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Learning Spatially Varying Pixel Exposures for
Motion Deblurring

Cindy M. Nguyen, Julien N. P. Martel, and Gordon Wetzstein

Abstract—Computationally removing the motion blur introduced by camera shake or object motion in a captured image remains a
challenging task in computational photography. Deblurring methods are often limited by the fixed global exposure time of the image
capture process. The post-processing algorithm either must deblur a longer exposure that contains relatively little noise or denoise a
short exposure that intentionally removes the opportunity for blur at the cost of increased noise. We present a novel approach of
leveraging spatially varying pixel exposures for motion deblurring using next-generation focal-plane sensor–processors along with an
end-to-end design of these exposures and a machine learning–based motion-deblurring framework. We demonstrate in simulation and
a physical prototype that learned spatially varying pixel exposures (L-SVPE) can successfully deblur scenes while recovering high
frequency detail. Our work illustrates the promising role that focal-plane sensor–processors can play in the future of computational
imaging.

Index Terms—Motion deblurring, programmable sensors, in-pixel intelligence, end–to-end optimization, computational imaging
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1 INTRODUCTION

CAMERAS have become ubiquitous, their presence felt
in every smartphone and countless other devices sold

today. Whether their images are designed for social media
or processed by a self-driving car, modern cameras are still
susceptible to the age-old problem of motion blur. This arti-
fact is the result of either object or scene motion during the
image exposure or camera shake via handheld photography,
thus rendering the picture of a touching memory or an
image used for computer vision tasks useless.

Unfortunately, removing motion blur remains an ar-
duous task. Due to the heterogeneity of local and global
motion blur, blind deblurring is difficult to address with
pure deconvolution. Recent deep learning methods have
popularized multi-scale [1], [2], [3], [4] or multi-temporal [5],
[6] deep learning approaches to address this issue. The
coarse-to-fine nature of these networks allows for the grad-
ual refining of motion deblurring kernels that are applied
spatially invariantly, even in cases of non-uniform motion
blur.

These methods have demonstrated the power of ma-
chine learning for deblurring, but notably do not take ad-
vantage of offloading computation to the hardware. On the
other hand, computational imaging methods have excelled
in combining software and hardware solutions to simplify
many ill-posed computer vision tasks. These include en-
gineering point spread functions (PSFs) [7], [8], [9] and
custom coded exposures [10], [11], [12], [13], [14] for motion
deblurring. However, these methods are often limited to
heuristic designs, and often restricted by fabrication limits,
sensor capabilities, or human intuition.

Fortunately, we are on the brink of a new era of sensor
design. The rise of programmable sensors [15], [16], [17],
in which sensing and processing can be executed together
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Fig. 1. An example reconstruction. The ground truth is the first frame of
an input video segment, and the blurred image is all eight frames of the
video segment averaged, which is the same as a 30 fps capture. The
reconstruction from the Quad exposure [14] with bilinear interpolation
shows more motion and color artifacts compared to that of the learned
spatially varying pixel exposure (L-SVPE).

on the same silicon chip, has brought forth a new age of
computing that operates at the time of image capture. Pro-
grammable sensors, or focal-plane sensor–processors, open
up avenues for analog, digital, or mixed signal processing
directly in-pixel. These sensors provide opportunities to
preserve optical information of a scene that is otherwise
irreversibly destroyed during the sensor integration or cap-
ture process. Moreover, the in-pixel intelligence running on
these sensors can be learned using end-to-end (E2E) design
strategies that jointly optimize the in-pixel programs with
downstream computer vision algorithms.

Given these capabilities, we address the above concerns
with our jointly Learned Spatially Varying Pixel Exposures
(L-SVPE) and machine learning–based reconstruction net-
work to perform high quality motion deblurring (Fig. 1).
The benefits are two-fold. Within short exposures, the low
signal-to-noise ratios are challenging to handle, but these
short exposures still retain high frequency information that
we desire in a reconstruction. Within longer exposures,
images will have reduced noise levels thanks to signal accu-
mulation. However, as the sensor integration time increases,
these longer exposures are more prone to motion blur. We
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seek to use the complementary information from both in a
single snapshot in our E2E framework.

As programmable sensors grow in production and pop-
ularity, we believe in the need to develop appropriate
computational imaging algorithms to take advantage of
these new capture capabilities. Future mobile phones may
no longer be limited to the fixed global exposures they
have today for capturing scenes with dynamic motion or
low lighting. High dynamic range (HDR) imaging, most
popularly done with some form of exposure bracketing [18],
will struggle less with image alignment since programmable
sensors can capture information at multiple exposures in a
single snapshot [19], [20]. We demonstrate that motion blur
is just one of many tasks that highlight the utility of these
powerful sensors.

Specifically, we make the following contributions:

• We introduce a fully differentiable model with a
learned in-pixel encoder and deep convolutional de-
coder for motion deblurring. The encoder can be
implemented on a programmable sensor offering
“in-pixel intelligence.”

• We demonstrate in simulation that the E2E optimiza-
tion of the coded exposures along with the decoding
network yields superior reconstructions of motion
blurred images over those of non-optimized expo-
sures.

• We implement a prototype camera using the
SCAMP-5 programmable sensor–processor and
demonstrate that our results translate to real-world
captures, where the coded exposures are realized
electronically.

Source code and trained models will be made available
upon publication.

