depths and non-linear quantizations,
and compatibility with a wide range of supervision sources.

3 A FLEXIBLE FRAMEWORK FOR CGH
In Fresnel holography, a collimated coherent light beam illuminates
an SLM with a source field 𝑢src, and the light reflected in response
reproduces a target intensity distribution. To generate this hologram,
a phase-only SLM imparts a spatially-varying delay𝜙 on the phase of
the field. After propagating a distance 𝑧 from the SLM, the resulting
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Fig. 2. Illustration of our calibrated wave propagation model and 2D/3D/4D supervision strategy for the multiplexed, quantized hologram generation. The
complex-valued field at the SLM is adjusted by several learnable terms (amplitude and phase at the SLM plane as well as look-up table for phase mapping)
and then processed by a CNN. The resulting complex-valued wave field is propagated to all target planes using the ASM wave propagation operator with two
extra learnable terms (amplitude and phase at the Fourier domain). The wave fields at each target plane are processed again by smaller CNNs. The proposed
framework applies to multiple input forms, including 2D, 2.5D, 3D, and 4D.

complex-valued field 𝑢𝑧 is given by the following image formation
model:

𝑢𝑧 (𝑥,𝑦, 𝜆) = 𝑓 (𝑢SLM (𝑥,𝑦, 𝜆), 𝑧) ,
𝑢SLM (𝑥,𝑦, 𝜆)= 𝑒𝑖𝑞 (𝜙 (𝑥,𝑦,𝜆))𝑢src (𝑥,𝑦, 𝜆) , (1)

where 𝜆 is the wavelength of light, 𝑥,𝑦 are the transverse coordi-
nates, and 𝑢SLM is the modulated field at the SLM. The wave propaga-
tion operator 𝑓 models free-space propagation between two parallel
planes separated by a distance 𝑧. For notational convenience, we
will omit the dependence on 𝑥,𝑦, 𝜆 and the source field 𝑢src. The
intensity pattern generated by this display at distance 𝑧 in front of
the SLM when showing phase 𝜙 is therefore

���𝑓 (
𝑒𝑖𝑞 (𝜙) , 𝑧

)���2.
When using low-bit SLMs for time-multiplexed holography, the

effect of quantization is not negligible. To model a quantized phase-
only SLM with𝑀 ×𝑁 pixels, where every pixel offers phase control
with limited precision, we define a quantization operator 𝑞:

𝑞 : R𝑀×𝑁 → Q𝑀×𝑁 , 𝜙 ↦→ 𝑞(𝜙) = ΠQ (𝜙) , (2)
where Π is the projection operator that maps the continuous phase
value to the closest discrete phase in the feasible set Q supported
by the SLM.

Our framework approaches computer-generated holography with
a differentiable camera-calibrated image formation model (Sec. 3.1),
an optimization procedure designed for quantized SLMs (Sec. 3.2),
and a family of loss functions supervised on either 2D, 2.5D, 3D,
or 4D content to produce time-multiplexed holograms (Sec. 3.3).
Figure 2 illustrates our model and optimization pipeline.

3.1 Camera-calibrated Wave Propagation Model
Recent work on holographic displays has demonstrated that the
naive application of simulated wave propagation models, like the
angular spectrum method (ASM) [Goodman 2014], to holographic
displays fails to account for the non-idealities of the physical optical
system, such as phase distortions of the SLM, optical aberrations,
and the limited diffraction efficiency of the SLM [Chakravarthula
et al. 2020; Choi et al. 2021a; Peng et al. 2020]. This discrepancy
between simulated and physical image formation adversely affects
image quality, but can be overcome by learning to calibrate for the

physical optics using a differentiable, neural network–parameterized
propagation model.

Here, we propose a variant of the learnedmodel recently proposed
by Choi et al. [2021a]:

𝑓model (𝑢SLM, 𝑧)=cnntarget

(
PASM

(
cnnSLM

(
𝑎src𝑒

𝑖𝜙src𝑢SLM

)
, 𝑧

))
,

PASM (𝑢, 𝑧) =
∬
F (𝑢) · H (

𝑓𝑥 , 𝑓𝑦, 𝜆, 𝑧
)
𝑒𝑖2𝜋 (𝑓𝑥𝑥+𝑓𝑦𝑦)𝑑 𝑓𝑥𝑑 𝑓𝑦 ,

H (
𝑓𝑥 , 𝑓𝑦, 𝜆, 𝑧

)
= 𝑎F 𝑒

𝑖

(
2𝜋
𝜆 𝑧

√︃
1−(𝜆𝑓𝑥 )2−(𝜆𝑓𝑦)2+𝜙F

)
, (3)

where cnnSLM and cnntarget are convolutional neural networks that
operate on the complex field at the SLM and target planes. The
target plane is a distance 𝑧 from the SLM. In addition, 𝑎src and 𝜙src
are learned to account for content-independent spatial variations in
amplitude and phase of the incident source field at the SLM plane
while 𝑎F and 𝜙F are added to the ASM propagation to learn spatial
variations in amplitude and phase in the Fourier plane similarly to
the learned complex convolutional kernel presented by Kavakli et al.
[2022].
Similar to Choi et al., we capture a training and a test set com-

prised of a large number of SLM phase patterns and corresponding
amplitude images recorded at a set of distances { 𝑗} , 𝑗 = 1 . . . 𝐽
with our prototype holographic display. Using a standard stochas-
tic gradient descent–type solver, we then fit the parameters of the
CNNs, cnnSLM and cnntarget, as well as 𝑎src, 𝑎F, 𝜙src, 𝜙F to learn the
calibrated wave propagation model. The model used in this frame-
work builds upon the model from Choi et al. by using the terms 𝑎src,
𝜙src, 𝜙F , and 𝑎F to learn many of the content-independent non-
idealities of the holographic system. The source terms can efficiently
model the effects of non-ideal illumination at the SLM plane, and the
Fourier plane terms can compactly account for the effects of non-
ideal optical filtering. Together these terms enable the use of smaller
convolutional neural networks to learn the content-dependent non-
idealities, such as the spatially varying pixel response at the SLM.
Table 1 quantitatively assesses the effect of these physically-inspired
parameters by evaluating the performance of different calibrated
wave propagation models on a captured dataset. All models are
trained over 6 intensity planes, corresponding to 0.0 D, 0.5 D, 1.0 D,
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Table 1. Comparison of different calibrated wave propagation models. All
models are trained on 6 of the 7 planes. PSNR is evaluated for training and
test sets as well as for the 7th held-out plane. The number of parameters of
each model is also reported. Training details are listed in Supplement S2.4.

