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1 | INTRODUCTION

Nanomedicine has achieved limited translation from preclinical
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Abstract

Translation of nanotherapeutics from preclinical research to clinical application is
difficult due to the complex and dynamic interaction space between the
nanotherapeutic and the brain environment. To improve translation, increased insight
into nanoformulation-brain interactions in preclinical research is necessary. We
developed a nanoformulation-brain database and wrote queries to connect the com-
plex physical, chemical, and biological features of neurotherapeutics based on experi-
mental data. We queried the database to select nanoformulations based on specific
physical characteristics that enable effective penetration within the brain, including
size, polydispersity index, and zeta potential. Additionally, we demonstrate the ability
to query the database to return select nanoformulation characteristics, including
nanoformulation methodology or methodological variables such as surfactant, poly-
mer, drug loading, and sonication times. Finally, we show the capacity of our data-
base to produce correlations relating nanoparticle formulation parameters to
biological outcomes, including nanotherapeutic impact on cell viability in cultured

brain slices.
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dynamic during development, aging, and disease, which can affect
nanomedicine delivery to the target destination.” The multitude of

nanomedicine design parameters and neurobiological factors creates a

research to clinical application for non-cancer neurological disease.!
To improve translation, it is important to understand the dynamic
interactions between nanomedicine platforms and the brain environ-
ment. Individually, nanomedicine and the brain environment are two
independently complex entities: Nanomedicines are designed to con-
trol physical attributes that define the stability of the nanoformulation
while allowing for drug incorporation and tailored drug release.?®
Nanomedicine physical and chemical characteristics such as size,
charge, composition, and surface functionality impact interactions
with cells, proteins, and extracellular components within the brain and
ultimately the therapeutic effect.* Simultaneously, the brain microen-

vironment is heterogeneous from brain region to brain region, and

large data space for which identification of key nanoparticle-brain
interaction parameters is critical. To manage and query the large data
space for nanoparticle-brain interactions, a nanoformulation database
can assist in organizing and integrating key experimental variables that
might influence the effectiveness of nanotherapeutics in the brain.
The development of a nanoformulation database could improve
understanding of nanoparticle-brain interactions and reduce bottle-
necks in the preclinical to clinical nanotherapeutic translation pipeline.

Although there is limited or non-existent literature on effective
database management for nanoformulations used preclinically, similar
approaches for utilizing databases have existed for decades in compu-

tational cell biology, computational neuroscience, and clinical
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applications.®™® For example, BioNumbers is a database that stores
and organizes key quantitative features from cell biology.1° However,
the BioNumbers database and many others in the literature are com-
posed mainly via natural language processing of published manu-
scripts and typically contain one specific value per property.

Rather than a database built from natural language processing of
literature, experimental workflows are the foundation for the brain-
nanoformulation database presented herein. Preclinical research data-
bases need management schemas that logically connect
nanoformulation experimental methodologies, which can be highly
repetitive, vary in quality, are prone to rapid iteration and evolution,
and are often research lab or facility-specific.}* High repetition occurs
because a statistically relevant experimental database must record
duplicate experiments with identical or highly similar methodologies
and possibly similar results.t? Additionally, experimental data input
may have incomplete information.'® For example, a batch of particles
may not have been characterized with every available methodology or
even tested in a biological application.

A nanoformulation-brain database must also account for work
from independent researchers with unique workflows.** Preclinical
research in nanoformulation-biology interfaces is a dynamic endeavor;
a successful database adapts to new methodologies and experiments
so that independent researchers are free to follow expert-driven
insight without being burdened by the database system.'>1¢ Finally,
an optimal nanoformulation-brain database connects biological out-
come data to methodological data in an easily visualized way for
assessing nanomedicine effectiveness and correlation to physical
characteristics and methodological variables.

Therefore, in this study, we developed an entity-relationship dia-
gram of neurotherapeutic research and then visualized and built a
nanoformulation-brain database for preclinical experimental research.
We loaded the database with experimental nanoformulation and bio-
logical application data, and then we developed hypothesis-driven
queries that return insightful results from the organized data. Our
queries serve four main roles: (1) return all nanoformulations in the
database based on physical characteristics of the formulations,
(2) return all nanoformulations in the database based on methodologi-
cal information, (3) return all nanoformulations in the database from a
specific researcher and with specific characteristics, and (4) return
nanoformulation methodological variables, biological application infor-
mation, and experiment information for drug screening applications.
Finally, we visualized the results of each query to show the variety of
insights gained by the database.

