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� In-situ process monitoring methods
can create a closed-loop AM process
capable of defect correction and
control, to ensure process stability
and repeatability.

� Integration of monitoring methods
and machine learning in the AM
process can help in continuously
evaluating the quality of material
deposition and developing
intervention methods for correcting
the defects in-situ.

� Simultaneous use of imaging
methods provides a way to study
melt pool dynamics in 3D and detect
sub-surface defects in printed
components with sizes as small as
50 lm.

� When combined with data fusion
concepts, ex-situ validation using XCT
can lead to an in-depth evaluation of
defects, as well as an assessment of
the quality of in-situ monitoring
methods.
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Additive Manufacturing (AM), or 3D printing, processes depend on a user-defined set of optimized pro-
cess parameters to create a component. Monitoring and control of AM processes in real-time can help
achieve process stability and repeatability to produce high quality parts. By applying in-situ monitoring
methods to the AM process, defects in the printed parts can be detected. In this review, application of
both imaging and acoustic methods for the detection of sub-surface and internal defects is discussed.
Imaging methods consist of visual and thermal monitoring techniques, such as optical cameras, infrared
(IR) cameras, and X-ray imaging. Many studies have been conducted that prove the reliability of imaging
methods in monitoring the printing process and build area, as well as detecting defects. Acoustic methods
rely on acoustic sensing technologies and signal processing methods to acquire and analyze acoustic
signals, respectively. Raw acoustic emission signals can correlate to particular defect mechanisms using

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2022.111063&domain=pdf
https://doi.org/10.1016/j.matdes.2022.111063
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ywa201@nyu.edu
mailto:ngupta@nyu.edu
https://doi.org/10.1016/j.matdes.2022.111063
http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes


Y. AbouelNour and N. Gupta Materials & Design 222 (2022) 111063
Defect detection
Signal processing
methods of feature extraction. In this review, representation and analysis of the acquired in-situ data
from both imaging and acoustic methods is discussed, as well as the means of data processing. Ex-situ
testing techniques are introduced as methods for verification of results gained from in-situ monitoring
data.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In an Additive Manufacturing (AM) process, a computer-aided
design (CAD) file is created and sliced for manufacture by a
layer-by-layer material deposition process. AM has proven to be
a flexible and cost-efficient technique. It eliminates many con-
straints that are imposed on geometry, material, and time by con-
ventional manufacturing methods. As the adoption of AM methods
in industrial scale production increases, the need to address the
consistency and efficiency of these technologies has emerged.
Some studies have focused on making the process more energy-
and resource-efficient by recycling excess printing material, reduc-
ing waste, and reducing resource consumption [1–4]. This review
focuses on monitoring techniques to track, analyze, and limit
defects that occur in AM.

In-situ monitoring methods have been applied to all seven AM
classes, as categorized by the ASTM F42 standard, to better under-
stand the events that occur during an AM build. In-situ, or in-
process, monitoring, offers a resourceful way to track and control
the print quality by enabling defect detection, reducing material
wastage, and providing a means of defect correction [5–7].

For print quality control, AM processes depend on a user-
defined set of optimized process parameters such as printing tem-
perature, laser power, printing process speed and sample orienta-
tion. They are also affected by external factors like the quality
and consistency of the filament or binder, impurities in the feed
powder, vibrations in the system, or power surges [8]. The depen-
dence of AM on a number of internal and external factors decreases
process stability and repeatability, which can lead to defect forma-
tion in the printed part. Defects can form either on the surface of
the geometry, in the sub-surface, or internally, affecting the part’s
integrity and mechanical properties. Surface defects appear on the
top layer of the print. Sub-surface defects occur at � 1–500 lm
below the top layer of the print. They can be visualized in-situ
due to the penetration of light in the region of interest (ROI) and
reflection back to the monitoring device, as gathered from various
articles reviewed in this work. Internal defects occur at
depths > 500 lm from the surface. Both sub-surface and internal
defects can appear in different forms such as pores, voids, or inter-
nal cracks in the process zone. These will be defined in more detail
in Section 2.

Integration of monitoring methods in the AM process can help
in continuously evaluating the quality of material deposition and
developing intervention methods for correcting the defects as soon
as they start to evolve. The optimization of in-situ monitoring
methods has benefited greatly from research conducted to monitor
the consolidation of the feed material in the build area for under-
standing and analyzing the effects of process parameters on AM
build quality (see Tables 1 and 2). The focus of recent research
has been on gathering critical information about defect formation:
events leading up to defect formation and after continuation of the
print [9]. Furthermore, current research is geared towards predict-
ing and alternating the process parameters of the machine by inte-
grating Machine Learning (ML) within the in-situ monitoring
system to create a closed-loop control process.

In accordance with the growing widespread interest in in-situ
monitoring for AM processes, authors have continuously reviewed
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and classified the existing literature. A comprehensive review of
in-situ monitoring and metrology of metal-based AM is presented
in [10]. This includes both powder bed fusion (PBF) and directed
energy deposition (DED). Similarly, inclusive reviews of in-situ
monitoring in material extrusion processes are presented in [11]
and [12]. A review based on multi-sensor process monitoring and
data fusion techniques in AM is given in [13]. Other authors
reviewed literature specific to a single AM process and classified
studies based on the utilized methods or outcomes. For PBF, a
recent thorough review based on a classification of in-situ mea-
surement levels is provided in [14], a review presenting a different
classification of in-situ sensing methods and control requirements
is provided in [15], and one based on image processing of acquired
in-situ data is provided in [16]. For DED, in-situ monitoring is cov-
ered in great detail in [17].

Here, a more comprehensive overview of in-situ monitoring in
AM is presented. This review offers a categorization of defects
and defect formation mechanisms based on imaging and acoustic
methods. It also presents a variety of different monitoring and sig-
nal processing methods that can be used in synchrony for in-situ
defect detection, as well as a framework for their simultaneous
use, which has not been presented before.

In this review, in-situ monitoring methods will be classified into
two distinct categories: imaging methods and acoustic methods.
Both offer an efficient, non-destructive testing (NDT) technique
to trace the onset or propagation of sub-surface and internal
defects in components printed using AM processes. Other mea-
surement techniques, such as interferometry, IR spectroscopy,
and impedance testing, have also been used with AM methods
for data collection and process stability analysis. Tables 1 and 2
present an overview of studies in which in-situ monitoring meth-
ods were used in the seven classes of AM. The tables highlight
whether monitoring was done on the surface of the component
or in the sub-surface and internally. As observed in the tables, in-
situ monitoring methods have been used for build area monitoring,
process optimization, and data collection for all AM classes other
than sheet lamination.

In a PBF process, parameters such as behavior of the powder
material in each layer, the laser scanning velocity, energy output,
temperature fields, and oxygen content have been measured and
analyzed to study the melt pool [18–25]. For vat photopolymeriza-
tion, in-situ monitoring has been conducted to study curing condi-
tions and material properties [26–37]. For binder jetting, droplet
sensing and surface defect detection have been performed using
a variety of in-situ monitoring methods [38–47]. In DED, studies
covered experiments on both metal powder and metal wire mate-
rial deposition for analysis of the melt pool and concepts such as
temperature distributions and melting modes during powder
deposition [48–75] and wire deposition [76–79]. Other studies in
DED focused on defect detection and control of part properties
[80–91]. For material jetting, impedance testing has been used
for defect detection [92,93].

For material extrusion, filament bonding failures, material
properties, and part quality have been studied [94–111]. One com-
mon conclusion from monitoring all AM processes is the influence
of process parameters on the printing process. Thus, studying
material properties and metrology needs in AM is a key aspect to
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Table 1
Research studies on in-situ monitoring of vat photopolymerization, binder jetting, DED, material jetting and sheet lamination.

In-situ Monitoring Method Devices Used Monitoring Objective Reference

Vat Photopolymerization
Polymers
IR Spectroscopy; Thermography NIR spectrometer; Pyrometer Chemical composition, temperature [26]
Thermography IR Camera Temperature profiles [27]
Thermography Pyrometer Reaction parameters, monomer structures [28]
Interferometry Mach-Zehnder interferometer; DMD Height of cured parts, curing conditions [29 30 31 32 33]
IR Spectroscopy; Ultrasonic Reflectometry NIR spectrometer; US cell Chemical composition, curing conditions ** [34]
Thermography IR Camera Curl distortion, curing conditions [35]
IR Spectroscopy NIR spectrometer Material perturbation y [36]
X-ray micro-tomography Synchrotron X-ray 3D Imaging Effects of induced defects; Deformation behavior ** [37]
Binder Jetting
Liquid Materials; inks
Visual Imaging Optical camera Droplet speeds [38]
Visual Imaging Optical camera; Piezo sensor Droplet jetting behavior, Defect Detection [39]
Micro-sensing Transmissive sensor Droplet sensing, Defect Detection [40]
Impedance Testing; Visual Imaging T-junction waveguide; Optical camera Droplet sensing, data collection [41 42]
Other Materials
Visual Imaging; Thermography Optical camera; IR Camera Data collection, Defect Detection [43]
X-ray Imaging X-ray imaging system Droplet sensing, droplet analysis [44]
Acoustic Emissions; Quasi-static Indentation AE sensors Failure modes, Defect Detection ** [45 46]
Visual Imaging; Scalar Diffraction Optical camera Defect Detection, quality control [47]
Directed Energy Deposition (DED)
Metal Powders
Thermography; Sensing IR Camera; Optoelectronic sensor Melt pool analysis, temperature distributions, Defect Detection [48 49]
Thermography Pyrometers Melt pool analysis, temperature distributions [50 51 52 53 54]
Visual Imaging; Thermography Optical cameras; Pyrometers Melt pool analysis, temperature distributions [55 56 57 58]
Thermography IR Camera; Pyrometers Melt pool analysis, temperature distributions [59 60 61]
Thermography IR Camera Melt pool analysis, temperature distributions, deposition process [62 63 64 65 66]
Visual Imaging Optical camera Deposition process, temperature distributions [67 68]
Thermography Pyrometers; PSU computer Deposition Process, temperature distributions, defect correction [69 70 71]
Acoustic Emissions Acoustic sensors/transducers Process conditions, quality monitoring, crack initiation ** [80 81 82 83 84]
Visual Imaging Optical spectrometer Composition analysis [85]
Visual Imaging Optical spectrometer Defect Detection ** [86]
Acoustic Emissions Acoustic sensors Powder mass flow rate measurement ** [87]
Acoustic Emissions Acoustic sensors Data collection, Defect Detection ** [88 90]
X-ray Imaging X-ray imaging system Melt pool analysis, melting modes, powder flow rates [72 73 74 75]
Metal Wire
Thermography Pyrometers Melt pool analysis, temperature distributions [76]
Thermography IR Camera Deposition process, temperature distributions [77]
Visual Imaging Optical Spectrometer; Optical camera Deposition process, temperature distributions [78 79]
Visual Imaging Optical camera; 3D scanner Deposition process, in-process control [89]
Acoustic Emissions Pre-polarized Microphone Defect Detection ** [91]
For more information about DED processes, see [10].
Material Jetting
Polymers
Impedance Testing Piezoelectric ceramic (PZT); AE sensors Defect Detection ** [92 93]
Sheet Lamination
No significant in-situ monitoring research to date.

Note: ** indicates the study was conducted for sub-surface or internal measurement.
y indicates the study was done on ceramic materials, not polymers.
‘‘Acoustic sensors” are indicative of piezoelectric sensors only; other acoustic sensors are explicit.
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Table 2
Research studies on in-situ monitoring of PBF and material extrusion.

