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Fig. 1. Experimental 3D computer-generated holography (CGH) results captured with a display prototype. In this experiment, the camera is focused at an
intermediate distance, i.e., the cushion. We compare several different 3D CGH algorithms under the same experimental conditions: our implementation of the
double phase-amplitude coding (DPAC) approach [Maimone et al. 2017; Shi et al. 2021], a stochastic gradient descent solver used with a wave propagation
model based on the angular spectrum method (SGD-ASM), SGD used with the proposed wave propagation model (SGD-CNNpropCNN), and a proximal
gradient solver used with our model that additionally promotes piecewise smoothness of the complex wave field for the in-focus parts of our RGBD target
images (ADMM-CNNpropCNN). Our wave propagation model enables accurate 3D holographic display with significantly improved image quality for in-focus
3D scene parts and our phase regularization strategy additionally improves strong out-of-focus speckle artifacts observed with other approaches. Quantitative

evaluations for each result are included as PSNR/SSIM.

Holographic near-eye displays promise unprecedented capabilities for vir-
tual and augmented reality (VR/AR) systems. The image quality achieved
by current holographic displays, however, is limited by the wave propa-
gation models used to simulate the physical optics. We propose a neural
network-parameterized plane-to-multiplane wave propagation model that
closes the gap between physics and simulation. Our model is automati-
cally trained using camera feedback and it outperforms related techniques
in 2D plane-to-plane settings by a large margin. Moreover, it is the first
network-parameterized model to naturally extend to 3D settings, enabling
high-quality 3D computer-generated holography using a novel phase reg-
ularization strategy of the complex-valued wave field. The efficacy of our
approach is demonstrated through extensive experimental evaluation with
both VR and optical see-through AR display prototypes.
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1 INTRODUCTION

Augmented and virtual reality (AR/VR) systems promise unprece-
dented user experiences, but the light engines of current AR/VR
platforms are limited in their peak brightness, power efficiency, de-
vice form factor, support of perceptually important focus cues, and
ability to correct visual aberrations of the user or optical aberrations
of the downstream optics. Holographic near-eye displays promise
solutions for many of these problems. Their unique capability of
synthesizing a 3D intensity distribution with a single spatial light
modulator (SLM) and coherent illumination, created by bright and
power-efficient lasers, makes these displays ideal for applications
in wearable computing systems.

Although the fundamentals of holography have been developed
more than 70 years ago, until recently, high-quality holograms have
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only been achieved using optical recording techniques [Benton and
Bove 2008]. The primary challenge for generating high-quality dig-
ital holograms using SLMs in a computationally efficient manner
are the algorithms used for computer-generated holography (CGH).
Traditional CGH algorithms [Chang et al. 2020; Park 2017] rely on
simulated wave propagation models that do not adequately repre-
sent the physical optics of a near-eye display, thus severely limiting
the achievable quality. Recently, a class of machine learning—enabled
holographic wave propagation models has been proposed that partly
overcome these challenges. For example, Peng et al. [2020] and
Chakravarthula et al. [2020] proposed automatic ways to calibrate
neural network-parameterized 2D wave propagation models using
cameras, thereby significantly improving upon previously reported
holographic image quality. In these works, the networks parameter-
ize the forward propagation from SLM to target image; they learn
optical aberrations and other discrepancies between the physical
optics and a propagation model to make the latter more accurate
but not necessarily faster than classic models. Horisaki et al. [2018],
Peng et al. [2020], Eybposh et al. [2020], Lee et al. [2020], and Shi
et al. [2021] also introduced various neural network architectures
for fast holographic image synthesis. These “inverse” networks are
trained to learn a mapping from image plane(s) to SLM plane, so
that a target image can be quickly converted to a phase-only SLM
pattern without the need for iterative optimization. The image qual-
ity achieved by these methods, however, is fundamentally limited
by the forward wave propagation models they are trained with.
The only approach that combines a network-parameterized forward
model with an inverse network is that of Peng et al. [2020], but their
model is limited to 2D plane-to-plane propagation.

Our work aims to unlock the full potential of emerging holo-
graphic near-eye displays in synthesizing high-quality 3D holo-
grams. We argue that the key technology necessary to achieve this
goal is an accurate and differentiable plane-to-multiplane forward
wave propagation model that adequately simulates the physical
optics of a display. Here, we address this issue by combining the
classic angular spectrum method (ASM) with convolutional neu-
ral networks (CNNs) to form a unique wave propagation model
representing a hybrid between classic physics models and modern
networks. The learnable parameters of our model are automatically
calibrated with a camera and we demonstrate this model to be signif-
icantly more accurate in representing the physical optics of a display
than previously proposed 2D wave propagation models. The model
is also more general in being the first network-parameterized model
to represent 3D plane-to-multiplane propagation rather than 2D
plane-to-plane propagation. Once trained for a specific holographic
display, our model can be used with a number of different solvers
that take an RGBD image as input and optimize the phase pattern
to be displayed on an SLM.

Although our camera-calibrated model significantly advances
state-of-the-art CGH algorithms, we demonstrate it using iterative
solvers that do not operate in real time. Real-time inverse networks
can be trained using models like ours (see e.g., [Peng et al. 2020]),
but we leave this as a future software engineering challenge. With
our work, we help make holographic near-eye displays a practical
technology for emerging AR/VR applications by optimizing the
image quality for near-continuous 3D display settings.
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Specifically, we make the following contributions:

e We propose a differentiable camera-calibrated model for the
wave propagation in holographic near-eye displays. This
model more accurately represents physical optics than pre-
vious approaches in 2D settings and it is the first network-
parameterized model to operate in a 3D plane-to-multiplane
setting.

