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1. Introduction

Unsupervised machine learning for unbiased
chemical classification in X-ray absorption
spectroscopy and X-ray emission spectroscopy

Samantha Tetef, 2@ Niranjan Govind (2 ° and Gerald T. Seidler (2 *®

We report a comprehensive computational study of unsupervised machine learning for extraction of
chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core
X-ray emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules. By
progressively decreasing the constraining assumptions of the unsupervised machine learning algorithm,
moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-distributed
stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical
information. Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE
distinguishes not just oxidation state and general sulphur bonding environment but also the aromaticity
of the bonding radical group with 87% accuracy as well as identifying even finer details in electronic
structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and
VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity
within a given molecular class. We also discuss likely benefits from further effort with unsupervised
machine learning and from the interplay between supervised and unsupervised machine learning for
X-ray spectroscopies. Our overall results, ie., the ability to reliably classify without user bias and to
discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other systems as
well as to other one-dimensional chemical spectroscopies.

using ML.">* Briefly, XAS encompasses both X-ray absorption
near-edge structure (XANES) and extended X-ray absorption

The emergence of modern data science techniques, along with
improved theoretical tools addressing physical observables and
open access online databases, has led to new and insightful
interpretation of experimental results. Thus, machine learning
(ML) has proliferated throughout chemistry, materials science,
and chemical engineering.””> Large databases, such as the
Materials Project,® Inorganic Crystal Structure Database,”” and
QM9,° along with open access packages for ML, have all
contributed to this rise in popularity and reliability of machine
learning analysis of data.” Recent work includes the use of ML
to develop a way to represent molecular structures,®® to study
charge transport at the nanoscale level,'® or to automate
chemical predictions from atomistic simulations."*

X-ray absorption spectroscopy (XAS), an important chemical
speciation technique, has seen impressive recent developments
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fine structure (EXAFS) and involves interrogating the unoccupied
electronic states by a core photoelectron. On the other hand,
X-ray emission spectroscopy (XES) interrogates the occupied
electronic density of states by relaxing from an excited state to
a ground state.*** Furthermore, recent developments of
reliable lab-based spectrometers in multiple energy ranges have
facilitated an increase in accessibility of both XAS and XES
measurements.*®*

Both XAS and XES are manifestly element-specific, as either
the excitation or the deexcitation energy, respectively, selects
the species of interest. These methods appear in a plethora of
subfields in chemistry, physics, materials science, and earth
and planetary sciences, with representative contemporary
research in renewable energy,”’ electrical energy storage,****
protein structure and function,** terrestrial and lunar basalts,*®
chemical catalysis*® in biomolecules,”” and photochemical
dynamics.*® In such applications, the experimenter seeks to
understand local electronic and atomic structure, elucidating
properties of the selected species such as oxidation state, bond
lengths, ligand identity, and coordination symmetry and
numbers.

This journal is © the Owner Societies 2021


http://orcid.org/0000-0003-3098-8198
http://orcid.org/0000-0003-3625-366X
http://orcid.org/0000-0001-6738-7930
http://rsc.li/pccp
https://doi.org/10.1039/d1cp02903g
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP023041

Published on 07 October 2021. Downloaded by University of Washington on 9/1/2022 9:04:24 PM.

Paper

Several decades of effort has resulted in theoretical
approaches that reliably solve the forward problem, ie.,
the prediction of XAS and XES spectra from known
structures.>***°° However, the inverse problem of obtaining
structural, electronic, or chemical information from spectra is
ill-posed and demands the use of prior information. Although
formal statistics have been occasionally applied to address the
imposition of the experimenter’s constraining physical
knowledge on the system,”’ prior knowledge is more
commonly implicit via the user interaction with the standard
tools for interpretation of EXAFS*>**® or XES spectra.’” However,
the analysis of XAS - and of XES, as seen here - is seeing rapid
development, which is both exciting for the XAS community
and potentially informative for other spectroscopies. We propose
that these efforts can address broader questions of the encoding
of chemical information via physical measurement.

In a seminal work, Timoshenko et al.*>” used supervised ML to
train a neural network on an ensemble of differently coordinated
nanoparticles to extract geometric information from merely the
X-ray absorption near-edge structure (XANES), the first ~50 eV
of XAS. This work exemplified how prior information could be
encoded via the selection of structures for the training data set as
well as showcasing a supervised machine learning model
that performed better than human researchers, who would
instead require the entire EXAFS spectrum to obtain similar
information. Working contemporaneously, Zheng et al.>" took a
different direction. Instead of seeking inferences about fine
structural parameters, they developed an algorithm to match
unknown materials with known materials in a large database,
showcasing its effectiveness by predicting oxidation and
coordination from the material’s XAS spectra.

Subsequent ML work aimed at a better interpretation of XAS
has sought to identify important energy regions or features of
spectra that contribute most prominently to specific
properties.’>?%2° Moreover, supervised ML has seen use in
classifying coordination and local chemical environments'**®
and the oxidation state'® of 3d transition metals, and used to
extract geometric properties,®® especially during high-
throughput experiments'” in real-time.”® As another example
with a pragmatic application, ML has recently been implemented
for fitting XANES spectra.'® Further work utilizing artificial intelli-
gence for fitting EXAFS data is also actively being developed.”***
Finally, and by means of closure by returning to the forward
problem, Rankine et al utilized machine learning to quickly
predict Fe XANES spectra given local geometric parameters.>>
Other efforts to utilize machine learning to predict XANES spectra,
either from structural parameters or from the partial density of
states, include Carbone et al.'® and Kiyohara et al.," respectively.

In the present manuscript, we take a new direction in the
use of ML methods in X-ray spectroscopies. Not only is this the
first analysis of valence-to-core XES (VtC-XES) using ML meth-
ods, but we apply unsupervised ML to identify chemically
relevant classes based on both XANES and VtC-XES. Furthermore,
instead of using unsupervised ML to force a correlation of certain
geometric regressional properties of a system of interest to
specific dimensions of a reduced dimensional representation of
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XANES spectra, as seen in the recent work of Routh et al.,** which
we believe is the first application of unsupervised ML in XAS, we
fully examine clustering in this reduced dimensional space for
unbiased discovery of chemical classes and thus the extent of
encoded information in spectra.

As a secondary consequence of our choice to investigate
both XANES and VtC-XES, we are also able to test the common
qualitative assertion that the methods are ‘‘complementary”
because of their respective sensitivity to unoccupied and
occupied electronic states,”® here quantitatively addressing
whether the chemically relevant information in XANES and VtC-
XES is indeed complementary or is instead highly coincident.>**!