In-situ Monitoring Method Devices Used Monitoring Objective Reference

Powder Bed Fusion (PBF)
Laser
Thermography IR Camera; Pyrometer Device integration [123]
Visual Imaging; Thermography Optical cameras; Pyrometer Device integration [124 125 126 127]
Visual Imaging Optical cameras Device integration [128]
Visual Imaging Optical camera; Photodiode Melt pool analysis [129 130 131 132 133]
Visual Imaging Optical camera Powder consolidation, powder bed and melt pool analysis [134 135 136 137 138 139]
Visual Imaging Optical camera Melt pool analysis, data collection for machine learning and defect detection [140 141 142 143]
Visual Imaging Optical camera; Photodiode Defect Detection, defect correction [144]
Thermography IR Camera Melt pool analysis [145]
Visual Imaging; Thermography Optical camera; Pyrometer Powder consolidation, melt pool analysis [23 25 146 147]
Thermography IR Camera Melt pool analysis [148 149 150 151 152 153 154 155]
Thermography Pyrometers Powder consolidation [24]
Thermography Thermocouple; Transducer Temperature distributions, melt pool stability [156 157]
Visual Imaging; Thermography Optical cameras; Pyrometers Defect Detection [158 159 160 161]
Thermography; Acoustic Emissions IR Camera; Acoustic sensors Data collection, signal processing, Defect Detection ** [162]
Thermography; X-ray Imaging IR Camera; Optical camera; X-ray imaging Defect Detection ** [20]
Visual Imaging/High-fidelity Video High frame-rate optical camera Melt pool analysis, powder consolidation [22 100 163 164]
Visual Imaging/High-fidelity Video High frame-rate optical camera Melt pool analysis, melting modes [165 166 167 168 169 170 171]
Visual Imaging/High-fidelity Video; Thermography High frame-rate optical camera; Pyrometer Melt pool analysis, data collection and analysis, part quality ** [172]
Visual Imaging High-resolution optical camera; Projector Fringe projection for surface topography measurements [173]
X-ray Imaging X-ray imaging system Melt pool analysis, melting modes ** [73 174 175 176 177 178 179 180]
Visual Imaging; Thermography; XCT Optical camera; IR Camera; X-ray imaging Defect Detection ** [181 182]
Acoustic Emissions Acoustic sensors Density measurements, part quality ** [183]
Acoustic Emissions Acoustic sensors Defect Detection ** [117 170 184 185 186]
Acoustic Emissions Acoustic sensors Data collection, process quality monitoring ** [187 188]
Acoustic Emissions FBG sensor Defect Detection ** [189 190]
Acoustic Emissions Pre-polarized Microphone Defect Detection ** [191 192 193 194]
Acoustic Emissions Pre-polarized Microphone Melt pool analysis, feature extraction [195 196 194]
Acoustic Emissions FBG sensor Data collection, process quality monitoring ** [197]
Interferometry Interferometer (ICI device) Process stability, melt pool analysis ** [198 199 200]
Thermography; Interferometry IR Camera; Pyrometer; Microphone Comparison of sensor characteristics; defect detection ** [201]
Electron Beam
Thermography IR Camera Defect Detection [202 203 204 205]
Thermography IR Camera Parameter and melt pool analysis, surface quality [206 207 208 209 210]
Thermography; XCT IR Camera; CT scanning Defect Detection, defect correction ** [211 212]
Material Extrusion (i.e., Fused Filament Fabrication (FFF))
Visual Imaging Optical camera Data collection, defect detection [94 108]
Visual Imaging Optical camera Part quality, geometry profile [109 110]
Visual Imaging Laser triangulation system Device integration, data collection [95]
Visual Imaging Digital microscopes Defect Detection, defect correction [121]
Visual Imaging Optical cameras; LEDs Defect Detection, data correlation [213]
Thermography IR Camera Emissivity measurement and correction ** [96]
Acoustic Emissions Acoustic sensors Filament breakage (using polymers) [97 98]
Acoustic Emissions Acoustic sensor/accelerometer Data collection, defect detection, process failures ** [99 100 101 102]
Visual Imaging; XCT lCT Tool path prediction [103]
Acoustic Emissions Transducers Filament bonding failures, process inspection [104]
Acoustic Emissions Acoustic sensors; Transducers Filament bonding failures [105]
Acoustic Emissions Doppler vibrometer; Transducer Data collection, defect detection [106]
Thermography; Acoustic Emissions FBG sensors; Thermocouples Residual strain, temperature profiles [111]
Acoustic Emissions Acoustic sensors Defect Detection ** [107]

Note: ** indicates the study was conducted for sub-surface or internal measurement.
Unless otherwise noted, research on PBF processes utilized metal powders as the feed material.
Unless otherwise noted, research on material extrusion processes utilized ABS as the feed material.
‘‘Acoustic sensors” are indicative of piezoelectric acoustic sensors only; other acoustic sensors are explicit.
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understanding the influence of the numerous parameters on the
build quality [112,113].

Three major focus areas of research on AM in-situ monitoring
over the past few years are: (1) integrating methods to monitor
the sub-surface of the printed geometry for defects and shape of
the build area or melt pool, (2) integrating methods to track tem-
perature distributions and acoustic emissions within the printed
part for internal defect detection, and (3) applying ML algorithms
to correct 3D prints in real-time using the data acquired frommon-
itoring methods. The majority of this research has been conducted
on two AM processes, PBF and Fused Filament Fabrication (FFF),
which is a classification of material extrusion processes. These
AM processes will constitute the focus of this review.
2. Defect characterization

A variation in optimum process parameters or the occurrence of
thermal distortion in the system can develop microstructural
changes in the build that can lead to the formation of defects
[114,115]. Generally, any undesired features present in the struc-
ture of a part is termed as a defect. Although the defects can range
from undesired microstructural deviation and geometrical distor-
tions, the present work is focused on only the undesired geometri-
cal features present in the manufactured parts. Types of defects
observed in parts manufactured by AM include pores, voids, cracks,
balling, lack-of-fusion (LoF) voids, delamination, warping, and key-
hole porosity [8,20,108,116–119]. Delamination and warping are
specific to FFF processes, while LoF voids, balling, and keyhole
porosity are specific to metal-based AM processes, such as PBF or
DED. In addition, while delamination, warping, and balling are con-
sidered only as surface defects due to their visibility on the top
layer or outside perimeter of a printed part, all other types of
defects listed above can occur on the surface, sub-surface, or inter-
nal of the part.

Cracking mainly results from thermal and tensile stresses
within the part. Cracks tend to form along grain boundaries [6].
They can appear both during the printing process or in the after-
math due to microstructural changes in the printed part. In
metal-based printing, voids occur due to LoF and trapped gases
Fig. 1. Common print quality classifications in FFF (a) under-
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in the part, which form in metal powder due to the melting process
[119]. In FFF, voids occur due to a variety of reasons, such as under-
fill, incorrect process parameters, or a clogged nozzle [11]. Balling,
or melt ball formation, occurs when molten material forms into
spheres rather than solidified layers due to inadequate laser-
powder bed interaction. Defect formation in PBF and FFF processes
will be discussed in detail to facilitate the understanding of sub-
surface and internal defect detection.
2.1. Defect formation in fused filament fabrication

FFF refers to an extrusion-based AM process in which bulk
material is melted in a chamber by a heat source then extruded
under pressure using a tractor-feed system [120]. Important pro-
cess parameters are the number of outer layers, infill degree, infill
type/pattern, sample orientation on the build plate, infill rate (or
printing speed), layer thickness, and printing temperature. In an
FFF process, the material that is being extruded from the nozzle
must be in a semisolid state to properly bond to the solid structure
[120]. Therefore, the molten material in the nozzle and reservoir
must be maintained at the correct temperature. The temperature
differential between the chamber and the surrounding atmosphere
should be kept at a minimum and the cooling process should be
controlled [96].

In FFF, mechanical stresses are the main driver to defect forma-
tion. They are driven by factors such as process parameters, part
size, and temperature distributions [121]. The higher the heat
transfer between layers, the better adhesion between them, which
limits delamination and warping, leads to smaller voids in the
printed part, and produces parts with better mechanical properties
[122]. Low adhesion can cause internal stresses in the part. Fur-
thermore, when a layer is printed, it undergoes cooling at a certain
rate depending on the blower speed, print material and part size.
Insufficient cooling causes contractions in the deposited material,
which can lead to insufficient material solidification and layer
adhesion [105]. Fig. 1 demonstrates three common print quality
classifications: under-extrusion, good quality (optimal), and over-
extrusion [109]. Under-extrusion can lead to defects such as voids
extrusion, (b) good quality, (c) and over-extrusion [109].
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and delamination while over-extrusion can lead to mechanical
stresses, residual strains, and warping [11,121].

Part orientation on the build plate is also a key parameter that
must be considered. Parts that are printed ‘‘on the edge” have pro-
ven to show the best values of tensile strength, and hence, less pos-
sibility of defect formation [122]. A part’s position on the build
plate also affects the magnitude of developed residual strains and
generated temperature gradients of the part during fabrication
[111]. These are all factors that can affect real-time measurements
(i.e., strain, temperature profiles) obtained using in-situ monitor-
ing methods.

2.2. Defect formation in powder bed fusion

In PBF processes, close control over melt pool behavior is crucial
to maintaining the surface quality and dimensional accuracy of
manufactured parts [214–216]. An understanding of powder prop-
erties is also needed [113,217–219]. Experiments on powder flow
measurements and powder delivery mechanisms in DED processes
have helped in choosing optimum powder flow rates and spatial
powder spread distances [66,75]. Within the melt pool,
microstructural changes can occur due to melting and vaporization
of the powders and substrate, powder motion and ejection, powder
spatter, solidification of the powder or molten material, or changes
in the vapor depression zone, which all may lead to defect forma-
tion [20,164–169,176–178]. Variables such as scanning patterns,
overhang zones, and acute corners can lead to overheating and
bad surface quality [130,220]. High temperatures, rapid heating
and cooling, and large changes in temperature gradients can affect
the energy density of the system, which can lead to defect initia-
tion in the printed part [20,221,222]. Hence, defect formation is
also directly correlated to temperature gradients within the sys-
tem. This theory has been heavily supported by studies of laser
welding and laser cladding processes (also see DED in Table 2 for
laser cladding processes), which are similar in theory and proce-
dure to LPBF processes [72,197,223–227].

Heating of metal powder in the melt pool can be characterized
into conduction-mode melting and depression-mode melting,
which is more commonly known as ‘‘keyhole-mode” melting
[165,174,228]. Conduction-mode melting is driven by Marangoni
convection, and occurs at melting point of the material when the
energy deposited during the heating of a material exceeds heat
conduction capacity. Keyhole-mode melting occurs when the
temperature of the material reaches boiling point due to the inten-
Fig. 2. Correlation between melting regime, ta
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sity of energy density and vaporization. A high melt pool temper-
ature makes powder particles melt faster when they are closer to
a keyhole cavity, or depression zone, which leads to a decrease in
surface tension near the defect. Keyhole-mode melting can form
defects such as voids, weld lines (i.e., voids that form in gap-like
or line-like shapes as a result of the separation and incomplete
reconnection of areas of the melt pool due to keyhole mecha-
nisms), or pores, for which they are known as keyhole porosities.
Typically, conduction-mode melting occurs first, followed by
keyhole-mode melting. The two melting modes have been mod-
elled in literature – one study planted micro-tracers and traced
their movement in the vicinity of the laser-powder bed interaction
using high-resolution synchrotron X-ray imaging [178]. Overall,
melt pool behavior can be attributed to five major driving forces:
(1) Marangoni convection, (2) vapor plume, (3) vaporization
induced recoil pressure, (4) hydraulic pressure, and (5) buoyancy
[178]. This will be discussed more in Section 3.2.3.

In-situ and ex-situ NDT have been integrated in LPBF processes
to better understand melt pool behavior. In different studies,
researchers have used monitoring systems to track spatter ejection
behavior and vapor depression due to overmelting, which has led
to numerous conclusions about the melt pool
[116,163,164,166,168,171,228]. Two kinds of spatter phenomena
are characterized to occur in the melt pool: (1) droplet spatter,
which is due to the convective transport of liquid or vaporized
metal out of the melt pool, and (2) powder spatter, which is caused
by non-metallic powder particles blowing away from the melt
pool. Overall, the ejection behavior of the droplet column of the
melt pool affects the protrusion of the melt track.

During the laser melting process, a vapor plume cloud is formed
perpendicular to the vapor depression wall due to the natural
direction of the laser beam on the powder bed. As demonstrated
in Fig. 2, the metal vapor expands impacting the rear wall of the
depression and leading to the formation of spatter ejection. Spatter
ejection in turn limits formation quality and leads to microstruc-
tural changes in the part, which can negatively impact the part’s
mechanical properties, such as tensile strength and yield strength
[168]. Under different melting conditions, spatter behavior can
be explained by considering laser heated zones (LHZs) and the cor-
relation between specimen and spatter positions on a build area.
Compared to laser spot size, LHZs and surrounding areas affected
by spatter ejection can be quite large, as demonstrated by the ran-
domness in spatter ejection in Fig. 2. Hence, monitoring of sur-
rounding areas of the LHZ is required in addition to the LHZ
il depression, and spatter ejection [164].



Y. AbouelNour and N. Gupta Materials & Design 222 (2022) 111063
itself. Furthermore, as seen in Fig. 2a, spatter behavior can be plot-
ted and tracked using image-processing methods and statistical
descriptors [116,166].

Overall, defect formation is heavily influenced by process
parameters and melt pool characteristics. For example, high tensile
residual stresses and fluctuations in energy density in the part are
correlated to increasing scanning depth and scan rate
[19,214,222,229,230]. Therefore, process parameter optimization
and energy density control can limit microstructural changes that
occur in manufactured parts, and hence, mitigate the formation of
melt track defects [164–167,178]. One thorough review classifies
three key defects in relation to process parameters [5]. As seen in
Fig. 3, keyhole porosity appears in the high power and low velocity
region of the graph, while LoF voids appears in the low power and
high velocity region [5,230]. Balling appears in the region of high
power and high velocity.

Process parameter adjustment and optimization provides an
approach to mitigate defect formation. For instance, LoF voids
can be mitigated by reducing scan line spacing and layer thickness.
A second approach recommends increasing laser power or reduc-
Fig. 2a. Spatter droplets (red) with respect to a LHZ (black) [166]. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. Processing parameter influence on different types of defects in LPBF, adapted
from [5].
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ing laser velocity [5,230]. Keyhole porosities can be mitigated by
reducing laser power. PBF may itself also act as a metallurgy
method to improve the mechanical properties (i.e., ductility and
ultimate tensile strength) of metallic materials due to the effects
of process parameters [231]. Nevertheless, process parameter opti-
mization may only be applicable, or necessary, at specific locations
in a layer or particular instances during the print. Therefore, one of
the main goals of in-situ monitoring is to determine the appropri-
ate spatial and temporal locations for which real-time process
parameter adjustments can mitigate defect formation.
3. In-situ monitoring for defect detection

As demonstrated in Table 2, imaging and acoustic methods have
been extensively used for in-situ sub-surface and internal defect
detection in PBF and FFF. These methods, as well as others used
for surface defect detection, will be discussed in detail including
capabilities, devices used, feasibilities, objectives, and results.
Table 3 provides an outline of the devices used for in-situ monitor-
ing of AM processes.