We develop a strategy for 3D multiplane CGH optimization
that significantly reduces speckle in out-of-focus regions;
this strategy places a piecewise smoothness constraint on the
phase of in-focus regions and it is optimized using a proximal
gradient solver.

We evaluate our methods with both virtual and optical see-
through augmented reality display prototypes, demonstrating
the highest-quality 2D and 3D holographic display results to
date.

Note that certain types of view-dependent effects, such as specular
highlights or (dis)occlusion for large amounts of parallax, may not
be supported by multiplane representations such as ours. Yet, the
small eyebox afforded by the limited space—bandwidth product of
current SLMs makes the lack of these effects negligible in the context
of near-eye display applications.

2 RELATED WORK

Various aspects of holographic displays have been actively investi-
gated over the last few decades. We summarize this body of work in
the following, but refer the interested reader to the recent surveys
by Park [2017] and Chang et al. [2020] for additional discussions
and references.

Holographic Display Optics. Much progress has recently been
made by the computational optics community in advancing hard-
ware aspects related to holographic near-eye displays. For example,
advances have been reported in optimizing diffractive optical ele-
ments [Li et al. 2016; Maimone and Wang 2020; Yeom et al. 2015],
laser scanning or steering mechanisms [Jang et al. 2018, 2017], and
operation with incoherent emitters [Moon et al. 2014; Peng et al.
2021] or amplitude-only SLMs [Gao et al. 2016]. Kuo et al. [2020]
showed how to expand the étendue of a near-eye display, which is
a hardware limitation, using diffusive combiners.

One of the primary benefits of holographic near-eye displays over
conventional microdisplays is their support of focus cues. Although
this capability is also supported by near-eye light field displays [Hua
and Javidi 2014; Huang et al. 2015; Lanman and Luebke 2013], light
field displays typically sacrifice spatial resolution for this purpose.
Our work is primarily focused on advancing wave propagation
models to unlock the full potential of high-quality near-eye 3D
holographic displays for virtual and augmented reality applications.

Computer-generated Holography. Many algorithms have been pro-
posed to convert a target 2D or 3D intensity image into a phase-
only pattern to be displayed on an SLM. These can be roughly
classified as using point [Fienup 1982; Gerchberg 1972; Maimone
et al. 2017; Shi et al. 2017, 2021], polygon [Chen and Wilkinson
2009; Matsushima and Nakahara 2009], light ray [Wakunami et al.
2013; Zhang et al. 2011], or layer [Chen et al. 2021; Chen and Chu
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2015; Zhang et al. 2017] primitives for wave propagation. Alterna-
tively, holographic stereograms convert light fields into holograms
and, similarly to some of the aforementioned approaches, encode
depth- and view-dependent effects [Benton 1983; Kang et al. 2008;
Lucente and Galyean 1995; Padmanaban et al. 2019; Yaras et al. 2010;
Zhang and Levoy 2009; Ziegler et al. 2007]. Among these CGH al-
gorithms, direct methods are usually fast but rely on some kind of
phase coding [Hsueh and Sawchuk 1978; Lee 1970; Maimone et al.
2017] to represent a complex-valued field using phase-only SLMs.
Single-SLM phase coding approaches interlace two phase-only pat-
terns representing the complex field. This is light inefficient because
it creates multiple copies of the holographic image, which need
to be optically filtered using additional opto-mechanical elements.
Dual-SLM phase coding is challenging to implement, because of the
increased bulk, cost, and required calibration. Direct methods thus
often provide lower image quality or reduced brightness compared
to iterative approaches [Chakravarthula et al. 2019; Dorsch et al.
1994; Fienup 1982; Gerchberg 1972; Peng et al. 2020, 2017]. Our
approach builds on a recent class of CGH algorithms that leverage
modern machine learning methods to overcome long-standing chal-
lenges of other CGH approaches, such as 3D holographic image
quality, including out-of-focus behavior.

Machine-learning-based Holographic Displays. Horisaki et al. [2018]
were the first to propose a neural network to synthesize phase pat-
terns in holographic display applications, although the quality of
their results was limited. Peng et al. [2020] recently proposed a
network architecture that enabled real-time 2D holographic display
with an image quality comparable to that of previous iterative meth-
ods. Shi et al. [2021] proposed a related network architecture that
is more efficient and also works for 3D holographic images. Both
Peng et al. [2020] and Chakravarthula et al. [2020] realized that
the simulated wave propagation models used by prior work do not
adequately capture the physics of a holographic display; both works
proposed camera-based calibration techniques that were used to
optimize the parameters of different neural network—parameterized
2D plane-to-plane wave propagation models. A related approach
was also adopted by Choi et al. [2021] to optimize the achieved 2D
and 3D holographic image quality using two SLMs. Finally, Eybposh
et al. [2020] proposed a network architecture for fast CGH with 3D
multiplane intensity input for applications in holographic multipho-
ton microscopy. Their wave propagation model, however, is based
on classical optics propagation operators, which the proposed model
outperforms by a large margin for holographic display applications
(see SGD-ASM results in Figs. 4,5 and Tab. 1).

In this work, we propose a new wave propagation model for
light transport in a holographic near-eye display. This is closely
related to the 2D plane-to-plane wave propagation models pro-
posed by Peng et al. [2020] and Chakravarthula et al. [2020] but our
model is both more accurate and more general by also modeling
3D plane-to-multiplane light transport. Similar to Peng et al. [2021;
2020], Chakravarthula et al. [2020], and Choi et al. [2021], we use a
camera in the loop for calibration purposes. We do not claim this
to be a contribution of our work, although our technique is the
first to demonstrate multiplane camera-based holographic display
calibration with more than two planes. All of the prior methods

have been demonstrated using VR-type displays — here, we show
that our camera-calibrated 3D wave propagation model is able to
achieve high-quality 3D results in both VR and optical see-through
AR scenarios.