Based on our results, we propose that chemical classifica-
tion problems are best addressed with unsupervised ML meth-
ods at least as a precursor analysis method,"" an approach that
may enrich or suggest refinement of prior structure-specific
inferential work in XAS™'®'7?%27:31 and similar work in a wide
and rapidly growing range of other spectroscopies in chemical
sciences.®®>™®* This distinction is nontrivial. Subject only to the
imposition of prior information through the choice of the
training domain of materials or molecules, unsupervised
learning serves to identify the extent of the underlying and
scientifically useful chemical properties® for a given spectro-
scopy without user bias. These methods allow any spectral
similarities, and thus classes, to emerge from the algorithm
and then researchers can a posteriori interpret its chemical
relevance. This ensures that unanticipated encodings of
chemical information are not overlooked. An unsupervised
ML approach is, we feel, especially suitable for X-ray spectro-
scopies exactly because of the challenges presented by the
ill-posed nature of the inverse problem. Hence, both our
motivations and our methods are distinct from prior work
using data science and ML methods in X-ray spectroscopies.

We now define our system of interest and the methods that
will be used for classification. Our training domain encompasses
a very wide range of sulphorganic molecules chosen because of:
(1) their rich diversity of bonding environments; (2) the con-
siderable evidence for sensitivity of both XANES and VtC-XES of
the S K-edge to chemical bonding in this family;°>*>®® and
(3) the prior demonstration of good agreement between experi-
ment and time-dependent density functional theory (TDDFT)®®
calculation of XANES®” and VtC-XES.*%%%77°

For chemical context, the five “Types” of molecules used
in our study are shown in Fig. 1. They are: (1) sulphides,
(2) thiocarbonyls, (3) thiols, (4) sulphoxides, and (5) sulphones.
Type 1, or sulphides, are compounds with C-S-C bonds.
This includes S in cyclic sulphides, such as thiophenes and
thiazoles, along with sulphides where the S is bonded to two
separate functional groups. Type 2, or thiocarbonyls, have
S double bonded to a single C. Type 2 includes variations such
as isothiocyanates and thioureas. Type 3 are thiols, also known
as mercaptans, and have an SH functional group bonded to a
C atom in some radical. Types 1, 2, and 3 all have a sulphur
oxidation of 2—. Type 4, or sulphoxides, have S double-bonded
to O and single bonded to two C atoms. Type 4 has a sulphur
oxidation of 0. Finally, Type 5 are sulphones, which have
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Fig. 1 Schematic representation of the five types of sulphorganics inves-
tigated, along with sub-categories.

S double-bonded to two oxygens and single bonded to two
C atoms. Type 5 also includes sulphonamides. Type 5 has an
oxidation of 2+. Every Type is additionally divided into sub-
categories based on whether the S is a member of a conjugated
system, e.g., in an aromatic ring, or not, ie., is aliphatic.
There are similarities and differences in these -classifications
compared to Yasuda and Kakiyama® and Holden et al.*® Specifically,
we have somewhat expanded the core ‘“Types” compared to
that prior work but have retained the use of oxidation state and
aromaticity as additional refining parameters.

Here we investigate three different classification schemes that
follow the general rubric of dimensionality reduction, followed
by cluster identification. We report a critical comparison of
(1) Principal Component Analysis (PCA), which is a fully linear
method with an underlying Euclidean metric, (2) a Variational
Autoencoder (VAE), which is a deeply nonlinear method that still
has a local metric, and (3) t-distributed Stochastic Neighbour
Embedding (t-SNE), a nonlinear, non-parametric embedding
that is inherently non-metric. In all cases, the accrued benefit
is the ability to see clustering in the reduced dimensional spaces
from which we then assign chemical descriptors and, in turn,
infer the general character of chemical information that is
encoded within XANES and VtC-XES.

We find surprisingly strong absolute and comparative perfor-
mance for t-SNE, which draws attention to a shared core weakness
of PCA and VAE in the present context. In those methods, the
similarity of spectra is only quantified after dimensionality
reduction, ie., only after information has necessarily been lost.
This is in contrast with t-SNE, where the original spectra drive the
creation of a probabilistic description of similarity (with no
necessary loss of spectral information) and then a subsequent
embedding in a lower dimension is determined. t-SNE thus has
significant heuristic benefits for classification, albeit at the cost of
losing any meaningful metric properties in the resulting embedding.
On the other hand, the retention of formal mappings and
metrics for PCA and VAE allows for applications that require
tracking the trajectory of evolving chemical systems, such as in
high-throughput synchrotron experiments.

2. Methods

2.1 Electronic structure calculations

Our data generation pipeline is shown schematically in Fig. 2.
A list of sulphorganic compounds was created from a wide
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Fig. 2 Schematic depiction of the data generation pipeline.

variety of sources, starting with the compounds in Yasuda and
Kakiyama® and Holden et al.,*® so as to make best contact with
those prior experimental studies of classification of VtC-XES.
First, in all cases, structures (in the form of .mol files) were
downloaded from the PubChem database’" via the MolView
APL”?> All ground state structures, XANES,”” and VtC-XES’*
computations were performed with the open-source NWChem
computational chemistry program.”>”® In total, 769 molecules
are included in this work.

The existence of single, internally-consistent energy scales is due
to the self-consistent field (SCF) DFT solution that is solved for each
system, which serves as the reference for the TDDFT-based X-ray
spectroscopy calculations. In the case of XANES, we compute the
ground-state SCF solution as the reference, while for the XES we
compute the core-hole SCF solution, as indicated in Fig. 2.

The geometry optimizations utilized the 6-31G* basis
sets’>”*777% and the B3LYP exchange correlation functional.”
The XANES and VtC-XES spectra were then computed using the
Sapporo QZP-2012 and Sapporo TZP-2012 basis set,*® respectively,
for S, while the remaining atoms were represented using 6-31G*
basis set, and PBEO exchange correlation functional.®" In cases
where compounds contained heavier atoms than S, such as
bromine and chlorine, an effective core potential was substituted
for the atom, specifically the Stuttgart RLC ECP.**

Because our linear-response TDDFT-based XANES spectra are
computed from stationary Kohn-Sham DFT states, a broadening
must be applied to account for the finite lifetime of the electronic
states. Thus, an energy-dependent linear broadening scheme
was applied to the XANES transitions, similar the scheme in
Mijovilovich et al.®* Pre-edge transitions until the whiteline were
Lorentz broadened at a full-width halfmaximum (FWHM) of
0.6 €V, to be consistent with the core-hole lifetime. Then a linear
increase in the FWHM broadening was applied, starting from the
whiteline at 0.6 eV and increasing to 4.0 eV FWHM at 15 eV past
the whiteline, to account for inelastic scattering effects at higher
energies. This broadening scheme reproduced spectral features
well.%® In this case, the energy-dependent broadening values of
the transitions were chosen arbitrarily such that they most
accurately depicted experimental features.’>®* Finally, the spectra
were individually normalized by dividing their total Ko intensities
and an energy shift of —53.3 eV was applied to all XANES
transitions to align the theoretically calculated transitions with
experiment.