Models Params. Train Test Held-out

NH [Peng et al. 2020] 4.1M 26.7 27.1 26.3
NH3D [Choi et al. 2021a] 68.5M 34.4 32.4 31.9
Our model, CNNs only 6.2M 31.6 29.7 30.0
+ 𝑎src 7.2M 35.3 35.4 32.3
+ 𝑎src + 𝜙src 8.2M 36.2 36.3 33.0
+ 𝑎src + 𝜙src + 𝜙F 12.3M 36.5 36.4 32.8
+ 𝑎src + 𝜙src + 𝜙F + 𝑙𝑢𝑡 12.3M 36.4 36.4 32.8
+ 𝑎src + 𝜙src + 𝜙F + 𝑎F + 𝑙𝑢𝑡 16.4M 36.7 36.7 32.6

1.5 D, 2.5 D, and 3.0 D in the physical space. A 7th plane at 2.0 D
is set as the held-out plane for evaluation. In this table, we also
ablate the performance of an additional 𝑙𝑢𝑡 parameter to option-
ally learn the feasible set Q of quantized values supported by the
SLM. We observe that our model (bottom row) significantly reduces
the number of parameters when compared to the original NH3D
model, while still producing the highest PSNR metrics on the test
set and the held-out plane. Notably, the lagging performance of the
NH model, which is purely composed of physically-inspired terms,
illustrates the substantial benefit of incorporating the flexibility of
CNNs in a calibrated propagation model. Further details on our
model architecture and training are included in Supplement S2.4

3.2 Optimizing Phase Patterns for Quantized SLMs
Emerging MEMS-based phase SLMs are fast but offer only a limited
precision for controlling phase. DLP’s phase SLM by Texas Instru-
ments (TI) [Bartlett et al. 2019], for example, runs at a maximum
framerate of 1440 Hz grayscale but only offers 4 bits, or 16 discrete
phase levels, at each of the frames. We therefore need to derive
methods that allow us to optimize phase patterns for heavily quan-
tized phase SLMs. The primary problem is that the quantization
function 𝑞 is not differentiable. To this end, we discuss and evalu-
ate several strategies for dealing with 𝑞 assuming some simple 2D
loss function L

(
𝑠 ·

���𝑓model

(
𝑒𝑖𝑞 (𝜙) , 0

) ���, 𝑎target) , where 𝑎target is the
desired 2D amplitude, and 𝑠 is a scale parameter that is optimized
along with 𝜙 .

The naive solution to dealing with 𝑞 is to simply ignore it. Specif-
ically, the phase pattern 𝜙 can be optimized given a 2D target ampli-
tude image 𝑎target and quantized to the available precision after the
optimization. This is the approach typically adopted by state-of-the-
art CGH algorithms that work well for liquid crystal–type phase
SLMs, because these SLMs offer 8 bit or higher precision phase mod-
ulation. TI’s MEMS device enables time multiplexing but only offers
4 bits, which makes this approach impractical (see Fig. 3). Instead,
the reference code supplied with the SLM implements a variant of
projected gradient descent [Boyd et al. 2004], which projects the
iteratively updated solution onto the feasible set of quantized values
Q. This approach is equivalent to a gradient descent–type update

scheme that applies 𝑞 after each iteration 𝑘 as:

𝜙 (𝑘) ← 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝜙

)𝑇
L

(
𝑠 ·

��𝑓model

(
𝑒𝑖𝜙

(𝑘−1) ) ��, 𝑎target) ,
𝜙 (𝑘) ← ΠQ

(
𝜙 (𝑘)

)
= 𝑞

(
𝜙 (𝑘)

)
. (4)

As an alternative solution to solving these types of problems,
surrogate gradient methods are often used [Bengio et al. 2013; Zenke
and Ganguli 2018]. Here, the forward pass is computed using the
correct quantization function𝑞 but during the error backpropagation
pass, the gradients of a differentiable proxy function 𝑞 are used.
This enables improved optimization of phase patterns through a
quantization layer with the minimal overhead of computing the
proxy gradients:

𝜙 (𝑘)←𝜙 (𝑘−1)−𝛼
(
𝜕L
𝜕𝑞
· 𝜕𝑞
𝜕𝜙

)𝑇
L

(
𝑠 ·

��𝑓model

(
𝑒
𝑖𝑞

(
𝜙 (𝑘−1)

) ) ��, 𝑎target
)
.

(5)
Perhaps the most common choice for 𝑞 is a sigmoid function, whose
slope can be gradually annealed during training [Bengio et al. 2013;
Chung et al. 2016; Zenke and Ganguli 2018].

We propose the use of a continuous relaxation of categorical vari-
ables using Gumbel-Softmax [Jang et al. 2016; Maddison et al. 2016]
for optimizing heavily quantized phase values in CGH applications.
This approach has several desirable properties. First, the Gumbel
noise and categorical relaxation prevent the optimization from get-
ting stuck in local minima, which is perhaps the primary benefit
over other surrogate gradient methods. Second, annealing of the
temperature parameter 𝜏 of the softmax as well as the shape of the
score function are directly supported. Formally, this approach is
written as:

𝑞 (𝜙) =
𝐿∑︁
𝑙=1

Q𝑙 · G𝑙 (score (𝜙,Q)) , (6)

G𝑙 (𝑧) =
exp ((𝑧𝑙 + 𝑔𝑙 ) /𝜏)∑𝐿
𝑙=1 exp ((𝑧𝑙 + 𝑔𝑙 ) /𝜏)

, (7)

score𝑙 (𝜙,Q) = 𝜎 (𝑤 · 𝛿 (𝜙,Q𝑙 )) (1 − 𝜎 (𝑤 · 𝛿 (𝜙,Q𝑙 ))) , (8)

where 𝑔𝑙 ∼ Gumbel (0, 1) is the Gumbel noise for all of the 𝑙 =
1, . . . , 𝐿 categories, i.e., quantized phase levels, 𝜎 is a sigmoid func-
tion, 𝛿 is the signed angular difference, and𝑤 is a scale factor (see
Jang et al. [2016] and the supplement for additional details).

3.3 Runtime Supervision of Time-multiplexed Holograms
Fast MEMS-based phase SLMs can produce higher-quality holo-
grams through time multiplexing, i.e., intensity averaging of multi-
ple frames. Given our camera-calibrated wave propagation model
(Sec. 3.1), we optimize for time-multiplexed holograms using differ-
ent target content at runtime.

2D Holography. In this case, we wish to synthesize a 2D intensity
image at a distance 𝑧 in front of the phase SLM. The distance can
be fixed or dynamically varied in software to enable a varifocal
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holographic display mode. For this purpose, we specify the loss:

L2D = L
©­­«
𝑠

√√√
1

𝑇

𝑇∑︁
𝑡=1

���𝑓model

(
𝑒𝑖𝑞(𝜙 (𝑡 ) ) , 𝑧

) ���2, 𝑎targetª®®¬
, (9)

between the target amplitude image 𝑎target and the simulated holo-
graphic image and solve for 𝜙 . We can easily formulate a time-
multiplexed variant of the CGH problem using this loss function
by summing over 𝑡 = 1 . . .𝑇 squared amplitudes, i.e., intensities,
where 𝑇 refers to the total number of time-multiplexed frames that
can be displayed throughout the exposure time of the human eye.
The simplest example of the loss function L is an ℓ2 loss although
other loss functions, such as perceptually motivated image quality
metrics, could be applied as well.