Other applications. A variety of applications across science and
engineering rely on holographic illumination, such as optical tweez-
ers [Curtis et al. 2002], 3D printing [Shusteff et al. 2017], neuroimag-
ing [Hernandez et al. 2016; Yang et al. 2015], and optogenetics [Pa-
pagiakoumou et al. 2010]. The methods developed here may also be
applicable in those domains.

3 A 3D NEURAL NETWORK-BASED WAVE
PROPAGATION MODEL

In this section, we briefly review conventional simulated wave propa-
gation models before introducing a network-parameterized, camera-
calibrated model.

3.1 Traditional Holographic Wave Propagation

We work with a Fresnel hologram configuration, where a collimated
coherent laser beam is incident on a phase-only SLM that delays
the phase of this source field ug. in a per-pixel manner. The task
for any CGH algorithm is then to determine the best SLM phase
pattern ¢ € RMXN i e the hologram, for a target 2D or 3D intensity
distribution specified at some distance z in front of the SLM. A
popular model that simulates the propagation of a complex wave
u = ae'? from one plane to another, for example SLM to target
plane, is the angular spectrum method (ASM) [Goodman 2005]:
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where f,sy is the propagation operator, A is the wavelength, fx, fy
are spatial frequencies, H is the transfer function, 7(-) denotes the
Fourier transform, and a (x, y) = const. when the field u describes
a phase-only SLM. Note that fysy is a simulated model of the un-
known wave propagation operator f describing the physical optics.
This model operates on complex-valued fields that contain both
amplitude and phase information. The intensity this model predicts
at distance z when displaying phase ¢ on the SLM is | fusy(e!?, 2)|2.

The ASM wave propagation model can be used to solve the in-
verse problem of computing a phase pattern ¢ for a single or a

set of multiple target image amplitudes at{a{;}get located at the set of

distances zU}, j = 1... J from the SLM by solving the following
objective:

ming‘nize L, (S | fas (ei¢,2{j}) l, at{:fr}get) : @)
Here s is a fixed or learnable scale factor that accounts for possible
differences in the range of values between the output of f.s, and

U}

atarget'
planes and this problem can be conveniently solved using variants

The loss function £, constrains the amplitudes at the target
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Fig. 2. Illustration of our 3D wave propagation model and RGBD supervision strategy. The phase pattern displayed by the SLM is processed by a CNN. The
resulting complex-valued wave field is propagated to all target planes using a conventional ASM wave propagation operator. The wave fields at each target
plane are processed again by smaller CNNs. The loss function constrains the masked amplitudes at the target planes to match the masked target RGB image,
where the binary masks at each target plane are computed from the target depth map.

of stochastic gradient descent (SGD), as recently proposed by Peng
et al. [2020]. In the remainder of this paper, we will refer to this
approach to computing 2D or multiplane 3D holograms as the SGD-
ASM method.

3.2 Camera-calibrated Wave Propagation Model

Analytic models, such as the ASM, are great for simulations. How-
ever, they are often poor representations of the true wave propa-
gation operator of a physical optical system. Small imperfections,
such as optical aberrations, phase nonlinearities of the SLM, stray
light, or the finite diffraction efficiency of the SLM, make it difficult
to use the ASM out of the box and calibrating all of these possible
sources of imperfection is a tedious or impossible task.

To overcome these challenges, both Peng et al. [2020] and Cha-
kravarthula et al. [2020] recently proposed neural network-param-
eterized models for 2D plane-to-plane wave propagation. Both ap-
proaches use a camera to automatically calibrate the respective
model by showing a set of training phase patterns on the SLM, cap-
turing the resulting intensity on the target plane, and then fitting the
model parameters to these phase-intensity pairs. Peng et al’s model
(NH) is focused on being interpretable whereas Chakravarthula
et al. applied a CNN on the intensity | fisu (ei¢,
image-to-image translation from ideal predicted image to captured
image (HIL). Both of these models improve 2D holographic image
quality and Peng et al. also demonstrated varifocal and multiplane
holographic display modes that either selected or interpolated be-
tween several 2D models trained for different distances. Moreover,
Peng et al. also proposed a camera-in-the-loop (CITL) approach that
uses the physical optical forward model, which is by definition the
ideal forward model, albeit with approximated gradients for the
backward pass. Therefore, all of these approaches are limited in ei-
ther the accuracy of their respective forward model, or its gradients,
or both.

None of these existing approaches naturally extends to 3D and
neither of the two models actually works very well, as we will show
in Section 4. We speculate that this is due to the following reasons:
while the NH model is interpretable, it does not have sufficient
degrees of freedom to learn aspects that are not modeled well by
their interpretable model, such as undiffracted light. While the HIL

z) |2 performing
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model is flexible enough to learn pretty much any deviation between
the intensity of a holographic image and a target image, it has
difficulty learning a physically meaningful mapping because it does
not utilize the phase information on the target plane. Although
the CITL approach uses the ideal forward “model”, it is limited in
requiring errors to be backpropagated into the unknown SLM phase
map using the gradients of the ASM, which turn out to be a poor
approximation of the physical optics. We provide evidence of these
hypotheses in Section 4.

We propose a new wave propagation model that combines the
strengths of these previous approaches while naturally and effi-
ciently extending them to a 3D multiplane setting. To overcome
the limitations of Peng’s model, we sacrifice interpretability and let
the network learn the difference between physical and simulated
light transport. To combat the limitations of HIL, we design our
network architecture to operate on the complex-valued wave field
directly rather than on the intensity at a specific target plane. Thus,
our approach allows the network to learn a physically meaningful
residual between the wave field simulated by the ASM and that of
the physical optical system, which we demonstrate by the improved
quality and generalization behavior of our model in Section 4.