For the VtC-XES, the calculated transitions were all shifted
by —18.6 eV to align to experiment.®>®® Additionally, a Lorentz
broadening of FWHM of 0.6 eV in addition to a Gaussian
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broadening of FWHM of 0.3 eV was added to each transition,
which represents the core-hole lifetime and the best possible
experimental resolution (limited by the bent crystal analyser),
respectively. We found no significant changes in the clustering
upon qualitative examination of the reduced dimensional
spaces using less broadening. This is likely due to the loss in
information upon compression to just two dimensions, where
sharpening features, or the emergence of small new peaks, will not
compete with the most prominent characteristics of the spectra.
Thus, we chose to use experimentally motivated broadening.
The resulting spectra were also normalized by their total Ko
intensity to achieve a common intensity scale per S atom.

2.2 Supervised ML methods

To pre-process our spectra, the intensity was represented
pointwise with 1000 linearly spaced energy values along a
consistent energy range across the entire ensemble. The training
and test set consist of 717 and 52 molecules, respectively, and
were both scaled such that they were peak normalized to the
highest intensity value of the training set; this ensured spectra
had intensity values between 0 and 1 in addition to preserving
overall transition amplitudes.

All neural network models in this study were implemented
in Python using the Keras® package with a Tensorflow
backend.®® As a benchmark for defining “good”” accuracy when
compared to the dimensionally reduced spaces, we performed
classification via supervised machine learning by passing the
original high-dimensional spectra into a fully connected neural
network classifier. The fully connected neural network for
the three classification schemes for the VtC-XES had one
hidden layer with dimension 512, ReLU activation, L2 kernel
regularization, and 5% dropout. It was optimized via Keras’s
default ADAM using binary cross entropy loss, with a softmax
output activation function. The network architecture for the
XANES had all the same hyperparameters as the VtC-XES,
except it had a hidden dimension of 1024 instead of 512. The
resulting confusion matrices for VtC-XES and XANES for all
classification schemes are given in Fig. S3 (Scheme 1: oxidation),
Fig. S3 (Scheme 2: type), and Fig. S4 and S5 (Scheme 3: aroma-
ticity within each type, henceforth simply “aromaticity”’) (ESIT).
The benchmark accuracies for classifying the VtC-XES spectra
were 100%, 96%, and 71% for oxidation, type, and aromaticity,
respectively, for the 52 compounds of the test set. And the
benchmark test accuracies of classifying the XANES spectra were
100%, 85%, and 69% for oxidation, type, and aromaticity,
respectively.

We applied supervised machine learning on the reduced
dimensional spaces by implementing K-Nearest Neighbours
(KNN) classification with scikit-learn using 20 nearest neighbours
for classification Schemes 1: oxidation and 2: Type, and with
10 nearest neighbours for Scheme 3: Aromaticity (within each
Type). KNN is a supervised classification algorithm that cate-
gorizes data points based on the other data points in the vicinity,
specified by this number of neighbours (k) hyperparameter.
While it is perhaps unfortunate that we are comparing accur-
acies obtained from different models - a neural network versus
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KNN - we chose KNN to evaluate the reduced spaces because it
mimics the nearest neighbour behaviour of t-SNE and requires
fewer hyperparameters to be tuned. Furthermore, the predicted
classification boundaries on the reduced spaces between KNN
and a neural network trained were similar and thus both methods
are comparable.

2.3 Unsupervised ML methods

Our VAE model took the spectra as input, where each spectrum
was represented by 1000 points of intensity as indicated above.
This model was also implemented in Python with Keras and
Tensorflow. The network was trained using a batch size of
50 and had two hidden layers of dimension 512 and 128
respectively, with ReLU activation. Additionally, L2 kernel
regularization was added to each layer, and a dropout of 10%
was applied after every layer, both of which were implemented
to help prevent overfitting and encourage generalizability.
The encoder and decoder were then symmetric, although the
output layer of the decoder had a sigmoid activation function.
An almost identical model architecture and hyperparameters
were used to train the VAE for both the VtC-XES and XANES
spectra; however, the XANES model had a dropout of 15% and
the second hidden layer had dimension 246 instead of 128.
Both models were optimized via the default settings of the
optimizer ADAM in Keras. The VAE and fully connected classifier
neural networks were verified on a validation set via the model
loss and reconstruction efficacy to check for overfitting. See
Fig. S1 (ESIt). The trained VAE models, analysis code, and
datasets are available on GitHub.®”

We applied Principal Component Analysis (PCA), along with
the t-distributed stochastic neighbour embedding (t-SNE),
independently to the XANES and VtC-XES spectra using the
scikit-learn®® package in Python. The optimal hyperparameter
for t-SNE, perplexity (which roughly represents cluster size), was
found by searching through perplexity values between 5 and 50,
with perplexity equal to 18 yielding the qualitatively most
distinguishable yet believable clusters on the training set. All
two-dimensional reduced spaces were linearly scaled to be
between 0 and 1 for each axis.

3. Dimensionality reduction
algorithms

Given the novelty of unsupervised ML in the context of X-ray
spectroscopies, it is useful to give a detailed overview and
comparison of the methods used here. To begin, dimensionality
reduction not only helps determine which features in data are
most “evident” or variational, but by doing so in a data-driven
manner, it also removes biases imposed by the researcher.
Of central importance here, lower dimensional representations
often yield better classification by addressing the curse of
dimensionality, ie., everything in a high dimensional space
looks far away, so it may be difficult to quantify similarity of
points in a high dimensional space.’® However, selecting the
best dimensionality reductional algorithm is, as investigated
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here, closely dependent on both the constraints inherent to
the method and the underlying variance of the training data.
The question is whether progressive weakening of constraints on
the algorithm, such as by removing the requirements of linearity
or a quasi-metric mapping, in fact better preserves information
content and thus allows for more robust classification. While
this is an appealing hypothesis, it is by no means a certain
outcome: one might find that the constraints are needed to
suppress overamplification of spectral features that do not have
physical importance.

To this end, we will compare linear and nonlinear forms of
dimensionality reduction where both algorithms perform formal
mappings between the original high-dimensional space (where
the calculated ensemble of spectra live) and learn a mapping to a
lower-dimensional representation. Then, we will compare these
mapping-based algorithms to a probabilistic, non-parametric
embedding algorithm that, instead of learning a formal mapping
function from a higher- and lower-dimensional space, creates a
lower-dimensional representation by preserving a similarity
metric of the original spectra. The results of this work elucidate
the chemically relevant information content in XANES and
VtC-XES, allow a comparison of their relative information content,
and suggest possible methods for real-time monitoring of high-
throughput experiments.