2.5D Holography using RGBD Input. Using the multiplane loss
function presented by Choi et al. [2021a], holograms can be syn-
thesized to generate a 2D set of intensities at depths specified by
a depth map. We refer the interested reader to Supplement S2.5
for the loss function and an additional discussion on utilizing time
multiplexing to produce natural blur with 2.5D supervision.

3D Multiplane Holography. True 3D holography can be achieved
by optimizing a single SLM phase pattern 𝜙 or a series of time-
multiplexed patterns 𝜙 (𝑡 ) for the target amplitude of a focal stack
fstarget. The corresponding loss function in our framework looks
very similar to that of the 2D hologram above, although it is evalu-
ated over the set of focal slices { 𝑗}:

L3D = L
©­­«
𝑠

√√√
1

𝑇

𝑇∑︁
𝑡=1

���𝑓model

(
𝑒𝑖𝑞(𝜙 (𝑡 ) ) , 𝑧 { 𝑗 }

) ���2, fstargetª®®¬
. (10)

Effectively optimizing this focal stack loss using the full blur avail-
able within the diffraction angle of the SLM requires time multiplex-
ing as illustrated in Supplement S2.6.

4D Light Field Holography. Finally, we can also supervise our CGH
framework using the amplitudes of a 4D target light field lftarget.
For this purpose, a differentiable hologram-to-light field transform
is required, which can be calculated using the Short-time Fourier
transform (STFT) [Padmanaban et al. 2019; Zhang and Levoy 2009]:

L4D = L
©­­«
𝑠

√√√
1

𝑇

𝑇∑︁
𝑡=1

���STFT (
𝑓model

(
𝑒𝑖𝑞(𝜙 (𝑡 ) ) , 𝑧

)) ���2, lftargetª®®¬
. (11)

By utilizing timemultiplexing, our optimized holograms can uniquely
reproduce a set of light field views that fully covers the SLM’s space–
bandwidth product as detailed in Supplement S2.7.

4 EXPERIMENTS
To evaluate our novel algorithms, we use a benchtop 3D holographic
display prototype. This prototype includes a FISBA RGBeam fiber-
coupled module with red, green, and blue optically aligned laser
diodes for illumination and a TI DLP6750Q1EVM phase SLM for
high-speed quantized phase modulation. We capture the images
produced by this prototype with a FLIR Grasshopper3 12.3 MP color
USB3 sensor through a Canon EF 35mm lens with focus controlled
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Fig. 3. Evaluation of CGH algorithms for fast, heavily quantized phase SLMs.
We show simulations of 4 bit phase quantization with varying numbers
of time-multiplexed frames, showing the average PSNR over 14 example
images. The projected gradient descent (GD) improves upon the naive
method, which ignores quantization. Surrogate gradient (SG) methods
replace the gradients of the non-differentiable quantization operator in the
backpropagation pass using either a sigmoid or a Gumbel-Softmax (GS)
function. The latter is found to outperform other approaches by a large
margin, especially with faster SLMs. Remarkably, our framework using
only 4 bit precision with 8 time-multiplexed frames even outperforms a
conventional 8 bit phase SLM without time multiplexing (red dashed line).

Iris

1

0

Red Green Blue

Fig. 4. Learned optical filters for three channels, corresponding to the am-
plitude distribution on the Fourier plane 𝑎F that is indicated in Sec. 3.1 and
Table 1. On the left we show the photograph of the physical iris used in the
system acting as the optical filter. Our model accurately learns the shape of
the physical iris and, as expected, its diameter in the learned model varies
accordingly to wavelength.

by an Arduino microcontroller. Further details of the prototype are
included in Supplement S1.

Comparing CGHAlgorithms. We compare several CGH approaches
for the task of optimizing phase patterns for a fast phase SLM with
4 bits, or 16 phase levels, in Fig. 3. The naive approach, which quan-
tizes the phase after optimization performs poorly, as measured
by the peak signal-to-noise ratio (PSNR). The projected gradient
descent approach performs better and shows improvements with
an increasing SLM speed. The surrogate gradient (SG) method used
with the gradients of sigmoid and those of the Gumbel-Softmax
are significantly better than other methods, with Gumbel-Softmax
outperforming all other methods by a large margin, especially for
higher-speed SLMs. This experiment represents the TI SLM with
4 bits and up to 480 Hz color, i.e., 8 multiplexed frames each running
at 60 Hz so a total of 480 Hz. We evaluate other bit depths in the
supplement and show similar trends. Finally, Gumbel-Softmax can
be used as part of an SG method (Eq. 5) using only its gradients 𝜕𝑞

𝜕𝜙

or it can be used to replace 𝑞 by 𝑞 also in the forward image for-
mation. We found the former performs better in most settings, and
therefore only report these results in the paper; see the supplement
for evaluations of the latter approach.
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ASM-Naive, 1 frame Model-Naive, 1 frame Model-Gumbel-Softmax, 1 frame Model-Gumbel-Softmax, 8 frames
18.6/0.69 25.1/0.88 26.4/0.91 28.2/0.95

Fig. 5. Comparison of 2D CGH algorithms using experimentally captured data. Here, we compare SGD algorithms using the ASM w/ Naive (1st column),
Model w/ Naive (2nd column), and Model w/ GS without time multiplexing (3rd column) and with 8 multiplexed frames (4th column). Our calibrated wave
propagation model and Gumbel-Softmax quantization layer result in sharper images with higher contrast and less speckle than others under the same
experimental conditions. Quantitative evaluations are included as PSNR/SSIM.

Learning Physical Filters. Wevisualize in Figure 4 the performance
of our learned model in accurately approximating the optical filter,
which is an iris in the physical display system. As expected, values
outside the filters are all zeros. The shape of blade edges is robustly
learned with our model and scales with wavelength as expected. The
variance of diameter size also aligns with the variance of wavelength.
Refer to Figure S7 in the supplement for visualization of the full
model.

Assessing 2D Holography. We present in Figure 5 experimental re-
sults of 2D holographic display assessing different CGH algorithms
and different multiplexing schemes. In this experiment, we compare
SGD algorithms using the ASM with Naive quantization, our model
with Naive quantization, and our model with Gumbel-Softmax (GS).
We observe two insights. First, the use of our calibrated wave prop-
agation model corrects for most artifacts present in the physical
display. Second, applying the GS operation leads to better perfor-
mance in such heavily-quantized optimization problems. Refer also
to Figures S8–9, as well as Tables S1 and S2 in the supplementary
document for both quantitative and qualitative assessments of other
examples.

Assessing 3D Holography. We present in Figure 6 experimental
results of 3D holographic display assessing different CGH algo-
rithms. In this experiment, we compare SGD algorithms with the
prior state-of-the-art NH3D model and Naive quantization using
RGBD input [Choi et al. 2021a] with 1 frame and 8 multiplexed
frames, respectively, our model with Gumbel-Softmax (GS), and
our model with GS using focal stack supervision. PSNR metrics
are provided in the caption. Using only a single frame results in
speckly in-focus content (shown with red squares in Figure 6). Even
with multiple frames, RGBD supervision produces speckle in the
unconstrained out-of-focus regions. However, with our focal stack
supervision and time multiplexing, we observe natural out-of-focus
blur, while still preserving sharpness for the in-focus content. For
example, the branch at the intermediate depth is sharp, and the sky
in the background is smooth. In the supplement, we show extensive
evaluations and ablations of 3D multiplane CGH methods for more
3D scenes (Figures S3–4 and S10–16).