Specifically, our proposed model combines the ASM with CNNs
as

Sorpropenn (u, U }) = CNNiyget ( Sfasm (CNNSLM (ei¢) s U })) , (3

RZXMXN — RZXMXN

where CNNgy, : takes as input two channels
with the real and imaginary values of the field on the SLM and
outputs the real and imaginary components of the adjusted field
at the SLM plane, correcting SLM nonlinearities, spatially varying
source intensity, optical aberrations, and other factors. The adjusted
field is then propagated to one or several target planes using the
ASM. We apply another CNN at each of the target planes, CNN e
RPXMXN _, R2XMXN o the real and imaginary channels of the
complex-valued ASM-propagated fields at the target planes before
converting the resulting fields to intensity. Using the same shared
CNN at each target plane worked well for our optical setup in
practice. Indeed, this strategy was necessary for our model to achieve
a good performance for the held-out plane and thus generalize across
depths (see Sec. 4.4). The model could also use different CNNs for
each target plane if required, but that would require more memory,
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it did not improve the results in our experiments, and it led to lower
performance on the held-out plane. Figure 2 shows an illustration
of our final model.

A unique characteristic of our model, compared to NH and HIL,
is that we apply CNNs on both SLM and target planes rather than
only on the target planes. Indeed, as shown in Table 1, cNNg;,, is one
of the most critical components of such a model as it significantly
improves the accuracy of the wave propagation model. This is not
only true for the 2D plane-to-plane variant but also for 3D plane-to-
multiplane propagation. We speculate that cNNg;, is more efficient
in learning nonlinear behavior of the SLM.

3.3 Network Architecture, Dataset Acquisition, and Model
Training

Both cNNgy and CNNy,,. are implemented using the well-known
UNet architecture [Ronneberger et al. 2015] with two input and
output channels for the real and imaginary components of the fields.
These CNNs do not directly implement complex number arithmetic,
as this is currently not supported by PyTorch, but the CNN still
learns to operate on the complex-valued field. cNNg;,, uses skip con-
nections and 8 consecutive downsampling operations using strided
convolutions as well as 8 consecutive upsampling operations using
transposed convolutions. This CNN uses 32 feature channels after
the input layer with feature channels doubling for each downsam-
pling layer to a maximum of 512 channels. The smaller CNN
network has 5 downsampling and upsampling layers with 8 feature
channels after the input, doubling with each downsampling layer
to a maximum of 128 channels. Both networks use instance normal-
ization [Ulyanov et al. 2016], Leaky ReLU (slope —0.2) for the down
blocks, and ReLU nonlinearities for the up blocks.

To train this CNN-parameterized model, we capture many pairs
of SLM phase maps and resulting single or multiplane intensities
using a camera. Instead of using random phases, we generate a
pool of phase patterns using traditional CGH algorithms with high-
resolution target images from the DIV2K dataset [Agustsson and
Timofte 2017]. Specifically, for each of our 8 target planes, we gen-
erate 100 phase patterns using the DPAC algorithm and 1,000 using
SGD from random images of the dataset. For the SGD-optimized
phases, we also randomize the number of iterations and initialize
the phase patterns with random phase values. Our training data
thus consists of 8,800 phase patterns and corresponding captured
intensity images in total.

The model parameters, i.e., the weights and bias terms of NNy,
CNNyyet are then optimized using the ADAM solver in PyTorch. One
model is optimized separately for each of the three color channels.
We use a learning rate of 5¢74, batch size of 1, and the ¢; loss.
Training takes about two days and is stopped if the validation loss
does not decrease after 10 epochs.

Additional implementation details and pseudo-code for all algo-
rithms can be found in the supplemental material. Source code is
available on the project website!.

Lhttps://www.computationalimaging.org/publications/neuralholography3d/

3.4 Inference with a Trained Model

Once trained, we can use the wave propagation model to compute
phase patterns of 2D or multiplane 3D target images by solving
Equation 2 using foxprpenn instead of fysy with SGD. This is an
iterative approach, which takes a few tens of seconds or minutes
to complete and is thus not real time. However, our model could
also be used as a loss function to train another neural network for
real-time inference, as recently demonstrated by Peng et al. [2020];
we did not attempt this in our work and leave it as future work.

The input of the 2D variant of our approach is simply a 2D image
at some specific distance z from the SLM. When used with a 3D
multiplane holographic display mode, the naive approach would
be to constrain all planes simultaneously using a rendered focal
stack of the target scene. This approach, however, is not ideal for
several reasons. First, it requires the focal stack of the target scene to
be rendered, which is computationally costly. Second, supervising
with a focal stack over-constrains the system, because Equation 2
would have many more target observations than unknown phase
values. This approach would therefore likely exceed the degrees
of freedom of the SLM. Third, it requires the defocus blur of the
system to be explicitly modeled in order to render the focal stack.
This is not trivial, because if one wanted to make this defocus blur
perceptually correct, one would have to track the pupil diameter of
the user, which requires additional system complexity. If one wanted
to model the defocus blur naturally supported by the holographic
display, one would have to take the space—bandwidth product of
the SLM into account. Moreover, the physical defocus behavior of a
coherent wave field is unintuitive and different from the incoherent
light we typically see in our natural environments.

To mitigate these challenges, we propose a computationally effi-
cient approach that requires only an RGBD image of the target scene,
rather than a multiplane volume or a focal stack. Depth maps are
readily available for all computer-generated content and they can
be approximated for photographic content using computer vision
techniques known as monocular depth estimation. Working with
RGBD images for multiplane holography is not new and requires the
values of the depth map to be quantized to the nearest holographic
display plane. Thus, each pixel location across all target planes j is
only constrained for one of the target depth planes - the one closest
to the corresponding depth value at that location. This is formalized
by quantizing a target depth map D by converting it to the set of
binary masks m) e {0, 1}] XMxN , such that

. i k .
mU)(x’ y)z {la 1f| Z(])_.D(xy y) | < | Z( )_D(-x7 y) | ’Vk¢]
0, otherwise

4

Intuitively, mask pixel mY)(x, y) is set to 1 if the value of the
depth map at this location, D(x, y), is closer to the axial location 20
of mask layer j than to any of the other mask layers.