3.1. Data validation strategies

Data validation strategies are used for data correlation and
overlaying, and provide a means to gain insight from the data col-
lected using monitoring methods. Two common strategies have
been used in literature and will be referenced in this review: (1)
Post-Process Validation and (2) A-Priori Identification [18,181].
The former involves data acquisition through in-situ measure-
ments followed by cross-comparison to data already gained from
ex-situ techniques. The latter involves performing in-situ measure-
ments, analyzing the data, and validating it by cross-comparison to
data gained from ex-situ measurements of defects at the same
locations. A-Priori Identification is favored due to the uniqueness
of any individual CAD file and its correspondence to a specific
Table 3
Devices used for in-situ monitoring purposes.

In-situ Monitoring
Method

Devices Used

Visual Imaging Optical Cameras
Charge-coupled device (CCD) Camera
Complementary Metal Oxide Semiconductor
(CMOS) Camera
Photodiode
High-frame Rate Camera
Optical Spectrometer
3D Scanner/Projector

X-ray Imaging X-ray Imaging System
CT Scanner

Thermography; Infra-red (IR) Camera
Temperature

Measurement
Pyrometer

Thermocouple
Transducer

Spectroscopy Near-infrared (NIR) Spectrometer
Ultrasonic Spectrometer (US)

Interferometry Inline Coherent Imaging (ICI) Device
Mach-Zehnder Interferometer

Impedance Testing T-junction Waveguide
Piezoelectric Ceramics (i.e., lead zirconate titanate
(PZT))

Acoustic Emissions Piezoelectric Sensors (i.e., AE Sensors)
ICP Microphone
Fiber Bragg Grating (FBG) Sensor
Doppler Vibrometer
Transducer

Other Micro-sensing Transmissive Sensor
Optoelectronic Sensor
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AM build. Cross-comparison of data becomes necessary to under-
stand the accuracy of in-situ measurements. X-ray Computed
Tomography (XCT) is an ex-situ technology that has proven to be
a valuable tool for validation and evaluation of in-situ results. This
will be discussed in more detail in Section 4.
3.2. Imaging methods

Imaging methods entail visual and thermal monitoring, using
devices such as CMOS cameras, CCD cameras, IR imaging cameras,
and X-ray imaging. They offer a non-contact method to measure
thermal flow, thermal distortion, and changes in geometry of a
3D print by monitoring the printing process in defined space and
time [96]. High-speed visible light communication (VLC) and IR
thermal imaging can provide critical information such as surface
melt pool dynamics, thermal signatures, and vapor plume appear-
ance in the printed component. High-speed X-ray imaging can pro-
vide additional information about melt pool dynamics and vapor
depression that cannot be seen by visible light and thermal imag-
ing [20].

When multiple imaging methods are combined along with one
or a series of mirrors, lenses, or fibers, they are referred to as an
optical system. Optical systems are generally categorized into on-
axis, off-axis, or coaxial systems. Early in-situ monitoring experi-
ments provided the basis of device integration around the 3D prin-
ter, and attempted to define such systems [95,123–128]. These
classifications have changed over the years with the development
of new technologies and the integration of different sensors to the
systems. On-axis systems use the optical path of the laser and
scanner mirrors to emit onto the surface [128]. The laser beam is
then focused on the build area for scanning using an f-theta objec-
tive lens. Laser and camera paths are usually directed through mir-
rors or beam splitters/expanders depending on the specific set up
chosen. In off-axis systems, the optical path of the laser and the
camera-based sensor are not on the same axis, as demonstrated
in Fig. 4. Rather, the fixed camera is only limited to a finite area
of the emitting surface.

Pictured in Fig. 5, a coaxial system uses multiple cameras or
diodes with both direct optical paths and paths diverged by scan-
ning mirrors, which makes it dependent on lens specifications. It
can capture adequate surface area for observation [126]. Coaxial
systems allow the sensors to accurately follow the position of the
laser beam throughout the printing process [232]. With the inte-
gration of multiple sensors, they are also useful in providing a com-
promise between temporal resolution, spatial resolution, and cost
Fig. 4. Off-axis optical systems: (a) use of an optical camera and an IR camera for in-sit
focusing lens and an IR camera at a 45� angle through Germanium shielding glass to m
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of sensor. One study suggests a set of design criteria to determine
the field of view (FOV) of imaging methods required in a coaxial
system based on a theoretical approach [144].

Some disadvantages of coaxial systems are their poor bright-
ness and inability to resolve pictures taken at high velocities and
high resolutions. Improvements that have been made to overcome
these challenges focus on creating external lighting for acquiring
high-resolution data [18,19,25,125,126,233]. Lighting strategies
have been studied to determine the optimal location and quanti-
ties of lighting sources in a monitoring system for defect detection
[143]. The layouts of lighting sources were divided into categories
such as bright and dark-field lighting, high- and low-angle lighting,
and location with respect to camera position. It was determined
that high-angle bright-field lighting located on the left side of the
camera was optimal for illumination of the specimen being moni-
tored in a PBF process and more susceptive to image segmentation
[143].
3.2.1. Optical cameras
Optical cameras have been integrated in a variety of different

systems to monitor melt pool behavior. Early studies used CCD
cameras and pyrometers to monitor powder consolidation, part
melting, overhang layers, and temperature distributions during a
Selective Laser Melting (SLM) process [22–25,125,138,146,147]. A
CMOS camera was used in a coaxial system to monitor and design
a photodiode signal controller that tracked melt pool characteris-
tics in a LPBF process and used them as signals [136]. The signal
provided feedback to the system to control laser parameters using
photoelectric signals [19,131,136]. Similarly, one study used two
digital microscopes to monitor print quality (see Fig. 1) and a
closed-loop quality control feedback system to adjust process
parameters based on image texture analysis [121].

Other studies have combined optical cameras and photodiodes
for melt pool analysis [129]. A photodiode can provide high tempo-
ral resolution with little cost [144]. Powder consolidation and pow-
der bed issues have also been examined using optical cameras, and
the melt pool has been monitored to understand melt pool charac-
teristics [134]. Some studies have used optical cameras to collect
data for training ML models [140–143].

CCD cameras have been used to monitor geometry profiles and
surface defects in FFF [94,110]. Similarly, in a LPBF process, a com-
plex optical system was built that utilized a 29-megapixel CCD
camera, three independent light sources, and a series of attach-
ments to collect typical process errors [137]. Images were captured
at an angle with respect to the platform, and therefore, required a
u monitoring of a LPBF process printing a standard dog-bone specimen (b) use of a
onitor a PBF process on a build platform [150].



Fig. 5. Coaxial System with additional lighting. (1) fiber laser, (2) beam expander, (3) laser beam/thermal signal separating mirror, (4) scanner head, (5) F-theta lens, (6)
powder bed, (7) mirror, (8) pyrometer lens, (9) fiber tip, (10) optical fiber, (11) pyrometer, and (12) CCD camera, adapted from [25,126].
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correction from their perspective distortion using a tilt lens and a
shift lens; this reduced the image resolution to � 24 lm/pixel,
from 6576 � 4384 pixels to 4234 � 4234 pixels. An extension tube
was used to reduce the minimum object distance of the lens. Irreg-
ularities of Inconel 625 were inspected and it was concluded that
superelevations and poor support connections are the most critical
errors that occur during the AM process [19,137]. This theory has
since been refuted, as emphasized by research mentioned in Sec-
tions 2 and 3. Best quality surface images were collected when a
light source was placed close to the build area and opposite to
the camera.

In other work, an off-axis two-color pyrometer system consist-
ing of two CMOS cameras (21 lm/pixel resolution) within the
build chamber of a LPBF machine was used to monitor melt pool
characteristics and detect surface defects with 120 lm resolution
[160]. Pyrometry data collected was compared to pores identified
using micro-computed tomography (lCT). Process irregularities
were interpreted from deviations in melt pool temperatures and
it was concluded that the detection of small features is hindered
by sampling frequency [160]. Spatial locations for pores were pre-
dicted using outlier conditions and melt pool locations. The angle
of the pyrometry camera was also found to affect minimum feature
size identification – this has since been proven in research. By com-
parison with outlier melt pools using lCT, pores of 70 lm size
could be identified. Optical cameras and pyrometers have also
been used simultaneously for defect detection in a LPBF process
[158,159,161].

Recently, a Basler optical camera was used in an in-situ moni-
toring system for defect detection in a nickel alloy fabricated by
a LPBF process [181]. More details on this study will be introduced
in Section 3.2.4. For the detection of overmelting, undermelting,
and spatter ejection described in Section 2.2, one study used a high
9

frame rate camera (36 lm/pixel resolution) for in-situ monitoring
of a LPBF process printing Inconel 625 powder [116]. The high
frame rate images, or video volumes, had an imaging window of
1024 � 256 pixels at high resolution, and were analyzed using sta-
tistical process control (SPC) charts. The SPC charts were used to
identify violations in the data as indications of spatter initiation,
pore formation, and anomalies [116].

Other studies utilized in-situ high-fidelity video recording,
which offered both optical and thermal information, to track melt
pool size, melting modes and melt pool behavior, such as spatter
analysis, on the surface of the component [163–169]. High
frame-rate or high-resolution optical cameras can also be com-
bined with other devices. In one study, a high frame-rate optical
camera was used along with a pyrometer for data collection and
melt pool analysis of the sub-surface of a component built using
stainless steel 316L powder [172]. The camera saved 256 � 256
pixels2 video frames with a resolution of 14 lm/pixel. Sub-
surface defects with a depth of � 200 lm were identified
[161,172]. In another study, a high-resolution optical camera and
a projector were used to accomplish fringe projection for surface
topography measurements [173].

3.2.2. Thermography and temperature measurement
Thermography has been used extensively in PBF and FFF pro-

cesses to monitor thermal activity during the print. Thermography
is the analysis of spatial and temporal distribution of thermal
parameters in objects [234]. It is typically performed by capturing
infrared images or thermograms, which are thermal maps in which
the distribution of the infrared thermal radiant energy emitted by
the ROI is represented by a series of colors.

Thermographic devices convert emitted energy from ROI into
images. Thermocouples and pyrometers are used to measure the
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temperatures of distinct objects. They can be categorized as ther-
mography devices due to their use for analysis of temperature in
objects [234]. Pyrometers have high temporal resolutions and are
more sensitive to process deviations than other thermographic
devices, such as IR cameras [201]. Thermocouples have been used
to measure temperature distributions within the melt pool to
determine melt pool stability and correlations between process
parameters [156,157]. Other thermal detectors have been used to
detect inferior part quality by measuring and evaluating properties
such as thermal diffusivity, thermal conductivity, and energy den-
sity [146,150,151].

3.2.2.1. Infrared imaging. IR cameras are generally calibrated for
blackbodies, which means they are heavily dependent on emissiv-
ity values. To provide accurate temperature and imaging informa-
tion, IR cameras must be calibrated for the respective material
being imaged and to the atmosphere of the print [20,96]. IR cam-
eras have been used for various types of melt pool analysis in
PBF processes [148,149,152–155,169]. They have been found to
have better direction-dependent sensitivity compared to pyrome-
ters and are better at detecting interlayer defects in printed speci-
mens in-situ [201].

Accurate IR measurement requires sufficient information about
the material’s radiation heat flux. In general, the sum of the absorp-
tion, reflection, and transmission of radiative energy from a surface
is equal to the total incident radiative flux. Radiosity is the sum of
reflectivity and emissivity from a surface. IR cameras measure
radiosity, which is then converted into images. The emissivity of
a material, or surface, has a big effect on radiosity; therefore, data
from IR cameras must be corrected to reflect the true emissivity of
a material.

Two materials have been widely used in FFF processes in recent
years: Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene
(ABS). To determine the effect of ABS properties on monitoring
capabilities, emissivity values of ABS washers in three different col-
ors – red, white, and blue – were determined and used to correct IR
data points from the IR camera [96]. Adjustments were made to
account for room temperature changes. It was found that there
was a strong correlation between temperature and emissivity of
ABS. At higher temperatures, the emissivity of the ABS parts
Fig. 6. IR camera images of three cubes printed with white ABS filament. Images captured
the printing process. (a) Camera readout, or uncorrected, temperatures; (b) corrected tem
corrected temperatures showing errors present in the results [96].
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decreased for all colors, and white ABS had a lower emissivity than
red or blue ABS as temperature increased. Following these mea-
surements, an algorithm used the results from the white ABS poly-
mer to correct the IR data points in-situ. As seen in Fig. 6, errors of
up to 15 % were found in temperature measurements. This corre-
lates to a difference of 36 �C between camera readout temperatures
and actual temperatures. The procedure for emissivity correction
can be repeated for other materials and build geometries to ensure
feasibility. Different studies have utilized their own emissivity cal-
ibration techniques. A study on an Electron Beam Melting (EBM)
process determined that post-processing analysis of IR intensity
data can be sufficient for emissivity calibration, which can in turn
be used for the approximation of thermal gradients along with
other temperature-related properties [205].

