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Abstract

The ability to image high-dynamic-range (HDR) scenes
is crucial in many computer vision applications. The dy-
namic range of conventional sensors, however, is fundamen-
tally limited by their well capacity, resulting in saturation
of bright scene parts. To overcome this limitation, emerg-
ing sensors offer in-pixel processing capabilities to encode
the incident irradiance. Among the most promising encod-
ing schemes is modulo wrapping, which results in a com-
putational photography problem where the HDR scene is
computed by an irradiance unwrapping algorithm from the
wrapped low-dynamic-range (LDR) sensor image. Here,
we design a neural network–based algorithm that outper-
forms previous irradiance unwrapping methods and we de-
sign a perceptually inspired “mantissa” encoding scheme
that more efficiently wraps an HDR scene into an LDR sen-
sor. Combined with our reconstruction framework, Mantis-
saCam achieves state-of-the-art results among modulo-type
snapshot HDR imaging approaches. We demonstrate the
efficacy of our method in simulation and show benefits of
our algorithm on modulo images captured with a prototype
implemented with a programmable sensor.

1. Introduction

High Dynamic Range (HDR) imaging is crucial for a
vast range of applications, including automotive vision sys-
tems [27], HDR display [54], and image processing [48, 5].
When capturing natural scenes, which can have an extreme
high dynamic range [48], the level of detail is limited by the
full well capacity and the quantization precision of the sen-
sor. Unfortunately, the dynamic range offered by modern
sensors is far smaller than that encountered in the wild [46],
making specialized sensors or computational photography
approaches to HDR imaging necessary.

Among the many HDR imaging techniques proposed in
the literature, exposure bracketing [32, 11, 39, 21, 19, 22]
and temporally varying exposures [26, 55, 25] can be suc-
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Figure 1: MantissaCam electronically encodes the irradi-
ance incident on the sensor into an LDR image by wrap-
ping the intensity in a perceptually inspired manner (left).
The proposed reconstruction algorithm estimates the HDR
scene from this LDR image (center) and achieves accurate
reconstructions compared to the ground truth (right).

cessful, but fast motion introduces ghosting. Multi-sensor
approaches [3, 38, 60] can overcome this limitation, but are
expensive, bulky, and difficult to calibrate. Existing snap-
shot HDR imaging approaches hallucinate saturated image
detail using neural networks [34, 13, 14, 29, 53], use spa-
tially varying pixel exposures which trade spatial resolu-
tion for dynamic range [45, 43, 44, 64, 20, 56, 4, 35], or
use optical encoding approaches that blur the sensor im-
age [52, 40, 59]. Specialized sensors, for example recording
logarithmic irradiance [30] or floating point extended dy-
namic range values [?] have also been proposed, but these
either trade extended dynamic range for precision or require
additional bandwidth.

Our work (Fig. 1) is inspired by the idea of electronically
applying a modulo encoding of the irradiance on the sen-
sor followed by an intensity unwrapping algorithm [68, 69].
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Figure 2: Log histogram of normalized irradiance values of
all pixels in our training and test sets of HDR images for
all color channels (top). This histogram is highly biased
towards low-intensity values, indicating that irradiance val-
ues of natural images are not uniformly distributed. Yet, the
modulo encoding subdivides this intensity range uniformly
and wraps each of these areas into the available dynamic
range of the sensor, as shown for a 1D ramp (center). The
proposed mantissa encoding wraps the same 1D ramp in
a perceptually more uniform manner in log space, which is
observed as non-uniform wrapping in irradiance space (bot-
tom).

This idea is beneficial over other snapshot approaches, be-
cause it does not degrade a low-dynamic-range (LDR) im-
age, as optical encoding approaches do, it does not hallu-
cinate detail but recovers them, it does not decrease image
resolution, or increase the required bandwidth. As we show
in this paper, there are several downsides to the modulo
camera, as proposed in prior work. Specifically, modulo
wrapping is done directly in irradiance space, which allo-
cates precision and number of wraps linearly in this domain.
However, the human visual system is perceptually approxi-
mately linear in the log-domain, so a conventional modulo
encoding wastes precision for detail that we do not perceive.
Moreover, the irradiance distribution of natural scenes is
heavily skewed towards darker values (see log-histograms
in Fig. 2), so it makes sense to nonlinearly distribute the ir-
radiance wraps in order to minimize their number, because
they have to be computationally unwrapped again.

We address these challenges by proposing a perceptually
inspired modulo-type wrapping scheme that operates in the
log-irradiance domain. This idea intuitively combines the
principles of operation of both log [30] and modulo [68]
cameras. Indeed, the signal we propose to measure is es-
sentially a generalization of the mantissa used by the IEEE
Standard for Floating-Point Arithmetic [23], or the log base
2 of the intensity modulo the well capacity. We demon-
strate that such a log-modulo or mantissa camera allocates
precision in a perceptually meaningful manner and it non-
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Figure 3: Example showing an HDR Gaussian function
wrapped using the modulo and mantissa encoding in an
LDR image. For this example, the modulo encoding
requires more wraps than the mantissa encoding, which
makes its reconstruction via computational unwrapping
more challenging.

linearly distributes the wraps in irradiance space to better
match the distribution of irradiance values in natural scenes
(see Fig. 2, top). This directly leads to fewer wraps of nat-
ural scenes (see Figs. 2, center and bottom, and 3), which
make the inverse problem of 2D irradiance unwrapping eas-
ier to solve. To solve the unwrapping problem, we introduce
a neural network architecture that is more robust than prior
work using graph cut algorithms [68] or other network ar-
chitectures [69]. Finally, we prototype a modulo camera
using a SCAMP-5 programmable sensor [10] which allows
flexible re-configuration of the in-pixel irradiance encoding
in software. These types of programmable sensors are ex-
pected to be widely available in the near future.

Specifically, we make the following contributions

• We introduce MantissaCam as a new snapshot ap-
proach to HDR imaging, combining perceptually mo-
tivated irradiance encoding and decoding.

• We develop a neural network architecture that out-
performs existing unwrapping methods for modulo
cameras and that demonstrates state-of-the-art perfor-
mance with our mantissa encoding.

• We build a prototype modulo camera and show im-
proved results over previous methods.