3.5 Speckle-free 3D Holography using Phase
Regularization

The inference procedure described above is computationally effi-

cient and works well by constraining the in-focus parts of the scene.

But it leaves the out-of-focus behavior of the wave field uncon-

strained, leading to unpredictable behavior that usually results in
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strong speckle artifacts (see Section 4). This is intuitive, because the
phase of in-focus parts on the target planes are usually random and
thus decorrelate quickly, resulting in speckle. To counteract this
decorrelation behavior, we propose an indirect way to constrain the
out-of-focus amplitudes by regularizing the in-focus phase values of
the optimized propagating wave field. For this purpose, we promote
piecewise smoothness of the in-focus phase values. This allows for
sparse discontinuities in the phase patterns around texture or depth
edges, but it suppresses the random in-focus phase noise that makes
the field decorrelate as it propagates out of focus. Specifically, the
complete loss function incorporating both multiplane amplitude
and phase constraints is

L=Lg+Ly = i ”(S | fexnpropern (ei¢’z(i)) |- agiget) ° m(j)”z
=

o1 3 [ (s fownas () 2] o]
Jj=1

where o denotes element-wise multiplication, A is the Laplace oper-
ator, ® () is an operator that extracts the phase of a complex-valued
field, and y is a user-defined regularization weight that balances the
two loss terms. Note that the second term of the loss regularizes
the phase directly after the f,s, operator, because the phase out-
put of foxnproponn 18 N0t constrained by the model training and may
therefore not be physically meaningful.

If only the first term of this loss function is optimized, as is the case
for 2D holographic display scenarios, this objective can be efficiently
solved using variants of SGD. Solutions to the complete loss function
found by these solvers, however, are often unsatisfactory, as these
solvers are not effective in inducing the sparsity that the £; norm is
meant to promote. As an alternative, proximal gradient solvers are
typically better at these tasks [Bach et al. 2012], which we verify
in the supplemental material. Thus, we propose an ADMM-based
solver to minimize the loss function of Equation 5. This solver is
derived in detail in the supplement.

4 EXPERIMENTAL ASSESSMENT
4.1 Prototype Holographic VR Display

Our VR prototype uses a FISBA RGBeam fiber-coupled module with
three optically aligned laser diodes with a maximum output power of
50 mW and wavelengths of 636.4, 517.7, and 440.8 nm, respectively.
We use a Holoeye Leto phase-only liquid crystal on silicon SLM
with a resolution of 1920 X 1080 pixels, a pixel pitch of 6.4 ym,
and a precision of 8 bits. Color images are captured as separate
exposures for each wavelength and combined in post-processing.
Allimages are captured with a FLIR Grasshopper3 2.3 MP color USB3
vision sensor through a Canon EF 50mm lens for the VR setup. The
SLM, Canon lens, and sensor are synchronized in hardware with an
Arduino Uno to enable programmable focus settings (see Bando et
al. [2013] for a tutorial) over a total depth range of 2 D, from optical
infinity to approx. 0.5 m. This setup is shown in Figure 3. Our optical
see-through AR (OST-AR) prototype uses a Quantum gem-532 laser
module with a wavelength of 532.0 nm, a Holoeye Pluto phase-only
SLM with a pixel pitch of 8.0 ym, and a micro-prism-based lightguide
(LLVision LEION) as the optical combiner. All images are captured
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SM-Fiber + ND *

Fig. 3. Prototype VR display. An RGB laser module is coupled to a sin-
gle mode (SM) fiber to illuminate our phase-only SLM through a neutral
density (ND) filter and a polarizer. A beam splitter (BS) redirects the phase-
modulated light, through a lens and optical filter, towards the camera. The
camera lens provides programmable focus settings, which are controlled by
an Arduino.

with a FLIR Grasshopper3 2.3 MP color USB3 vision sensor through
a Canon EF 35mm lens for the AR setup. Additional details of these
prototypes are included in the supplement.

For all 2D holographic image results shown in the paper and
supplement, we positioned the target plane on which the image is
optically recorded at a distance of 4.4 mm from the SLM, which corre-
sponds to a distance of 1.26 D, or 0.80 m, from the camera. For all 3D
holographic image results, we positioned 8 target planes, on which
the multiplane images are shown and optically recorded, equally
spaced in dioptric space throughout a range of 0-2 D from the cam-
era. The inter-plane distance of 0.31 D perceived by a user thus
corresponds to the depth of field of the human eye [Campbell 1957;
Marcos et al. 1999] and can therefore be considered approximately
continuous in depth. We measured these distances to correspond
to 0.0, 1.1, 2.1, 3.2, 4.4, 5.7, 7.0, and 8.2 mm away from the SLM
physically.

4.2 Assessing 2D Holographic Display Modes

Figures 4 and S10-S12 show several test images that were experi-
mentally captured. We compare results achieved by the following
methods: an SGD-based phase retrieval algorithm using the ASM
wave propagation model (SGD-ASM), the model-based approach pro-
posed by Chakravarthula et al. [2020] (SGD-HIL), the model-based
approach proposed by Peng et al. [2020] (SGD-NH), the camera-
in-the-loop approach proposed by Peng et al. [2020] (CITL-ASM),
and SGD used with the proposed model (SGD-CNNpropCNN). We
see that our model provides the best contrast, sharpness, lack of
speckle artifacts, and overall image quality. Quantitatively, our ap-
proach greatly improves upon other methods — about 2 dB of peak
signal-to-noise-ratio (PSNR) over CITL-ASM and 3-4 dB over other
models. Supplemental Tables S1, S2 confirm these improvements
for a large number of test images.
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Fig. 4. Comparison of 2D wave propagation models using experimentally captured data. We compare an SGD solver used with the conventional ASM,
hardware-in-the-loop model (HIL) and neural holography (NH) models, the camera-in-the-loop CGH optimization approach (CITL-ASM), and our proposed
model (SGD-CNNpropCNN). Our model results in sharper images with higher contrast and less speckle than other models under the same experimental

conditions. Quantitative evaluations for each result are included as PSNR/SSIM.