IR cameras can be utilized to determine information about AM
process parameters with the help of emissivity correction tech-
niques. An early study utilized a FLIR Phoenix RDASTM IR camera
and pyrometer in an SLM process to find that the instrument can
capture surface temperatures of the part with < 1 mm resolution
[123]. Tangential speeds of particles travelling forward and back-
ward along their trajectory were estimated. Another early study
utilized an InfraTec Jade III mid-wave IR (MWIR) camera with an
optical resolution of 320 � 240 pixels to determine the relation-
ships between process parameters and melt pool characteristics
in a Selective Laser Sintering (SLS) process [145]. Two experimental
setups were made. The first setup had the IR camera in place of the
x-y scanner head, almost perpendicular to the power bed. An opti-
cal resolution of 1.5 mm/pixel was achieved, and temperature dis-
tribution on the bed’s surface was measured. The second setup had
the IR camera adjacent to the scanner head at a 23� angle from the
normal z-axis, enabling measurement of melt pool temperature at
an optical resolution of 0.35 mm/pixel. Analysis revealed the
dependence of mechanical properties on part orientation. IR cam-
eras have also been used in several EBM experiments for melt pool
and surface quality analysis, as well as process parameter analysis
and modification [202–210].

Recent studies have utilized IR cameras for in-situ monitoring
of AM processes for defect detection. A FLIR SC3000 IR camera with
a spatial resolution of 320 � 240 pixels was used in an off-axis sys-
tem to monitor the vapor plume that formed from the melting of
the printing process in two instances: halfway (3 mm) and at completion (7 mm) of
peratures based on emissivity; (c) temperature difference between uncorrected and



Fig. 7. X-ray imaging system for in-situ monitoring of a LPBF process [177].
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zinc powder in an SLM process [155]. A multivariate control-
charting scheme was used to monitor the ROI statistical descrip-
tors chosen and compare them with stable operating conditions.
The two statistical descriptors used were (1) the temperature of
the ROI and (2) the average intensity of all the pixels belonging
to the ROI. The in-situ monitoring process was successful in deter-
mining the stability of the AM process by detecting out-of-control
conditions. A variation from stable conditions demonstrated pro-
cess instability, which in turn indicated defect formation. Given
that the monitored layers were non-consecutive, an instable condi-
tion can be signaled to the printer in advance, stopping the print
thereafter.

Combined with other monitoring methods, IR cameras can be
used for sub-surface defect detection. One study utilized a FLIR
A65 IR Camera (640 � 512 pixel resolution) along with three
acoustic sensors for sub-surface defect detection in a PBF process
[162]. The combination of two monitoring methods allowed for
the ease of linking AE signals to normal variations in process con-
ditions. Sub-surface defect detection was performed ex-situ, where
AE signals were compared to the cross sections of the printed part.
Through this method, sub-surface defects were spotted at � 200–
500 lm below the surface [162]. This method has the potential
of in-situ monitoring and control of the printing process if it is
combined with an ML algorithm capable of performing the
required data fusion in real time.

Similarly, while experimenting with an EBM process, a combi-
nation of thermography, using a FLIR SC645 IR camera
(640 � 480 pixel resolution), and input analysis through additional
tools, allowed for sub-surface defect detection and real-time pro-
cess control [211,212]. In the first study, IR images and layer infor-
mation that were gathered using virtual instruments from
LabVIEW software were used to determine the parameter modifi-
cations needed to improve part quality [211]. Parameter modifica-
tion was based on the concept of microstructural gradients and
grain-size differences in EBM-fabricated parts. For more details
on grain size fundamentals, refer to [211]. ARCAM EBM control
software along with the application of Microsoft Visual Basic
2010 allowed for automatic process parameter changes, and there-
fore, in-situ defect correction. The system focused on mapping of
the coordinates of different elements within the user interface fol-
lowed by mouse click simulation of the chosen elements. Layer
information, such as the part’s average temperature, was used to
change parameters in-situ. However, mouse click simulation pro-
vided parameter modification with a slight time delay. This was
due to two factors: (1) the use of two computing systems, which
led to a � 10 s time delay for each modified parameter and (2) a
three-layer delay for parameter modifications to take effect. If an
application programming interface (API) is utilized with the
ARCAM EBM control software (instead of Microsoft Visual Basic
2010) for direct communication, instantaneous parameter modifi-
cations would be possible. For the detection of instable conditions,
IR images were first transformed from gray-scale images into bin-
ary images, and then image segmentation was performed by
applying a threshold for specific pixel intensities [211]. If any tem-
perature reading is outside of the user-defined temperature range,
then a signal can be sent to the printer to stop the print. In a similar
manner, porosity detection can be achieved by comparing porosity
levels in the part to a user-defined acceptable range for porosity. In
this experiment, spherical defects with sizes of 600–900 lm were
embedded in the print and successfully detected using the men-
tioned procedure.

In the second study, in-situ monitoring and defect correction
was attempted through the comparison of IR thermographs of
the print to results obtained through CT scanning of the printed
component [212]. The CT scanning technology used was capable
of detecting defects as small as 40 lm. Porosities with a size of
11
100–2000 lm were embedded in the part as spheres, triangular
prisms, cylinders, or cubes; some multilayered defects were made
to appear within three to four layers of the print. IR thermographs
of a pixel size of 264.6 lm were collected in-situ. During analysis,
it was found that defects < 600 lm were not detected by the IR
camera. This might have been due to quality and capabilities of
the EBM printer or melting of subsequent layers affecting these
small features [212]. Larger defects (>600 lm) and multilayer
defects were visible in the IR thermographs, as well as CT scanning
results. However, the measured geometry of the embedded defects
between IR thermographs and CT scanning results differed by
about 60 % in area. In-situ defect correction was conducted through
both hot isostatic pressing (HIP) and re-melting of the affected
areas.

3.2.3. X-ray imaging
X-ray imaging is an imaging method that has been used for in-

situ monitoring and control of print quality by gathering informa-
tion about sub-surface defects and other unique characteristics of
the melt pool. An influential AM process system design is key to
allow for real-time process monitoring of the build area using X-
rays [235]. Note the distinction between X-ray imaging (radiogra-
phy) for in-situ monitoring and XCT for ex-situ analysis: X-ray
imaging is a method used to monitor the print in real-time while
XCT is used for post-print analysis. Fig. 7 illustrates a typical X-
ray imaging system used for in-situ monitoring.

High-speed and high-resolution X-ray imaging have been used
to acquire critical information such as melt pool dynamics, melt
pool variation, and vapor depression formation
[20,73,75,174,177,178]. Information about melt pool dynamics
and variations in melting modes can help mitigate defect forma-
tion in an additive manufactured part.

One advantage of X-ray imaging is its ability to identify the
solid–liquid interface in the melt pool and observe changes in
the depression zone, hence its use for melt pool analysis. In one
study, X-ray imaging was used to monitor a LPBF process for melt
pool analysis [177]. The high-speed high-energy X-ray imaging
system used consisted of an undulator-generated pink beam with
the harmonic energy at 24 keV, a detection system to capture the
transmitted beam, a scintillator to convert the X-ray signal to vis-
ible light, and a high-speed camera (2 lm/pixel resolution) to cap-
ture the visible light [176,177]. The system captured X-ray images
of the AlSi10Mg material in the melt pool. ImageJ was used to
reduce noise and enhance contrast of the X-ray images, which
made it possible to identify the solid–liquid interface of the melt
pool in the images. It was found that laser power and scan speed
had different effects on the formation of depressions in the printed
component. When laser power and scan speed were increased
simultaneously, all three melt pool dimensions increased – melt
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pool volume increased by three orders of magnitude – and differ-
ent melting modes were observed. Moreover, energy absorption
of the system increased, which caused the variations in melt pool
modes. As confirmed with other studies as well, laser power and
laser scan speed have greater impacts on melt pool depth and
width, respectively.

Further, flow micro-tracers were mixed with the feedstock
powder for use in characterizing melt pool dynamics using an X-
ray imaging system [178]. It was determined that as the micro-
tracers’ distance from the depression increased, their average and
maximum speeds decreased. As demonstrated in Fig. 8, the tracer
particles provided 3D melt pool dynamics which helped character-
ize the dominant driving forces in each melting mode. Vaporiza-
tion was found to be the main driving force for fluid flow along
depression-zone walls, while Marangoni effect was responsible
for flow movement from high- to low-temperature region on the
melt pool surface. The potential of in-situ X-ray imaging for defect
characterization and detection is apparent with full-field mapping
of melt flow. Phenomenon such as spatter ejection and vapor
plume emission can be identified with X-ray imaging and defect
mitigation is possible with an approach similar to that in [155]
and other studies.

Other studies utilizing high-speed and high-resolution X-ray
imaging to monitor the melt pool during laser melting of metal
powders have obtained similar conclusions [73,174–
176,179,180]. The main focus was characterizing keyhole-mode
melting with great detail by considering the complex flow of the
melt pool during the later stages of laser heating. The addition of
diffraction techniques can give critical information about phase
evolution and lattice contraction [175]. Using XCT for X-ray imag-
ing has also proven to be a vital tool for the detection and evalua-
tion of sub-surface defects. This will be discussed further in
Section 4.1 of this review.
Fig. 8. Melt flow behavior under keyhole-mode melting. (a) X-ray images showing instan
pool. (Refer to paper for more X-ray images of the melt pool in different projection plan
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3.2.4. Simultaneous use of imaging methods
Two or more imaging methods can be combined simultane-

ously for in-situ monitoring and control of an AM process. Com-
bined with data overlaying techniques, they can create a 3D
assessment of melt pool dynamics and temperature gradients to
understand the events leading up to the formation of defects in
the printed component. Currently, data overlaying and data fusion
techniques are in early stages, and research into unified fusion the-
ory is ongoing [13]. However, several studies have successfully
demonstrated the capabilities of this approach.

In one study, simultaneous high-speed IR and X-ray imaging
(Fig. 9) were used to track melt pool dynamics, vapor plume
dynamics, solidification, and powder spatter and ejection, as well
as detect sub-surface detects of Ti-6Al-4 V and pure tungsten in
a LPBF process [20]. An IR camera (Telops Fast M3K) was placed
at two different locations in the printer to capture thermal signa-
tures: perpendicular and parallel to the laser scanning, to provide
top and side views of the part, respectively. The spatial resolution
of this IR camera is dependent on the frame rate: 3.1 and 90 kHz
provide resolutions of 320 � 256 and 64 � 4 pixels, respectively
[20]. The IR camera was calibrated using a modified version of
the Stefan-Boltzmann equation to report data points that reflected
the true emissivities of the plate and powder bed. The pixel size of
the IR detector was 30 lm; each pixel was representative of a
30 � 30 lm area in average temperature. The X-ray imaging sys-
tem was set up in the same manner as [177], but with a harmonic
energy of 25 keV. Four different IR thermal filters were used, each
calibrated with a specific temperature range. Experiments were
conducted with a different combination of parameters: material,
laser power, laser scan speed, IR thermal filter, IR orientation, IR
frame rate, and powder use.

Simultaneous use of IR and X-ray imaging made it possible to
study melt pool dynamics in 3D [20]. Vapor plume dynamics and
taneous liquid flow in the y-z projection plane, and (b) 3D reconstruction of the melt
es) [178].
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spatter ejection were visible at a low temperature range (273–
524 K) in Ti-6Al-4 V using IR imaging as shown in Fig. 10. These
behaviors were invisible in X-ray imaging due to the high density.
When porosities were intentionally formed in the printed compo-
nent due to increased laser power (364 W) and scanning speed
(0.4 m/s), they were tracked at a temperature range of 537–
1567 K with the assistance of X-ray imaging [20]. It was also found
that as IR frame rate increases, a more continuous cooling transi-
tion to the solid phase takes place, which demonstrates a more
accurate thermal profile. Lastly, vapor depression, or a sub-
surface defect, with a size of � 200 lm and a depth of � 150 lm
was present in IR and X-ray images. Scanning with no powder pre-
sent also revealed key thermal features through the IR camera [20].

The synchronization of IR and X-ray images allowed for the
identification of thermal signatures that appeared due to the for-
Fig. 10. (a) IR imaging of Ti-6Al-4 V showing vapor plume, metal spatter, and vapor depr
with no powder used, (b) IR imaging of Ti-6-Al-4 V mid-scan showing powder ejection w
6Al-4 V with a filter allowing 273–524 K showing vapor depression, but not vapor plum
allowing 828–2773 K and laser power of 520 W, adapted from [20].

Fig. 9. Monitoring of an SLM process using simultaneous IR and X-ray imaging [20].
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mation of surface and sub-surface defects, as well as the observa-
tion of surface and sub-surface phenomena that led to the
formation of defects such as keyhole porosities [20]. This technol-
ogy has the potential for defect correction if data can be synchro-
nized in real-time and feed back to the system for parameter
optimization. In another study, a monitoring process utilizing a
FLIR SC7600 IR camera and a Basler optical camera was created
to detect spatial and temporal distributions of sub-surface and
internal defects in CM247-LC nickel-based superalloys [181]. A
Pythagorean geometry was manufactured using a LPBF Renishaw
AM-250 system. The optical camera was used to take pictures of
every layer before and after powder spreading. IR data was only
collected for strategic layers where large changes in the geometry
occurred. The IR camera, with a spatial resolution of 640� 512 pix-
els and a length of 100 lm/pixel, was calibrated based on peak
intensity, rate of decay, and the number of gyrations. Sixteen cubes
of 15 � 15 � 15 mm3 were made, each with a different combina-
tion of process parameters. Laser power was the only parameter
kept constant at 200 W.