Overview of Limitations.
The SCAMP sensor we have does not include the log

circuitry needed for capturing mantissa images, but we still
demonstrate the benefits of the proposed reconstruction al-
gorithm on captured modulo images.

2. Related Work
HDR Imaging. The limited dynamic range of conven-
tional camera sensors has been addressed by a number of
computational imaging techniques. Exposure bracketing,
for example, fuses several low-dynamic-range (LDR) pho-
tographs into a single HDR image [32, 11, 39, 21, 19, 22].
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Temporally varying exposures can also be processed to ob-
tain HDR videos [26, 55, 25]. Yet, slight movements in the
scene will create ghosting artifacts, which are challenging
to be removed [61]. Another class of approaches involves
multiple sensors to capture these LDR images simultane-
ously [3, 38, 60]. Although successful, these systems are
expensive, bulky, and often difficult to calibrate.

Several approaches have been developed to estimate an
HDR image from a single input image. Reverse tone map-
ping approaches aim at inverting a tone mapping opera-
tor [6, 41, 49], which is an ill-posed inverse problem. Con-
volutional neural networks can also be directly applied to an
LDR image to hallucinate the HDR image [34, 13, 14, 29,
53]. Neither of these approaches, however, has the capabil-
ity to recover true image details. Bright highlights can also
be optically encoded in an LDR image [52, 40, 59], but this
approach relies on the required deconvolution to clean up
even an LDR scene perfectly to compete with the quality of
conventional sensors, which is challenging. Spatially vary-
ing pixel exposures are a promising direction but, similar to
color filter arrays, they trade spatial resolution for dynamic
range [45, 43, 44, 64, 20, 56, 4, 35].

Among these, our approach to snapshot HDR imaging
is most closely related to the modulo camera [68], which
combines a modulo-type encoding of the irradiance on the
sensor combined with a reconstruction algorithm that solves
a 2D unwrapping problem. A conventional modulo op-
eration, however, makes it difficult to distinguish between
wrapping boundaries and high-frequency image detail. We
introduce a perceptually motivated intensity wrapping tech-
nique for this class of computational cameras, which better
preserves high-frequency image detail and dynamic range,
and we also improve upon existing 2D upwrapping algo-
rithms developed for related tasks.
Unwrapping Algorithms. Phase unwrapping is a problem
often encountered in optical interferrometry, where the sur-
face profile of some optical element or scene can be indi-
rectly imaged as the wrapped phase of a coherent reference
beam. A number of algorithms to unwrap these interfer-
rograms has been developed, as surveyed in [18]. When
working with wrapped intensities of natural images, instead
of optical phase values, the complex interplay of high spa-
tial frequencies and drastically varying light intensity has to
be accounted for. Unwrapping techniques for natural im-
ages has been analyzed [8] and tailored algorithms devel-
oped [28, 57, 58], but these require multiple input images.
Most recently, the UnModNet network architecture was in-
troduced to unwrap a single intensity image with state-of-
the-art quality [69]. Our network architecture improves
upon this method for HDR imaging for modulo cameras
but shows best results when used with the proposed man-
tissa encoding scheme.
Floating point sensors from the early 2000s allow for cap-

turing high dynamic range with multiple sampling [2], [65]
and variations with overlapping integration intervals[1], or
choosing optimum integration time [50]. Floating point
sensors have great potential, however they require addi-
tional bandwidth. Our work reconstructs an HDR image
from a captured image of the same bit depth as a conven-
tional LDR sensor, utilizing the programmability of new
sensors for in-pixel irradiance encoding together computa-
tional post-processing of that data.
Exotic Sensors for HDR Imaging. Specialized sensor
circuits have been developed to support spatially vary-
ing pixel and adaptive exposures [37, 65, 12, 63, 36] as
well as logarithmic [30] or modulo [62, 9, 68] irradi-
ance encoding. Emerging photon-counting sensors can fa-
cilitate HDR imaging but require high-speed readout cir-
cuitry and are best suited for low-light applications [17]
or observe response functions that are similar to logarith-
mic sensors [24]. All of these systems are inflexible, be-
cause they are not programmable. Near-focal-plane sensor–
processors [66] include some amount of computing capa-
bilities in the sensor and related systems have become pro-
grammable [42, 31, 51, 67, 16, 10]. In this work, we use
one of these platforms, SCAMP-5 [10], to prototype mod-
ulo encoding and the proposed neural network–based HDR
reconstruction algorithm experimentally.

3. Perceptually-based HDR Imaging
The MantissaCam framework comprises an electronic

in-pixel irradiance encoding scheme and a neural network–
based decoding algorithm, which solves the 2D unwrapping
problem to reconstruct the irradiance incident on the sensor.
We discuss these aspects next.

3.1. In-pixel Irradiance Encoding

The image formation model of the MantissaCam is

Isensor (x, y) = q (mod (logα (I (x, y)) , Imax)) + η, (1)

where I describes the spatially varying irradiance (i.e., the
target HDR image) on the sensor, Isensor is the measured
LDR sensor image, and η is zero-mean additive Gaussian
noise. The parameter α models a family of logarithmic ir-
radiance response functions. For example, the special case
α = 2 of our encoding scheme is similar to the mantissa
encoding of the IEEE 754 standard for floating point arith-
metic. Sensor quantization is modeled by the function q(·).
Imax is the maximum allowed irradiance value before the in-
tensity wraps. This could be the well capacity of a pixel or
a user-defined value that is slightly lower than that.

3.2. Irradiance Decoding

The proposed decoding scheme is implemented by two
neural networks. The first takes the wrapped sensor image
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Figure 4: MantissaCam pipeline. An HDR scene is imaged by a camera with in-pixel processing capabilities, implementing
the proposed irradiance encoding scheme (left). The resulting LDR sensor image encodes lower irradiance values similar to
a conventional camera, but bright image regions, including the lamp and the reflections on the ground, are wrapped rather
than saturated (center). The mantissa-encoded image is first processed by a network that predicts the wrap edges and then by
another network that predicts the winding number (center right). The per-pixel winding number, together with the mantissa-
encoded image, are used to reconstruct the HDR image (right). The symbols ∆, ◦, and + denote channel-wise Laplacian
operators, channel concatenation, and addition, respectively.

as input and predicts the wrap edges, effectively separating
them from the texture edges. The second network predicts
the winding number (i.e., the number of times intensity has
wrapped) of each pixel from these wrap edges.