2 RELATED WORK

Motion deblurring. Early examples of blind motion deblur-
ring include learning motion blur kernels using CNNs [21],
[22], [23]. More recent examples increase the receptive field
by using multi-resolution inputs [1], [2], [3], [4] to learn on a
combined global and local scale. Attention [3] and atrous
convolutions [24], [25] can help apply spatially varying
weights for local blurs. Inspired by transformers, Tu et
al. [26] use multilayer perceptrons (MLPs) and attention
with multi-resolution features for deblurring, reducing the
required number of learnable parameters. Though these
methods have produced plausible reconstructions, deblur-
ring networks are fundamentally limited due to the ill-
posed nature of the problem, which can only be overcome
by changing the image formation model through methods
like E2E optimization.

End-to-end optimization. Jointly designing optics and
reconstruction networks has emerged as an incredibly use-
ful paradigm in computational imaging [27]. This E2E op-
timization has been applied to a number problems such
as extended depth of field [28], depth estimation [29],
[30], [31], HDR [32], [33], super resolution localization
microscopy [34], lensless imaging [35], [36], and Fourier
ptychographic microscopy [37]. However, once the optics
are fabricated, the challenge of calibrating them arises. To

alleviate the need for calibration, in-pixel sensing strategies
can also be designed in an E2E fashion for general cap-
ture [38], HDR [19], [20], and compressive imaging [39]. We
propose following this route, learning a spatially varying
exposure pattern jointly with a network for the task of
motion deblurring.

Computational imaging for deblurring. Deblurring can
be made less of an ill-posed problem with a variety of
hardware modifications. Raskar et al. [10] use a random
binary coded global exposure pattern, implemented via a
liquid-crystal shutter. The coded exposure provides a PSF
which preserves high spatial frequencies, allowing the blur
to be decoded using traditional deconvolution algorithms.
Agrawal and Xu [13] further improve this design with
heuristics on PSF invertibility and estimation. Other works
use a custom rolling shutter [11] or deblur using infor-
mation from a camera’s default rolling shutter [40]. Jeon
et al. [41] use communication theory to design fluttering
patterns, while more recently, Jiang et al. [14] use an in-
terlaced short, medium, and long exposure pattern with
a specialized network for reconstruction. We compare this
exposure pattern with ours, while using a simpler network
for reconstruction. Elmalem et al. [8] design an optic that
encodes blur in its color PSF, and Yosef et al. [9] build on this
work by additionally using a focus mechanism to recover
video frames from a capture with motion blur. Rengarajan
et al. [42] proposed using short-long-short exposures with
recursive blur decomposition to deblur. Notably, all the
above approaches have been designed using heuristics and
theory, making the search space limited to human intuition.

Programmable sensors. The emergence of pro-
grammable sensors, offering unprecedented flexibility of in-
pixel processing, has brought forth numerous interesting
ideas for computational photography. These sensors, also
known as focal-plane sensor–processors [16], conduct low-
level image processing during the capture. They reduce
the need for excessive computational post-processing and
enable new capture processes of an image to preserve infor-
mation that would be lost otherwise, such as dynamic range.
Programmable sensors, such as the SCAMP-5 [15] which we
use as our prototype, offer programmable pixels and have
been successfully used in HDR imaging [19], video com-
pressive imaging [19], [43], depth from defocus [44], feature
classification [45], and ego-motion estimation [46]. More re-
cently, coded exposures have also been used for compressive
light-field and hyperspectral imaging [39]. Here, we propose
to use one variant of these new vision chips, the SCAMP-5,
to program pixel-wise coded exposures. To our knowledge,
this is the first application of these sensor–processors to
motion deblurring.

3 FORMULATION

We simulate the capture of a scene with our learned pro-
grammable sensor using spatially varying pixel exposures
(Sec. 3.1), which we also refer to as coded exposures. We
then form a multi-channel image with C channels from the
single snapshot, where C represents the number of unique
exposure lengths in the learned coded exposure. We do so
by interpolating (Sec. 3.2) exposure pixels that were not
explicitly captured. This image stack with a resolution of
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Fig. 2. Illustration of our L-SVPE optimization framework, including the learned coded shutter, interpolation step, and decoding network. The error
between the reconstructed image and ground truth is backpropagated to the coded exposure lengths and decoding network. Here, T represents the
maximum exposure length. This pipeline illustrates an example use of four different exposure lengths, providing four full-resolution interpolations.

H×W×C pixels is fed as the input of the decoding network
(Sec. 3.3) to produce a reconstructed image. The pipeline is
illustrated in Fig. 2.

3.1 Learned spatially varying pixel exposures

We model the exposure at pixel location p as the integration
of the incident irradiance Vp over an exposure time ∆t,
which can be written as

Ep(t) =

∫ t+∆t

t
Vp(t

′)dt′. (1)

Here, we let Ep represent the exposure at pixel p. We
introduce a learned spatially varying exposure time ∆p for
each pixel p to indicate an “on” (contrary to “off”) shutter.
Thus Eq. 1 can be rewritten as

Ep(t) =

∫ t+∆p

t
Vp(t

′)dt′. (2)

The exposure Ep relates to the captured image via the cam-
era response function as Ip(t) = R(Ep(t)), which captures
the noise and quantization effects of the camera.

3.2 Exposure length–specific interpolation

The single-shot measurement on our focal-plane sensor–
processor is a single-channel, grayscale image. We expand
the measurement as a preconditioning step before decoding.
Since our learned exposure times will vary spatially, we
interpolate the missing exposure pixels to generate a full
resolution estimate of the utilized exposure lengths. In our
framework, we discretize the continuous varying exposure
time t to a set of discrete values S = {1, .., T}, in which
T is the maximum exposure time. We then interpolate all
pixels of the single-channel sensor image with the same

exposure to form a separate channel of the image stack that
serves as the input to our motion deblurring network. We
argue this interpolation step speeds up training since the
learned kernels in the decoding network can be then applied
spatially invariantly. We apply the interpolation function
U : RH×W → RH×W×C where C is the unique number
of exposure lengths used from S .