Optical images from the Basler camera provided the spatial
location of defects. The distribution of surface porosities and cracks
were found to be spatially variant in different length scales across
the geometries. The top 25 % of build height was found to be more
vulnerable to defect formation. Furthermore, variations of IR ther-
mal signatures were found to show defect formation tendency as
shown in Fig. 11c-j.

Sub-surface defects of 50–1000 lm were visible using in-situ
monitoring methods [181]. Internal defects could be identified
through a combination of in-situ optical and IR imaging and ex-
situ analysis using XCT [181]. Fig. 11a and 11b show a processed
in-situ optical image and an XCT image with corresponding defects
at similar locations. Validation of in-situ feature extraction with
ex-situ data was possible at a depth of 30–50 lm from the surface.
(See Section 4.1 for more details about the use of XCT in this study).
However, the optical camera illuminated inconsistent lighting pat-
terns, asserting the need for additional processing of optical
images. The in-situ process also had a tendency of showing false
positives in the data as some areas in a layer may have been
remelted due to high laser intensities. It was found that local pre-
heating due to laser scan lengths can cause a difference in results
ession (or keyhole porosity) with a filter allowing a temperature range of 273–524 K
ith a filter allowing 537–1567 K and laser power of 364 W, (c) X-ray imaging of Ti-
e, and (d) X-ray imaging of pure Tungsten showing vapor depression with a filter



Fig. 11. (a) XCT data of a printed layer in a CM247-LC nickel-based alloy showing internal defects (b) processed in-situ optical image of the same layer showing sub-surface
and internal defects at multiple locations (c-j) IR data from the same layer highlighting the formation of permanent defects (highlighted by the black arrows) after the passing
of a laser beam [181].
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and can produce several inaccurate representations of defect for-
mations [181]. These aspects must be taken into account to obtain
accurate results.

In a similar monitoring process, in-situ defect detection was
performed using a mid-wave IR (MWIR) camera (100 lm/pixel)
and a CMOS camera (50 lm/pixel) to study the effects of thermal
distortions on the integrity of the print [182]. Results were verified
by ex-situ inspection using lCT. Both cameras were placed on the
top of the machine outside of the build chamber; a beam splitter
was used to allow for both cameras to observe the same area of
the build plate. The specimen, printed using stainless steel powder,
consisted of two adjacent 5 mm3 cubes on top of a
10 � 10 � 5 mm3 base. Layer thickness was 50 lm. The MWIR
camera recorded thermal videos of the print with a frame rate of
900 Hz and a spectral range of 2–5.7 lm. The CT scanner was cap-
able of detecting defects of > 14 lm. Data overlaying of optical, IR,
and lCT data was accomplished through elastix 4.9, an image reg-
istration software [182]. Determination of actual temperature val-
ues was not feasible due to limited camera spatial resolution and
the non-linear relationship between intensity and temperature.
However, areas with defects correlated to increases in optical
and thermal signatures compared to the average signature values.
Additionally, an artificial defect planted in layers 61–74 of the base
was visible in both optical and IR images [182]. This defect was
identified in images of layer 75 of the print, but not in layer 77,
implying that the monitoring process was capable of only sub-
surface defect detection with 50 lm layer thickness. An IR camera
and CT scanning have also been used in another study to detect and
correct sub-surface defects during processing [212]. In-situ defect
correction was achieved by remelting of depressed areas. The suc-
cess of each imaging method in defect area measurement varied:
CT scanning yielded � 60 % smaller defect sizes than IR imaging,
which detected defects > 600 lm in size [212].

Another experiment on a LPBF process that used high-speed
pyrometry and optical imaging to monitor the melt pool drew sim-
ilar conclusions [161]. Thermal emissions were collected from the
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entire melt pool with a 200 lm-core multimode fiber that trans-
ports light to the pyrometer. A high-speed machine vision camera
captured 256 � 256 pixels2 images with a spatial resolution of
17 lm/pixel. The amplitude of signals was used to identify conduc-
tion and keyhole mode transition zones. A relationship between
increasing laser powers, decreasing velocities, and increasing sig-
natures was obtained. Pyrometer signals were correlated to pore
formation using ex-situ X-ray radiography to create a probability
correlation for defect formation [161]. This comparison can pro-
vide a standard for pore creation probabilities in a printed part,
allowing for some predictability of defect formation.

Table 4 summarizes research studies in which sub-surface
defect detection was achieved using in-situ monitoring. These
details include critical information such as defect size and defect
depth from the uppermost surface of the printed component, as
well as information pertaining to the devices used for monitoring
and programming used for data analysis.

3.3. Acoustic methods

Acoustic methods include acoustic emissions (AE) sensing,
ultrasonic measurement through deliberate excitation, and inline
coherent imaging (ICI). AE sensing relies on piezoelectric acoustic
sensors that convert the energy from stress waves, or acoustic sig-
nals, into electrical signals, which are then measured [8]. ICI is a
low-coherent interferometric imaging technique that uses acoustic
interferometers to measure physical characteristics of sound
waves, hence its classification as an acoustic method [198–200].
Due to the low cost of sensing technologies, acoustic methods
can be implemented in a variety of manufacturing environments.

Acoustic signals are measurable in AM and can be studied to
understand the complex dynamics of AM processes [187,188]. By
processing the raw AE signals, one can acquire data corresponding
to internal defect formation in a printed part [190,236]. Signal pro-
cessing methods are capable of providing a source for feature
extraction and information mining from the acquired signals.



Table 4
Results and details of sub-surface defect detection using in-situ monitoring methods.

AM
Process

Devices Used Pixel Length
(lm/pixel)

Resolution
(pixels)

ML/Programming Depth of
Defects (lm)

Defect
Size (lm)

Reference

LPBF High-frame rate optical camera 14 256 � 256 CNN, SeDANN, RNN, SVM, KNN � 200 � 80–400 [172]
Pyrometer – –

LPBF IR Camera – 640 � 512 – 200–500 200–500 [162]
Acoustic sensors – –

EBM IR Camera – 640 � 480 ARCAM EBM Software; Microsoft
Visual Basic 2010

70 600–900 [211]

EBM IR Camera 264.6 640 � 480 – 3-4X layer height > 600 [212]
LPBF IR Camera 100 – elastix 4.9; Amira ZIB Edition 2019 � 100 � 400 [182]

CMOS Camera 50 –
LPBF IR Camera 30 320 � 256 – � 150 � 200 [20]

X-ray Imaging 2 –
LPBF IR Camera 100 640 � 512 Python, ImageJ, IgorPro, MATLAB � 50 50–1000 [181]

Basler Optical Camera – –
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Types of signal processing methods include time or frequency
domain methods, neural networks, waveform-based methods,
clustering, and probability distribution methods
[8,9,98,117,183,237]. The application, advantages and disadvan-
tages of several of these signal processing methods as they relate
to in-situ monitoring in AM will be discussed in detail in
Section 3.3.2.

3.3.1. AE equipment and sensing technologies
In AM, acoustic signals can generate due to internal structural

changes, such as residual stresses, defect formation or crack prop-
agation, or external factors, such as movement of the printer or its
components, electromagnetic interference, turbulent flow of fluids,
frictional noise, impact, or other conditions that create background
noise [8,183,185]. An AE-based monitoring system is capable of
detecting these signals that travel as a result of the printing process
[8,91]. The working principle of an AE sensing system with a piezo-
electric acoustic sensor is demonstrated in Fig. 12. Raw AE signals,
or transient electric waves, are collected by the sensor and then
transported through a series of external devices: a low-noise pre-
amplifier, a data filtering device, an amplifier, a signal processing
unit and finally, a data storage unit. Acoustic sensors have excel-
lent location- and direction-dependent sensitivities, which makes
them highly sensitive to process deviations [201].

Raw AE signals are typically gathered in bulk datasets, and
therefore, are hard to distinguish between [98,184]. To ensure
proper acquisition of AE signals, acoustic sensors can depend on
a certain sensitivity or frequency range to operate. According to
the Nyquist-Shannon sampling theorem, a continuous signal can
Fig. 12. Acoustic Emission sensing through the generation and capture
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be properly sampled only if it does not contain frequency compo-
nents higher than one half of the sampling rate [238]. This is essen-
tial to determine the correct sampling rate for signal acquisition in
order to perfectly transform the continuous signal to discrete val-
ues. In addition to a sampling rate, a threshold limit can be appro-
priately chosen and logged to the sensors. The threshold limit is
particularly helpful in qualitatively representing process malfunc-
tions when the background noise level is either constant or chang-
ing gradually [98,170]. Fig. 13 shows the potential errors
associated to thresholding, where a low threshold limit can result
in premature triggering by the background noise and a high limit
can result in missing the actual signal offset [170]. For more infor-
mation on image thresholding techniques and algorithms, refer to
[239].

By integrating segmentation techniques to the signal acquisi-
tion device, only the desired AE signals are gathered, which pre-
vents the overflow of storage with unnecessary data. The AE data
that is collected can then be correlated to surface, sub-surface,
and internal defects that have formed in the printed component.
Thus, AE has been implemented in AM processes for in-situ moni-
toring [240,241].

Piezoelectric transducers are the most commonly used AE sen-
sors [8]. Piezoelectric AE transducers work based on the piezoelec-
tric effect and the sensitivity and allowable frequency range of
these transducers can be limited such that not all noise is detected
by the device [117].

In addition to piezoelectric sensors, other types of sensors that
have been used for AE are airborne and pre-polarized ICP micro-
phones, Fiber Bragg Grating (FBG) sensors, and heat-resistant
of signals using piezoelectric acoustic sensors, adapted from [8].



Fig. 13. Potential errors in detecting the onset time of AE signals using threshold limit [170].
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transducers [8,101,102,104,106,189,190,191,195,198]. Although
an FBG sensor is constructed inside the core of an optical fiber, it
is considered an acoustic device due to its use for the collection
of acoustic emissions and vibrations during real-time process mon-
itoring: the stress waves created during the AM process result in
the extension and compression of the FBG structure. FBG sensors
have high sensitivity, fast response, signal integrity, and insensitiv-
ity to radio frequency interference [111]. However, they are ther-
mal sensitive and cannot distinguish between the effects of
temperature and strain on wavelength shifts [111].

In one study, an FBG sensor was mounted on a Concept M2
machine (Fig. 14) to detect airborne acoustic signals with high sen-
sitivity [189]. Process parameters were intentionally altered to
form pores in the printed specimens. Signal processing methods
were used to classify the features of the manufactured parts by
grouping the energies of frequency bands. Parts were classified
as low, medium, and high quality depending on the concentrations
of pores in the parts. In another study, FBG sensors were used in
conjunction with thermocouples to determine residual strains of
printed parts in-situ [111]. Temperature values of the extruded
material needed to remain below or close to its glass transition
temperature. It was found that strain profiles are variable and
spatial-dependent throughout the printing process [111].
3.3.2. Signal processing methods
Signal processing methods are required to analyze the signals

recorded during in-situ monitoring of the AM process. Acoustic sig-
nals that are correlated to defect formation can result from internal
structural changes such as deformation, crack initiation, crack
propagation or growth, phase transformations in the microstruc-
ture, pore formation, or delamination [98,117,183,185,189]. These
signals can be filtered, grouped, and analyzed for features to be
Fig. 14. FBG sensor setup for acoustic emission testing [189].
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presented as patterns of defect formation. Feature reduction tech-
niques can be used to decrease computation complexity [196].

Features that affect source localization are ones derived from AE
signal onset time (marked in Fig. 13): duration, number of counts,
rise time, and counts to peak [98]. Other significant AE features
that can be recognized by signal processing methods are ampli-
tude, energy density, duration, peak amplitude frequency, proba-
bility distribution, and Kurtosis. While the majority of signal
processing methods can be applied to both digital image signals
and acoustic signals, this review will mainly cover their use for
acoustic signal analysis.

Examples of AE signal processing methods include time domain
analysis, frequency domain analysis, time–frequency domain anal-
ysis, convolutional neural networks (CNN), K-means clustering,
support-vector machine (SVM), and continuous wavelet transform
(CWT) or wavelet packet transform (WPT)
[8,9,84,90,98,101,159,183,185,189]. Using these signal processing
methods, signal characteristics (i.e., features) can be extracted
and used to derive information about defect formation. For exam-
ple, some defects can produce waveforms that can be both similar
and different in shape, which can be differentiated using CWT or
WPT [9]. Likewise, certain frequency values correspond to certain
defect mechanisms (i.e., balling, lack-of-fusion), which can be
shown using frequency-domain techniques [82,117]. Fig. 15 dis-
plays the range of frequency levels for different types of defects.

In general, it is more beneficial to find a signal with various AE
events as to increase the efficiency of the AE testing process. This
can be accomplished by using signal processing methods for tem-
poral domain analysis. For example, one study was able to track
times of occurrence and locations of AE events by conducting
single-layer modeling tests with data collected using piezoelectric
AE sensors and a wireless sensor node [186]. AE events corre-
sponding to pores and microcracks that formed in the specimen
were detected with an error of a few millimeters [186]. By analyz-
ing the signals in each layer, it was possible to identify all the
defects in every layer of the printed component. Fig. 16 shows
the typical steps for defect detection using in-situ monitoring
and signal processing for feature extraction.
3.3.2.1. Neural Network methods. Artificial neural networks (ANN)
are powerful tools in ML used for predictive modeling, data classi-
fication, data clustering, and adaptive control, along with many
more statistical techniques [242,243]. For example, in one study,



Fig. 16. Typical steps in AE analysis [90].