To predict either modulo or mantissa wrap edges from a
sensor image, we directly use the “modulo edge separator”
proposed as part of the UnModNet architecture [69]. This
edge separator is a residual-type convolutional neural net-
work (CNN) that takes as input a concatenation of the LDR
sensor image and a Laplacian-filtered copy of the same. We
illustrate our network in Figure 4 and refer the interested
reader to [69] for additional details.

Our second network predicts the winding number for
each pixel, W (x, y), given the wrap edges and the sensor
image as input. For this purpose, features are extracted
from both input images using the lightweight CNN-based
feature extraction layers from [69]. These are fed into an
attention UNet [47] with four downsampling and four up-
sampling blocks, with each downsampling block using a
strided convolutional layer and a residual bottleneck block,
and each upsampling block mirroring it but with the ad-
dition of attention gates. This is a standard neural net-
work architecture, but its application to directly predicting
the winding number of irradiance-wrapped images is new.
Note that this part of our algorithm is substantially different
from the iterative, graph-cuts inspired unwrapping proce-
dure proposed in [69]. Their method aims at unwrapping
the HDR image layer by layer, which is prone to propagat-
ing errors, whereas our approach directly predicts the num-
ber of wraps, i.e., the winding number, using a single pass
through the UNet. We discuss additional details of this net-
work architecture in the supplement and outline the training
procedure of both networks in Section 3.4 and the supple-
ment.

Given the predicted winding number for each pixel as
well as the raw sensor Isensor, we formulate the reconstruc-
tion of the HDR image Ĩ as

Ĩ (x, y) = αIsensor+W (x,y)·Imax . (2)

In our implementation, we choose α = 2.

3.3. Understanding the Relation between Resolu-
tion and Dynamic Range

The theory addressing the ability to perfectly reconstruct
a signal with MantissaCam falls within the framework of
unlimited sampling recently developed in [7, 8]. Here,
rather than formally treating the reconstruction problem,
we attempt to highlight the advantages of a mantissa over
a modulo encoding and develop an understanding of the
tradeoffs between those.

Let us consider the 1D band-limited irradiance function
I(x), with maximal frequency fmax. The irradiance is en-
coded on the sensor by the wrapping function W of the
imaging model:

W : I ∈ R+ 7→ W(I) ∈ [0, Imax]. (3)

In particular, we consider the two wrapping functions:

Wmod(I) = I −W
(
I(x)

)
· Imax, (4)

and

Wmant(I) = logα(I)−W
(

logα I(x)
)
· Imax, (5)

with W
(
·
)

=
⌊
·

Imax

⌋
and b·c being the floor function.

In order to avoid aliasing on our discrete sensor array,
we assume the sampling of I respects the Nyquist sampling
criterion fs > 2 · fmax, with the sampling frequency fs
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related to the inverse pixel pitch Ts = 1
fs

(i.e. the resolu-
tion or pixel density, for instance expressed in line pairs per
millimeter) of the sensor array.
Recoverability of irradiance from modulo and mantissa
encodings To get an intuition about the irradiance fields
W(I) that can be perfectly reconstructed, let us consider
the discretized irradiance I[n] = I(n · Ts) as seen by a
pixel n.

If a wrap ofW(I) occurs within a pixel, information is
lost and it is impossible to reconstruct the incident irradi-
ance field. Therefore, a set of conditions to recover the field
is: {

|W(I[n+ 1])−W(I[n])| ≤ Imax,

|W (I[n+ 1])−W (I[n])| ≤ 1,
(6)

where the first condition derives from the Euclidean Divi-
sion Theorem and makes sure we cannot wrap “within” a
pixel, the second condition allows at most one wrap be-
tween two pixels.

For the modulo encoding those conditions translate into∣∣I[n+ 1]− I[n]
∣∣ ≤ Imax, (7)

and for the mantissa encoding we have that∣∣ logα(I[n+ 1])− logα(I[n])
∣∣ ≤ Imax. (8)

This shows that while the modulo encoding can recon-
struct any irradiance with arithmetic growth of Imax, a man-
tissa encoding can reconstruct a larger class of functions
with geometric growth of Imax.
Dynamic range. For both types of encoding, these results
imply an interesting tradeoff between the dynamic range of
the sensor and its spatial resolution. With two sensors of the
same size, using different pixel pitches Ts and T ′s such that
T ′s > Ts, the sensor with a smaller pixel pitch Ts (i.e., of
higher resolution) can reconstruct faster spatial variations
of irradiance ( Imax

Ts
> Imax

T ′
s

in the modulo case). There-
fore, there is a relationship between the maximum dynamic
range recoverable for a sensor given its resolution. For two
sensors of fixed size with N pixels, the maximum recover-
able irradiance is a ramp starting at pixel n = 0 and ending
at pixel n = N − 1. In this setting, the sensor with mod-
ulo encoding can reconstruct a maximum dynamic range
of DR ≈ 10 log(N · Imax)dB while the one with a man-
tissa encoding can recover a much wider dynamic range of
DR ≈ 10 ·N log(Imax)dB.
Quantization. The ultra-high dynamic range of the man-
tissa encoding comes at the expense of loss of precision.
In practice, no sensor has infinite bit depth but is quantized
to 8–12 bits. As shown in the bottom graphs of Figure 2,
the same number of levels are distibuted on a much wider
range as the winding number W increases. This means a

MantissaCam cannot resolve irradiance with the same pre-
cision ModuloCam can at high irradiance levels—the quan-
tization error is higher for our encoding. Yet, early psycho-
physics studies [15] noted that perceived light intensity is
proportional to the logarithm of the light intensity. Known
as Fechner-Weber law, this implies that the coarser quanti-
zation of MantissaCam at high irradiance levels might not
be perceptually important.

3.4. Dataset and Implementation Details

For a fair comparison, the dataset used to train and eval-
uate our model was the same dataset created by UnMod-
Net [69]. We randomly split the images into 400 training
images and 193 testing images. We used the same process
to augment the training dataset, over-exposing and cropping
images to yield a total of 5,945 training images.