4.3 Assessing 3D Holographic Display Modes

Figures 5 and S13-S21 show experimentally captured results of sev-
eral multiplane 3D scenes, each focused at a near, an intermediate,
and a far distance. We compare experimental results with our imple-
mentation of the double phase-amplitude coding method [Maimone
et al. 2017] (DPAC, see supplement for implementation details), a
multiplane SGD optimization that uses ASM wave propagation
(SGD-ASM), and the proposed multiplane 3D model used with an
SGD solver (SGD-CNNpropCNN) without phase constraints (see
Sec. 3.4) and the same model used with an ADMM solver (ADMM-
CNNpropCNN) that enforces piecewise smooth phase constraints
of the in-focus multiplane images (see Sec. 3.5). In these results,
we see that our implementation of DPAC shows overall reasonably
good quality for in-focus (red boxes) and out-of-focus (white boxes)
parts of the scenes, although the contrast is somewhat low?. The
SGD-ASM solver significantly improves the contrast over DPAC,
but it is much more noisy in both in-focus and out-of-focus image
regions (center left column). The proposed model adequately mod-
els the wave propagation from the SLM to all target planes and a
multiplane SGD solver that constraints the in-focus parts of the
target image achieves a very good image quality with significantly
reduced speckle and better image quality in these in-focus parts
(center right column). However, because the out-of-focus behav-
ior is unconstrained, as the wave field propagates away from the
constrained in-focus parts, its unconstrained out-of-focus behav-
ior results in significant out-of-focus speckle. Using the proposed

20ur implementation of DPAC followed the description of two recent papers [Maimone
et al. 2017; Shi et al. 2021] but, despite our best efforts, we were not able to achieve
the same quality of results these authors demonstrated. This may be due to slight
differences in the hardware setup, which (if mitigated) would likely improve the results
of all methods.

piecewise smooth in-focus phase constraints mitigates this out-of-
focus speckle and results in the best in-focus and out-of-focus image
quality (right column). Note that multiplane SGD methods do not
suffer from light leakage (i.e., boundary artifacts from content at
multiple depths) since the phase is optimized to simultaneously
produce in-focus content at all depths. In the supplement, we show
extensive evaluations, comparisons, and additional ablations of 3D
multiplane CGH methods for these and additional 3D scenes.

4.4 Ablation Study

The previous subsections evaluate the performance of our model for
CGH reconstruction tasks. With Table 1, we quantitatively evaluate
and ablate the performance of our model in accurately predicting
the physical optical wave propagation behavior in various scenarios.
The upper block shows three different 2D variants of our model
trained for a single target plane. We compare these variants to ASM,
HIL, and NH. On the training set, our model outperforms both HIL
and NH by more than 8 dB PSNR, which is a significant improvement.
To demonstrate that this is not due to overfitting, we evaluate the 2D
model performance using a test set of 1,100 images (see supplement).
The improvement of our model over these previous models is still
about 7 dB for the test set of unseen images, confirming that our
model is indeed more accurate and generalizes from training to test
set. When evaluating these methods on another target plane that
the model was not trained on, which is not possible for HIL, we see
that the performance is best when our model only uses the CNN on
the SLM plane, CNNg, . Either variant that uses a CNN on the target
plane, CNN,., overfits to that plane and does not generalize well
to other target planes. Note that HIL has about the same number
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DPAC » SGD-ASM

ADMM-CNNpropCNN

Fig. 5. Comparison of 3D CGH methods using experimentally captured data. We compare the DPAC algorithm (left), a multiplane SGD solver using the ASM
model (center left), and two variants of our multiplane 3D model. The first variant uses an SGD solver but only constrains in-focus scene parts, resulting in
good image quality in those regions but significant out-of-focus speckle artifacts (center right). The same model used with an ADMM solver that promotes
piecewise smooth phases for the in-focus parts of the scene exhibits very good image quality for both in-focus and out-of-focus parts (right). Quantitative

evaluations for each result are included as PSNR/SSIM.

of parameters as our CNNpropCNN model (~65M), but NH uses
significantly fewer (~8M).

This observation motivates us to train our model using multi-
plane supervision, which is shown in the center block of Table 1.
Here, we train multiplane 3D variants of our model trained on 7
of the 8 planes. We intentionally left out the third plane from the
SLM at 0.6 D or 2.1 mm from the training procedure. Again, our CN-
NpropCNN model shows the best quality for both training and test
sets. Evaluating the performance of our multiplane model variants
on the held-out plane, which was not part of the training, demon-
strates that our 3D model generalizes well to planes in between
the training planes. The same trends are also observed when using
the same multiplane model and evaluating its performance for all 7
target planes for both training and test set (lower block of Tab. 1).
Overall, these experiments demonstrate that the 2D variant of our
model is more accurate than previously proposed wave propagation
models, which are limited to 2D settings, and ours is also the only
one that generalizes to 3D multiplane settings. Moreover, we evalu-
ate several variants of our model and note that a CNN correcting the
wave field on the SLM is necessary for good generalization behavior
in between target planes of the training set. Any corrections that
this CNN performs on the SLM plane, however, are shift invariant
on the target plane due to the shift invariance of the ASM propaga-
tion operator that follows. Using the additional CNN on the target
planes helps correct for shift varying artifacts, optimizing image
quality when combined with the CNN on the SLM.
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Table 1. Comparison of different models on the captured dataset. Top: all
models are trained on a single intensity plane with the training set; the
PSNR is evaluated on training and test sets as well as for a held-out plane.
Center: model trained on 7 of the 8 intensity planes; PSNR is evaluated
on a single plane for training and test sets as well as for a held-out plane.
Bottom: model trained on 7 of the 8 intensity planes; PSNR is evaluated on
all 7 planes for training and test sets as well as for the 8" held-out plane.