Fig. 15. AE frequency levels/ranges for different types of defects [8].
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a deep ANN was used for classification of melt pool images cap-
tured using a high-speed camera [242]. Seven specimens were cre-
ated and images of the melt pool were captured from layers 50
through 99. The purpose of the ANN was to classify the images
based on laser power. The ANN was trained by varying the number
of hidden layers and nodes. Classification failure rates of laser con-
ditions were determined. In another study, an ANN was used to
classify signals recorded using an acoustic sensor and to detect
pores in parts manufactured using SLM [184]. Large datasets were
difficult to manage; however, it was concluded that acoustic sig-
nals are suitable to characterize the SLM process.
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Several subcategories of ANNs exist that serve different pur-
poses and require sets of data with varying sizes. One common
subcategory of ANNs in this field is Convolutional Neural Networks
(CNN), which are used specifically for image processing. CNNs can
capture spatial and temporal dependencies of an image, as well as
provide successive projection of the data into higher dimensional-
ity spaces [143,243]. In one study, a CNN was utilized to detect
defects by processing geometrical anomalies to extract features
from an FFF process [243]. A digital single-lens reflex (DSLR) cam-
era was mounted at the top of a printer and directed down towards
the build plate. Images were captured at regular intervals, resized,



Fig. 17. A typical raw AE signal with optimal window sizes of 80 ms (SRW) and
160 ms (LRW) [190].

Y. AbouelNour and N. Gupta Materials & Design 222 (2022) 111063
and analyzed in real-time using the CNN. This model has the
potential to detect defects then pause the printing process.

Another study proposed a multi-defect threshold segmentation
algorithm and several CNNs for defect extraction and classification,
respectively [143]. The segmentation algorithm was used to
extract features from images captured of four types of powder beds
with embedded defects. Different lighting strategies were used as
discussed in Section 3.2. Three common CNNs were used for defect
classification: AlexNet, Visual Geometry Group (VGG)-16, and
Residual Network (ResNet)-50. AlexNet was determined to be the
most effective due to its low algorithm-processing speed and high
classification accuracy [143]. In a similar study, VGG-16 and
ResNet-18, a different variant of a residual network corresponding
to 18 layers, were used to study the implementation of transfer
learning to the two CNNs for reducing training time whenmonitor-
ing different materials for the same defect formation mechanisms
[244]. The four mechanisms studied were balling, LoF voids, key-
hole pores, and conduction-mode melting. Spectrogram images
corresponding to the four mechanisms were computed using
wavelet transforms. ResNet-18 outperformed VGG-16 during clas-
sifications of build quality for two different modes of transfer
learning. Monitoring for defect detection of two different materials
using AE sensing and signal processing methods can be simplified
and optimized using transfer learning.

In a study of a laser welding process, three different CNN algo-
rithms were used to classify conduction welding, stable keyhole
and unstable keyhole melting conditions [227]. In practice of
Post-process Validation, these conditions were first identified
through X-ray radiographic imaging, where mechanisms of key-
hole formation are found to be analogous to those in metal AM pro-
cesses such as LPBF: a balance of recoil pressure and surface
tension is required for stable keyhole formation [227]. AE signals
were collected using an acoustic sensor attached to the samples,
i.e., rectangular plates of an aluminum alloy. AE signatures were
classified with accuracies of 85–99 % with one of the three CNN
algorithms used. It was also possible to distinguish between the
formation and removal of pores [227].

In recent research, two semi-supervised CNNs based on Varia-
tional Autoencoder (VAE) and General Adversarial Network
(GAN) were used for anomaly detection for a LPBF process [193].
Semi-supervised models are useful when it is difficult to have a
balanced dataset between investigated regimes or when only one
class, out of all identified classes, is of interest [193]. In this study,
acoustic signals of defects such as balling, LoF voids, and keyhole
pores were collected using a microphone, and the two CNNs were
trained for defect detection. The VAE- and GAN-based CNNs were
capable of distinguishing between defects with 96 and 97 % accu-
racy, respectively. Note that these two models cannot be general-
ized, as they are dependent on factors such as powder size
distributions and process parameters. For more information on
VAE and GAN, see [193].

A Spectral Convolutional Neural Network (SCNN) provides a few
advantages to the typical CNN [9,189,190]. It is a feature extraction
tool that is able to process data from more complex structures
compared to a CNN while using less computational power. This
is done by using irregular convolutional operations to extract fea-
tures. When complex data is input into the system, this feature
extraction tool can be used to guide the network during the train-
ing procedure, optimizing its structure. A disadvantage of SCNNs is
that categorization is not as accurate [189,190]. For example, sam-
ple quality can often be misclassified when an attempt is made to
categorize. Another disadvantage is the algorithm’s dependence on
the signal acquisition window, or window span. Temporal resolu-
tion, stability, spatial resolution, and sensitivity to noise are all fac-
tors that rely on window span; for example, increasing window
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span can decrease sensitivity to noise, but only at the expense of
temporal resolution [9].

In a study aimed at collecting AE signals off a Concept M2
machine using a FBG sensor, the goal was to locate concentrations
of pores that had formed in the component manufactured using
Cl20ES stainless steel powder [189,190]. Process parameters were
altered to create three build components of different qualities and
porosity content: 0.07, 0.30 and 1.42 % porosity for low, medium,
and high quality, respectively. To overcome the disadvantages of
SCNNs, signals were collected in two running windows: a short
running window (SRW) and a long running window (LRW)
[189,190]. This allowed the SCNN to analyze data from both win-
dows simultaneously. Graphical representations were created for
both a SRW and LRW, which were measured in milliseconds
(ms). The simultaneous use of two running windows allowed
stable analysis of the presence of noise. As displayed in Fig. 17, this
also helped obtain optimal window sizes: 80 and 160 ms for SRW
and LRW, respectively.

Using the SCNN and wavelet decomposition, porosity – or inter-
nal defects – was detected with an accuracy of 83–89 % [190].
Overall feature representation accuracy was in the range of 78–
91 %. Highest classification accuracy was achieved for the part with
medium quality (refer to [190] for details on process parameters).
Additionally, the ML algorithm was able to identify if a pore had
disappeared, or been removed, as a result of subsequent laser scan-
ning. With the designation of running time windows, the SLM pro-
cess was categorized into a set of events with unique raw AE
signals. This helped in detecting the stable-unstable transitions
that occur in an AM process due to the constant changes in process
parameters. In a continuation of this study, reinforcement learning
(RL), a subset of ML, was used to classify the quality of the three
build components [245]. Classification of the quality was accom-
plished with an accuracy of 74–82 %, slightly less than that catego-
rized using SCNN. Overall, the ultimate goals are to use the SCNN
to predict forthcoming defect formation in the build component,
as well as use the AE in-situ monitoring technique to create a
closed-loop AM process and prevent defect formation.

One study used another form of ANNs, a Sequential Decision
Analysis Neural Network (SeDANN), to analyze data obtained
through optical imaging and thermography monitoring and to pre-
dict single-track quality by fusing sensing modalities [172]. A high-
speed 256 � 256 pixels2 video camera with a spatial resolution of
14 lm/pixel and an infrared pyrometer with a sampling rate of
100 kHz were used for in-process sensing. SeDANN was found to
out-perform many other ML approaches due to its adaptation of
physic-based process features to correlate process signatures with
quality metrics [172]. Compared to the CNN used in that work,
SeDANN predicted the standard deviation of single tracks with
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40 % better prediction fidelity (R2) in one-tenth of the computation
time [172].

In other work, a Deep Belief Network (DBN) was used to classify
acoustic signals of five defect patterns that occur in a SLM process
[192]. A DBN is a probabilistic graphic model, where every layer is
subsequently built on patterns of data captured from successive
layers to achieve dimension reduction, pattern analysis, and classi-
fication [192]. Repeated layer-by-layer unsupervised training of
the DBN and supervised fine-tuning allows it to become more effi-
cient for classification. In the study, AE signals were collected using
a pre-polarized PCB microphone with a frequency range of 0 to
100 kHz [192]. Signals were preprocessed in three different ways:
by the original, the FFT of the signal, and the FFT with denoising.
Average classification rates were found to be 72.43, 95.93, and
95.87 %, for the original data, data after FFT, and data after FFT
and denoising, respectively [192]. Therefore, the DBN model per-
forms better without data preprocessing. Results were compared
with other signal processing methods such as SVM, where average
classification rates were found to be 67.82, 97.86, and 98.01 %,
respectively. Overall, the DBN model performed better than SVM
without data preprocessing, while SVM performed slightly better
with data preprocessing. The DBN is capable of learning deep fea-
tures of the data due to its training patterns, however, while SVM is
not capable of identifying relationships from the data.

Another example of an ANN that has been used in sequence
with monitoring methods for defect detection is a Recurrent Neu-
ral Network (RNN). An RNN is used to recognize sequential charac-
teristics of a dataset. It has been used to predict the orientations of
fibers in a lCT scan image of a 3D printed glass fiber reinforced
polymer composite [103]. By storing previously acquired data, an
RNN is capable of comparing all data in the dataset to recognize
different patterns. However, the deviation of RNNs is relatively
greater than those of CNNs. Other ANNs have also been used for
ex-situ analysis, as discussed in more detail in Section 4.1 [246].
3.3.2.2. Time domain and frequency domain. Time domain methods
are used to analyze transient signals, or signals with data that var-
ies in time [117]. Frequency domain methods are used to observe
how the signals’ energy varies over a range of frequencies
[81,82]. They can both provide a variety of features that can indi-
cate defect formation in a print. Recent in-situ monitoring research
has combined acoustic monitoring methods with time and fre-
quency domain methods for feature extraction and defect
detection.

In one study, acoustic signals of five different extruder operat-
ing conditions in an FFF process were recorded [99]. The experi-
mental setup was similar to that in Fig. 12 with the sensor, a
Fig. 18. (a) Distributions of RMS feature and (b) comparison of energy
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Model MD acoustic sensor, built to eliminate approximately 2 dB
of background noise. The sensor operates within a temperature
range of –65 to 177 �C with a frequency response of 100–
900 kHz. The sampling rate was chosen to be 5 M samples per sec-
ond. For data classification, SVMs were constructed using the
LIBVSM toolbox in MATLAB with time and frequency domain ker-
nels [99]. Signal processing was used to extract features such as
ABS-Energy, counts, and peak frequency.

Raw signals from the material loading state and the normal
extruding state were recorded and analyzed [99]. It was found that
with two-state identification, 100 % accuracy was possible. With
multi-state identification, a slightly less accuracy of 97 % was
achieved. It was also found that during state transition, time
domain features are more sensitive than those of the frequency
domain in the evaluation of extruder working conditions of the
AM process [99]. ABS-Energy and RMS were found to be sensitive
to sensor position. Nonetheless, high amplitudes were found to
be indications of crack propagation in the build component.
Through feature extraction tools, internal defect initiation can be
monitored and defects can be detected. In-situ process control
can be possible with the addition of feedback to the printer to cre-
ate a closed-loop system.

AE waveforms have also been analyzed using time domain, fre-
quency domain, and time–frequency domain methods to charac-
terize the defects formed in a LPBF process [117]. In this study,
defects were intentionally formed by varying scan speed and laser
power, which would generally cause the energy density of the sys-
tem to fluctuate. The powder used was gas atomized austenitic
steel 316L with particle diameters of around 45 lm. A PAC AM4I
acoustic sensor with a frequency range of 0–100 kHz was used to
record raw AE signals. A low-pass filter of 100 kHz was added to
set a threshold for allowable noise levels and frequencies. For all
three methods, a sampling rate of 1 MHz and a window size of
5 ms was chosen. Four defect mechanisms were evaluated: balling,
LoF voids, keyholes, and no pores – no pores refers to a dense com-
ponent with entrapped gases that have yet to create complete
pores [117]. Analysis involved determining the root mean square
(RMS) distribution for the four defect mechanisms. In the time
domain, it was found that the signal amplitude varied for each
mechanism, increasing in the order: balling, LoF, no pores, and then
keyhole [117]. Fig. 18 shows a close similarity between keyhole
porosity and no pores present, as well as between balling and LoF.

In the frequency domain, frequency ranges were found to corre-
spond to certain defects. The frequency range of 0–100 kHz (lim-
ited by the low-pass filter) was split into five equal bands: 0–20,
20–40, 40–60, 60–80, and 80–100 kHz. In the 0–20 kHz band, bal-
ling and LoF had the most energy density concentration. For key-
density concentrations for four different defect mechanisms [117].
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hole and no pores, the energy density concentration was dis-
tributed over multiple bands in the frequency range.

Another type of frequency domain feature representation
method measured Fast Fourier Transforms (FFT) of the four defect
mechanisms. As seen in Fig. 19a, critical peaks occurred at frequen-
cies of 10 and 40 kHz. This is in lieu with the time domain method,
where these frequency bands are shown to correspond to the four
types of defects. Balling and LoF showed higher power spectral
densities at 10 kHz, while keyhole and no pores showed higher
power spectral densities at 40 kHz. This indicates higher concen-
trations of energy over those frequency ranges. Peaks in data for
keyhole and no poresmay be the result of recoil pressure and vapor
interaction with the material [117]. This information can be used
as a baseline to classify defects based on spectral density; however,
more research is needed to confirm these findings.