We use two different types of interpolation: Bilinear
and Scatter-weighted interpolation. Bilinear interpolation
(denoted as B) is applied in cases where the exposures have
a 2 × 2 (Quad) or 3 × 3 (Nonad) tiled arrangement (see
Sec. 5.3), using information from regular sampling grids.
Scatter-weighted interpolation (denoted as S) is applied
in cases where pixel exposures of the same length have
varying distances from each other across the sensor. Scatter
interpolation is applicable when the coded exposures are
random or learned, but this method can also be used in
the tiled case. Scatter interpolation requires finding the N
closest neighbors using a fast k-d tree [47] and adding the
values of neighboring pixels together, each weighted by
their inverse distance to the point of interest to some power
r. The interpolated value at point p can be written as

U(Ip) =

∑N
i=1 wi(p)Ii∑N
i=1 wi(p)

, (3)

where Ii is the value at neighboring pixel i. The weighting
function wi(p) = 1

d(p,pi)r
is computed using Euclidean

distance as d. Also, N represents the number of nearest
neighbors sharing the same exposure length as pixel p.

3.3 Capture decoding

Once we obtain an interpolated multi-channel image, we
decode this using the well-known U-Net architecture [48].



4

PSNR: 30.30
SSIM: 0.93
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Fig. 3. Qualitative comparison between the reconstructions of two
learned exposure models using L-SVPE trained with an L2 loss and
our perceptually-guided loss. As LPIPS decreases, the quality of the
reconstruction increases. L2 lends itself to more blurry reconstructions,
which may miss high frequency details.

Our CNN Wψ : RH×W×C → RH×W contains skip con-
nections with a depth of 6 without batch normalization, and
each downsampling block contains a single convolution and
ReLU with learned parameters ψ. The upsampling blocks
use ConvTranspose to upsample the features at each stage.
Our decoding step can be written as

Ŷp = Wψ(U(Ip)), (4)

where Ŷp is the reconstructed grayscale value at pixel p.
We opt for the widely used U-Net architecture that has
been useful for a variety of imaging problems [49], [50] and
has less parameters than the state-of-the-art deep deblurring
methods [1].

3.4 Loss
We use a linear combination of an MSE loss (L2) and a
perceptual loss using VGG features (LVGG) [51]. Our loss
can be written as

Lpercep = L2 + λLVGG, (5)

where λ is the coefficient to weight the VGG-based loss. We
use λ = 100.

We compute the loss between the reconstruction with
the clean first frame of the video segment, which we use
as ground truth. We choose the first frame to reduce the
need to deblur and prioritize using the information from
the shortest exposure, as denoising is typically easier than
deblurring.

The VGG-based loss is exceedingly helpful in reach-
ing the perception–distortion trade-off [52], [53], which de-
scribes networks as trading off PSNR and SSIM performance
for perceptual quality. Since there are many plausible re-
constructions for motion blurred images, we find that the
perceptual loss helps find a more suitable reconstruction
over an unregularized MSE loss, which optimizes for per-
pixel accuracy (Fig. 3).

4 IMPLEMENTATION

Dataset. To train our network and evaluate its performance,
we use the Need for Speed (NfS) dataset [54], which consists
of 100 videos obtained from the internet. Each video is
captured at 240 frames per second (fps) with a 1280 × 720
resolution that we center crop to 512 × 512. We allocate 80

videos for our training set and 20 videos for our test set.
For each video, we select 8 random 8-frame-long segments
within the video, and each segment is averaged per-pixel
to simulate a 30 fps capture. This processing produces 640
video segments for training and 160 video segments for
testing. We augment these segments during training by
introducing random flips and rotations, and normalize the
images to be within [0, 1]. Our input to the E2E model is
an 8-frame video segment, and we use the first frame of
the video segment, equivalent to a Short exposure, as the
ground truth frame.

Training. Our model was implemented in PyTorch and
trained using an NVIDIA Quadro RTX 6000 GPU with
24 GB. Our model was trained for 1000 epochs with the
AdamW [55] optimizer (β1 = 0.9, β2 = 0.999). For net-
works with learned coded exposures, we use an exposure
learning rate of 2 × 10−4 and a decoder learning rate of
5 × 10−4. For baselines with fixed exposures, we use a
decoder learning rate of 2× 10−4.

Metrics. We use three metrics to quantify the quality
of our results. The first two are PSNR and SSIM [56] as
traditional image quality metrics. We also use the percep-
tual metric LPIPS [51]. We provide both quantitative and
qualitative evaluation of our method compared to baselines
(Sec. 5.3), and we demonstrate the utility of each component
in our ablation studies (Sec. 5.4).

5 EXPERIMENTS

We perform a series of experiments to highlight the value of
our learned coded exposure. Specifically, we evaluate our
method on different coded exposures and ablate several
design choices made in our E2E model.

5.1 Baselines
To demonstrate the utility of our learned exposure, we com-
pare its performance against the following fixed exposures,
where B represents Bilinear interpolation and S represents
Scatter interpolation. Our baselines (Fig. 4) include:

• Burst Average: All 8 frames are averaged together,
simulating a Long exposure, and compared to the
ground truth. This baseline does not use a decoder.

• Short: We simulate a 240 fps capture which is equiv-
alent to a single frame of the video segment input.

• Medium: We simulate a 120 fps capture by averaging
the first four frames of the input.

• Long: We simulate a 30 fps capture by averaging all
eight frames of the input.

• Uniform Random (S): We initialize a fixed 512 ×
512 array of pixel exposures uniformly selected from
length 1 through 8.

• Poisson Random (S): We use a multi-class Pois-
son disk sampling algorithm [57] to generate a
Poisson-distributed fixed pixel exposure from length
1 through 8.