We begin with the two mapping algorithms, as opposed to
the embedding. The dominant linear method for dimension-
ality reduction is Principal Component Analysis (PCA).”
Nonlinear dimensionality reduction can be achieved via
unsupervised machine learning, specifically here, via the VAE
neural network model.®® Given that there is very scarce prior
work using VAE’s in spectroscopies, e.g., optical-wavelength
spectroscopy in an astrophysical study,”® we will especially
discuss the key differences between PCA and VAE. For work
detailing the use of just an autoencoder (AE) for XANES
analysis, see Routh et al.>* With this in mind, we will additionally
discuss the difference between an AE and VAE, and the
additional properties inherent to a VAE.

To begin, in Fig. 3a, we envision a scenario of synthetic data
in three different clusters in a parameter space of some
unknown dimension, here shown in two dimensions for ease
of presentation. If the data distribution is well-represented by a
simple N-dimensional (hyper)ellipsoid, PCA would successively
choose orthogonal axes in a new coordinate system that con-
secutively encompassed the most variability contained within
the high dimensional data set. Equivalently, PCA chooses an
orthonormal basis to represent a lower dimensional (hyper)-
plane such that the distance the data travels to be projected
onto this PCA (hyper)plane is minimized. Thus, data can be
represented using only the first few basis vectors, or dimensions,
that explain the most variation within the data.

However, whether in two dimensions, as in Fig. 3a, or in
some higher dimensional realization, dimensionality reduction
for complex data that spans multiple qualitative classes is
frequently poorly suited to decomposition via purely orthogonal
axes and Euclidean-preserving metrics in the host high-
dimensional space. This is where less restrictive coordinate
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Fig. 3 (a) Clusters where nonlinear dimension reduction routines, such as
from a neural network, might yield better clustering than a linear dimension
reduction routine like PCA. (b) Architecture of a simple autoencoder (AE)
with one hidden layer, demonstrating the dimension reduction utility of the
AE via its nonlinear latent space. (c) Schematic of how t-SNE uses the
probability that data points are sampled from the same distribution to
determine their similarity.

transformations often have superior dimensionality reduction
en route to classification. VAEs have not previously been used in
X-ray spectroscopies, although they have been shown to be
superior to PCA in several other contexts.”>

In Fig. 3b, a schematic of a simple autoencoder demon-
strates how a coupling of two neural networks — an encoder and
a decoder - performs nonlinear dimensionality reduction. The
encoder takes in d-dimensional input, reduces it down to a
nonunique lower dimensional representation called a latent
space, and then the decoder expands the dimension back to the
original d dimensions. The nonlinear activation functions in
each neuron give the mathematical freedom for deforming the
metric. The autoencoder learns, through iterative training, how
to encode data to a lower dimension by trying to match the
input and output - ensuring that maximal information is
retained as the data is passed through this information bottle-
neck layer, or latent space. Because no predetermined classes
or labels are given to the network, clustering in the latent space
is inherently unsupervised - hence we neither impose prior
knowledge that, for example, oxidation state will create useful
spectral distinctions, nor limit ourselves to discovering only a
few prescribed categories of chemical information.

Autoencoders, however, suffer from overfitting that reduces
their ability to generalize or generate new data and thus have
limited utility for classifying unseen data. To resolve this
concern, an autoencoder can be modified into a variational
autoencoder (VAE).”! VAEs have almost the same model
architecture as autoencoders, except instead of learning an exact
latent space encoding, they learn a latent space probability
distribution, which is described in more detail in the ESLf¥
Points in the latent space are instead sampled from a learned
normal distribution. This sampling creates perturbations in the
latent space, which helps prevent overfitting and allows the
latent space to be complete, continuous, and regularized,
leading to the generation of new data. Most importantly, the
probabilistic sampling ensures that similar spectra are in fact

This journal is © the Owner Societies 2021


https://doi.org/10.1039/d1cp02903g

Published on 07 October 2021. Downloaded by University of Washington on 9/1/2022 9:04:24 PM.

Paper

mapped to similar locations in the latent space, and the decoder
will be able to decode points in the latent space it has not
previously seen, both of which are imperative for classification.

Returning to Fig. 3a, the benefits of the VAE’s nonlinear
dimensionality reduction are illustrated by the thick blue line,
representing a possible first coordinate axes of a VAE latent
space. The nonlinearity of the VAE allow it to weave and thus,
imagining the data in Fig. 3a in a higher dimensional space,
create a manifold that would better capture variance of the data
domain with fewer reduced dimensions. Hence, while the
nonlinearity of the VAE prohibits its use for linear superposition
analysis of composition - a common application of PCA in XAS -
we posit that VAEs, or other nonlinear dimensionality reduction
methods, might provide special advantages for classification
problems, i.e., for grouping data with respect to the underlying
chemically-relevant information in XANES and VtC-XES spectra.

We will demonstrate the utility of unsupervised methods,
either linear (PCA) or nonlinear (VAE), to not only analyse the
information retained by a reduced-dimensional representation,
but most importantly, to generate a mapping to the reduced-
dimensional space. That is, both PCA and VAE create a
functional mapping from the high-dimensional space of spectra
to the derived two-dimensional spaces that can be saved and
used later, without modification, to subsequently map new data
onto the derived spaces. Thus, they are tools to store data.
Moreover, this ability allows us to quantify the quality of
mapping by calculating the accuracy of classification on a
subsequent test set. However, if the final scientific goal is
understanding the connection between spectral features and
information content in an ensemble, then the imposition of
a well-behaved mapping may be unnecessary and may in
fact over-constrain and hence degrade performance toward
chemical classification. This brings us to use of embedding
algorithms.

The t-distributed Stochastic Neighbour Embedding (t-SNE)*® is
performed by calculating a pairwise similarity matrix over the entire
dataset by creating a joint conditional probability distribution.
For example, imagine the three points, called X;, X,, and X; in
Fig. 3c, exist in the original high-dimensional space that fully
characterizes the spectra, ie., each such point corresponds to a
full spectrum. Here, X; and X, are clearly more alike than X;.
When t-SNE compares similarities between high-dimensional
points, it assumes all data points are sampled from an inherent
Gaussian distribution such that data that are more similar have a
higher probability of being sampled from the same distribution,
while dissimilar data have a lower probability of being sampled
from the same distribution.

Therefore, similar data points should be closer together in a
reduced representation, i.e., closer to the assumed mean of the
inherent joint distribution, and dissimilar data points are
farther away. To obtain the lower dimensional embedding,
t-SNE then randomly projects the data to a lower-dimensional
space and computes an analogous pairwise conditional
probability distribution function (now assuming points are
sampled from a t-distribution to encourage spread). Through
an iterative minimization process, t-SNE tries to match the
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pairwise conditional probabilities from the lower dimensional
space to the one calculated in the high dimensional space.
Thus, similarity relationships between data points in the
original high-dimensional space should be maintained by
t-SNE in this reduced space. This contrasts PCA and VAE, which
project the spectra onto a low-dimensional space via a simple
basis using a Euclidean metric (PCA) or else an adaptive metric
(VAE), and for which the issue of the similarity of data is only
addressed after this inherently lossy compression process.