The results shown by the FFT plots (Fig. 19a) were in agreement
with results provided by the 3D wavelet transformations (Fig. 19b),
which is a subcategory of time–frequency domain analysis. Wave-
let coefficient values were found to be higher at 10 kHz and 40 kHz,
indicating defect formation. One piece of information that was
gained exclusively through this technique was the discontinuity
of the distinct peaks. This discontinuity may be a result of the win-
dow size or the predictability of the algorithm [117].
Fig. 19. Comparison of (a) FFT plots and (b) 3D wavelet representati
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Overall, the four defect mechanisms were shown to be directly
correlated to the energy density of the system. Balling, LoF, no
pores, and keyhole all showed discrete energy levels. Frequency
domain and time–frequency domain methods were shown to rep-
resent similar results. In a subsequent study by the same authors,
similar results were confirmed [194]. The research went a step fur-
ther by using different ML algorithms to determine whether the
time, frequency, and time–frequency domain methods were
material-dependent when classifying LoF voids, keyhole pores,
and conduction-mode melting [194]. Three different material
alloys (i.e., stainless steel 316L, bronze, Inconel) were analyzed.
Four different ML algorithms were used for classification: Logistic
Regression (LR), Random Forest (RF), SVM, and a CNN. For individ-
ual alloys, high classification accuracies were achieved: > 90 %, >
92 %, > 89 %, and > 92.5 % for LR, RF, SVM, and CNN, respectively
[194]. When classifying the defect mechanisms for all three mate-
rials, an ML model was capable of a classification accuracy
of > 86 %. Similar to [244], this study demonstrates the benefits
of transfer learning during in-situ sub-surface defect detection
and its use for process optimization.

A similar approach was taken in other research, where a pre-
polarized free-field condenser microphone was used to collect AE
signals of a LPBF process in the frequency range of 2–20 kHz
on of the acoustic signals for the four defect mechanisms [117].



Fig. 20. Procedure for signal processing of AE signal using discrete probability distribution [98].
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[195]. In this study, powder layer thickness was modified through-
out the experiment. Single tracks were monitored and their
geometries at different powder thickness values were analyzed
along with FFT amplitudes and average intensities of the AE sig-
nals. A 2 kHz high pass filter was used to remove noise from the
signals. It was found that AE signals change depending on layer
thickness and AE energy increases with layer thickness [195]. As
changes in powder layer thickness may correspond to defect for-
mation, this approach has the potential to be used for in-situ mon-
itoring of defect initiation and as a means of defect correction.

3.3.2.3. Probability distribution. Probability distribution can be used
for signal processing to characterize signals based on the probabil-
ity of occurrence, or likelihood, of all possible outcomes. Similar to
other data reduction methods, probability distribution also aims to
filter out a large number of undesired signals that are collected by
acoustic sensors [97]. However, rather than reducing data by
thresholding, which would disregard the actual information in
the data, it reduces data using a filtration method that assesses
the statistical characteristics of the raw AE signal [98]. Conse-
quently, comparison of the data is based on either the asymmetry
or overlap of the probability distribution of the AE signals [97,98].
Features are determined from the similarity of the amplitude dis-
tribution of each waveform that is output from a signal.

Raw AE waveforms consist of discrete voltage values that have
various emissions. Separating these values is a difficult task that
can be accomplished through comparison of the discrete probabil-
ity distributions, or in other words, assessment of the instanta-
neous skewness – a measure of the asymmetry of the discrete
probability distribution of a signal [97]. The process involves the
following: elastic waves are collected by the transducer, converted
into voltage signals, and then converted into analog signals using
an analog-to-digital converter. These analog signals can then be
used to determine probabilities.

Several studies of an FFF process have accomplished signal pro-
cessing through the comparison of two probability distributions
using the Bhattacharyya coefficient (BC) [97,98]. BC is a measure
of the amount of overlap between two AE signals to produce two
forms of similarities: an instantaneous similarity and a relative
similarity [98]. The instantaneous similarity refers to the coeffi-
cient calculated for each adjacent time section of the probability
distributions. The relative similarity refers to the coefficient calcu-
lated using the reference distribution. The value of BC is closer to
one for signals that are the same or overlap and is closer to zero
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for those that are different. Fig. 20 demonstrates a step-by-step
process for signal processing using discrete probability distribu-
tion. For evaluation of the signals, data is first acquired, filtered
through using a boundary limit (i.e., segmentation), and then ana-
lyzed before it is ready for identification.

In an FFF process, filament feeding produces friction, and thus,
generates signals that can be recorded. When the filament clogs
the extruder or is no longer fed through it, friction diminishes,
and hence, no signals are generated. Therefore, filament breakage
mid-process can resemble defect formation; simulating it can also
produce a significant change in signal representation that can be
analyzed and used to develop defect correction technologies
[97,98].

In one of the studies, filament was manually broken 200 mm
before entering the extruder. Waveforms generated during the
process were recorded using a heat-resistant transducer (100–
1000 kHz frequency range) and captured by the data acquisition
(DAQ) system as signals [98]. The sampling frequency was chosen
to be 2.5 million samples per second (Ms/s), or 2.5 MHz, and wave-
forms were amplified by 40 dB to capture maximum emissions.
Threshold-based features were extracted with a low threshold
limit of 30 dB and a frequency of 10 kHz. These features included
central frequency, rise time, amplitude and counts.

Two conditions were described to characterize a change in BC:
before and after filament breakage. To calculate the similarities,
the raw AE signal was split into sections of equal length. As dis-
played in Fig. 21, filament breakage corresponded to a decrease
in BC. After a period of time of filament breakage, signals right
before and after a chosen point became similar, which created a
steady coefficient value. Compared to instantaneous similarity,
the relative similarity comparison gave clearer results in regards
to the decreasing BC, as emphasized by the clustering of blue data
points in Fig. 21b. Hence, of the two forms of similarities, the rela-
tive similarity is more capable of recognizing a change in AE.

Signal processing using a probability distribution method is a
viable way to recognize a change in AE signals, or a deviation in
signal information. With optimal parameter selection beforehand,
such as choice of distribution edge or partition, BC can be calcu-
lated promptly, making it a satisfactory method for in-situ moni-
toring for defect detection.

In a similar study, waveforms of filament bonding failures were
collected using four piezoelectric transducers and then analyzed by
comparing them to a characteristic value, which was determined
by averaging a set of undamaged data sets [104,105]. The experi-



Fig. 21. Signal Processing using the Bhattacharyya coefficient (a) instantaneous similarity and (b) relative similarity [98].
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ment utilized the concept of ultrasonic inspection, where transduc-
ers were used for deliberate ultrasonic excitation of the printer,
leading to filament bonding failures, and hence, defect formation.
A frequency range of 50–100 kHz was investigated, and a sampling
rate of 0.333 Ms/s was chosen [104]. Signals were processed by cal-
culating the Mahalanobis Distance, a probability distribution sim-
ilar to BC. Data collection through acoustic signal acquisition and
3D data visualization was successful; however, results were incon-
clusive and did not provide a reliable means for defect detection. It
was concluded, however, that AE signal acquisition using ultra-
sonic inspection and signal processing using this probability distri-
bution technique can be utilized with more accuracy on different
printers using a feed material of high-resolution plastic and metal,
as signals would propagate with less attenuation and appear with
less variance [104].

3.3.2.4. Statistical clustering. Clustering is a mining method used for
data grouping, classification, and fault diagnosis [237]. It is a
method that attempts to extract features from the data that are
in proximity, rather than those that are deeper in the structure.
One type of clustering algorithm used for signal processing in
AM is K-means clustering [84]. This algorithm utilizes an objective
function called the residual sum of squares (RSS), with the goal of
minimizing the function to obtain a local minimum [84]. It is fast in
processing large amounts of data, as well as efficient in classifying
data points with predefined number of clusters or, in this case, pro-
22
cess parameters. For these reasons, K-means clustering can be used
for feature extraction and classification under different process
parameters with good accuracy.

In a recent study, K-means clustering was used to classify differ-
ent process conditions from acoustic signals gathered during a DED
process that used Ti-6Al-4 V alloy powder as feedstock [81,84].
Transducers were mounted to the bottom of an adapter plate that
carried the build plate on the other side. This adaptor plate was
mounted on an additional plate to allow clearance for the acoustic
sensors. An eight-channel DAQ system was used to continuously
collect acoustic signatures at five different states. A sampling fre-
quency of 5 MHz was chosen [81]. A bandpass filter was used that
allowed frequencies in the range of 100–2000 kHz. Process condi-
tions (i.e., optimum process, laser power, low powder feed) were
classified into different variables. Features were extracted from
the frequency response of the acoustic signatures. The range of fre-
quencies observed were classified as either low (<800 kHz) or high
(>800 kHz) frequency. It was found that process conditions can be
classified under different frequency bands with 87 % accuracy.
Background noise was differentiated from the process conditions
using this signal processing method. Graphical representations of
the clusters proved useful in evaluating the accuracy of process
condition classification.

In another study of a DED process, K-means clustering was suc-
cessful in distinguishing between cracks and porosities [90]. An
acoustic sensor with a bandwidth of 100–1000 kHz was used to
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record signals of the AM process. Internal cracks and porosities
were created by mixing the bulk Ti-6Al-4 V powder with tool steel
powder. Typical steps of the DAQ and signal processing process
resonate with Fig. 16. Only bandwidths within the range of
100 kHz to 1 MHz were detected. AE features such as rise time,
peak amplitude, number of counts, energy, and frequency were
extracted from the AE signals. Graphical representations of clusters
were compared to analyze these features. Results clearly distin-
guished between internal cracks and porosities: cracks triggered
signals with short durations and high amplitudes, while porosities
produced signals with shorter decay time and less amplitude [90].
The signal energy was determined to be a key factor in effective
signal processing.

In other research, a signal post-processing framework was
introduced to reduce the number of features required to represent
AE activity by utilizing clustering [236]. Data was also collected in-
situ, but using scanning electron microscopy (SEM) and nano-
indentation setups, rather than optical and acoustic methods. By
analyzing the different features, their correlations and their vari-
ance, data clusters were formed that could be examined in relation
to data acquired through in-situ monitoring methods. This frame-
work has potential for use with AM technologies for defect detec-
tion through AE sensing.
4. Ex-situ validation for a-priori identification through XCT

XCT is an NDT technique that has been used for ex-situ quality
assessment and defect detection in many fields, such as the medi-
cal field, where 3D printed medical components are evaluated for
defect detection [247,248]. In AM, XCT can be used for defect
detection validation, as well as dimension evaluation, density mea-
surement, and roughness analysis to assist in control of the print-
ing process [246,249,250]. Furthermore, when combined with data
fusion concepts, ex-situ validation using XCT can lead to a better
in-depth evaluation of defects.

The process of XCT is shown in Fig. 22, where a 3D-printed part
is rotated about an axis and exposed to an X-ray source at different
angles. X-ray images are collected from the X-ray source using a
flat panel detector. These 2D gray-scale images are stacked to form
a 3D dynamic of the specimen, which typically has a size of
1000 � 1000 � 1000 voxels [249]. Each point or pixel of an image
Fig. 22. Schematic of X
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for a given voxel is correlated to the average density and composi-
tion of the material being evaluated. Therefore, a long scan time of
the examined part is required for high quality XCT images. This can
lead to the accumulation of large file sizes, which is a major obsta-
cle for in-situ monitoring and ex-situ validation technologies as ML
algorithms are restricted by size capacity. For instance, if each
voxel is a 2-byte integer, the entire 3D image stack will be stored
as a 2-gigabyte file [249].

In past studies, XCT has been used to study the effects of process
parameters on defects [19]. It was concluded that the control of
laser power had the largest effect on avoiding defect formation.
In recent years, XCT has been used to determine mechanical prop-
erties of 3D printed components, such as surface roughness and
areal surface information effects [251–253]. It has also been used
for fatigue analysis of 3D printed components as it corresponds
to manufacturing defect size and locations [254,255]. Similarly,
lCT has been used to examine the influence of internal and surface
defects on the mechanical responses of defect-embedded lattice
struts manufactured using LPBF [256]. From the lCT models,
FEM models, and tensile testing results, surface defects were found
to have considerable impacts on elastic and initial yielding
responses, while internal defects had little to no influence on those
values. lCT voxel size was found to affect both global mechanical
response and localization [256].

More importantly, as highlighted earlier, XCT has been used for
ex-situ validation and inspection of defect formation with great
success [181,182,257]. In one study, images obtained using XCT
provided similar defect locations to those captured using the Basler
optical camera [181]. Validation of data was possible at a depth of
30–50 lm from the surface. Fig. 23 compares optical images cap-
tured in-situ to XCT images of a specific layer of the 3D printed
Pythagorean geometry. Images were processed and overlaid to
emphasize the comparison of defect locations. Large defects in
the samples, with sizes of about 100 lm, could be easily identified
using this technology, but smaller defects or cracking could not be
seen, likely due to resolution limitations or complex cracking
mechanisms [181]. As the laser completed a raster pattern at a par-
ticular section of a layer, areas with defects maintained a high IR
intensity after the laser had already passed [181]. Furthermore,
peaks in IR intensity signaled the formation of defects. Through
cross-comparison of IR and XCT data, cracking tendency can be
predicted.
CT Process [249].