2 | MATERIALS AND METHODS

2.1 | Assessing and organizing data

We first compiled common laboratory procedures and data generated
for formulating and testing nanotherapeutics to develop a process
flow diagram. To begin the process flow diagram, we identified

researchers that are nanoformulation experts in the lab (n = 4). Once

AI?BIl:'J R NALJz;f12

we determined the researchers who would contribute data, we
requested a copy of how they maintain overall formulation records
and a basic description of their working methodology. All researchers
provided independent .csv files of their formulation records and brief
descriptions of workflow. From the .csv files, all variables, including
methodological details, characterization results such as size and zeta
potential (ZP), and researcher details such as name and education
level, were pooled into a list. From the pooled list, we determined
three main experimental variable categories: experimental set-up,
nanoformulation methodology, and biological application with the
researchers' provided descriptions of their working methodologies.
The three main experimental categories became the main units of the
nanoformulation-brain database.

Upon establishing a general unit-based structure for a flow dia-
gram, we obtained data from any researcher in the lab who had per-
formed a nanoformulation experiment, expanding our dataset from
four researchers to 11. We received data in the same format as the
original four independent researchers: a .csv file with all
nanoformulations and related data and a text-based description of
their workflow. The variables were extracted from each researchers'
provided .csv files and sorted into a relevant category based on the
provided descriptive workflow.

The three identified units, nanoformulations, biological application,
and experimental components, became the main units of our process
flow diagram. We then determined the major components of each unit
by sorting common variables into specific experimental methodologies
or protocols. For the nanoformulation unit, formulation methodologies
from each researcher and characterization storage commonalities
informed five main components: nanoprecipitation, single emulsion,
double emulsion, reverse formulation, and nanoparticle characterization.
The nanoparticle characterization components include data from two
techniques, dynamic light scattering and drug loading assays.

The experimental unit contains information about researchers,
collaborators, and a researcher-determined specific experiment. The
information recorded about researchers includes first name, last name,
a unique researcher id, and education level (e.g., graduate student,
undergraduate student, high school student). Collaborator information
includes first name, last name, a unique collaborator id, institution,
and education/job level (e.g., faculty, research staff, graduate student,
postdoctoral fellow).

Nanoformulations were evaluated for biological activity:
nanoformulations were added to cultured organotypic brain slices and
slices underwent a lactate dehydrogenase (LDH) activity assay. The
data from the LDH assay and the information about the Sprague-
Dawley rats used for producing brain slices are included within the
Idh_assay table and the pup_info table accordingly. Information col-
lected about the LDH assay includes a unique biological characteriza-
tion id, an experiment id that correlates with the experiment table, a
specimen id that correlates with the pup_info table, formulation id
that correlates with the nanoformulation table, researcher id that cor-
relates with an individual researcher in the researcher table, date of
completed assay, a descriptive name for the treatment group, and
results for timepoints 1 h, 2 h, 4 h, 8 h, and 1 day.
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2.2 | Entity-relationship diagram

We used LucidChart, a web-based application for flowcharts and dia-
grams, to further organize our nanoformulation data from the process
flow diagram into subcategories formatted into six tables:
nanoformulations, double emulsion, single emulsion, nanoprecipitation,
reverse formulation, and nanoparticle characterization tables (Figure 1).
Then, connections between tables were determined for cardinality and
ordinality, the maximum and minimum time that the row of one table
can be related to the row of another table. Cardinality and ordinality
decisions were based on laboratory practices and visualized in
LucidChart with connecting lines between tables and with notation

style for the appropriate cardinality and ordinality.

The developed entity-relationship diagram (Figure 1) connects
11 individual entity sets, tables of experimental information, and
corresponding variables, across the experimental, biological applica-
tion, and nanoformulation unit operations: researcher, collaborator,
experiment, nanoformulations,

single_emulsion. double_emulsion,

nanoprecipitation, reverse_formulation, and
np_charc (Table 1).