We train our networks in three stages. First, we train the
wrap edge prediction network by itself for 400 epochs, tak-
ing simulated sensor images as input, using a binary cross
entropy loss with the ground truth wrap edge images ob-
tained via simulation. Second, we train the winding num-
ber prediction network by itself for 200 epochs, taking sim-
ulated sensor images and ground truth wrap edges as input,
using a mean-squared error (MSE) loss on the ground truth
winding number. Third, we train both networks end-to-end
for another 200 epochs using the same MSE loss on ground
truth winding number. Additional implementation details
are found in the supplement.

Encoder Modulo Mantissa None
Decoder Graph Cuts [68] UnModNet [69] Ours Ours CNN [13]

PSNR (↑) 21.4 29.5 32.2 37.4 22.7*
Q Score (↑) 48.0 59.1 57.1 60.9 47.7*
SSIM (↑) 0.80 0.79 0.84 0.97 0.72*
MSSIM (↑) 0.82 0.91 0.93 0.99 0.76*
LPIPS (↓) 0.29 0.12 0.10 0.03 —

Table 1: Quantitative evaluation of modulo and mantissa
in-pixel encoding combined with various reconstruction al-
gorithms for simulated data. Our irradiance unwrapping
network performs better than existing algorithms on the
modulo encoding, as evaluated by several metrics. Com-
bined with the proposed mantissa encoding, our approach
achieves state-of-the-art results. We also show the qual-
ity of a CNN working with conventional LDR images us-
ing the same dataset. Values marked with * are reproduced
from [69].
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Modulo MantissaGraph Cuts UnModNet Modulo + Ours Mantissa + Ours Ground Truth

P: 33.75  S: 0.971  Q: 49.02 P: 38.41  S: 0.974  Q: 57.29

P: 30.38  S: 0.994  Q: 60.75P: 25.24  S: 0.990  Q: 56.59

P: 32.63  S: 0.804  Q: 51.07

P: 21.45  S: 0.746  Q: 50.49

P: 19.25  S: 0.610  Q: 50.35 P: 20.54  S: 0.979  Q: 51.04 P: 33.31  S: 0.982  Q: 59.83P: 20.33  S: 0.888   Q: 51.83

P: 23.69  S: 0.911  Q: 56.01

P: 35.38   S: 0.932  Q: 48.04

Figure 5: Evaluation of encoding and decoding schemes in simulation. A conventional modulo encoding wraps the irradiance
of a scene into an LDR sensor image (column 1). A graph cuts–based reconstruction algorithm [68] usually performs poorly
(column 2) whereas the recently proposed UnModNet architecture [69] often estimates reasonable HDR images (column 3).
Yet, the proposed reconstruction framework works best among these methods (column 4). Moreover, the proposed mantissa
encoding scheme (column 5) induces fewer irradiance wraps making it easier to reconstruct the HDR image using our
framework (column 6). Our approach achieves reconstructions closest to the ground truth (column 7). ‘P’, ‘S’, and ‘Q’
indicate the PSNR, SSIM and Q-score for each reconstruction method.

4. Experiments

4.1. Evaluation on Synthetic Data

Figure 5 qualitatively and quantitatively compares mod-
ulo and mantissa encoding schemes combined with dif-
ferent reconstruction algorithms. Using a single modulo-
wrapped image as input, graph cuts perform poorly [68].
The UnModNet network [69] does reasonably well in some

cases, but struggles to reconstruct the large bright parts of
the first example scene and the lights on the bridge of the
third scene. Their iterative unwrapping procedure some-
times fails in stopping to unwrap, which results in extremely
high irradiance values lowering their PSNR and obscuring
fine image detail. Our algorithm achieves a better qual-
ity than these methods on the same modulo-encoded im-
ages, as evaluated by the peak signal-to-noise (PSNR or P),
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structural similarity (SSIM or S), and Q-score of the percep-
tual HDR-VDP-2 [33] metrics. Moreover, when combined
with the proposed mantissa irradiance encoding scheme,
our framework achieves the best results among all of these
methods.

Table 1 also quantitatively compares all of these ap-
proaches using several different metrics on the test set of
the dataset described in Sec. 3.4. In addition to the above
methods, we also include a comparison to a CNN operating
directly on a conventional LDR sensor image to hallucinate
the HDR scene [13]. Not shown are the results from the
combination of the UnModNet architecture with the man-
tissa encoding. The average PSNR was less than 10 dB due
to UnModNet’s iterative unwinding. It is prone to prop-
agating errors and with the mantissa encoding, the errors
are “exponentially” propagated. As shown in Table 1, the
proposed mantissa encoding scheme combined with our re-
construction framework achieves the best results using all
metrics, outperforming the state of the art, i.e., UnModNet,
by almost 8 dB of PSNR.

All simulations with synthetic data are run on noise-free
images to study the upper bound of all of these algorithms.
However, we do include results of simulations with simu-
lated sensor noise in the supplement and also evaluate the
best-performing algorithms on noisy captured data in the
following.

4.2. Prototyping a Modulo Camera using SCAMP-5

We build a physical prototype using an example of
an emerging class of sensors, dubbed focal-plane sensor–
processors [66], that embed small processing circuits inside
each pixel. We use SCAMP-5 [10], whose processing ele-
ments (PE) are programmable in a single instruction multi-
ple data (SIMD) fashion, similar to a GPU where the same
instruction is performed for all processing elements simul-
taneously on some local piece of data. Specifically, a PE
is equipped with a few analog and digital memories. In-
structions can be performed as light is being collected by
the pixel’s photo-sensitive element, thus enabling to change
the way integration is performed, as required for our imple-
mentation. In other SCAMP versions, there is log circuitry
that would allow us to take mantissa images, however, our
version does not have this capability. We are still able to
implement the modulo camera and show the benefits of our
reconstruction method over previous state-of-the-art meth-
ods.

4.3. Experimental Results

We use SCAMP-5 to prototype a modulo camera and
capture HDR scenes outside (see Fig. 6). This sensor
records grayscale images with a resolution of 256 × 256
pixels. For this experiment, we retrained both UnModNet
and our network on modulo images using the same training

Figure 6: Prototype camera capturing an outdoor HDR
scene.

procedure described in Section 3.4, but on grayscale im-
ages captured with SCAMP-5. For this purpose, we col-
lected a dataset of 14,810 modulo and corresponding refer-
ence HDR images using the SCAMP-5 prototype. We split
this dataset into 13,329 training images and 1,481 test im-
ages. No artificial data augmentation was performed. We
trained a single edge predictor network that we used for Un-
ModNet’s iterative unwrapping approach and also as part of
our own pipeline. This network was trained for 150 epochs
using the experimentally captured dataset.