• Nonad (nine-tuple) (B, S): We use the full range
of exposures in a 3 × 3 arrangement. We randomly
arrange an array of pixel exposures, each pixel a
unique length from 1 through 8, with an additional
exposure length 1 to make a total of 9 pixels in the
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Fig. 4. Visualization of coded exposures of each baseline. Short,
Medium, and Long are fixed global exposures. The Full consists of all
three global exposures concatenated together. Each coded exposure
(Uniform Random, Poisson Random, Nonad, and Quad) contains in-
dividual pixel exposures that can span from lengths 1 through 8, with
cropped versions of the full resolution exposure shown here. We display
the full resolution and a crop of the L-SVPE exposure to highlight the
differences from Quad. Note that the average pixel exposure of L-SVPE
is lower than that of Quad.

3 × 3. We then tile this fixed arrangement to fill the
512× 512 resolution.

• Quad (B, S): Following Jiang et al. [14], we use a fixed
tile coded arrangement of LMMS (long-medium-
medium-short), where the short pixel is 240 fps,
medium pixels are 120 fps, and long pixel is 30 fps.
We use this baseline to also initialize L-SVPE which
explains its resemblance (Fig. 4).

• Full: We concatenated a full-resolution stack of the
Short, Medium, and Long exposure all captured
with the same start time and same viewpoint. This
baseline serves as theoretical upper bound for how
well our method can do without requiring an inter-
polation step and with full resolution information
at different exposure times. This stack of captures
would be physically impossible to capture but can
be easily simulated.

For fair comparison, we use the same decoder network
as our method on all baselines except the Burst Average,
which does not use a decoding network. L-SVPE, by default,
uses Scatter interpolation. See the supplemental material for
more details on our choice of baselines.

TABLE 1
Comparison of interpolation methods. We show the efficiency and
accuracy of Bilinear (denoted with B) and Scatter (denoted with S)

interpolation methods with varying parameters. Time denotes the time
required to interpolate a single image on average. Bilinear interpolation

is the fastest for both Quad and Nonad. Scatter interpolation takes
noticeably longer with the need to search for neighbors and is less

accurate due to information dilution from further pixels. All
Scatter-based methods here use r = 1.

Exposure k Neighbors Time (s) PSNR ↑ SSIM ↑ LPIPS ↓

Quad [14] (B) — 0.001 37.257 0.975 0.049
Quad (S) 3 0.041 42.138 0.988 0.062
Quad (S) 4 0.042 42.826 0.988 0.063
Quad (S) 5 0.044 41.914 0.986 0.076
Nonad (B) — 0.001 30.733 0.837 0.089
Nonad (S) 3 0.117 28.912 0.826 0.127
Nonad (S) 4 0.124 28.783 0.825 0.150
Nonad (S) 5 0.131 28.520 0.822 0.154

5.2 Determining interpolation parameters

To determine the optimal parameters for Scatter interpo-
lation, we compute the time it takes to perform interpo-
lation with k neighbors. We compute the average time
and accuracy of interpolating a test set of video segments
captured with the chosen exposure. We first simulate the
exposure capture of each video segment using the spatially
varying exposures under the Exposure column to get a
single-channel capture. We then use Bilinear or Scatter in-
terpolation to interpolate pixels of exposure lengths that
were not explicitly captured to acquire a H ×W ×C multi-
channel image. The Time column shows the time required in
seconds to compute this step. We then compute the accuracy
of each interpolation of each individual channel and average
the metrics for each channel together for each image. We
then compute the average of the metrics over the entire test
dataset.

We present these results in Table 1. We test interpolation
on the Quad and Nonad exposures. Bilinear interpolation
(denoted as B) does not have a k parameter. We observe that
as k increases, so does the time needed for computation per
image. Scatter interpolation (denoted as S) is slower than
Bilinear, but in the case of Quad, can provide more accu-
rate interpolations. With Nonad exposure, we observe that
Bilinear performs best, while Scatter degrades the quality
of the reconstruction since neighbors are much further in
the Nonad case. Thus, for all our Scatter-based methods,
we use N = 3 and r = 1 which allows for relatively fast
computation and accuracy.

5.3 Comparison against baselines

Figure 5 presents qualitative comparisons between these
baselines. The Short exposure performs better than Medium
and Long exposures, due to the network more easily learn-
ing to denoise than deblurring. The Full exposure out-
performs all single exposure baselines, demonstrating the
utility of combining information from different exposure
lengths.

We see that baselines with spatially variant pixels out-
perform the Medium and Long baselines, while also notably
performing better than the Short exposure signficantly in
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Fig. 5. Quantitative comparison of baselines. Printed values denote the numerical average, while gray bars represent the standard deviation. The
Full exposure represents a theoretical upper bound to our method, and L-SVPE outperforms better than any of the fixed baselines, most closely
reaching the theoretical upper bound on all metrics. These results are computed using the NfS dataset described in the text.

LPIPS. This result demonstrates the utility of varying expo-
sures for perceptual quality. More structured shutters, like
Nonad and Quad, do better than random shutters likely
because of the uniformity of data given from the sensor. Our
approach with learned exposures can outperform all base-
lines, reaching the closest to the theoretical upper bound,
Full, in performance.

5.4 Ablation studies
Table 2 presents ablation studies on each component of the
network. We compare our decoder choice, U-Net, against
DnCNN [58], another popular memory-efficient image re-
construction network. The DnCNN is trained to predict the
residual noise of the first channel of the multi-channel input
into the decoder, if applicable. These studies demonstrate
the utility of each component of our method. Note that the
Scatter interpolation may not provide the best PSNR perfor-
mance over no interpolation, but improves SSIM and LPIPS,
which is consistent with our baselines study results. We
found that DnCNN with a perceptual loss can be often detri-
mental to performance, which may suggest that DnCNN is
not universally optimal for providing perceptually plausible
deblurring from spatially varying exposures.