A three-column table represents each entity set. The three col-

Idh_assay, pup_info,

umns include the status of an attribute as a primary key (PK) or for-
eign key (FK), the attributes or variables of the table, and the data
type of each attribute. There are also lines connecting each FK in an
individual entity-set to the table that uses that FK as a PK. Every
nanoformulation,

researcher, collaborator, characterization result,

Idh_assay
[PK| beharc_id | varChar
—O€| FK ex_id VarChar
FK | specimen_id | VarChar pQ
—O«| FK |formulation_id|  VarChar
+—€| FK | researcher_id |  VarChar
date Date
researcher treatment VarChar
tH PK _id Varchar — VarChar
L-+H FK [collaborator_id Varchar % VarChar
first_name Varchar 4h VarChar
last_name Varchar VarChar
education_level |  Varchar T 10 VarChar
[PK[ experiment_id VarChar - —
collaborator FK | primary_researcher_id VarChar Ho-—/ T
[>H PK collab_id Varchar experiment_name VarChar - ~ —
first_name Varchar -0 FK M id VarChar Oy | PK | specimen_id | VarChar 44—
last_name ' | FK |researcher_id| VarChar
institution Varchar | e
Scasion level farct pup_idnum Varchar
dob Date
nanoformulations dos Date
PK | formulation_id Varchar — age VarChar
methodology Varchar gender VarChar
Od FK her_id Varchar weight Integer
sample_id Varchar
notes Varchar
date Date
1
[ Pk 1
= A S— x x
single_emulsion double_emulsion nanoprecipitation reverse_formulation
polymer Varchar polymer Varchar polymer Varchar polymer Varchar
polymer_mass Integer polymer_mass Integer polymer_mass Integer surfactant Varchar
polymer_ratio Varchar np_loading Varchar np_loading Varchar
np_loading Varchar loading_mass Integer loading_mass Integer - np_charc
loading_mass Integer time_1 Integer sink_volume Integer PK charc_id Varchar
time Integer amplitude_1 Integer sink Varchar —O<| FK formulation_id Varchar
amplitude Integer time_2 Integer sink_percent Integer O] FK researcher_id Varchar
as_volume Integer amplitude_2 Integer notes Varchar
aqueous_solution Varchar as_volumel Integer size_measurement Varchar
as_percent Integer aqueous_solutionl Varchar size Integer
sink_volume Integer as_percentl Integer size_sem Integer
sink Varchar as_volume2 Integer pdi Integer
sink_percent Integer aqueous_solution2 Varchar pdi_sem Integer
as_percent2 Integer p Integer
sink_volume Integer zp_sem Integer
sink Varchar np_activity VarChar
sink_percent Integer supernatant_activity VarChar
) polymer_retention VarChar
FIGURE 1 Entity-Relationship diagram for the database. The diagram relates experimental components with tables researcher, experiment,

and collaborator (purple), biological components with tables pup_info and Idh_assay (green), nanoformulations components with
nanoformulations (orange), including single_emulsion, double_emulsion, nanoprecipitation, reverse_formulations tables, and np_charc tables
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Entity-relationship diagram terms and definitions organized by the name of the table or entity-set, a description of the variables

included within the table, a description of the connections to other tables, number of rows in the table, and file size of the table in the database

Table Data description Row count File size

Researcher A record of researchers, including their researcher id, names, and education level. A researcher may 11 336 bytes
connect to zero or many formulations, characterizations, or overall experiments

Collaborator A record of collaborators from the Nance Lab. A collaborator will have one and only one researcher 1 110 bytes
id

Experiment A record of experiments using formulated nanoparticles from the Nance Lab. May contain many 3 147 bytes
nanoformulations and many biological specimens. Will only have one primary researcher

Nanoformulations A record of all nanoformulations within the lab. A nanoformulation may be used in none, one, or 721 32 KB
many experiments. A nanoformulation may be characterized in none, one, or many ways, and
characterization methods may be repeated for a specific nanoformulation

Single_emulsion A methodology for nanoformulation that includes only one emulsion step 171 16 KB

Double_emulsion A methodology for nanoformulation that includes two emulsion steps 126 17 KB