Figure 7 shows captured modulo images, the
tonemapped reconstructions, and a tonemapped refer-
ence HDR image. The captured images include sensor
noise, which is especially noticeable around the irradiance
wraps. The graph cuts and UnModNet algorithms usually
fail to estimate reasonable HDR images, likely due to the
noise in the sensor images. For more recognizable results,
we limited the number of unwrappings for UnModNet to a
maximum of five iterations. Otherwise, the reconstructions
end up completely white. The dynamic range of this scene
is far greater than that of the sensor, yet our method is able
to reconstruct HDR images with high quality.

Table 2 shows the comparison of graph cuts, UnModNet,
and our method averaged over the test set captured with the
SCAMP-5. We compare PSNR, Q score, SSIM, MSSIM,
and LPIPS scores. Across all metrics, ours outperforms pre-
vious methods by a large margin.

With our single-shot HDR image unwrapping method,
we can also capture short HDR video clips, which would
have been difficult to do with conventional HDR methods
like bracketed exposures. In Figure 8, we show a sequence
of modulo-encoded frames that we captured while moving
the camera. We also show tonemapped reconstructions us-
ing UnModNet and our network. Our method unwraps the
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P: 42.06    S: 0.86    Q: 48.60

P: 38.65    S: 0.91    Q: 53.88

P: 35.84    S: 0.85    Q: 53.13

P: 45.82    S: 0.85    Q: 55.72

P: 27.25    S: 0.22    Q: 43.52

P: 22.99    S: 0.23    Q: 42.94

P: 21.50    S: 0.17    Q:41.21

P: 33.51    S: 0.34    Q: 42.02

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 25.34    S: 0.48    Q: 42.53

P: 22.21    S: 0.68    Q: 46.20

P: 15.15    S: 0.50    Q: 45.35

P: 23.03    S: 0.55    Q: 46.20

Figure 7: Experimental results. Using a programmable sensor, SCAMP-5, we capture (noisy) modulo images (left) and
process them using graph cuts, UnModNet, and our network applied to the captured modulo data. Tonemapped results using
all these reconstruction methods as well as a reference HDR image are shown for several different scenes.

modulo video sequence with high temporal consistency and
good quality, while lots of flickering and poor image quality
are observed for UnModNet. Video clips of these and other
example scenes are included in the supplemental material.

5. Discussion

Motivated by the emerging class of programmable sen-
sors, we demonstrate new capabilities they could enable for
the long-standing challenge of snapshot HDR imaging. For

this purpose, we develop a reconstruction algorithm for the
modulo camera that is more robust and achieves better re-
sults than the current state of the art. Moreover, we intro-
duce the mantissa encoding scheme that is inspired by the
human visual system and achieves a favorable tradeoff be-
tween dynamic range, spatial frequency, and precision when
encoding HDR scenes compared to the modulo camera. We
evaluate our system in simulation but also show preliminary
results captured with a prototype SCAMP-5 programmable
sensor, demonstrating the effectiveness of our reconstruc-
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Figure 8: HDR video experimental results. We show 10 frames of two captured modulo video sequences, UnModNet’s
reconstruction, and our reconstruction. Our reconstruction shows temporal consistency and good image quality whereas
UnModNet typically fails to estimate reasonable results.

Encoder Modulo
Decoder Graph Cuts [68] UnModNet [69] Ours

PSNR (↑) 20.3 15.2 33.7
Q Score (↑) 43.7 45.7 53.0
SSIM (↑) 0.27 0.52 0.85
MSSIM (↑) 0.23 0.59 0.95
LPIPS (↓) 0.14 0.12 0.09

Table 2: Quantitative evaluation of modulo in-pixel encod-
ing combined with various reconstruction algorithms for ex-
perimentally captured data. Our algorithm processing the
same modulo images as the others achieves significantly
better results in all relevant metrics.

tion algorithm on the modulo camera. The global shutter
speed in our simulations and with the prototype are always
set to capture the desired level of detail in the dark regions,
relying on the encoder and reconstruction algorithm to re-
cover the brightest parts of the scene.
Limitations and Future Work. Although promising, the

proposed system has several limitations. First, our recon-
struction pipeline improves results over existing work by a
large margin, yet it fails in some cases as shown in Fig-
ure 9. Thus, there is room for further improving the robust-
ness of the algorithm. Second, our mantissa-based encoding
scheme is intuitive and robust, but the question of what an
optimal encoding scheme for HDR imaging or other appli-
cations remains. Some prior work has studied end-to-end-
optimized in-pixel irradiance encoding [35], which could be
a fruitful direction for (un)wrapping-based HDR cameras,
such as ours. Yet, optimizing periodic objective functions,
such as modulo and mantissa-like functions, is not trivial
and requires additional research. Third, the class of compu-
tational HDR cameras we discuss here seeks to improve the
dynamic range of sensors for bright scene parts, but it does
not necessarily improve the black level or performance in
low-light conditions. It would be valuable to study how in-
pixel intelligence offered by programmable sensors could
help imaging in low-light scenarios, although this is beyond
the scope of our work. Fourth, in our experiments we ignore
the effect of the color filter array (CFA), primarily because

9



Ground TruthMantissa + OursModulo + UnModNet

Figure 9: Limitations. Challenging areas for unwrapping
often include regions with high spatial detail and wrapping
or dense edges where it may be difficult for the networks
to differentiate between wrap and texture edges. While our
method is able to better reconstruct some of these areas than
a modulo camera with the UnModNet algorithm, some arti-
facts remain.