Model Training Test Set Held-out
Set Plane
ASM 21.0 21.0 20.8
g HIL 31.6 31.1 -
=& NH 31.8 314 252
: ‘; propCNN 32.6 32.4 25.7
=m  CNNprop 38.5 37.5 31.1
CNNpropCNN  40.0 38.8 26.0
g % ASM 21.0 21.0 20.8
E‘j ~& propCNN 32.1 32.0 29.3
=~ . CNNprop 35.1 35.2 33.0
H&  CNNpropCNN  37.9 37.9 33.1
§ § ASM 20.9 21.0 20.8
é‘ é“ propCNN 32.1 31.9 29.3
=~~~ CNNprop 35.2 34.9 33.0
&2 CNNpropCNN  37.8 37.6 33.1
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Fig. 6. Comparing wave propagation model gradients. We show simulated
gradients for the ASM, NH, HIL, and the proposed models as well as a
gradient of the physical optical system captured using the finite differ-
ences method. Our model provides the best approximation to the physical
gradient.

4.5 Understanding Wave Propagation Models

A good wave propagation model for holographic display applica-
tions should satisfy two criteria. First, it should model the mapping
from SLM phase to intensity values observed on the target planes
well. We confirmed that this is the case for our model, but not for
previous models, in the last subsection. Second, for a model to be
effective at generating phase patterns of target images never seen
during training, an iterative CGH algorithm like SGD has to be able
to backpropagate through this model. Thus, the gradients of the
model should match those of the unknown physical optics. In this
section, we provide a best attempt to make the gradients of all wave
propagation models more intuitive by visualizing and analyzing
them.

Specifically, we note that the gradients of the physical optics
can actually be captured using a camera with the finite difference
method. This general idea is not new and has, for example, recently
been explored to optically differentiate structured illumination sys-
tems [Chen et al. 2020]. For our application, we record camera
images of two SLM phase patterns that only differ in one location
and calculate their difference. This is shown in Figure 6 (lower
right) where an image captured using a phase pattern of all zeros is
subtracted from an image captured with the center block of 3 X 3
pixels set to z. Note that just changing one pixel value resulted
in a signal-to-noise ratio that was too low to be visualized. Com-
paring this captured gradient to the corresponding gradient of the
ASM model (Fig. 6, upper left) reveals that there is a significant gap
between the simulation and the physics. We show these gradients
also for the NH and HIL models. Interestingly, the gradient of the
NH model is actually worse than ASM, even though it models the
forward mapping from phase to target intensity better (Tab. 1). Our
CNNpropCNN model approximates the captured gradient the best
among all of these models.

Concave mirror

Laser

[ R

BS
SLM

Phase
pattern

Captured image Sensor

Fig. 7. lllustration of our OST-AR holographic display. The holographic light
engine, including a laser, lenses (L1, L2, L3), a beam splitter (BS), polarizer
(P), and SLM create a 3D multiplane image simultaneously at three target
planes. These are coupled into a lightguide and are optically in focus with
physical objects at a near, intermediate, and far distance. The sensor, SLM,
and focus mechanism of the camera lens are synchronized in hardware.

We note that gradients of the physical wave propagation cap-
tured by the finite difference method require long exposure times.
Therefore, capturing such gradients for each of the SLM pixels and
potentially using them for supervising the model during training
seems infeasible. Yet, these captured gradients provide an excellent
tool for analyzing the gradients of any model and comparing them
to the physical optics. For a fair comparison, we also computed the
gradients of all models using the finite differences method and not
using automatic differentiation.

5 TOWARDS 3D SEE-THROUGH AR HOLOGRAPHIC
DISPLAYS

In this section, we present preliminary results achieved by an OST-
AR prototype. The primary difference to the VR setup is that the
holographic image is optically routed through a lightguide that al-
lows for the holographic image to be superimposed on a physical
scene. No lightguide we are aware of is specifically designed for a
holographic display or the étendue our prototype provides, so we do
not expect to observe as high of an image quality as for the VR setup.
Moreover, lightguides and waveguides are typically designed for
only a single target image distance, usually at optical infinity. One
could try to physically actuate a conventional (incoherent) microdis-
play along the optical axis to implement a varifocal display mode,
but this would practically lead to optical aberrations and degraded
image quality. In theory, a hologram could potentially correct for
some of these aberrations and, when used with an appropriate op-
tical combiner, correct for some of the optical aberrations of the
downstream optics. We explore this idea in the following.
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Fig. 8. Experimental results for an OST-AR system showing a comparison of 3D CGH algorithms with the lens focused at two different depths. We compare our
implementation of the DPAC algorithm (left), SGD-ASM (center left), the SGD-CNNpropCNN method that uses the proposed multiplane wave propagation
model (center right), and our ADMM-CNNpropCNN approach (right). White arrows indicate virtual objects that are focused at a particular depth. We see that
algorithms using our wave propagation model perform better than those not using it. The SGD-CNNpropCNN method achieves the best in-focus results with
ADMM-CNNpropCNN improving the out-of-focus content. Results for additional focus settings are shown in the supplement.