Nanoprecipitation A methodology for nanoformulation that uses solvent displacement for producing nanoparticles 392 29 KB

Reverse_formulation A methodology for nanoformulation that allows higher control of specific physical features 31 2 KB

Ldh_assay A record of characterization for biological specimens using catalase activity assay 88 8 KB

Pup_info A record of characterization for littered animals used as biological specimens, including sex age, 9 434 bytes
date of birth, date of sacrifice, and weight at sacrifice

Np_charc A record of all nanoformulation characterizations, including dynamic light scattering and activity 717 53 KB

assays

biological specimen, and biological characterization result is given at
least one unique key. PKs signify that every key in that entity set is
unique, whereas an FK for an entity set does not have to be unique.
These lines end with cardinality and ordinality visualizations to sym-
bolize the minimum and the maximum number of relationships each
entity set can have with another.

Within the entity-relationship diagram, the experimental group
contains the researcher, collaborator, and experiment tables. The exper-
imental group connects developed nanoformulations, nanoformulation
methodologies, and nanoformulation characterizations to the biological
applications and their associated characterizations.

The nanoformulation group includes a table of basic information
for every nanoformulation, specific information for the four main
methodologies, and a characterization table with any characterization
information from dynamic light scattering or drug loading assays. All
of the information from the nanoformulation entity set for a specific
nanoformulation is also included within the specific methodology
table. Although this introduces some redundancy in the database, we
decided to have separate tables to ease data standardization and que-
rying. Each methodology has different, commonly manipulated vari-
ables for developing nanoformulations making it easier to standardize
data if each methodology has an independent table. Additionally, for
some queries, we only want basic nanoformulation information or
only characterization information without all of the methodological
variables. It is more efficient to search all nanoformulations in the
basic nanoformulations entity set than through each specific method-
ology. Finally, the biological group contains two entity relationships
that connect info about the rat pups for biological applications associ-
ated with specific brain slices or serum. These specimens then con-

nect to the LDH assay variables and results.

2.3 | Data standardization and cleaning of
database input

During the creation of the entity-relationship diagram, laboratory data
informed the attributes for each entity set. All data were obtained in
raw form and standardized for use in the database and to resolve down-
stream issues during querying. Data was tagged with researcher infor-
mation and organized by nanoformulation methodology. For each
methodology identified, all variables from the process flow diagram
were listed and organized into table columns by order in which the vari-
able occurs in the methodology. For example, polymer weight for disso-
lution in the organic phase is measured before measuring the volume of
surfactant used in the aqueous sink condition, and therefore polymer
weight occurs before surfactant volume in the table. Naming styles for
individual samples were converted into a common name, and variables
were standardized to have the same naming convention.

Additionally, attributes that contained semi-structured data, such
as experiment notes, were cleaned of commas. Commas are the cho-
sen delineator for .csv files imported into our database and cannot
exist within variable entries. Once all of the data was cleaned, each
table was loaded as an independent sheet in an Excel workbook and
uploaded to Google Cloud for ease of access by multiple independent

researchers.

24 | Local computer-based database
After the entity-relationship diagram was completed in LucidChart,
we exported the schema as PostgreSQL commands to a local com-

puter, with a 24 GHz Quad-Core Intel Core i5 processor and 8GB
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2133 MHz LPDDR3 memory. PostgreSQL was installed using HomeBrew
and accessed through the terminal. The database schema commands
were imported from LucidChart, and a .csv for every individual entity set
was imported into the database using the COPY functions of PostgreSQL
with the top row of the .csv delineating the header for assigning columns
to attributes of the entity set. The entire database is about 200 kilobytes.
All developed queries were run through PostgreSQL on this created data-
base. We turned on timing and ran each query 13 times following the
leave-one-out rule to obtain average times for each query to run (n = 12).
The resulting .csv files from each query are saved onto the same local
computer using additional COPY functionality from PostgreSQL. The SQL
code for creating the database is accessible on GitHub at: https://github.
com/Nance-Lab/nanoformulations-database and specifically the file

nancelabSchema.sql.