Fig. 23. Comparison between in-situ optical images and XCT images from the approximate location for the same layer (a) raw images, (b) images after processing to reduce
background: normalization, contrast, pixel enhancement, and thresholding, (c) threshold images outlining defects, (d) overlaid images – a combination of b and c – showing
correlation between in-situ optical images and XCT images with five distinct locations identified for analysis [181].
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In another study, both NDT using lCT and destructive inspec-
tion were used to analyze and compare defect mappings from in-
situ optical images to ex-situ data [182]. Data was collected, and
raw signals were processed using the concept of time over thresh-
old (TOT), or time over a defined apparent temperature. The scan-
ning pattern used highlighted the pores and LoF voids in the three
cubic-shaped specimens; differences in overlaid data could be cor-
related to defect formation and LoF void clusters. Destructive met-
Fig. 24. Comparison of in-situ monitoring data – TOT (700 K), OT intensity, and MPM int
VED. A contour plot from the TOT (700 k) dataset at a threshold value of 30 ms is overl
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allography was used to measure melt pool depth. Light microscopy
helped in characterizing the parts based on volumetric energy den-
sity, melt pool depth, and defect formation [182]. Elastix 4.9 was
used to overlay all datasets: Fig. 24 compares in-situ monitoring
data to ex-situ validation data for two different layers in Volume
B of the specimen. A contour map plot for a threshold value of
30 ms in the TOT map is overlaid on the other graphical represen-
tations to understand the similarities in the datasets, as well as
ensity – with lCT data for (a-d) layer 119 and (e-h) layer 145 of Volume B with low
aid on other graphical representations to emphasize similarities in datasets [182].
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identify any indication of defect formation in the specimen. As
would be expected, Melt-Pool-Monitoring (MPM) intensity maps,
gathered from commercial monitoring equipment, were shown
to be more closely correlated to lCT data, followed by TOT
(700 K) data, and then optical tomography (OT) intensity data. A
binary overlap of thermographic anomalies and lCT data showed
71 % similarity in terms of defect detection. More stringent data
fusion techniques are needed for a complete comparison of signals
to detected defects [182].

Other works have combined ex-situ validation with ML meth-
ods for the purpose of defect detection. In several studies, in-situ
image acquisition with a coaxial system combined with ex-situ
XCT scanning of cross-sections was capable of detecting porosities
that were then classified using neural network methods [232,258].
In another study, an ANN-based algorithm was applied to a lCT
image dataset to identify defects in composites 3D printed using
FFF [246]. Results were compared with observations obtained from
SEM. As seen in Fig. 25, the resolution of lCT images is lower than
that of SEM images, while SEM can capture more defects than lCT.
Furthermore, the imaging artifacts may skew the results obtained
on defects, especially those within geometries that are complex
or challenging to manufacture. This may lead to overlapping pro-
jections, shadow effects and scattering, which can increase the
presence of noise.
Fig. 25. (a) A machine learning algorithm is designed to segment each lCT image slice to
an ANN based ML method. The deviation in the fiber orientation prediction from the actu
various segmented images in (c-f) [246].

25
XCT for ex-situ inspection and validation has proven to be very
important for understanding the capabilities and limitations of in-
situ monitoring methods and devices. For example, a big drawback
of in-situ analysis is that false positives can often appear in a data-
set. An accumulation of heat from the laser can cause remelting
and resolidification in certain areas of the printed component,
which can lead to false-positive defect identification. With ex-
situ validation, this can be avoided – one of the collected lCT
images in [182] showed a defect in one layer that was later healed
by the laser-material interaction in the subsequent layer above it.
lCT has also been used to spot certain types of layered defects with
ease due to its high spatial resolution [259].

Several limitations have been found to affect XCT data and anal-
ysis, such as pore size limits and energy densities. Increasing
energy density in a region can reduce pore populations [260]. Also,
materials with higher densities are more difficult to observe and
evaluate using XCT due to a reduced exposure to X-ray beams.
Overall, porosity levels and defect sizes captured using XCT tech-
nologies are limited by the chosen process parameters [261].

Aside from XCT, ex-situ verification can also be performed
through other NDT methods such as neutron dark-field imaging
and laser-scanning vibrometry. Neutron dark-field imaging (DFI)
has been used to investigate microstructural features in additive
manufactured steels through qualitative analyses of porosity levels
an array of 19� 19 images. (b) The fiber orientation in each slice is determined using
al direction is taken as an indication of a defect, which is confirmed by inspection of
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and phase transformations [262]. Laser-scanning vibrometry has
been used to evaluate the mechanical and dynamical behavior of
parts manufactured using FFF [263]. Using regression models, the
influence of process parameters on the elastic modulus of the
printed rectangular prisms was evaluated.
5. Experimentation: Procedure and mitigation strategies

Introduced here, is a general procedure that can be followed, as
well as basic guidelines and mitigation strategies that can be used
to achieve accurate defect detection and/or in-situ defect correc-
tion with in-situ monitoring.

To perform an in-situ monitoring experiment, first, a 3D CAD
model is created. Defects can be formed in the model in multiple
ways. They can be intentionally input in the 3D geometry during
design or created by manipulating the printing process parameters
to form different concentrations throughout the structure, which
can lead to the formation of defects [264]. Algorithms can also be
developed to randomly insert defects in the sliced models or G-
codes [265]. Irrespective of the method used, the model must be
sliced before being input to the 3D printer for printing. A monitor-
ing system setup around or within the 3D printer can consist of one
or a combination of devices, such as those listed in Table 3, along
with a DAQ system, if necessary. The monitoring system will then
output raw data that can be used for in-situ analysis.

Critical information pertaining to detect formation can be
extracted from the raw data using methods such as image process-
ing, signal processing, data fusion or other image/signal registra-
tion methods. Data correlation can occur through either of the
data validation strategies: Post-process Validation or A-Priori Iden-
tification. For example, data can be compared to that of a healthy
3D CAD model or G-code of the same geometry to identify out-
of-control or instable conditions. The comparison can be made in
a layer-by-layer manner in-situ, where as soon as a defect is
detected in a given layer, the print comes to a stop. Data can also
be acquired and used for ex-situ validation, using methods such
as lCT.

To make use of data that is acquired during the layer-wise man-
ufacturing process, algorithms can be developed and used to spot
defects or out-of-control conditions as the part is being printed
[9,103,172,189,190,245,264–268]. These ML algorithms can work
to identify pores and defects in layers. For example, anomaly
detection can be used to identify patterns in the data that relate
to abnormal behavior. By utilizing data fusion techniques, multiple
visual or XCT images can be overlaid to create an overall depiction
of the printing process.

Moreover, image processing methods can be used to achieve a
variety of different results. In a recent study, an algorithm was cre-
ated that displayed colors on the surface of the layers when pores
and defects were existent [264]. When analyzing layers without
pores, no colors were present on the surface. In IR images, areas
of materials with higher heat radiation can be signified by a gen-
eral color scheme of which some colors correspond to flaws or
irregularities. Image registration methods, such as Digital Image
Correlation (DIC) methods, can also be used for both in-situ and
ex-situ defect characterization, as well as real-time feedback con-
trol [213,269,270]. DIC allows for 3D full-field optical measure-
ments of displacements, strains, deformations, or vibrations, and
tracking and registration of the results. It can provide visual repre-
sentations of these measurements for an accurate characterization
of the process deviation [269]. For more information about DIC
applications for in-situ monitoring in AM, refer to [213,270].

Monitoring methods introduced in this review present several
disadvantages that need be addressed during experimentation.
Some potential risks of image acquisition using optical and thermal
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imaging methods are limitations to spatial resolution and surface
measurements, limitations to accurate thermographic measure-
ments, and insufficient temporal resolution for the analysis of the
transient events that occur during the printing process. These
issues can be mitigated by acquiring better high-resolution and
high-frame rate cameras for high quality image acquisition.
Another potential risk is limited access to in-depth information
of defects from images due to system noise and vibration. This
can be amended through image processing algorithms such as con-
trast enhancement to develop clean images. Background subtrac-
tion can allow for more focus on specific regions of interest.
Other factors of the monitoring setup that have effects on raw
image data quality, such as camera position and angle, additional
illumination, and the installation of camera shields, must be
considered.

Accurate feature extraction and defect detection using AE in-
situ monitoring can be achieved through optimal choice of acoustic
sensors, sensing technologies, and DAQmodules. Background noise
reduction and high signal-to-noise ratios can facilitate signal pro-
cessing. Optimal sampling rates, threshold limits, and window
spans can ensure that only required data is captured by the sensors
for analysis. Passive filters can be used to limit acceptable fre-
quency ranges. Some disadvantages of lCT for ex-situ validation
are limitations identifying parts manufactured with high energy
densities or specific process parameters. Such limitations can affect
exposure capabilities of lCT, as well as pore size limits. They can
be mitigated through appropriate choice of monitoring setups
and printing process parameters.
6. Future work

Extensive literature review has allowed identifying several
future research directions that can move the field forward. Devel-
oping a cost-effective and efficient monitoring setup is a major
challenge requires deep understanding of the AM process and
instrumentation. The combination of optical and acoustic methods
for in-situ monitoring requires better understanding of the benefits
each monitoring method can provide when used simultaneously.
Furthermore, the need for data fusion techniques for real-time
optical and acoustic signal processing is apparent. The application
of data fusion in-situ is necessary to take full advantage of complex
monitoring setups for defect detection. This would require knowl-
edge of both the mechanical systems and ML models used.

Representation and analysis of acquired in-situ data from imag-
ing methods, as well as the means of data processing, requires
more research. The implementation of different ML algorithms to
AM can improve data processing. By doing so, critical information
about defect formation can be obtained: events leading up to
defect formation and after continuation of the print. Defects can
also be characterized by type and optimum process parameters
for AM can be determined. Locations of failure in 3D printed com-
ponents can be estimated prior to initiation and avoided in future
manufacturing.

Regarding acoustic methods, future work can involve determi-
nation of optimal threshold limits and sampling rates for specific
sensors and to develop a standard by which researchers can refer-
ence. Another potential research area is to experiment with low-
pass filters for signal processing, possibly-one that allows higher
frequency ranges. Moreover, the application of different time
scales can help in understanding their effects on AE signal feature
representation.

Defect correction methods are in early stages at this time. Some
that have been introduced in literature include automatic process
parameter adjustment and post-processing treatments, such as
HIP. Future work in this area should involve determining the accu-
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racy of current defect correction methods, as well as developing
new strategies that make the AM process both time- and
resource- efficient. All research into in-situ monitoring and control
of the printing process should be built on the concept of developing
a closed-loop process capable of instantaneous feedback.
7. Conclusions

In-situ monitoring methods can provide a means to detect
internal or sub-surface defect formation in AM processes in real-
time and help in understanding defect formation in 3D printed
parts. A system can be established to monitor the defects as they
form and develop strategies to mitigate their impact on product
quality. A variety of process monitoring methods have been intro-
duced in this review, as well as strategies and procedures that can
be used to process monitoring data and acquire information rele-
vant to defect initiation and formation.

Imaging methods utilize visual and thermal monitoring devices,
such as high-speed optical cameras, IR cameras and X-ray imaging.
Images captured using imaging devices can be examined for events
leading up to defect formation using methods like image segmen-
tation and statistical analysis. IR cameras were found to show sub-
surface and internal defect formation tendency in the part with
sizes up to 1000 lm, as well as detect vapor plume and powder
spatter ejection in the printing process. X-ray imaging was found
to identify depressions and other melt pool characteristics. Simul-
taneous use of imaging methods provided a way to study melt pool
dynamics in 3D and detect sub-surface defects in printed compo-
nents with sizes as small as 50 lm.

Acoustic sensors are used to record acoustic signals generated
from the printing process, which are then analyzed to provide crit-
ical information about the formation of internal defects in a
printed part. A variety of signal processing methods were found
to facilitate feature extraction through techniques such as thresh-
olding and background noise reduction. Certain frequency ranges,
window sizes, time spans, and energy density concentrations were
found to correlate to the formation of certain internal defects.

XCT was introduced on a unit- and micro-scale level. Unlike in-
situ monitoring imaging methods, XCT is a post-printing ex-situ
process for inspection and validation. XCT and in-situ optical
images can be compared to estimate defect locations. XCT also pro-
vides a way to identify large or multi-layer defects in a printed
component. More research is needed to improve data fusion and
overlaying concepts, as well as provide complex data analysis
techniques.

Despite their capabilities, some disadvantages of imaging meth-
ods are limited access to in-depth information, limitations to spa-
tial resolution and surface measurements, limitations to accurate
thermographic measurements, and insufficient temporal resolu-
tion for the analysis of the transient events that occur during the
printing process. Disadvantages of acoustic methods include sensi-
tivity to weak emission signals and background noise. This can dis-
turb signal measurements and expose the vulnerabilities of signal
processing methods.

Nonetheless, by integrating image and acoustic signal process-
ing methods into the printing and monitoring process, real-time
feedback control is plausible. Such methods can be used to identify
defect initiation in a printed component and either stop the print
or correct defects in-situ. Through the implementation of ML algo-
rithms, data registration and segmentation can be accomplished.
Defects can be characterized by type and optimum printing pro-
cess parameters can be determined. Ultimately, in-situ process
monitoring methods can create a closed-loop AM process capable
of defect correction and control, to ensure process stability and
repeatability.
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