5.5 Image reconstruction quality
In Figure 6, we present a few qualitative examples of re-
constructions with the top-performing baselines. To produce
reconstructed RGB images, we individually reconstruct each
channel with our baselines, which are trained on grayscale
images. L-SVPE generalizes well across different color chan-
nels, while methods such as Short and Quad Bilinear can
introduce discolored artifacts. We highlight the robust per-
formance of our model against optical blur observed in
Row 2 and global blur observed in Row 3. Row 1 and
Row 4 demonstrate how L-SVPE is capable of recovering
high frequency detail in the wrinkles of the coat and the
fencing in front of the white car, respectively.

6 PROTOTYPE

We implement a physical prototype of our model using
a focal-plane sensor–processor. Specifically, we use the

TABLE 2
Ablation studies showing the effect of the choice of shutter,

interpolation, network, and loss on performance. We use (S) to denote
methods which use Scatter interpolation. No (S) denotes that no

interpolation step was used.

Exposure Network Loss PSNR↑ SSIM↑ LPIPS↓

Uniform Random DnCNN [58] L2 30.345 0.913 0.338
Uniform Random DnCNN Percep. 12.269 0.272 0.763
Uniform Random (S) DnCNN L2 30.325 0.920 0.319
Uniform Random (S) DnCNN Percep. 28.255 0.915 0.225
Uniform Random U-Net [48] L2 33.149 0.950 0.181
Uniform Random U-Net Percep. 28.877 0.905 0.200
Quad [14] DnCNN L2 31.435 0.918 0.355
Quad DnCNN Percep. 11.719 0.247 0.752
Quad U-Net Percep. 32.345 0.952 0.140
L-SVPE DnCNN L2 30.025 0.860 0.369
L-SVPE DnCNN Percep. 12.434 0.268 0.751
L-SVPE (S) DnCNN Percep. 29.530 0.919 0.230
L-SVPE U-Net L2 27.061 0.865 0.406
L-SVPE U-Net Percep. 34.625 0.961 0.122
L-SVPE (S) U-Net L2 28.987 0.892 0.320
L-SVPE (S) U-Net Percep. 34.522 0.967 0.105

SCAMP-5 [15], a 256 × 256 pixel array in which each pixel
contains a programmable processing element (PE). Each PE
contains a small number of analog and single-bit digital
memories that can be set using dedicated instructions. We
program the learned coded exposure pixel-wise into the
analog memories using a micro-controller.

Figure 7 shows reconstructions from trained global ex-
posure models (Long, Medium, and Short) and the two top-
performing spatially varying exposures (Quad with Bilinear
interpolation and L-SVPE) on two captured scenes, Swings
and Jump Rope. Although Long and Medium reconstructions
preserve the static background details, there are few im-
provements in motion deblurring for both scenes. The Short
model tends to blur high frequency details such as the grass
in Swings and the shoe detail in Jump Rope in an attempt
to denoise the image. Quad Bilinear introduces blurring in
areas with fine detail, losing details in the overhead wires in
Swings and the white edges of the tile in Jump Rope. Only L-
SVPE can successfully recover the fine details of each scene
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Fig. 6. Qualitative comparison of the five top-performing baselines. Each row shows an example frame of the full resolution average of all the video
segment frames (Burst Average), a 100 × 100 crop of a region of the Burst Average, and the same crop of the reconstructions from the top five
performing baselines. Reconstructions of all baselines are available in the supplemental material. Row 1: The high frequency detail of the jacket is
well recovered by L-SVPE while blurred out by other methods. Row 2: The Short baseline fails to capture the border of the bumper sticker while
introducing colored artifacts. L-SVPE correctly recovers the border and provides sufficient clarity to the lettering of the license plate. Row 3: The
coloring artifacts can be observed in the Short and Quad-based baselines. Row 4: Competing baselines fail to recover the straight fencing in front
of the white car fully, while L-SVPE is able to reconstruct the fencing covering the entire car.

in addition to deblurring. More details on how the captures
were processed and videos of these scenes can be found in
the supplemental material.

7 DISCUSSION

We present a novel method for motion deblurring using
learned coded pixel exposures. We demonstrate that our
joint hardware-software approach is better than deep learn-
ing for comparable reconstruction networks. L-SVPE is able
to address dynamic motion blurs and varying levels of
noise across many different scenes. We demonstrate that its
performance translates to a physical prototype, in which
we show that L-SVPE can deblur while preserving high
frequency details in real-world scenes.

Limitations Our programmable sensor operates in
grayscale, without any color filter on top of the sensor.
Thus, we design our method around capturing grayscale
scenes and process RGB channels individually. Additionally,
many motion blur datasets do not contain many samples
that would allow robust training against over- and under-
exposed scenes. To our knowledge, no dataset with suf-
ficient motion blur captured at a high frame rate exists.
Therefore, due to data limitations, we do not test against
these lighting scenarios.

We could alternatively use an arbitrarily short exposure
to mitigate motion deblurring and focus solely on denois-
ing. However, shorter exposures suffer from quantization
artifacts on the sensor and require extensive denoising al-
gorithms [59], [60], [61], [62]. Thus, our method is a more
robust solution to different lighting scenarios.