2.5 | Snowflake-based cloud database

We used the same PostgreSQL commands exported from LucidChart
for developing the local database to also build a cloud-based database
using Snowflake. In Snowflake, we created a database for the project.
We copied all of our PostgreSQL commands into a worksheet and acti-
vated a size “X-small” data warehouse with 10-min auto-suspension for
running our commands. We then imported all of the CSV data through
the “load table” functionality within the Databases>“database
name”>“table name” window. To upload the data, the source file was
selected from the local computer, and we created a custom file format
for .csv files. The custom file format specifies using commas as column
separators, a new line as row separators, and one line of a header to
skip. With all data successfully uploaded to the database, we adjusted
the WHERE statements of our developed queries to the Snowflake
paths of each table and copied the queries into a worksheet. For evalua-
tion, all queries were run 13 times following the leave one out method-
ology and leaving out the first run for a total of 12 points to evaluate
the average time. The resulting .csv files from each query were down-
loaded onto the computer using the manual “Download or View

Results” button in Worksheets.

2.6 | Statistics
Pairwise correlation of columns from the database was calculated
using a Python package, Pandas, DataFrame.corr functionality.

Pearson was input as the correlation method.

3 | RESULTS AND DISCUSSION

3.1 | Database evaluation
We evaluated the database for the six V's of “Big” Data, volume, variety,
velocity, value, variability, and veracity,” to show the complexity of the

data (Figure 2). Although the volume of the data is relatively small

(Figure 2A), with about 160 kilobytes of data used for the results of this
publication, there are other features of the data that support the treat-
ment of our brain-nanoformulation data as a “big” data set.’® First, there
is a wide variety of data types, including structured, semi-structured,
unstructured, and temporal data (Figure 2B). Regarding velocity, indepen-
dent researchers update the data multiple times a week to incorporate
new experiments and characterization techniques (Figure 2C). The value
of the data is determined by scientific insight gained, animal lives used,
and the amount of time for data collection (Figure 2D). For our
nanoformulation-brain database, the nanoformulation data were collected
over 6 years while the biological data were collected from nine different
Sprague-Dawley rat pups over the course of 4 months and provides
multi-faceted insight into nanoformulation features, biological features,
and the interactions between nanoformulations and the brain. Variability
for this database is increased because nanoformulations can be applied to
many different brain environments that change according to treatment or
injury, sex, age, and brain region (Figure 2E).}? Additionally, veracity with
neuroscience data is important both ethically and experimentally and is
identified for this study in Figure 2F. Biological data has many ethical con-
siderations, including minimization of life used, sampling bias, and percep-
tion bias.?° Finally, experimental data can have errors and noise due to
natural biological variability, human error, data obtained by an indepen-
dent researcher during a period of training or method optimization, and
input or databasing errors by how the data was added to the database or
queried.?°

In addition to evaluating the facets of “big” data, we tested the data-
base both locally and with a cloud-based solution. The decision to host a
database locally or in the cloud depends on multiple factors, including
accessibility, economics, and time. This experimental database is approxi-
mately 160 KB and 2300 rows of data. While this is a significant amount
of information to the lab collected over 6 years and from 11 independent
researchers, volume-wise it is considered a small data set in database
management. Cloud-based services offer access to multiple computers
and locations at a higher economic cost than a local database. However,
the price should be justified by a significant increase in performance. We
tested our local database against the use of Snowflake. Snowflake is a
popular, cloud-based data warehousing application with an online plat-
form.2* With large enough data sets, Snowflake offers an elastic, scalable,
and secure system that significantly improves performance. However,
with the size of the dataset used here, the Snowflake cloud platform took
on average 10 times longer to return results than a local database
(Figure 2G). The larger time per query run is likely because Snowflake was
designed for large volume data from mainly transactional sources. There-
fore, for experimental databases of this size, local hosting is a viable and
efficient option. Accessibility can be improved by hosting the .csv files or
spreadsheets in a cloud platform such as Google Cloud, with occasional
imports to a local database.