Assessing 4D Light Field Holography. We present in Figure 7 ex-
perimental results of 4D light field–supervised holographic display,
assessing different CGH algorithms. In this experiment, we com-
pare the OLAS [Padmanaban et al. 2019] algorithm, our approach
using light field–supervision with the ASM and naive quantization
(ASM-Naive), and our approach with the camera-calibrated wave
propagation model and Gumbel-Softmax (Model-GS) to account
for the low bit depth of the SLM. The OLAS algorithm requires
light field and depth maps for each light field view as input and it
does not support time multiplexing. Both variants of our method
do not require depth maps and jointly optimize 8 time-multiplexed
frames using SGD. For each example scene, we show close-ups of
content at two distances (far, near). We observe that our frame-
work exhibits the best image quality for both in-focus (red squares)
and out-of-focus regions (white squares). Refer also to Figures S5
and S17 in the supplementary document for additional simulation
and experimental results.

5 DISCUSSION
In summary, we present a new framework for computer-generated
holography. This framework includes a camera-calibrated wave
propagation model that combines parts of the recently proposed
model in a novel way to achieve a better performance with fewer
model parameters. We explore surrogate gradient methods for op-
timizing the heavily quantized SLM patterns of emerging MEMS-
based phase SLMs and show the Gumbel-Softmax algorithm to
outperform other approaches. Our framework is flexible in sup-
porting 2D, 2.5D, 3D, and 4D supervision at runtime and we show
state-of-the-art results in all of these scenarios with our near-eye
holographic display prototypes.

Limitations and Future Work. Image quality could be further im-
proved by increasing the precision and framerate of the employed
phase SLMs and, importantly, by improving their diffraction effi-
ciency. In Figure S6 of our supplement, we explore the simulated
image quality with varying levels of time multiplexing and bit depth,
but analytically deriving this landscape remains an interesting di-
rection for future work to explore. Our algorithms do not run in real
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NH3D-Naive, RGBD, 1 frame NH3D-Naive, RGBD, 8 frames Ours, Model-GS, RGBD 8 frames Ours, Model-GS, Focal Stack, 8 frames

Fig. 6. Comparison of 3D CGH algorithms using experimentally captured data. Here, we compare SGD algorithms with the prior state-of-the-art NH3D
model and Naive quantization using RGBD input [Choi et al. 2021a] with 1 frame and 8 multiplexed frames, respectively, our model with Gumbel-Softmax
(GS), and our model with GS using focal stack supervision. The corresponding PSNR metrics are 24.3 dB, 25.8 dB, and 26.7 dB with respect to the RGBD
all-in-focus targets (left 3 columns), and 26.9 dB with respect to the focal stack (right column). For close-ups, red squares indicate where the camera is focused
at three distances (from top to bottom: far, intermediate, and near).

OLAS, Padmanaban et al., 1 frame Ours, ASM-naive, 1 frame Ours, ASM-naive, 8 frames Ours, Model-GS, 8 frames

Fig. 7. Comparison of 4D light field–supervised CGH algorithms using experimentally captured data. Here, we compare the OLAS algorithm [Padmanaban
et al. 2019] (1st column) without time multiplexing, and three variants of our approach: ASM-Naive without time multiplexing (2nd column) and with 8
multiplexed frames (3rd column) and Model-GS with 8 multiplexed frames (4th column). For close-ups, red squares indicate where the camera is focused
at two distances (top: far, bottom: near). Since OLAS deterministically computes a single phase pattern for a target light field, there would be no variation
between time-multiplexed frames.

time, but require on the order of tens of seconds to a few minutes
to compute a hologram. Neural networks could be employed to
speed up the computation, as recently demonstrated by Horisaki et
al. [2018], Peng et al. [2020], and Shi et al. [2021]. Due to their lim-
ited space–bandwidth product, holographic near-eye displays only
provide a limited eye box, which could be addressed by dynamically

steering it using eye tracking [Jang et al. 2017]. The depth of field of
3D-supervised holograms in AR scenarios should match that of the
user’s eye, which requires tracking their pupil diameter. Finally, we
demonstrated our results on benchtop prototype displays, which
will have to be miniaturized into the impressive device form factors
presented by Maimone et al. [2017] and Wang and Maimone [2020].
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Conclusion. The algorithmic advances presented in this work
help make holographic near-eye displays a practical technology for
next-generation VR/AR systems.
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This supplementary document includes implementation details of
our holographic display prototype, complementary derivations re-
lated to wave propagation and optimization models, and additional
experimental results. Refer also to the supplementary video for bet-
ter visualization.

Here we list the abbreviations and notations used across this
document. These are consistent with those in the main paper.

SLM: a spatial light modulator
CGH: computer-generated holography
STFT: the Short-time Fourier transform (STFT)
ASM: the angular spectrum method [Goodman 2005]
GS: the Gumber-Softmax operation [Jang et al. 2016;

Maddison et al. 2016]
CITL: the camera-in-the-loop optimization

technique [Peng et al. 2020]
SGD: stochastic gradient descent phase

retrieval [Peng et al. 2020]
NH: a 2D wave propagation model that is trained

using an SGD-based camera-in-the-loop
training strategy aka neural holography [Peng
et al. 2020]; once trained, this model is used to
generate new holograms using an SGD solver

NH3D: wave propagation model using CNNs operating
on the complex-valued field at the SLM plane
before ASM propagation and also directly after
propagation to the target planes [Choi et al.
2021]

S1 ADDITIONAL DETAILS ON HARDWARE
In this section, we describe the hardware implementation of our
benchtop 3D holographic display prototype. Figure S1 shows the
system schematic and photograph of our implementation, including

∗denotes equal contribution.

Authors’ addresses: Suyeon Choi, suyeon@stanford.edu, Stanford University, USA;
Manu Gopakumar, manugopa@stanford.edu, Stanford University, USA; Yifan Peng,
evanpeng@stanford.edu, Stanford University, USA; Jonghyun Kim, jonghyunk@nvidia.
com, NVIDIA and Stanford University, USA; Matthew O’Toole, mpotoole@cmu.edu,
Carnegie Mellon University, USA; Gordon Wetzstein, gordon.wetzstein@stanford.edu,
Stanford University, USA.