our prototype is grayscale.
Furthermore, our SCAMP-5 prototype has many hard-

ware limitations, including a high read noise level, low
pixel fill factor, low resolution, lack of color filters, and
a challenging software interface. Improving these aspects
with better circuit design, 3D fabrication techniques, and
improved firmware engineering could make this or related
platforms better and more accessible to the computational
photography community. The programmable sensor is a
valuable tool in early experimentation. Ultimately, it could
be replaced by a specialized CMOS image sensor device,
implementing, in hardware, the optimized version of the
mantissa-like encoding.
Conclusion. The emerging class of programmable sensors
enables in-pixel intelligence, offering new imaging capa-
bilities for computational photography systems. While our
system demonstrates a new co-design of in-pixel irradiance
encoding and decoding for snapshot HDR imaging, many
other applications in computer vision, photography, and au-
tonomous driving could be enabled by this platform. Our
work takes first steps towards the vision of adaptive and
domain-optimized computational cameras.
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Supplemental Material
MantissaCam: Learning Snapshot High-dynamic-range Imaging with

Perceptually-based In-pixel Irradiance Encoding

S1. Pipeline Details
S1.1. Mantissa Dataset creation

There are several ways to encode the mantissa. When
working with synthetic data, the simplest way is to just take
the log of the signal and then take the modulo of the re-
sulting value. Recall log of anything below 1 is a negative
value, which would not be conceivable with the hardware.
Instead, only after the pixel saturates do we take the log to
simulate the mantissa. When we saturate the pixel, the sub-
sequent wrap will require twice the intensity to wrap again.
To create the training dataset, we create the mantissa image
and the corresponding winding number image. For each
pixel ij,

mantissaij =

{
Iij , if Iij < Imax

logα(Iij)%Imax, otherwise.
(1)

winding numberij =

{
0, if Iij < Imax⌊

logα(Iij)
⌋

+ 1, otherwise.
(2)

where % denotes the modulo operation and b·c denotes the
floor function. For our dataset and experiments, we set
Imax = 1 and α = 2.

S1.2. Network Architecture

In this subsection, we describe the architecture for the
single pass winding number prediction network (also see
Figure S1). The extracted edges from the edge prediction
network, along with the mantissa image, are fed into the net-
work via feature extraction by a 7 × 7 convolutional layer,
an instance norm, ReLU, and a non-local block for the ex-
tracted edge features. These images are then concatenated
and sent through a squeeze-and-excitation block to perform
dynamic channel-wise feature recalibration. The base net-
work is an attention unet, pioneered by Oktay et al. [2]. The
backbone is the U-Net where the expanding path has atten-
tion gates added, along with the skip connections. Skip con-
nections allow features extracted from the contracting path
to be used in the expanding path. The attention block places
more emphasis on the features of the skip connections.

S2. Training Procedures
S2.1. RGB training on HDR images

For training our network for RGB, we trained the edge
network for 400 epochs on the synthetic data at a learning

rate of .0001 using an ADAM optimizer in Pytorch. From a
dataset of 593 images, we randomly split it into 400 train-
ing images and 193 test images. We augment the training
images by scaling the HDR image and calculating the cor-
responding mantissa and winding numbers.

S2.2. Training Procedure for SCAMP-5 Prototype

We retrain the edge prediction network for the captured
grayscale dataset as described in the paper. Both UnMod-
Net and our method use the same edge prediction network.
The other parts of the respective pipelines are retrained on
the captured dataset using a similar procedure as used for
the synthetic data described above.

S2.3. Baseline Comparison

Graph Cuts Graph Cuts was implemented following the
original ModuloCam paper [4] using the same custom po-
tential function. Reaching out to the authors confirmed the
method, which can be successful for some clearly wrapped
modulo images, however requires delicate parameter tun-
ing for each of the many layer unwrappings of each image.
We chose a set of parameters to best unwrap the whole set.
PSNR, SSIM, and MSSIM scores were comparable to those
found in UnModNet [5] when they implemented the MRF
algorithm.

Modulo Encoding with UnModNet We retrained Un-
ModNet, the state of the art for unwrapping modulo images,
with the same training process and same dataset as in [5]
and results were comparable to those reported in the paper.
In areas of dense wrappings, the pipeline struggles to stop
unwrapping, leading to patches of white.

Mantissa Encoding with UnModNet One of our base-
line experiment is to use the pipeline of UnModNet with
the forward imaging model of MantissaCam. We trained
the pipeline using the same training procedure as described
above. We noted the layer-by-layer unwinding did not work
well with the reconstruction from the mantissa encoding as
errors in winding number manifest in exponentially bad er-
rors. Indeed, missing a wrap results in much worse errors
in MantissaCam (because of the exponential function used
when reconstructing) than in ModuloCam, resulting in huge
artifacts. Besides, the nature of the layer-by-layer unwrap-
ping is prone to propagating errors.

Modulo Encoding with Our Network To combat propa-
gation of errors in unwinding, we directly predict the wind-
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Figure S1: Attention UNet architecture of the winding number prediction network.

ing number in a single pass through an attention-unet in-
stead of predicting a mask. Again, we train using the same
training procedure as UnModNet. Results are promising,
however, the network still struggles when the modulo image
has very tight wrappings (of the order of 1–2 pixels width).

Mantissa Encoding with Our Network Introducing the
mantissa allows us to spatially spread out the wraps as we
get to higher and higher irradiance levels. This leads to
preservation of more detail. Results comparing these meth-
ods, excluding the UnModNet for the mantissa, are shown
in the paper and in the additional figures in Section 4.

S2.4. Additional Implementation Details

We compare the full reconstructed HDR image with the
ground truth HDR image to calculate PSNR and Q-Score
(2). We then tonemap both the ground truth and the pre-
dicted HDR images, all using the Reinhard Algorithm with
gamma = 1, intensity = 1. The tonemapped images are then
compared to calculate SSIM and MSSIM values. Inference
time for our method is much faster than for the UnModNet
or graph cuts due to the single pass architecture, as opposed
to the iterative unwrapping that can unwrap as high as the
default of 15 max iterations.

Figure S2: my caption of the figure

S3. Additional Details of Experimental Results
Currently, mantissa images cannot be directly captured

in SCAMP-5. However we implemented a procedure on
SCAMP-5 to capture modulo images as described in the
main paper.

We also implemented a bracketed exposure procedure di-
rectly on the camera in order to get reference HDR images.
Exposure bracketing is performed by capturing 5 images
doubling the exposure time between each exposure, starting
from a configurable short exposure time.