3.2 | Hypothesis-driven query development

One specific goal of the database is to organize our nanoformulation

data so that results are readily accessible to independent researchers
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FIGURE 2 Database evaluation according to the six V's of big data. (A) Volume describes the number of independent researchers,
features, rows, and quantity of data. (B) Variety describes the four major types of data with examples. (C) Velocity has example timelines
with upload points for data and time scale values bolded below each major methodology step. (D) Value describes the time, life, and
insight value of the database. (E) Variability shows the biological factors that affect the fate of nanoparticles and the methodological
factors that affect the features of the nanoparticle. (F) Veracity describes the complexity of errors that can be introduced to the
database. (G) Time for queries to run on a local server compared to Snowflake. Created with BioRender.com

using the database. To increase data accessibility for nanoformulation
researchers, data must be searchable from various viewpoints, includ-
ing biological outcome, nanoformulation methodological variables,
and nanomedicine physical characteristics. The flexible searchability
of a database is made possible through meaningful query develop-
ment. The first step in meaningful query development was determin-
ing relevant results that researchers would consistently want from the
database. Relevant results were determined by discussing the current
hypotheses researchers have about their data but cannot answer effi-
ciently without large data reorganization or increased experimenta-
tion. The variables the researchers needed to study to answer their
hypotheses were recorded. With all variables for specific hypotheses
outlined, we wrote queries that accessed the different units of the
database and returned all specified hypotheses-related variables
and data.

Our queries amplified the capabilities of the database by (1) writ-
ing a series of progressive queries (Queries 1-7) that result in all
nanoformulations that have increasingly specific and scientifically
informed constraints, (2) writing queries 8, 9a, and 9b for an experi-
ment focused on nanoprecipitation effects on surface charge, and that
can return nanoformulations made with specific polymers with or
without drug loading, and (3) writing queries 10a, 10b, and 11 to test
the database as a drug screening platform for the double emulsion
and nanoprecipitation methodologies (Table 2). Each query has three
parts: a SELECT, FROM, and WHERE portion. The SELECT portion
outlines all variables that should be returned by the query. The FROM
portion states all the tables that must be accessed for the information
(Figure 3). The WHERE portion applies constraints and relationships
between the tables. Queries for the local and Snowflake-based data-

base are available on Github at: https://github.com/Nance-Lab/
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TABLE 2 Descriptions of every query with the query number, query description, and the number of rows
Resulting
Query Description number of rows
Query O Selects all nanoformulation, their characterization results, and related researcher information 704
Query 1 Selects all nanoformulations, their characterization results, and related researcher information with a size between 334
50 and 100 nm
Query 2 Selects all nanoformulations, their characterization results, and related researcher information with a size between 262
50 and 100 nm AND a ZP between —10 and 10 mV
Query 3 Selects all nanoformulations, their characterization results, and related researcher information with a size between 150
50 and 100 nm AND a ZP between —10 and 10 mV AND a PDI between 0 and 0.2
Query 4 Selects all nanoformulations made via single emulsion, their characterization results, their formulation 4
methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between
—10 and 10 mV AND a PDI between 0 and 0.2
Query 5 Selects all nanoformulations made via double emulsion, their characterization results, their formulation 21
methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between
—10 and 10 mV AND a PDI between 0 and 0.2
Query 6 Selects all nanoformulations made via nanoprecipitation, their characterization results, their formulation 111
methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between
—10 and 10 mV AND a PDI between 0 and 0.2
Query 7 Selects all nanoformulations made via reverse formulation, their characterization results, their formulation 13
methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between
—10 and 10 mV AND a PDI between 0 and 0.2
Query 8 Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first 10
name, that use ‘45 k PLGA’ as the polymer and without loaded drug (Figure 3B)
Query 9a Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first [¢)
name, that use ‘P80’ (Figure 3C)
Query 9b Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first 6
name, that use ‘DI Water’ (Figure 3C)
Query 10a Selects all nanoprecipitation formulations tested in slices with a related lactate dehydrogenase cytotoxicity assay 6
completed from a specific publication along with the formulation methodologies, animal information, and
researcher information (Figure 4A)
Query 10b Selects all double emulsion formulations tested in slices with a related lactate dehydrogenase cytotoxicity assay [¢)
completed from a specific publication along with the formulation methodologies, animal information, and
researcher information (Figure 4B)
Query 11 Selects all double emulsion information that specifies both sonication time and nanoparticle activity 31

characterization results along with the formulation methodology's variables and related researcher information

Notes: The description column provides a general description of all variables returned or “selected” by each query, which tables the variables were selected
from, and any constraints. The resulting number of rows the total number of results retrieved by each query.