Fig. S1. Schematic and prototype photograph of our holographic display.

a display and a capture unit, that are connected under a closed-
loop framework. Specifically, the SLM is TI DLP6750Q1EVM with a
resolution of 1,280 × 800, a pixel pitch of 10.8 𝜇m, and a bit depth
of 4 bits per pixel. The laser is a FISBA RGBeam fiber-coupled
module with three optically aligned laser diodes with a maximum
output power of 50 mW. The measured wavelengths are 636.4, 517.7,
and 440.8 nm. In our implementation, color images are captured
as separate exposures for each wavelength and then cast in post-
processing.
Other components including the collimating lenses, the relay

imaging lenses, the filtering iris, and the beam splitter (Thorlabs
BS016) are shown in Figure S1. All images are captured with a FLIR
Grasshopper3 12.3 MP color USB3 sensor through a Canon EF 50mm
lens. The Canon lens and sensor are synchronized in hardware via
Arduino (Uno SMD) controller to enable programmable varifocal
display and acquisition. The capture unit is assembled on a mo-
torized translation stage to enable the acquisition capability from
different horizontal viewpoints. In such a way, we are able to acquire
holographic images to both form the training dataset and showcase
diverse 3D cues.
In the calibration step, we use a similar procedure to that de-

scribed in the relevant work [Peng et al. 2020] and apply a planar
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homography from the field of computer vision to accurately register
the captured images to the ground-truth images. Our implementa-
tion uses a target binary pattern consisting of 18 × 11 white dots
with the interval between the centers of neighboring two dots set 70
pixels. Accordingly, the region of interest has a resolution of 1,190
× 700 pixels.

S2 ADDITIONAL DETAILS ON SOFTWARE

S2.1 From a variant of projected gradient descent to
surrogate gradient with unit Jacobian

Here, we derive the relationship between the variant of projected
gradient descent in the manuscript and the gradient descent with
the surrogate gradient of unit matrix Jacobian.
1) Based on the projected gradient descent rule described in the

main paper (Eq. 4), we consider the projection step of the last itera-
tion together with the phase update step of the current iteration as
one iteration:

𝜙 (𝑘−1) ← ΠQ
(
𝜙 (𝑘−1)

)
= 𝑞

(
𝜙 (𝑘−1)

)
.

𝜙 (𝑘) ← 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝜙

)𝑇
L

(
𝑠
��𝑓CNN (

𝑒𝑖𝜙
(𝑘−1) ) ��, 𝑎target) .

2) Then, we substitute the first row into the second row:

𝜙 (𝑘) ← 𝑞
(
𝜙 (𝑘−1)

)
− 𝛼

(
𝜕L
𝜕𝑞

)𝑇
L

(
𝑠
��𝑓CNN

(
𝑒
𝑖𝑞

(
𝜙 (𝑘−1)

) ) ��, 𝑎target
)
.

Note that all of these variants (including the one in the manu-
script) generally fail to work well for holographic phase retrieval,
because the projection taken every step vanishes the phase update
with the gradient term.

3) Thus, we relax this hard constraint by leaving out the projection
in the first term; this variant of projected gradient descent applying
the projection only in the second term does not suffer from being
stuck. This is also a special case of surrogate gradient where we
use the surrogate gradient of unit Jacobian 𝜕𝑞

𝜕𝜙 = 𝐼 . This means the
gradient with respect to the quantized phase 𝑞 is simply passed to
the gradient with respect to the continuous phase 𝜙 . We use the
following algorithm as the representative of the projected gradient
descent:

𝜙 (𝑘) ← 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝑞

)𝑇
L

(
𝑠
��𝑓CNN

(
𝑒
𝑖𝑞

(
𝜙 (𝑘−1)

) ) ��, 𝑎target
)

(1)

= 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝑞
· 𝜕𝑞
𝜕𝜙

)𝑇
L

(
𝑠
��𝑓CNN

(
𝑒
𝑖𝑞

(
𝜙 (𝑘−1)

) ) ��, 𝑎target
)
.

(2)

Note that Eq. 2 is identical to Eq. 5 in the main paper. The recent
paper by Lee et al. [2022] uses hard-sigmoid as a surrogate gradient
which has unit gradient within the valid range, and we note that
this falls into the category of variants of gradients we describe in
this section and our Gumbel-Softmax based approach outperforms
it with a large margin as shown in Fig. 3.

Fig. S2. Experimentally captured results with the camera-in-the-loop cali-
bration using the naive (left) and the surrogate gradient (right) quantization.
PSNR metrics are indicated.

S2.2 Camera-in-the-loop with highly quantized SLMs
Here we describe a more accurate camera-in-the-loop procedure for
highly quantized SLMs. The camera-in-the-loop procedure proposed
by Peng et al. [2020] approximates the gradient of the physical
forward model 𝑓 to that of simulated model 𝑓 :

𝜙 (𝑘) ← 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝜙

)𝑇

≃ 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝑓
· 𝜕𝑓
𝜕𝜙

)𝑇
. (3)

However, note that we always have to quantize the phase be-
fore displaying it on the SLM. Thus, technically, 𝑓 should reads as
𝑓 (𝑞 (𝜙)). Again, while we do not have access to the gradient of the
quantization function 𝑞, we can approximate it with the surrogate
gradient 𝜕𝑞

𝜕𝜙 :

𝜙 (𝑘) ← 𝜙 (𝑘−1) − 𝛼
(

𝜕L
𝜕𝑓 (𝑞) ·

𝜕𝑓 (𝑞)
𝜕𝜙

)𝑇

= 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝑓
· 𝜕𝑓
𝜕𝑞
· 𝜕𝑞
𝜕𝜙

)𝑇

≃ 𝜙 (𝑘−1) − 𝛼
(
𝜕L
𝜕𝑓
· 𝜕𝑓
𝜕𝑞
· 𝜕𝑞
𝜕𝜙

)𝑇
. (4)

In Fig. S2, we compare two update rules Eq. (3) and Eq. (4). We
see that with the approximation with the surrogate gradient, image
quality is noticeably improved.

S2.3 Setting parameters for quantized phase optimization
In this subsection we describe parameters used in quantized phase
optimization. We run 2,000 iterations with early stopping with a
learning rate of 0.01 for 1 frame and that of 0.02 for 8 frames. We
note that the surrogate gradients, if used with the Sigmoid or func-
tions with clipping, require a higher learning rate to avoid getting
stuck in local minima which leads to poor performance. During
optimization, gradually annealing the slope helps the optimization
by better approximating the step function gradually while allowing
exploration of a large parameter space with a lower slope at the
beginning. The Sigmoid function can be annealed with a parameter
𝑠 multiplied with the input 𝑥 , so we refer to the Sigmoid function
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as 𝜎 (𝑠 · 𝑥). The Gumbel-Softmax can be annealed with three pa-
rameters including the temperature parameter of Softmax 𝜏 , the
width parameter 𝑤 which corresponds to the interval of discrete
levels, and a scale multiplied to the score function in Eq. 8 of the
manuscript. In the experiments, we tuned𝑤 considering the number
of phase levels (interval between neighbour phase displacements)
and the scale multiplied to the score function was increased from
300 to 1,000 during optimization. We used an annealing schedule of
𝜏 = 𝜏0 · 𝑒−𝑐 · (𝑡/𝑡max) at iteration 𝑡 with 𝑐 ∼ ln2 and 𝜏0 ∼ 4.