Future Work In future work, we would like to address
the aforementioned limitations. Such work would include
incorporating HDR scenes so that we can train for over- and
under-exposed scenes. We also do not explicitly focus on op-
tical blur or defocus blurs, and thus an improved E2E model
could include modeling the optics for improved robustness
against different types of blurs. It would be additionally
useful to expand E2E methods like ours to programmable
sensors that can capture different color channels as well.
Different colors captured at different exposures such as that
of Jiang et al. [14] can provide helpful cues in reconstruction.

Conclusion These efforts add to the growing foundation
for emerging programmable sensors in computational imag-
ing. As these sensors become more widespread in their use,
we may begin to reframe our thinking of how to address
ill-posed computer vision tasks, from object classification to
HDR imaging. This work serves as a step in that direction.
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Fig. 7. Reconstructions of images captured using a physical focal-plane sensor–processor prototype (SCAMP-5). We compare reconstructions of
two scenes (Swings and Jump Rope) from global exposures (Long, Medium, and Short) models and the best performing spatially varying exposures
(Quad with Bilinear interpolation and L-SVPE). Rows 1 and 5: Captured images. The Short capture is noisier than its longer exposure counterparts.
Rows 2 and 6: Reconstruction from the networks. Rows 3 and 4: Zoom ins of the reconstructed Swings scene. L-SVPE can successfully recover
the lower shoe in addition to maintaining the high frequency detail of the static tree. Rows 7 and 8: Zoom ins of the reconstructed Jump Rope.
L-SVPE preserves the sharp edges of the ground tiles and reconstructs the details of the shoe.
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SUPPLEMENTARY MATERIAL

A NETWORK DETAILS

A.1 Simulating noise
Given that we are simulating capture on a sensor, we take
care to add shot noise, a Poisson process that is signal-
dependent, and read noise, a Gaussian-approximated pro-
cess independent of the signal. Following Mildenhall et
al. [63], we model both noise sources as a Gaussian distribu-
tion:

yp ∼ N (xp, σ
2
r + σsxp), (6)

where yp represents the noisy measurement of the true
intensity x in pixel location p. We vary the noise parameters
uniformly across images to simulate changes in sensor gain,
and use the gain values as presented in [63] (σr = [1e-3, 3e-2],
σs = [1e-4, 1e-2]). An accurate mixed noise model [64] allows
us to more closely simulate sensor capture over models
that use overly simplified additive Gaussian noise. We then
clip all measurements to be within [0, 1] to simulate sensor
quantization.

We believe the interpolation step is, in fact, a bottleneck
to achieving the model’s full reconstruction potential. Just
as one uses color-specific gradients in classic debayering
of RGB images, one can imagine that a similar exposure-
specific interpolation can be beneficial here. We note an
exposure-specific interpolation algorithm may work better
than our naive Bilinear and Scatter interpolation. However,
the design of such an algorithm is beyond the scope of this
paper.

A.2 Decoding U-Net
The 2D U-Net used takes as input C-channel images of
resolution 512 × 512 to produce a single channel output
of the same resolution as its input. The architecture used
consists of 6 downsampling blocks and 6 upsampling mod-
ules. Each downsampling block consists of a single Conv
operation with 3 × 3 kernels, followed by a ReLU. The
convolution uses a striding of size 1 and padding of size 1.
The upsampling module uses ConvTranspose with kernel
size 4× 4, stride size 2, and padding size 1. This is followed
by 2 Conv operations with the same initialization as the
those of the downsampling operation. We then apply a
final Conv operation with kernel size 1 × 1. We found that
BatchNorm decreased overall performance.

A.3 Using alternative decoders
We sought decoder alternatives that were comparably less
demanding of memory and computation than the U-Net.
We attempted training a model with the first two stages of
MPRNet [1], as the entire network did not fit on a single 24
GB GPU. We found that the MPRNet performed comparably
well as the U-Net, but required five times as much memory
and thus was not our network of choice.

As part of our ablation study, we use DnCNN [58]. The
head consists of a Conv operation with a 3× 3 kernel, with
stride size 1 and padding size 1, followed by a ReLU. The
body consists of 15 “blocks,” each consisting of a Conv with
the same parameters as the head, followed by a BatchNorm

with momentum 0.9 and a ReLU. The tail consists of a
single Conv operation. The network is structured to predict
the residual of the input, and we subtract the predicted
residual from the 4th channel. This channel corresponds to
the shortest channel in the Quad exposure.

B TRAINING DETAILS

B.1 Learning a discretized exposure
Our model discretizes the exposure time per pixel so that
it can be programmed in-pixel to our focal-plane sensor–
processor, the SCAMP-5 [15]. Each pixel is limited to 7
analog memories and 13 single-bit digital memories. We
use 6 of the digital memories to create 26 = 64 possible
time-slots, where 64 out of 64 “on” encoded bits would
be equivalent to our Long exposure (32 for Medium and
8 for Short). We segment the 64 time-slots into 8 to get 8
learnable options for exposure times. Here, 8 out of 8 is
Long, 4 out of 8 is Medium, and 1 out of 8 would be a Short
exposure length. Learning an exposure length with options
1 through 8 poses a challenge for neural networks, as we
are interested in regressing an integer value which is non-
differentiable. For this, we use a straight-through estimator
(STE) [65], [66] that allows us to convert our learned expo-
sure values to integer values in the forward function and
pass the gradients to these exposure values in the backward
pass. Using a STE also allows us to initialize our learned
exposure value, contrary to using methods like Gumbel-
Softmax which injects Gumbel noise at every iteration.

B.2 Training
We trained using batch sizes of 2 due to memory con-
straints on GPUs available for our experiments. We also use
ReduceLROnPlateau as a learning rate scheduler with a
patience of 20 and factor of 0.8 for a gradual decrease in
learning. To speed up training, we initialize L-SVPE with
the Quad exposure arrangement.