S4. Additional Results
See Figures S3 and S4 for additional results. From left

to right, each row shows the modulo image, the graph cuts
method, UnModNet + modulo, Ours + modulo, the man-
tissa image, Ours + mantissa, and the ground truth image.
All tonemapped images follow the tone-mapping described
in Section 3. Additionally, we performed a study on the
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effects of noise. Our networks and comparisons were not
trained on noisy images, so as we increase additive Gaus-
sian noise, the PSNRs decrease, as shown in figure S2.
However, if the networks are trained with real data, they are
able to capture the effects of noise, as demonstrated by the
results from our reconstruction algorithm on the captured
images with our prototype. Figures S5–S9 show additional
results for captured data with the SCAMP-5.
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Modulo Image
 

Graphcuts + Modulo
 P: 26.7 | S: 0.81 | Q: 48.72

UnModNet + Modulo
 P: 29.1 | S: 0.87 | Q: 59.15

Ours + Modulo
 P: 29.21 | S: 0.91 | Q: 52.31

Mantissa Image
 

Ours + Mantissa
 P: 37.69 | S: 1.0 | Q: 52.44

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 22.66 | S: 0.91 | Q: 46.37

UnModNet + Modulo
 P: 20.26 | S: 0.95 | Q: 58.97

Ours + Modulo
 P: 31.56 | S: 0.95 | Q: 53.96

Mantissa Image
 

Ours + Mantissa
 P: 32.02 | S: 0.97 | Q: 58.99

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 21.38 | S: 0.78 | Q: 52.06

UnModNet + Modulo
 P: 12.04 | S: 0.87 | Q: 53.6

Ours + Modulo
 P: 24.69 | S: 0.91 | Q: 54.73

Mantissa Image
 

Ours + Mantissa
 P: 24.04 | S: 0.96 | Q: 52.95

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 17.88 | S: 0.96 | Q: 46.63

UnModNet + Modulo
 P: 13.03 | S: 0.85 | Q: 49.83

Ours + Modulo
 P: 22.16 | S: 0.9 | Q: 47.76

Mantissa Image
 

Ours + Mantissa
 P: 27.01 | S: 0.99 | Q: 52.18

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 32.2 | S: 0.64 | Q: 48.92

UnModNet + Modulo
 P: 25.09 | S: 0.99 | Q: 56.76

Ours + Modulo
 P: 38.26 | S: 0.96 | Q: 58.07

Mantissa Image
 

Ours + Mantissa
 P: 42.86 | S: 0.98 | Q: 61.27

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 16.25 | S: 0.7 | Q: 38.73

UnModNet + Modulo
 P: 11.78 | S: 0.71 | Q: 47.38

Ours + Modulo
 P: 20.64 | S: 0.85 | Q: 42.72

Mantissa Image
 

Ours + Mantissa
 P: 31.39 | S: 0.99 | Q: 57.06

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 24.29 | S: 0.86 | Q: 53.69

UnModNet + Modulo
 P: 24.16 | S: 0.97 | Q: 48.47

Ours + Modulo
 P: 25.33 | S: 0.89 | Q: 46.96

Mantissa Image
 

Ours + Mantissa
 P: 33.7 | S: 0.98 | Q: 54.61

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 14.15 | S: 0.78 | Q: 46.01

UnModNet + Modulo
 P: 14.16 | S: 0.78 | Q: 48.68

Ours + Modulo
 P: 26.21 | S: 0.91 | Q: 53.36

Mantissa Image
 

Ours + Mantissa
 P: 27.16 | S: 0.96 | Q: 58.58

Ground Truth Image
 

Figure S3: More results showing the comparison between different baselines and encodings. Ours + mantissa is better able
to keep details in the high intensity areas. PSNR (P), SSIM (S), and Q-Scores (Q) are shown about the reconstructed images.
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Modulo Image
 

Graphcuts + Modulo
 P: 31.84 | S: 0.78 | Q: 50.16

UnModNet + Modulo
 P: 40.24 | S: 0.96 | Q: 64.04

Ours + Modulo
 P: 39.33 | S: 0.87 | Q: 55.04

Mantissa Image
 

Ours + Mantissa
 P: 45.52 | S: 0.91 | Q: 59.37

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 18.85 | S: 0.68 | Q: 47.64

UnModNet + Modulo
 P: 22.21 | S: 0.81 | Q: 57.76

Ours + Modulo
 P: 25.46 | S: 0.86 | Q: 57.91

Mantissa Image
 

Ours + Mantissa
 P: 25.08 | S: 0.98 | Q: 58.09

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 28.36 | S: 0.77 | Q: 52.03

UnModNet + Modulo
 P: 17.04 | S: 0.91 | Q: 54.87

Ours + Modulo
 P: 31.86 | S: 0.92 | Q: 56.18

Mantissa Image
 

Ours + Mantissa
 P: 32.52 | S: 0.98 | Q: 57.46

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 21.02 | S: 0.73 | Q: 50.03

UnModNet + Modulo
 P: 21.18 | S: 0.79 | Q: 55.18

Ours + Modulo
 P: 31.3 | S: 0.9 | Q: 58.89

Mantissa Image
 

Ours + Mantissa
 P: 30.68 | S: 0.98 | Q: 59.85

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 20.76 | S: 0.48 | Q: 47.63

UnModNet + Modulo
 P: 17.95 | S: 0.95 | Q: 51.0

Ours + Modulo
 P: 23.47 | S: 0.92 | Q: 54.69

Mantissa Image
 

Ours + Mantissa
 P: 29.13 | S: 0.97 | Q: 56.03

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 20.52 | S: 0.86 | Q: 49.72

UnModNet + Modulo
 P: 23.64 | S: 0.93 | Q: 51.17

Ours + Modulo
 P: 21.69 | S: 0.94 | Q: 53.34

Mantissa Image
 

Ours + Mantissa
 P: 25.9 | S: 0.95 | Q: 55.45

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 28.13 | S: 0.76 | Q: 50.67

UnModNet + Modulo
 P: 31.72 | S: 0.99 | Q: 59.65

Ours + Modulo
 P: 31.82 | S: 0.94 | Q: 57.44

Mantissa Image
 

Ours + Mantissa
 P: 36.59 | S: 1.0 | Q: 60.16

Ground Truth Image
 

Modulo Image
 

Graphcuts + Modulo
 P: 14.55 | S: 0.75 | Q: 46.49

UnModNet + Modulo
 P: 33.6 | S: 0.45 | Q: 61.1

Ours + Modulo
 P: 32.14 | S: 0.84 | Q: 58.28

Mantissa Image
 

Ours + Mantissa
 P: 34.71 | S: 0.98 | Q: 60.73

Ground Truth Image
 

Figure S4: More results comparing the different reconstruction and encoding methods.