4. Results and discussion
4.1 Dataset and dimensionality reduction

It is useful to consider a qualitative presentation of variance of
the XANES and VtC-XES spectra - both within and across
compound Types. Hence, in Fig. 4, we show the VtC-XES and
XANES spectra for a representative sampling of the molecules
in this study. Beyond energy shifts, there are some interesting
variations within Types for each of VtC-XES and XANES.
For example, the Type 2 XANES has far more variation than
the VtC-XES. Conversely, the Type 3 VtC-XES has far more
variation than the XANES. Such details encourage the use of
unsupervised learning en route to a chemical explanation.

We now report on unsupervised dimensionality reduction
for this data set. In this, we primarily focus on PCA, VAE, and
t-SNE, but also include several competing linear algorithms for
completeness. These results are then used for classification in
Section 4.2.

VtC-XES Spectra XANES Spectra

Type 4 A . N ‘ O

Type 3 AAQ R—SH
R=
Type 2 A /“\‘ 4 ¥
—n PN —

R R'

2455 2465 = 2475 2470 2480 2490
Energy (eV) Energy (eV)

Fig. 4 VtC-XES (left) and XANES (right) spectra for all sulphorganic
compounds, displayed by compound type. Some spectra have been
arbitrarily scaled or randomly removed for display purposes.
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Fig. 5 Scree plot of PCA effectiveness for both VtC-XES and XANES.

The vertical axis is the fraction of variance explained by each PC, e.g., the

10th PC.

4.1.1 Principal component analysis. The most important
measure for the utility of PCA is the proportion of variance
explained by a PCA basis, in order of most important principal
component to least, which is shown in Fig. 5 (averaged over the
entire dataset). The basis elements have been sorted so that
the eigenvectors corresponding to the largest eigenvalues are
considered first; in other words, the first principal component
(PC) is the most important as it explains the most variance of
the data. For both the XANES and VtC-XES data, a point of
diminishing returns is found at ~6-8 principal components.

To illustrate this fact, we show in Fig. 6 the gradual
convergence with increasing number of PCA basis elements
for two representative molecules, one from Type 5 and the other
from Type 1. By increasing the number of PCs kept, more
information is retained. For example, for 4-thiazoleacetic acid
(bottom), starting at 2 PCs at the top and increasing downward
to the original spectra at the bottom, the VtC-XES spectra
clearly evolves from two peaks to three. For the XANES, the
small peak in the valley at 2476 eV starts to appear around
8 PCs. However, the increase from 10 PCs to 12 PCs does not
provide any distinguishable change in the spectra. For
2-thiazolidinone sulphone (top), the XANES pre-edge features
(or lack thereof) are not accurately represented until about
8 PCs, whereas just 2 PCs captures most of the spectral features
for the VtC-XES. Again, the principal components were
determined using the entire training data set for both XANES
and VtC-XES.

The first two PCs can also be visualized by projecting the
data onto a two-dimensional space using the corresponding
eigenvectors, as shown in Fig. 7. Here, we color-coded the data
via two chemically relevant classification schemes: ‘“Scheme 1”
(oxidation state) and ‘“‘Scheme 2 (molecular moiety “Type”).
Note how the oxidation state of the compounds clearly
dominates the PCA of XANES (due to energy shifts, as expected),
and thus the PCA of VtC-XES has better distinction between Types
as it is not being over-dominated by oxidation. That said, there is
considerable mixing of chemically different compounds in the
XES projection - for example, the blue Type 2 thiocarbonyls
mixing with the yellow Type 5 sulphones, and the purple Type 1
sulphides mixing with the dark green Type 3 thiols.

23592 | Phys. Chem. Chem. Phys., 2021, 23, 23586-2360]1

View Article Online

Paper

0P
2-thiazolidinone sulfone OYSJ
HN

XANES

8PCs \

pPCs i
it 8 | —

2vCs /)

i S e A

targel

2450 2460 2470 2470 = 2480 2490
Energy (eV) Energy (eV)

S
0
4-thiazoleacetic acid )‘\)IN/>

HO

2450 2460 2470 2470 2480 2490
Energy (eV) Energy (eV)

Fig. 6 Spectra reconstructed with increasing number of principal components

(PCs) kept, for both VtC-XES and XANES of 2-thiazolidinone sulphone (Type 5)

(top two panels) and 4-thiazoleacetic acid (Type 1) (bottom two panels).
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Fig. 7 Principal component analysis (PCA) projection for two dimensions,
color-coded by the two different property classification schemes:
Scheme 1 is by oxidation and Scheme 2 is by sulphur bond type.

To summarize, PCA is a linear dimension reduction method
that, when applied to both the XANES and VtC-XES of our
ensemble on compounds, can accurately reconstruct spectra
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when a suitable number of PCs are retained. However, even just
two PCs capture oxidation state, seen most obviously for
XANES, and significant hints of sulphur bonding environment
via the VtC-XES under the Type classification scheme.

However, the question now arises as to whether the ortho-
gonalization and use of a Euclidean metric by PCA is optimal
for the problem of chemical classification, especially if strongly
limiting the number of principal components. This opens two
questions. First, it is fair to ask if another linear algorithm
could prove superior to PCA. This is investigated with Fast
Independent Component Analysis (FastICA),”” Factor Analysis
(FA),°®>*° and Non-negative Matrix Factorization (NMF),"* as
shown in Fig. S6 (ESIt). These three methods are other
common linear dimensionality reduction routines and have
been compared to PCA in other systems.'®" See the ESIf for
further information on those methods. By initial visual
inspection, some seem to perform comparable to PCA but are
not categorically superior. Second, one must inquire, with
linear dimensional reduction algorithms exhausted, if there is
improved performance by using a nonlinear unsupervised
method - either creating a nonlinear mapping (VAE) or merely
a embedding (t-SNE).

4.1.2 Variational autoencoder. We again present in Fig. 8
a reduction to a two-dimensional space, but now via the latent
space of a trained VAE. Before comparing these results with the
PCA-derived two-dimensional space in Fig. 7, it is useful to
establish some basic properties of the VAE training and resulting
latent space.