S2.4 Model architecture and training details
The two convolutional neural networks in our model are based on
the U-net architecture as in Choi et al. [2021]. We made a slight
modification on the CNN archtectures such that each CNN has 5
layers and 4 input channels of amplitude, phase, real, and imaginary
values of the input field. The output of cnnSLM is two channels that
are used as real and imaginary values of the adjusted SLM field. The
output of cnntarget is 1 channel that is used as a corrected amplitude.
As stated in Table 1 of the main paper, the model is trained over 6
intensity planes, corresponding to 0.0 D, 0.5 D, 1.0 D, 1.5 D, 2.5 D,
and 3.0 D in the physical space. The propagation distances from the
SLM are 7.9, 8.1, 8.25, 8.4, 8.6, 8.8, 9.1 cm and the held-out plane is set
to 8.6 cm. We use a batch size of 2, and a learning rate of 4𝑒−4. We
note that the variety of phasemaps are important for model training.
For example, we note that a dataset mainly generated using the
SGD algorithm usually consists of holographic images that have
very narrow angular spectrum. Thus, we generate the dataset with
the STFT-based regularizer we present in Eq. S7. In addition, we
generate phasemaps with a set of random parameters, including
learning rates, initial phase distribution, and propagation distances.
We generate 3,000 phases for each channel and capture the intensity
at 7 target planes. Other than the held-out plane, the dataset is
divided into training, validation, and test sets with a ratio of 8:1:1.
The training takes around 24 hours to converge. To parameterize
and train a look up table for phase mapping, the phase maps are
first one-hot encoded, multiplied with the parameterized lookup
table, and then summed up per pixel before passing through the full
forward model pipeline.

S2.5 Natural defocus blur with 2.5D supervision on
Quantized SLMs

The 2.5D supervision results in our paper are generated using the
multiplane loss function presented by Choi et al. [2021]. For this
approach, the depth map𝐷 from an RGBD input is first decomposed
into a set of binary masks𝑚 { 𝑗 } corresponding to a set of distances
𝑧 { 𝑗 } from the SLM using closest distance matching,

𝑚 ( 𝑗) (𝑥,𝑦) =
{
1, if |𝑧 ( 𝑗) − 𝐷 (𝑥,𝑦) | < |𝑧 (𝑘) − 𝐷 (𝑥,𝑦) |,∀𝑘 ≠ 𝑗,

0, otherwise.
(5)

These binary masks are then used to constrain a multiplane loss
that pushes the wavefront to reconstruct the desired RGB amplitude,

𝑎target, at the corresponding in-focus distances from the SLM

L2.5D =
1

𝐽

𝐽∑︁
𝑗=1

L
(
𝑚 ( 𝑗) ◦ 𝑠

√√√
1

𝑇

𝑇∑︁
𝑡=1

���𝑓model

(
𝑒𝑖𝑞(𝜙 (𝑡 ) ) , 𝑧 ( 𝑗)

) ���2,

𝑚 ( 𝑗) ◦ 𝑎target
)
, (6)

where ◦ is element-wise multiplication. One challenge with this
approach is that it leaves the out-of-focus parts of the displayed
intensities volume unconstrained, but this can be addressed using ad-
ditional smooth phase regularization strategies as discussed further
by Choi et al. [2021]. However, the ADMM technique for smooth
phase proposed by this work can only produce very slight blur, and
cannot effectively be adapted to quantization.
Alternatively, with time multiplexing, some prior works includ-

ing [Yoo et al. 2021] have proposed phase randomness approaches
that can produce a much shallower depth of field. These techniques
aim to randomly send light in differerent directions from each scene
point. Over many frames, this results in scene points that diffusely
send light in all directions. Unfortunately, this technique struggles
with producing good image quality in the presence of quantization
because it independently optimizes frames. Quantization also adds
artifacts to the out-of-focus blur with this technique. To overcome
these quantization artifacts and reduce the number of frames needed
for smooth out-of-focus blur, an additional STFT-based loss can be
applied to the in-focus content.

LSTFT =
1

𝐽

𝐽∑︁
𝑗=1

𝜎2
𝜃

©­­«
𝑚 ( 𝑗) ◦ 𝑠

√√√
1

𝑇

𝑇∑︁
𝑡=1

���STFT (
𝑓model

(
𝑒𝑖𝑞(𝜙 (𝑡 ) ) , 𝑧

)) ���2ª®®¬
,

(7)
where 𝜎2

𝜃
is the variance of the STFT over angles averaged over the

spatial locations across the wavefront. This loss pushes the output
of the holographic display to emit light evenly in all directions from
the in-focus points. This mimics the diffuse behavior of most natural
coherent scenes. As demonstrated in Fig. S3, this enables natural
blur with 2.5D supervision on quantized SLMs.

S2.6 Time-multiplexing for 3D supervision
Our 3D focal stack supervision technique enables very high image
quality with natural defocus effects. This technique relies on the
time multiplexing in order to reproduce the defocus effects as illus-
trated in Fig. S4. Some prior works such as Shi et al. [2021] have
used similar focal stack supervision with a single frame but that is
only possible with much less blur. This blur is produced by a low
frequency coherent wavefront and cannot match the natural blur
produced by a scene sending light in all directions.

S2.7 Time-multiplexing for 4D supervision
Our approach can uniquely use a holographic display to reproduce a
full set of light field views. Prior holographic stereogram works did
not account for how interference attenuates and amplifies different
rays after converting a light field into a hologram. With the recently
proposed overlap-add stereogram (OLAS) method [Padmanaban
et al. 2019], this interference results in most rays outside of the



00:4 • Choi, S. and Gopakumar, M. et al.

Fig. S3. Simulated evaluation of different RGBD supervised techniques for generating smooth defocus blur on ideal quantized SLMs. From left to right: Model
ADMM from Choi et al. [Choi et al. 2021], Randomness Prior from Yoo et al. [Yoo et al. 2021], our Randomness Prior Jointly-optimized implementation, and
our STFT RGBD implementation. Focused regions are highlighted with red boxes, that from top to bottom, indicate far, center, and near distances. The ADMM
phase smoothness technique from Choi et al. [2021] produces smooth but very small blur and has strong artifacts because it cannot be adapted to quantization
effectively. The phase randomness technique with individually optimized frames produces more substantial blur but has poor in-focus image quality because
it uses individually optimized frames. The phase randomness technique with jointly optimized frames improves on this in-focus image quality, and both of
these phase randomness techniques suffer from out-of-focus artifacts on the quantized SLMs. Adding the STFT-based loss function greatly improves the
out-of-focus blur and has high image quality.

central light field view being heavily attenuated by destructive in-
terference. Additionally, smooth content in the central view gets
amplified by constructive interference. Along with modeling this
interference, time multiplexing is needed to accurately reproduce a
set of light field views that fully cover the diffraction angle of the
SLM. Without time multiplexing, a single coherent wavefront pro-
duced with phase modulation of the SLM’s resolution will not have
the degrees of freedom to produce arbitrary light field views that
could naturally occur. The phenomena discussed here is illustrated
in Fig. S5.

S3 ADDITIONAL EXPERIMENTAL RESULTS
In this section, we present extra simulated and experimental results
of our 3D holographic display prototype.