B.3 Dataset
We segment the videos in the NfS dataset [54] into segments
each containing eight frames for two reasons: (1) the average
of eight 240-fps frames makes for a single 30 fps which is
common in many consumer cameras and (2) the SCAMP-
5 [15], is limited to 13 digital memories (e.g. 213 time points
where the shutter can be “on” or “off”). We choose to use 6
digital memories to get 64 time slots which can be divided
into eight frames easily.

We found that the first frame as ground truth improved
reconstruction more than using the middle or last frame. We
argue this is due to the fact that denoising has been observed
to be simpler than blind deblurring [67]. When we have
a mixture of short and longer exposures, the network can
focus on denoising a short exposure to match the ground
truth and using static pixels from the longer exposures to
supplement the appearance of the short exposure.

We also tested our method on the GoPro Motion Blur
dataset [2]. However, we found that given that the dataset
was created by deliberately creating motion via rotation
of the camera axis, many of the training videos only had
global motion. In cases of extensive global motion, the
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long exposure becomes less helpful in reconstruction. We
were interested in have a more generalized method towards
global, local, and no motion and thus found the NFS dataset
more optimal for our purposes.

C EXPERIMENT DETAILS

C.1 Baselines

We now discuss in detail our reasoning behind the design of
our baselines. Note that B represents Bilinear interpolation
and S represents Scatter interpolation.

C.1.1 Global Exposures

• Burst Average: We perform a per-pixel averaging of
all the frames in the scene, equivalently to a Long
exposure or a 30 fps capture, which performs tempo-
ral denoising but not spatial denoising. This baseline
is subject to misalginment if there is a dynamic
motion. The averaged image is then used to compute
metrics, skipping network reconstruction completely.
This baseline serves as the result of not using any
deep learning.

• Short: We use the first frame of the video segment
input as the short exposure (240 fps). In this case, the
decoding network simply must scale and denoise the
image, as the ground truth is also the first frame. We
found that denoising in general can be easier than
deblurring. However, low light instances will prompt
the network to blur to denoise, losing critical high
frequency detail.

• Medium: We average the first four frames to simu-
late a medium exposure (120 fps), an intermediate
choice of possible lengths.

• Long: Much like the Burst Average, we perform a
per-pixel average of all 8 frames (30 fps), but we then
use a decoder for refinement and spatial denoising.

• Full: This baseline is a stack of the Short, Medium,
and Long exposure at full resolution all captured
with the same start time and same viewpoint, which
is physically impossible to capture but easy to simu-
late.

Given an 8-frame long scene input, we sought to test
a number of global exposures that could be representative
of not only ones you may capture on a camera but also
could be feasibly implemented on the SCAMP-5 sensor. We
believe testing each individual Short, Medium, and Long
exposure lengths would give us a sufficient grasp of how
the network performs on different exposure lengths, and
found that, as expected, they provided a linear relationship
in performance. The longer the exposure, the more sus-
ceptible the exposure was to misalignment, and the worse
the reconstruction became. The Full exposure is physically
infeasible to capture at full resolution, but we believe that
the combination of the Short, Medium, and Long exposures
at full resolution would serve as useful theoretical upper
bound. This baseline demonstrates the utility of informa-
tion from additional exposures. Based on Table C1, we see
that the Full is able to outperform any individual global
exposure by themselves.

C.1.2 Coded Exposures

• Uniformly Random (S): We uniformly sample each
pixel between exposure lengths 1 to 8. We chose a
uniformly random array to demonstrate the worst-
case scenario of using multiple exposures. The spatial
variability of the exposure would make it challenging
for the decoding network to learn a spatially invari-
ant kernel to apply across the measurement. We use
PyTorch’s torch.randint function to randomly se-
lect integers from 1 to 8 to populate a empty 512×512
array. We do not use length 0 because a pixel that is
“off” does not provide any additional information
for reconstruction.

• Poisson Random (S): This baseline serves as a non-
ideal scenario similar to the Uniform Random ex-
posure due to the spatial variability. However, the
Poisson sampling guarantees that in every 3× 3 grid
of the 512× 512 array, there is an equal likelihood of
finding a pixel of exposure lengths 1 through 8. We
believe that having a more equal distribution of the
different lengths would be useful for interpolating
exposures that were more reflective of the entire
scene. We use a multi-class Poisson disk sampling
algorithm [57] to populate an empty 512 × 512.
Given the dense sampling of our array, there will
be remaining unfilled pixels that do not meet the
radial constraint of the multi-class Poisson sampling.
These remaining pixels (we usually had ∼20 unfilled
pixels out of a total of 512×512 pixels) are manually
filled in to maintain an even distribution of exposure
lengths.

• Nonad (nine-tuple) (B, S): This baseline serves as a
regular arrangement of the full spectrum of exposure
lengths. The learned decoding kernel of the decoding
network could then be applied spatially invariantly.
We use PyTorch’s torch.randperm to randomly
arrange an array of pixel exposures, each pixel a
unique length from 1 through 8, with an additional
exposure length 1 to make a total of 9 pixels in the
3× 3. We then tile this fixed arrangement. We add a
short exposure pixel as the last pixel due to the ease
of denoising the short exposure over deblurring.

• Quad (B, S): This baseline is designed to resemble
the work closest to ours from Jiang et al. [14]. No-
tably, they use a custom decoder network for their
reconstruction. However, we were interested in using
a decoder network that could be applied fairly well
to other baselines with less parameters so we opt for
the U-Net. Following Jiang et al. [14], we use a fixed
tile coded arrangement of LMMS (Long-Medium-
Medium-Short). We then tile this fixed arrangement
across the 512× 512 sensor.