First, in Fig. 9 we demonstrate the agreement between
input and decoded spectra - this is roughly analogous to the
consideration of the number of retained PCs for PCA as shown
in Fig. 6. The five spectra-pairs shown are for randomly selected
compounds of each Type. Qualitative agreement is seen with a
limited number of dominant spectral features, as would be
expected given the inherent blurriness of decoded data from a
VAE in two dimensions. Errors are largely restricted to features

VtC-XES XANES
K 5,
R VAE |||
; ‘.
..s.(d
F
z 08
3 3
phe 2
- VY VAE ||!ls
o~ 7 %2‘0‘@% 4
(] M
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5 : =
& (8
® 2
¥ 1

Fig. 8 Latent space representation in two dimensions via a Variational
Autoencoder (VAE), color-coded by the two different property classification
schemes: Scheme 1 is by oxidation and Scheme 2 is by sulphur bond type.
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Fig. 9 Reconstruction of VtC-XES (left) and XANES (right) spectra from

a two-dimensional latent space via a VAE. From bottom to top, the

compounds are from Type 1, 2, 3, 4, and 5. The black dashed line

represents the original inputted spectra, and the solid-colored line is the

decoded spectra after it has been passed through the VAE.

that are spectrally small or (especially) to spectra with numerous
peaks. In some cases, this includes information-rich features,
such as the first peak in the XANES of protionamide or the loss
of the triple-peak structure in the immediate region near the
Fermi level in the VtC-XES for 1,3-thiazol-4-ylacetic acid.

Second, while the VAE is nonlinear, the resulting mapping is
still continuous and regular, such that similar spectra are
mapped to nearby points in the latent space and, conversely,
nearby points in the latent space decode to similar spectra. In
Fig. 10a, the spectra for tetrabromothiophene and tetrachloro-
thiophene are very similar, and they are in fact mapped to a
similar location in the latent space. Looking at the corres-
ponding oxides in Fig. 10b, there is again a close location
mapping of chemically related compounds of similar VtC-XES
spectra. This indicates that the VAE is correctly mapping
similar data to nearby locations, and therefore the latent space
is in fact regularized, continuous, and complete. These three
properties allow for data generation, where the VAE can decode
points in the latent space it has not previously seen. We return
to this subtle consequence of the good, if non-Euclidean,
behaviour of the VAE latent space in Section 4.3.

As a final point of interest for the fidelity of the VAE latent
space, it is interesting to investigate outliers in the VAE latent
space, i.e., those molecules that substantially escape from the
cluster associated with their oxidation state or Type. In Fig. 11
we identify both fipronil (only the relevant part of the structure
is shown) and ethylene sulphoxide as two Type 4 sulphoxides
with nominally zero oxidation state that are unexpectedly in the
sulphone 2+ oxidation state cluster. The -corresponding
VtC-XES spectra and molecular structures are shown at the
bottom of the figure. For fipronil, one of the carbons bonded to
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(a) The latent space location of tetrabromothiophene and tetrachlorothio-

phene, with the corresponding VtC-XES spectra on the right. (b) The same

structures but oxidized to form tetrabromothiophene oxide and tetrachloro-

thiophene oxide.

the S is special in that it is bonded to three fluorine, whose
electronegativity also makes the carbon electronegative and
thus the sulphur has an effective 1+ oxidation, which might
explain the grouping with the positive oxidation cluster. For
ethylene sulphoxide, the abnormal triangle shape and unusual
bond angles and lengths might contribute to its grouping with
the 2+ oxidation cluster.

Moving now to the relative merits of the two-dimensional
PCA representation (Fig. 7) and the VAE latent space (Fig. 8), the
superior performance of the nonlinear method is an important
result of the present study, and there are three details that
require further discussion. First, note how the latent space of
the VtC-XES has very clear clustering of chemically related
compounds in both classification schemes. In fact, the
VtC-XES has better clustering than the XANES in Scheme 2 as
Types 1, 2, and 3 are more distinguishable via VtC-XES. Also
note that more similar compounds, such as Type 1 sulphides
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Fig. 11 A closer look at the outliers: the two “neutrally oxidized”
compounds distinctly in the sulphone (2+ oxidation) cluster.

and Type 3 thiols, which have the same oxidation and very
similar sulphur bonding environments, are closer together in
the latent space for both XANES and VtC-XES when compared
to the more chemically different Type 4 sulphoxides and Type 5
sulphones.

Second, the fact that there is better clustering of different
oxidation states than for different sulphur bonding types is
expected. The appearance of peaks due to the introduced
oxygen bonds, in addition to the blueshift of the high energy
tail, makes oxidation state correlate to the most pronounced
differences in VtC-XES spectra. On the other hand, the XANES
latent space is dominated by the oxidation state because of the
multi-eV blueshift of the whiteline as oxidation state increases.
However, the XANES has less-distinct clustering between Types
1, 2, and 3, all which have the same oxidation state, because the
XANES spectra, in general, have less variation, both within
individual Types and across them (recall Fig. 4). Hence, the
fact that the VAE, at least when limited to a two-dimensional
latent space, cannot as clearly distinguish sulphides (Type 1)
from thiols (Type 3) in XANES, indicated by the large overlap in
the purple and green dots, is expected; the sulphur local
environment in both those Types is similar enough that there
is large overlap.

Third, the VAE latent space of the VtC-XES has two very
distinct Type 3 clusters (not clearly seen in the PCA two-
dimensional representation), whereas the XANES has grouped
all Type 3 compounds together. These clusters in the VtC-XES
spectra are directly correlated to whether the sulphur in the
thiol functional group belongs to a conjugated system
(aromatic) or a non-conjugated one (aliphatic), as shown in
Fig. 12. Here, we have color-coded spectra within types to
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Fig. 12 Compounds with aromatic sulphur versus aliphatic sulphur, in the
latent space (VAE) for both VtC-XES (left) and XANES (right).

indicate aromaticity, following Yasuda and Kakiyama,®> who
first noticed the sensitivity of sulphur VtC-XES to aromaticity.
This separation is chemically reasonable as researchers have
long known XAS to be sensitive to aromaticity for the carbon
edges,'®” and have also observed sensitivity to aromaticity in a
ligand, e.g. the sulphur K edge of sulphides.®*®

As shown in Fig. 13, the greatest difference in the VtC-XES
spectra for Type 3 occurs at the highest energy peak, a
consistent finding with the observations mentioned in Yasuda
and Kakiyama,®® which notes the aromaticity of the compound
increases the energy but lowers the intensity of that peak, likely
due to the presence of the m bonding system. Conversely, the
XANES spectra, on average, have only a small (<1 eV) energy
shift between the aromatic and aliphatic compounds for Type 3
without any substantial change in the overall spectral features.

This brings us naturally to the final section of raw results,
where we use an algorithm that diverges even further from any
metric constraint and instead emphasizes measuring similarity
of the spectra prior to reducing the dimensionality of the
problem.