Specifically, we focus a monochromatic version of our holographic
display into a lightguide with built-in horizontal exit pupil expan-
sion via micro prisms (see Secs. 4.1 and S1 for details). We then
change the distance of the holographic image from the SLM to
create a best-focused image at three distances from the camera:
0.6 m, 1.2 m, and 3.9 m. We train our wave propagation model as
described in Section 3.3 for these three target planes. Figure 7 shows
an illustration of our OST-AR system and the configuration of the
scene, including the car, zebra, and lion at near, intermediate, and far
distances. Additional system details are included in the supplement.

Figure 8 shows experimentally captured results. We show the
scene at two of the three focus settings and compare the results of
several 3D CGH algorithms, including our implementation of DPAC,
SGD-ASM, SGD-CNNpropCNN, and ADMM-CNNpropCNN. As
with our VR results, SGD-CNNpropCNN, which uses the proposed
camera-calibrated multiplane wave propagation model, demon-
strates the best image quality for in-focus objects, such as the but-
terfly in the far-focus setting and the traffic sign and arrow in the
near-focus setting. Also as before, ADMM-CNNpropCNN further
improves the out-of-focus image quality although we observe a
slightly increased amount of speckle artifacts.

6 DISCUSSION

In summary, we propose a new wave propagation model for holo-
graphic near-eye displays. Our model is parameterized by neural
networks that are automatically trained using footage captured
from a physical optical system using camera feedback. Our model
significantly outperforms related techniques in 2D plane-to-plane
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settings and it is the first such model to naturally extend to 3D
plane-to-multiplane settings, enabling high-quality 3D computer-
generated holography. We demonstrate that the 3D variant of our
model can be directly supervised with RGBD target images, which
makes our approach not only computationally efficient but also
compatible with both computer-generated and readily-available cin-
ematic content. To constrain the out-of-focus behavior of our 3D
holograms, which is not directly constrained by the RGBD images,
we propose a regularization strategy of the phase components of
the wave field when they are in focus as well as optimizers to en-
force this regularization efficiently. The efficacy of our approach is
demonstrated to outperform existing methods through extensive
experimental evaluation with both VR and optical see-through AR
prototype displays.

Limitations and Future Work. Our approach is not without lim-
itations. It focuses primarily on developing accurate and efficient
neural network—parameterized wave propagation models for holo-
graphic near-eye displays, but not real-time holographic image
synthesis. Although it was recently shown that the latter can be
achieved [Eybposh et al. 2020; Horisaki et al. 2018; Lee et al. 2020;
Peng et al. 2020; Shi et al. 2021], and that differentiable wave prop-
agation models like ours can directly be used as part of the loss
function for training CGH networks [Peng et al. 2020], we did not
attempt this in our work.

Our prototypes use state-of-the-art phase-only SLMs, but these
unfortunately only offer a very limiting étendue to the downstream
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optics. In practice, this implies that the eyebox of our and other holo-
graphic near-eye displays is small. Higher-resolution SLMs, pupil
steering [Jang et al. 2017], or étendue expansion [Kuo et al. 2020]
could help mitigate this limitation. The limited étendue also implies
that the depth of field observed by a user or camera is limited and
may not match that of a physical scene. For OST-AR systems, such
as the one shown in Section 5, this results in a noticeable mismatch
between the refocusing effects of the physical scene and the su-
perimposed holographic 3D scene. Future work could potentially
address this by supervising the hologram generation using a 3D
focal stack, rather than RGBD images, but this would come at the
expense of increased computational complexity. Direct supervision
by focal stacks may also reduce the remaining out-of-focus speckle
and improve the overall image quality, particularly in the OST-AR
scenario. However, focal stack supervision may also exceed the de-
grees of freedom of the SLM because it makes the inverse problem
overconstrained.

The phase regularization strategy proposed in Section 3.5 proves
very valuable in our VR prototype and noticeably improves out-of-
focus behavior without sacrificing in-focus image quality. For the
OST-AR prototype, it also worked well but it may be challenging
to optically create flat phase fronts at all of our target planes due
to the design of the lightguide. As demonstrated with our SGD-
CNNpropCNN approach in that scenario, it is indeed possible to
create high-quality intensities at all target planes simultaneously,
which is a significant benefit over conventional (incoherent) mi-
crodisplays and thus proves the point of our preliminary experi-
ments. However, simultaneously creating piecewise smooth phase
fronts, as encouraged by our phase regularization, may be challeng-
ing in this scenario. It is therefore interesting to explore alternative
optimization approaches for holographic 3D OST-AR systems in
the future, such as the computationally more intensive focal stack
supervision approach discussed above.

Optically recorded holograms are remarkable in being able to
show view-dependent effects, such as specular highlights and semi-
transparent materials, which substantially add to the perceived
realism. Our approach uses a 3D multiplane approach for the wave
propagation model and also for optimizing the holograms. Although
recent light field holographic displays have the potential to support
these types of effects [Padmanaban et al. 2019], by definition, a
multiplane approach does not support them. We argue that the
limited eyebox size afforded by current-generation holographic near-
eye displays may not require an accurate light field to be synthesized
over the exit pupil to make these displays perceptually realistic. Yet,
detailed user studies on how perceptually realistic holographic near-
eye displays really are remains an exciting avenue of future work.

Finally, our prototype VR and AR displays are benchtop systems
and not wearable. We did not attempt to miniaturize these systems,
although recent work has demonstrated that this is possible in
certain optical configurations [Maimone et al. 2017].

7 CONCLUSION

Holographic near-eye displays are a promising technology with
the potential to address many long-standing challenges in aug-
mented and virtual reality systems. With this work, we take steps

towards enabling high-quality 3D computer-generated holography
by combining modern artificial intelligence—driven methods with
physics-based models in these emerging applications.
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