Exploring the trade-off between number of bits and frames. We
explore the trade-off space between the number of frames and the
number of bits an SLM supports. We optimize phase patterns for 14
target images using the ASM model for the green channel using 5
different methods, including the Naive approach that quantizes only
at the end, a variant of the projected gradient descent approach that
we elaborate in Sec. S2.1, the Surrogate gradients approach with
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Fig. S4. Simulated evaluation of focal stack supervision with 1, 2, and 8 frames from left to right on ideal continuous SLMs. Focused regions are highlighted
with red boxes, that from top to bottom, indicate far, center, and near distances. Even without quantization on an ideal SLM, the supervision with only 1 or 2
frames is overconstrained by the focal stack and cannot fully reproduce the desired natural defocus blur.

Sigmoid gradient, the Surrogate gradients with Gumbel-Softmax
gradient, and the Gumbel-Softmax approach. We show averaged
PSNR metrics in colormaps in Fig. S6.

Overall, the projected gradient descent approach improves upon
the naive method, and notably, the surrogate gradient method with
the Gumbel-Softmax gradient outperforms other methods by a large
margin. We also denote a line for each method that roughly matches
50 dB performance that the 8 bit–1 frame type SLM achieves. Ac-
cordingly, we observe the trend that advanced algorithms shift the
line towards the bottom left, which means it can effectively save the
number of bits and frames without sacrificing performance. Note
that the last approach does not quantize during the optimization but

only replaces the forward model with our forward model described
in Eq. 6 in the manuscript. This is analogous to the Naive approach
for the Surrogate gradients approach with Gumbel-Softmax. We
note that this continuous relaxation is beneficial especially in more
constrained cases.

Full model visualization. Figure S7 visualizes our calibrated model,
that includes learned intensity on SLM plane, learned phase on
SLM plane, learned amplitude of the optical filter on Fourier plane,
learned phase of the optical filter on Fourier plane, and learned
lookup table for phase mapping. Note that this visualization in-
cludes many interesting aspects that present in the setup. First, the
amplitude at SLM plane 𝑎SLM reveals the envelope of the incident
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Fig. S5. Simulated evaluation of different light field to hologram techniques on ideal continuous SLMs. In the first column we have the full set of reproduced
light field views. From the second column to the fourth column, we present the comparison of selected views. (Top) OLAS by Padmanaban et al. [2019] which
does not account for the interference of rays has heavily amplified smooth content in the central view and heavily attenuated rays in other views. (Middle)
Even without quantization on an ideal SLM, our proposed light field supervision technique with a single frame better covers the light field views but lacks the
degrees of freedom to reproduce all the rays across all the light field views. (Bottom) Our proposed technique jointly over 8 frames has the degrees of freedom
to fully reproduce the light field views.

beam as well as ripples and rings that occur in the physical display
system. The phase at SLM plane 𝜙SLM shows the phase distortion.
The terms at Fourier plane learn the shape of the physical filter we
use in the setup and especially phase term 𝜙F learns a radial phase

ramp, and we note that potential propagation distance error can be
learned through this parameter.
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Fig. S6. Trade-off between the number of frames and bits for quantized SLMs, using different optimization algorithms. We optimize SLM phase patterns with
a different number of bits and frames for 14 target images. We simulate the setup using the ASM model for the green channel using 5 different methods,
including the Naive approach that quantizes only at the end, a variant of the projected gradient descent approach that we elaborate in Sec. S2.1, the Surrogate
gradients approach with Sigmoid gradient, the Surrogate gradients with Gumbel-Softmax gradient, and the Gumbel-Softmax approach. We show averaged
PSNR metrics as colormaps. In addition, we mark roughly where it reaches 50 dB PSNR as a black line, which is achieved by the 8 bit–1 frame type SLM. Note
that the trend of black lines shifts.

Additional 2D results. Figure S8 and Figure S9 present full reso-
lution holographic images and their close-ups reconstructed with
different CGH algorithms, including the ASM with naive quantiza-
tion, the ASM with Gumbel-Softmax quantization, our Model with
naive quantization, and our Model with Gumbel-Softmax quanti-
zation. For each algorithm, we assess with displaying one single
frame on the SLM as well as multiplexing 8 frames (which is jointly
optimized). Note that the benefits of Gumbel-Softmax are also less
prominent in the ASM case when the image quality degradation is
dominated by the model mismatch, but even then the quantitative
evaluations indicate improved performance. Thus, the benefits of
our quantization techniques are most significant when the model
mismatch is mitigated using the learned model (See columns 5-8).
Corresponding quantitative evaluation is presented in Table 1 and
Table 2, indicating results with 8 multiplexed frames and 1 frame,
respectively. PSNR and SSIM metrics are listed.

Additional 3D results. Figure S10 and Figure S11 further present
comprehensive simulation results of focal stacks and their close-ups
reconstructed with different CGH algorithms, including the AADPM
from Shi et al. [Shi et al. 2021], the Model ADMM from Choi et
al. [Choi et al. 2021], the SGD-RGBD from Choi et al. [Choi et al.
2021], the randomness control from Yoo et al. [Yoo et al. 2021], our
STFT RGBD implementation, and our focal stack implementation.
All of these holograms used are with quantization operations. For
each algorithm, reconstructed images with the camera focus at three
different distances (far, center, near) are shown. We observe that
ours outperform the others in preserving sharp content for in-focus
regions while providing more natural blur for out-of-focus regions,
with the focal stack implementation on the right being the best.
Accordingly, we experimentally captured results of the scene in
Figure S10 optimized with native quantization and Gumbel-Softmax
(GS) quantization, as shown in Figure S12 and Figure S13.

Figure S14 and Figure S15 show additional experimental results
of 3D holographic display assessing different CGH algorithms (com-
plimentary to Figure 6 in the main paper). In this experiment, we

compare algorithms of the SGD-NH3D using RGBD input [Choi et al.
2021] with 1 frame and 8 multiplexed frames, respectively, SGD-
ours using RGBD input without and with Gumbel-Softmax (GS),
and SGD-ours using Focal Stack with GS. Quantitative assessments
are provided as PSNR metrics in the caption, as well as summarized
in Table 3. We also show the behaviour of the interpolation between
supervised planes in Fig. S16.

Additional 4D results. Figure S17 presents experimental results of
light field reconstructed with different CGH algorithms, including
the ASM-Naive with 1 single frame, our ASM-GSwith 1 single frame,
the ASM-Naive with 8 multiplexed frames, and our ASM-GS with 8
multiplexed frames. For each example scene, we show close-ups of
content at three distances (far, intermediate, near). Our framework
leads to overall higher image fidelity for both the in-focus and out-
of-focus regions.

Robustness to possible viewpoint Shifts. Figure S18 presents a set of
captured results of a holographic scene that validates the robustness
of our image synthesis to possible viewpoint shifts. The camera
is manually translated in horizontal from left to right, for a few
millimeters. We observe no noticeable degradation in image quality
over the viewpoint shifts.
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Table 1. PSNR and SSIM metrics of captured 2D results with 8 multiplexed frames. Among all the methods, the proposed model, in tandem with the
Gumbel-Softmax (GS) quantization, achieves the highest PSNR and SSIM. Images assessed are shown in Figure S8 (index 1 to 5) and Figure S9 (index 6 to 10) .