4.1.3 t-SNE, clustering without mapping. In Fig. 14a, we
show the two-dimensional embedding generated by the
t-distributed Stochastic Neighbour Embedding (t-SNE), color-
coded by Type, for the same training data sets as was used for
PCA and the VAE, e.g,, that resulted in the mappings in Fig. 7
and 8. Recall that although the closeness of points in the t-SNE
embedding does correlate to similarity, the distances separating
clusters in t-SNE does not necessarily represent the relative
similarity of the clusters themselves - t-SNE is, again, inherently
non-metric. The clustering is clearly tighter and, more
importantly, there is less overlap between clusters corresponding

Type 3 Type 3

XES XANES
Aromatic Aromatic
I Aliphatic B Aliphatic
EEm Residual /\ Il Residual

"

L L L L L 1 L L L L 1

2445 2450 2455 2460 2465 2470 2470 2475 2480 2485 2490
Energy (eV) Energy (eV)

Fig. 13 Residuals between the average of the aromatic and aliphatic
spectra of Type 3 (thiols).
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to the different Types. In Fig. 14b we show the additional sub-
classifications by conjugation of the radical group bonded to
the sulphur, i.e., aromaticity. Notice that, as with the VAE, the
VtC-XES clearly distinguishes the aromaticity of the Type 3
thiols. Moreover, there is a clearer separation between aromatic
and aliphatic compounds for all Types. Another observation in
the t-SNE VtC-XES that was not present in PCA or VAE results is
that the blue Type 2 group by the yellow Type 5 cluster consists of
isothiocyanates, which are distinct from the other Type 2
thiocarbonyls.

Some sensitivity to aromaticity could have been expected
(although whether it would be seen in just a two-dimensional
representation was definitely uncertain), given the prior work
by Yasuda and Kakiyama®® on VtC-XES and by Qureshi et al.®°
on XANES. Here, because t-SNE is unbiased, we can explore
clustering in more detail to look for unexpected chemical
classifications, an issue that we explore in Fig. 15 for XANES.
First, we examine the further splitting of the Type 1 aromatic
compounds as shown in Fig. 15a. On average, the spectra of the
bottom cluster have about a 50% increase in the intensity of the
whiteline. These compounds all have either a chlorine or
bromine bonded to the aromatic ring with the sulphur. On
the other hand, the top cluster is typically thiazoles, or
compounds where there is a nitrogen within the aromatic
system containing the sulphur. Since chlorine and bromine are
more electronegative than sulphur, it is chemically reasonable
that they will dominate the compositions of the transitions
close to the Fermi level and thus increase the whiteline
intensity whereas the nitrogen in the ring will have the reverse
affect.

Next, looking at the red aliphatic Type 5 compounds in
Fig. 15b, it appears that they are grouped on either the left or
right side of the overall Type 5 cluster. The cluster on the right,
on average, has a slightly lower intensity and energy of the
whiteline, with ~ 0.5 eV redshift. About 75% of the compounds
in this cluster have the sulphur as part of a non-conjugated
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Fig. 15 (Main) A closer look the subclustering in the XANES t-SNE plot.
(@) Separation of Type 1 aromatic compounds based on inclusion of
chlorine or bromine in the aromatic system. (b) Separation of Type 5
aliphatic compounds based on bond strain via the inclusion of sulphur in a
ring versus a chain. (c) Type 4 compounds with one R group aromatic and
the other aliphatic share characteristics of both and thus form the bridge
between the two clusters.

ring, compared to the sulphur being a member of chain-like
compounds, as on the left side of the Type 5 cluster.

Finally, examining the split of the green Type 4 compound
in Fig. 15c, we see clear partitioning based on aromaticity.
However, upon identifying compounds in which one R group
bonded to the sulphur is aromatic and the other R group is
aliphatic, labelled as “mixed,” we see these in fact create the
bridge between the two clusters as they share chemical char-
acteristics with both groups. Thus, t-SNE has clearly identified
real chemical (and thus spectral) trends in the XANES data.

4.2 Classification

Hence, our initial qualitative inspection of the relative efficacy
of PCA, VAE, and t-SNE for classification strongly supports the
use of the least restrictive algorithm consistent with one’s
overall goals. We now seek quantitative assessment of the
accuracy of classification via these algorithms. Based on
K-Nearest Neighbours (KNN) partitioning on the reduced spaces
for both VtC-XES and XANES, we derived the classification
accuracies for the three primary methods of this study as well
as the auxiliary linear methods FastICA, FA, and NMF, as shown
in Fig. 16. For t-SNE, because of its nature as a non-parametric
embedding rather than a mapping, the test data was folded into
the initial embedding, so the entire dimension reduction and
test accuracy were applied in one step, although the KNN was
only trained on the training dataset. For all other methods,
training included both fitting the dimension reduction mapping
to the training dataset, and then applying KNN on the
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Fig. 16 Accuracy of KNN classification schemes on all dimensionally
reduced spaces for both VtC-XES (top) and XANES (bottom).

two-dimensional space using that training data projection. To
assess accuracy, the test data was then passed through the
mapping to lower dimensional and subsequently through the
fitted KNN partitioning.

Regarding classification Scheme 1 (oxidation), most methods
performed extremely well (above 95% accurate) and were
comparable to the benchmark accuracy obtained from the fully
connected neural network classifier, as shown in purple in
Fig. 16. Applying KNN to achieve classification accuracy using
Scheme 2 (type) on all reduced spaces for both VtC-XES and
XANES is also shown in Fig. 16. For the VtC-XES spectra, VAE, FA,
and t-SNE performed the best (with FA having surprisingly high
accuracies) and closest to the benchmark, while for the XANES
spectra, all methods (besides FA) performed comparably. Finally,
we applied KNN to the spaces for classification Scheme 3
(aromaticity). All methods performed comparatively to each
other as they performed on the Type -classification, and
accuracies were comparable for both the VtC-XES and the
XANES, despite the clear Type 3 separation in the VtC-XES.
However, t-SNE applied on the XANES spectra clearly dominated,
achieving a notable accuracy of 87% for aromaticity. Moreover,
of the three classification schemes for both the VtC-XES and
XANES, the VAE and t-SNE outperformed or matched the
benchmark accuracy 75% of the time. This is extraordinary, as
these reduced spaces were constrained to merely two dimensions.

Some other things to note overall: (1) t-SNE and the
VAE were much more consistent and robust than the linear
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algorithms, whose accuracies greatly depended on both the
chosen dataset and classification scheme and thus seem more
volatile than the nonlinear methods (all KNN spaces can be
viewed in Fig. S7-S12, ESIt); (2) the performance of VAE is
comparable to t-SNE for oxidation state and Type (although not
for aromaticity or finer speciation), but has an additional
benefit in that it is a mapping and can thus be used to
efficiently store future spectra, discussed in more detail below;
and (3) the VtC-XES and XANES had extremely similar overall
categorical sensitivity to electronic structure.