18



P: 44.74    S: 0.90    Q: 51.57

P: 38.37    S: 0.94    Q: 54.00

P: 37.39    S: 0.88    Q: 53.78

P: 41.76    S: 0.95    Q: 53.52

P: 33.53    S: 0.38    Q: 44.41

P: 25.45    S: 0.43    Q: 45.23

P: 17.66    S: 0.13    Q: 41.93

P: 26.07    S: 0.28    Q: 46.14

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 27.57    S: 0.56    Q: 46.96

P: 25.72    S: 0.83    Q: 49.75

P: 16.99    S: 0.46    Q: 47.37

P: 26.66    S: 0.68    Q: 45.66

P: 39.20    S: 0.84    Q: 53.14P: 18.70    S: 0.06    Q: 42.52 P: 19.90    S: 0.38    Q: 41.53

P: 27.30    S: 0.78    Q: 50.88P: 16.68    S: 0.20    Q: 42.78 P:  7.15    S: 0.46    Q: 47.45

P: 26.44    S: 0.90    Q: 53.06P: 17.20    S: 0.67    Q: 45.67 P:  6.05    S: 0.65    Q: 47.56

Figure S5: Comparisons on captured data.
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P: 45.22    S: 0.81    Q: 55.96

P: 42.30    S: 0.90    Q: 49.53

P: 44.06    S: 0.82    Q: 56.95

P: 39.53    S: 0.81    Q: 51.73

P: 32.64    S: 0.22    Q: 42.31

P: 28.96    S: 0.27    Q: 43.66

P: 28.51    S: 0.24    Q: 42.21

P: 17.73    S: 0.07    Q: 42.98

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 22.34    S: 0.54    Q: 42.64

P: 29.36    S: 0.67    Q: 46.71

P: 17.40    S: 0.50    Q: 47.02

P: 18.88    S: 0.36    Q: 43.18

P: 40.91    S: 0.92    Q: 54.45P: 25.07    S: 0.10    Q: 43.40 P: 26.83    S: 0.48    Q: 42.00

P: 35.84    S: 0.84    Q: 53.13P: 21.50    S: 0.17    Q: 41.21 P: 15.15    S: 0.50    Q: 45.35

P: 42.06    S: 0.86    Q: 48.60P: 27.25    S: 0.22    Q: 43.52 P: 25.34    S: 0.48    Q: 42.53

Figure S6: Comparisons on captured data.
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P: 44.94    S: 0.89    Q: 54.82

P: 29.24    S: 0.80    Q: 52.30

P: 40.90    S: 0.87    Q: 52.84

P: 45.82    S: 0.85    Q: 55.72

P: 22.06    S: 0.09    Q: 42.11

P: 18.82    S: 0.19    Q: 43.24

P: 22.82    S: 0.24    Q: 43.41

P: 33.51    S: 0.34    Q: 42.02

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 22.53    S: 0.38    Q: 48.08

P: 10.02    S: 0.43    Q: 46.01

P: 21.40    S: 0.56    Q: 47.63

P: 23.03    S: 0.55    Q: 46.20

P: 42.19    S: 0.82    Q: 50.13P: 28.80    S: 0.22    Q: 41.94 P: 22.33    S: 0.58    Q: 46.37

P: 42.89    S: 0.85    Q: 56.55P: 30.63    S: 0.27    Q: 41.74 P: 23.75    S: 0.60    Q: 45.00

P: 37.98    S: 0.74    Q: 51.03P: 28.10    S: 0.15    Q: 46.26 P: 20.78    S: 0.39    Q: 45.09

Figure S7: Comparisons on captured data.
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P: 39.05    S: 0.95    Q: 56.15

P: 38.02    S: 0.78    Q: 55.04

P: 37.06    S: 0.88    Q: 54.68

P: 35.34    S: 0.79    Q: 51.83

P: 25.26    S: 0.28    Q: 43.39

P: 30.35    S: 0.48    Q: 50.50

P: 23.06    S: 0.16    Q: 42.48

P: 18.47    S: 0.12    Q: 42.36

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 14.95    S: 0.58    Q: 47.94

P: 20.31    S: 0.69    Q: 49.24

P: 16.91    S: 0.45    Q: 45.94

P: 19.26    S: 0.33    Q: 42.62

P: 41.69    S: 0.90    Q: 48.42P: 28.95    S: 0.27    Q: 43.78 P: 28.64    S: 0.64    Q: 44.40

P: 38.65    S: 0.91    Q: 53.88P: 22.99    S: 0.23    Q: 42.94 P: 22.21    S: 0.68    Q: 46.20

P: 42.96    S: 0.75    Q: 51.66P: 38.65    S: 0.91    Q: 53.88 P: 27.88    S: 0.39    Q: 47.32

Figure S8: Comparisons on captured data.
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P: 38.22    S: 0.82    Q: 52.69

P: 28.01    S: 0.90    Q: 55.79

P: 43.94    S: 0.92    Q: 52.14

P: 39.35    S: 0.86    Q: 53.61

P: 23.56    S: 0.04    Q: 42.18

P: 15.15    S: 0.30    Q: 45.65

P: 32.78    S: 0.25    Q: 42.22

P: 19.13    S: 0.06    Q: 39.78

Modulo Graph Cuts UnModNet Ours Reference HDR

P: 24.23    S: 0.41    Q: 45.43

P:  9.84    S: 0.54    Q: 47.28

P: 29.82    S: 0.67    Q: 44.73

P: 20.22    S: 0.40    Q: 42.20

P: 42.45    S: 0.76    Q: 52.16P: 32.03    S: 0.17    Q: 44.43 P: 23.03    S: 0.39    Q: 46.16

P: 26.35    S: 0.79    Q: 49.69P: 16.26    S: 0.34    Q: 44.81 P:  7.40    S: 0.51    Q: 46.57

P: 45.55    S: 0.95    Q: 52.62P: 30.66    S: 0.24    Q: 44.03 P: 32.94    S: 0.74    Q: 49.18

Figure S9: Comparisons on captured data.
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