Methods (algorithm-propagation operator)
SGD-ASM SGD-ASM-GS SGD-ours SGD-ours-GS

# 1 20.29 / 0.821 20.61 / 0.829 27.41 / 0.947 28.22 / 0.954
# 2 17.24 / 0.796 17.52 / 0.807 22.39 / 0.909 23.00 / 0.916
# 3 20.33 / 0.655 20.68 / 0.663 25.67 / 0.803 26.14 / 0.811
# 4 18.43 / 0.632 18.63 / 0.643 22.35 / 0.815 22.70 / 0.811
# 5 16.57 / 0.508 16.52 / 0.486 19.78 / 0.731 19.90 / 0.718
# 6 18.26 / 0.789 18.48 / 0.799 23.33 / 0.911 23.82 / 0.915
# 7 15.16 / 0.066 15.08 / 0.063 16.82 / 0.088 16.74/ 0.088
# 8 18.09 / 0.654 18.15 / 0.643 21.23 / 0.764 21.24 / 0.758
# 9 18.54 / 0.748 18.86 / 0.751 22.97 / 0.934 23.31 / 0.832
# 10 18.62 / 0.820 18.83 / 0.827 23.09 / 0.889 23.50 / 0.898
Avg. 18.16 / 0.649 18.33 / 0.652 22.51/ 0.769 22.85 / 0.770

Table 2. PSNR and SSIM metrics of captured 2D results with 1 single frame. Among all the methods, the proposed model, in tandem with the Gumbel-Softmax
(GS) quantization, achieves the highest PSNR and SSIM. Images assessed are shown in Figure S8 (index 1 to 5) and Figure S9 (index 6 to 10) .

Methods (algorithm-propagation operator)
SGD-ASM SGD-ASM-GS SGD-ours SGD-ours-GS

# 1 18.63 / 0.686 18.85 / 0.703 25.14 / 0.882 26.42 / 0.910
# 2 16.31 / 0.722 16.30 / 0.721 20.89 / 0.864 22.30 / 0.888
# 3 18.80 / 0.511 18.93 / 0.512 24.09 / 0.720 24.72 / 0.744
# 4 17.31 / 0.480 17.38 / 0.481 21.26 / 0.709 21.75 / 0.715
# 5 15.46 / 0.391 15.54 / 0.394 19.03 / 0.673 19.40 / 0.676
# 6 17.48 / 0.719 17.53 / 0.724 22.33 / 0.875 22.96 / 0.889
# 7 14.87 / 0.057 14.53 / 0.052 16.68 / 0.082 16.53 / 0.080
# 8 16.88 / 0.555 17.01 / 0.563 20.32 / 0.709 20.57 / 0.713
# 9 17.55 / 0.632 17.57 / 0.642 21.75 / 0.771 22.27 / 0.783
# 10 17.73 / 0.758 17.71 / 0.762 21.90 / 0.858 22.57 / 0.871
Avg. 17.10 / 0.551 17.13 / 0.556 21.34 / 0.714 21.95 / 0.727
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Table 3. PSNR metrics of captured 3D results using different CGH algorithms, including the SGD-NH3D using RGBD input [Choi et al. 2021] with 1 frame
and 8 multiplexed frames, respectively, SGD-our model using RGBD input, SGD-our model using RGBD input with Gumbel-Softmax (GS), and SGD-our
model using Focal Stack (FS) supervision with GS. Images assessed are shown in Figure S14, Figure S15, and Figure 6 in the main paper. For each cell, the
first PSNR is evaluated with respect to the RGBD all-in-focus targets, while the second one with respect to the focal stack. Note that the first four columns
are supervised on RGBD input, where ours achieves the best all-in-focus PSNR, and the fifth column is supervised on a focal stack, and achieves the best
performance on the PSNR metric on the target focal stack.

Methods (SGD-propagation operator)
NH3D, 1 frame NH3D, 8 frames ours, 8 frames ours, w/ GS, 8 frames ours, w/ GS (FS), 8 frames

Robot 23.5 / 19.7 25.6 / 21.6 27.9 / 23.2 28.7 / 23.6 27.7 / 26.1
Sintel Bamboo 28.3 / 24.3 30.0 / 26.5 30.4 / 26.9 31.0 / 27.0 30.3 / 30.1
Hyperism Room 21.2 / 18.5 22.5 / 20.3 24.0 / 21.7 24.7 / 22.3 24.2 / 23.7
Big Buck Bunny 24.3 / 21.3 25.8 / 23.2 26.1 / 24.0 26.7 / 24.5 25.9 / 26.9
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Fig. S7. Parameters visualization of the calibrated model of our holographic display prototype (refer to Section 3 in main text). From left to right: red, green,
and blue channels. From top to bottom: learned intensity on SLM plane, learned phase on SLM plane, learned amplitude of the optical filter on Fourier plane,
learned phase of the optical filter on Fourier plane, and learned look up table for phase mapping.
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Fig. S14. Comparison of 3D CGH algorithms using experimentally captured data. In this experiment, we compare algorithms of SGD-NH3D using RGBD
input [Choi et al. 2021] with 1 frame and 8 multiplexed frames, respectively, SGD-ours using RGBD input with Gumbel-Softmax (GS), and SGD-ours using
Focal Stack with GS. For the top scene from left to right, the corresponding PSNR metrics are 23.5 dB, 25.6 dB, 28.7 dB, 27.7 dB with respect to the RGBD
all-in-focus targets, and 19.7 dB, 21.6 dB, 23.6 dB, 26.1 dB with respect to the focal stack. Same metrics for the bottom scene are 28.3 dB, 30.0 dB, 31.0 dB,
30.3 dB and 24.3 dB, 26.5 dB, 27.0 dB, 30.1 dB. For close-ups, red squares indicate where the camera is focused at three distances (from top to bottom: far,
intermediate, and near).
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Fig. S15. Comparison of 3D CGH algorithms using experimentally captured data. In this experiment, we compare algorithms of SGD-NH3D using RGBD
input [Choi et al. 2021] with 1 frame and 8 multiplexed frames, respectively, our SGD-RGBD with Gumbel-Softmax (GS), and our SGD-Focal Stack with GS.
From left to right, the corresponding PSNR metrics are 21.2 dB, 22.5 dB, 24.7 dB, 24.2 dB with respect to the RGBD all-in-focus targets, and 18.5 dB, 20.3 dB,
22.3 dB, 23.7 dB with respect to the focal stack. For close-ups, red squares indicate where the camera is focused at three distances (from top to bottom: far,
intermediate, and near).
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Fig. S16. Interpolation behaviour of 3D focal stack supervised holograms. We experimentally capture 13 planes and show them at each row of closeups. Note
that only odd rows are supervised while unsupervised planes (even rows) interpolate it smoothly.
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Fig. S18. Frames extracted from the camera with different spatial shifts.