4.3 Summary and outlook

We have focused here on three chemical classification
schemes, determined from clusters in a reduced representation
of the dataset. Although identifying similarities of XANES
spectra via clustering was introduced in Kiyohara et al.,>® which
used a decision tree to interpret the results of hierarchical
clustering of small ensemble of XANES spectra, they could not
directly obtain characteristic information corresponding to
each cluster. On the other hand, our routines created clusters
that were directly interpretable into chemical classes. It would
be interesting in the future to evaluate more fully the VAE and
t-SNE reduced spaces for other potential properties of interest,
such as bond length, that can be used for prediction via
regression. Furthermore, expansion of the dataset to include
ligands other than carbon or oxygen would be another beneficial
investigation, which has been shown to be challenging in other
systems.>® Additionally, the extension of our methods to other
classes of organic and inorganic systems would not only help
to understand the spectral encoding of chemically relevant
information in those other systems but will also further
illuminate the differences, or lack thereof, in the information
content of VtC-XES and XANES.

On a different point, the observation that some of the
dimension reduction routines performed comparably to the
benchmark accuracy indicates that they are ripe, either in their
current condition or with some more tuning, for compressing
high dimensional spectra with minimal informational loss, and
thus provide classification accuracies close to an upper bound,
limited only by the aleatoric variation of the dataset itself.
Moreover, classification accuracies can be further improved
by keeping more dimensions when projecting onto these
reduced spaces, along with more training data, if available,
such as augmenting the dataset to include noise or impurities
to better mimic experimental data. Further tuning of these
methods, especially modelling spectral artifacts and realistic
experimental conditions in the training dataset to increase
robustness, would allow for potential use in encoding high
dimensional spectral data in high-throughput experiments.

As a case in point, recall that in Section 4.1.2, and especially
in Fig. 10, we discussed the regularized, continuous, and
complete nature of the VAE latent space. These characteristics
allow for both the encoding of additional spectra into the latent
space and, conversely, allow the VAE to decode points in the
latent space that do not correspond to previous observations.
We propose that this capability might be useful for the growing
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number of high-throughput XAS experiments that require real-
time data encoding, although the same may of course also hold
for other one-dimensional spectroscopies. For example, in
operando XAS catalysis studies are a high-throughput effort that
observes progressive changes in spectral features and then
seeks to understand the corresponding local chemical changes.
A latent space mapping of such chemical evolution might be at
least qualitatively useful to the experimenter.

In Fig. 17a we show the evolution from goitrin (oxidation
state 2—) to thiophene oxide (oxidation state 0). In Fig. 17b, we
have the decoded spectra from the points in Fig. 17a along a
trajectory corresponding to linear combination of mole fraction
of the two molecules. A more complete depiction of latent
space trajectories is shown in Fig. 17c, where we have over
3000 different combinations of randomly selected species
evolutions. Because the tracks cross over the regions between
the clusters, generating or tracking in this region will be
reliable, whereas the spaces outside these clusters will not yield
any meaningful interpretation to the latent space encoding.

A technical point worthy of mention here is that several
prior ML studies in X-ray spectroscopy have augmented their
training dataset by including linear combinations of basis
spectra, e.g.,, Timoshenko et al®>’ However, PCA and VAE
inherently encode these linear combinations into the reduced
mapping. This attribute is obvious based on how PCA
constructs its components and was verified in the VAE,
where training on an augmented dataset resulted in statistically
the same latent space representation of the pure component
spectra. On the other hand, properly including linear
combinations into a t-SNE training set would result in a multi-
variate t-distribution and completely detract from the purpose
of applying t-SNE - obtaining clusters and identifying simila-
rities. Moreover, our dataset included enough variation of our
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Fig. 17 As shown in (a), the evolution from goitrin (oxidation 2—) to
thiophene oxide (oxidation 0). (b) The linear combination of the spectra
of thiophene oxide (top) and goitrin (bottom) that correspond to the points
along the track in (a). (c) Tracks of 3000 different species evolutions.
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system of interest that we did not need to augment our training
set to improve results.

5. Conclusions

Using a large family of sulphorganic molecules as a test case,
we have performed a comprehensive survey of dimensionality
reduction via unsupervised machine learning (ML) methods
applied to X-ray absorption and X-ray emission spectroscopy as
a means toward chemical classification. In this paper, we come
to three main conclusions.

First, despite all algorithms being restricted to two
dimensions, the unsupervised ML methods showed good
accuracy for most of the relevant chemical information, with
t-SNE somewhat outperforming the supervised benchmark and
the other methods comparable to it. Particularly, t-SNE appears to
have surpassed the other methods exactly because it retains the
similarity measures initially calculated in the original high-
dimensional space of the training data set, avoiding the lossy
compression inherent to methods that map first and compare
second.

One might ask if PCA or VAE could find improved perfor-
mance by increasing their reduced dimensionality, where these
two methods have the benefit over t-SNE of providing actual
mapping functions, and thus they can more naturally be used
for real-time interpretation of experimental results. Fig. S13
(ESIt) shows the accuracies for PCA, VAE, and t-SNE for a latent or
embedding dimension of three and four. This figure exemplifies
the superiority of t-SNE at low dimensions, such as two or three,
exactly because it solves the “crowding problem”®® that results
from the curse of dimensionality. However, at four or more
dimensions, t-SNE is not only more comparable to the VAE -
the crowding problem becomes less of an issue then - but the
computational cost greatly increases. Specifically, an exact
solution (instead of the Barnes-Hut approximation) optimization
algorithm must be used for dimensions greater than or equal to
four. However, the slight increase in accuracy for all methods
while increasing the reduced dimension (at least to four) suggests
further tuning could yield even greater classification accuracies
for all models. These results suggest multiple directions forward,
particularly for their use not only across other chemical systems,
but also other one-dimensional spectroscopies.

In Fig. 16, we have shown superior classification perfor-
mance for t-SNE, and as stated earlier, this is likely because
t-SNE performs a comparison between the full, original spectra
prior to dimension reduction via embedding, whereas PCA and
VAE are inherently lossy mappings.

Second, t-SNE not only had superior performance for
classifying aromaticity, but also unexpectedly found new
chemically relevant clusters not seen in any other method,
such as distinguishing finer sub-classes within the aromaticity
of sulphides (Type 1), sulphoxides (Type 4), and sulphones
(Type 5). We see considerable future benefit to combining
highly adaptive unsupervised ML algorithms, such as t-SNE,
in tandem with supervised ML or with structural
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parameterization questions that have to date been only
addressed in XAS using supervised ML.

Finally, the above results allow us to formally quantify and
compare the chemical information content between XANES
and VtC-XES, an issue which has only seen qualitative
discussion. We find that XANES and VtC-XES methods each
have strengths for chemical classification, but that many are
the same, at least for the question of chemical classification of
sulphorganics.
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