We compare the Scatter and Bilinear interpolation of
these coded exposures where applicable to demonstrate
the utility of the interpolation step in terms of perceptual
quality. We provide the full numerical results from the
main paper in Table C1, which uses our default parame-
ters including our custom perceptual loss. We also provide
qualitative comparisons of all the baselines in Figure C1.
To generate RGB images, we run each channel through the
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TABLE C1
Quantitative results of all baselines. Full, our theoretical upper bound
performs the best on all three metrics, and L-SVPE performs the best

out of all other baselines on all metrics.

Model Interpolation PSNR↑ SSIM↑ LPIPS↓

Burst Average — 25.305 0.827 0.462
Short — 33.618 0.949 0.158
Medium — 28.669 0.919 0.165
Long — 25.666 0.879 0.215
Uniform Random Scatter 31.607 0.946 0.139
Poisson Random Scatter 32.098 0.950 0.136
Nonad Scatter 31.614 0.943 0.142
Nonad Bilinear 32.731 0.954 0.125
Quad [14] Scatter 33.272 0.957 0.122
Quad Bilinear 33.632 0.962 0.111
L-SVPE Scatter 34.383 0.963 0.111
Full — 36.375 0.976 0.085

decoding network trained on grayscale images. We find
that L-SVPE generalizes across different color channels best,
after Full, in addition to reconstructing high frequency detail
and deblurring.

D PROTOTYPE

The physical prototype, a SCAMP-5 focal-plane sensor–
processor [15], we used has a non-linear camera response
function (CRF). We first calibrate the CRF using a set of
exposures and the CRF function from OpenCV. We use the
CRF to linearize our captures before processing.

The SCAMP-5 has a sensor resolution of 256×256. How-
ever, we trained all of our models at 512 × 512 resolution.
Thus, to reconstruct the images captured from the SCAMP-
5, we pad these images with zeros before in putting them
into our network. We then apply an sRGB curve (γ = 2.0)
to the reconstruction for display.

The supplemental videos of the scene show the frame-
by-frame reconstruction of the Swings and Jump Rope scene.
Although the capture itself is reflective of the fps designated
for each model, the recording is saved at 60 fps due to the
design of the camera software. We also slow down the video
to 5 fps to allow for viewing detail.



14

PSNR: 33.17
SSIM: 0.97
LPIPS: 0.15

PSNR: 24.44
SSIM: 0.89
LPIPS: 0.20

PSNR: 21.68
SSIM: 0.83
LPIPS: 0.31

PSNR: 30.32
SSIM: 0.95
LPIPS: 0.15

PSNR: 30.89
SSIM: 0.96
LPIPS: 0.07

PSNR: 32.43
SSIM: 0.97
LPIPS: 0.06

PSNR: 33.38
SSIM: 0.98
LPIPS: 0.06

PSNR: 34.28
SSIM: 0.98
LPIPS: 0.05

PSNR: 34.59
SSIM: 0.98
LPIPS: 0.04

PSNR: 36.33
SSIM: 0.98
LPIPS: 0.04

PSNR: 31.26
SSIM: 0.98
LPIPS: 0.10

PSNR: 33.00
SSIM: 0.98
LPIPS: 0.08

PSNR: 34.01
SSIM: 0.99
LPIPS: 0.08

PSNR: 33.36
SSIM: 0.99
LPIPS: 0.08

PSNR: 34.51
SSIM: 0.98
LPIPS: 0.08

PSNR: 37.34
SSIM: 0.99
LPIPS: 0.06

PSNR: 30.19
SSIM: 0.95
LPIPS: 0.15

PSNR: 31.35
SSIM: 0.96
LPIPS: 0.13

PSNR: 31.68
SSIM: 0.96
LPIPS: 0.13

PSNR: 31.66
SSIM: 0.96
LPIPS: 0.12

PSNR: 33.43
SSIM: 0.97
LPIPS: 0.10

PSNR: 34.42
SSIM: 0.98
LPIPS: 0.09

PSNR: 33.59
SSIM: 0.97
LPIPS: 0.08

PSNR: 31.02
SSIM: 0.97
LPIPS: 0.06

PSNR: 26.84
SSIM: 0.94
LPIPS: 0.09

PSNR: 32.03
SSIM: 0.97
LPIPS: 0.07

PSNR: 32.78
SSIM: 0.97
LPIPS: 0.06

PSNR: 34.77
SSIM: 0.98
LPIPS: 0.14

PSNR: 30.05
SSIM: 0.98
LPIPS: 0.09

PSNR: 27.57
SSIM: 0.96
LPIPS: 0.10

PSNR: 32.02
SSIM: 0.98
LPIPS: 0.09

PSNR: 33.19
SSIM: 0.98
LPIPS: 0.09

PSNR: 31.09
SSIM: 0.96
LPIPS: 0.13

Short Medium(Full resolution)
Burst Average

Long
Uniform

Random-S
Poisson

Random-S

Nonad-S Nonad-B Quad-S Quad-B L-SVPE Full

Fig. C1. Qualitative comparison of baselines. Each row of individual images (carried over to create two larger rows) shows an example frame of the
average of all the video segment frames (Burst Average) at full resolution and a 100× 100 crop of a region for all baselines. Row 1: An example of
a little to no motion scene. The lettering is most clearly recovered and free of color artifacts with L-SVPE and Full. Row 2: An example of a scene
with local motion. The reconstruction of the man’s hand and the deblurring of the basketball is best observed in spatially varying coded exposures.
L-SVPE is also relatively free of color artifacts. Row 3: An example of a scene with global motion. The “X” on the side of the car and the lines on
the logo next it are clearly recovered by L-SVPE while methods like Short and Quad introduce more blurring artifacts.
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