Abbreviation: PDI, polydispersity.

nanoformulations-database under files nanoformqueries_local.sql and

nanoformqueries_snowflake.sql respectively.

3.3 | Querying nanoformulations for physical
feature and methodological variables

The first main application of our database is to sort and query our
nanoformulation data based on physical nanoformulation characteris-
tics. To show the effectiveness of our database, we began by querying
our nanoformulations without regard to biological information
(Figure 4). Query 0 provides a baseline for the range of sizes, ZPs, and
PDI values associated with the entire set of ~700 nanoformulations
included within our database. The results from query O include

704 nanoformulations with sizes ranging from 1.7 to 1290 nm, ZPs

ranging from —96.6 to 7.69 mV, and PDIs ranging from 0.01 to 0.96.
Query 1 successfully constrains the list of nanoformulations from
query O to 334 nanoformulations with sizes ranging from 50.42
to 99.89 nm. Query 2 further

262 nanoformulations with a size range from 50.42 to 99.47 nm and

constrains the results to
a ZP range from —10 to 7.69 mV. While query 3 imposes a third con-
straint on PDI, the query returns 150 results with a size range from
50.78 to 99.47 nm, ZP range of —10 to 0.47 mV, and a PDI range of
0.02-0.20.

Queries 0 through 3 show the ability of the database to select for
specific features of formulated nanoformulations (Figure 4A). Being
able to constrain nanoformulations based on size, ZP, and PDI is an
important feature for experiments in probing and treating neurological
diseases. Nanoparticle size and surface charge can influence nanopar-

ticle passage across the blood-brain barrier and penetration within
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the brain parenchyma.® In comparison, PDI is an indicator of particle
size uniformity. Each of these features provides key insight to the
nanoformulations we have access to that are stable, uniform, and can
theoretically transport through the brain to areas of interest.

We additionally are interested in querying for physical features of
databased nanoformulations so that we may obtain the methodolo-
gies and methodological variables that obtained specific physical char-
acteristics. We tested this application by developing queries
4 through 7, which applied the same constraints as query 3 and con-
trolled for specific methodologies: single emulsion, double emulsion,
nanoprecipitation, and reverse formulation (Figure 4A). We found the
largest number of viable formulations with the query that specifically
returned nanoprecipitation formulations followed by double emulsion,
reverse formulation, and single emulsion methodologies. With the
database, we can search for specific characteristics and then pick one
of the four methodologies to get all variables that produced those
nanoparticles. Each methodology has its strengths and weaknesses
that allow for particular tailoring of nanoparticles for transport capaci-
ties or therapeutic loading capacities. Researchers can now efficiently
find previously formulated and characterized nanoparticles and use
them as a starting point for specific tailoring and further optimization.

To test the applicability of our database to nanoformulation
analysis, we developed queries 8, 9a, and 9b. We developed query
8 to study the surface charge effects of surfactant on poly(lactic-
co-glycolic acid) (PLGA) nanoparticles without drug encapsulated.
obtained

All resulting formulations through query 8 are

nanoprecipitation methodologies. The query results show the

effect of surfactant chosen for the nanoprecipitation methodology
on the nanoformulations' sizes and ZPs (Figure 3B). Experimen-
tally, we have shown CHA, Fé68, and PVA produce highly negative,
slightly negative, and neutral nanoparticles, respectively
(Figure 4B). However, to compare the effect of surfactant on nano-
particle surface presentation and subsequent nanoparticle interac-
tions in the brain, nanoparticles made with these surfactants
should have comparable hydrodynamic diameters, preferably
within a range of £10 nm in diameter (Figure 4B). Query 8 allowed
us to visualize these results and determine the mass of polymer to
use for each formulation to obtain a standard nanoformulation size
with large ZP variation.

Queries 9a and 9b were written to find all formulations of a spe-
cific methodology, nanoprecipitation, that use surfactants and show
the physical characteristics of nanoformulations made with different
polymers. We showed physical characteristics of nanoformulations
from two PLGA polymers—one copolymerized with PEG and the
other without PEG—formulated with a specific surfactant polysor-
bate 80 (P80) while also specifying the presence or absence of a
specific drug loaded into the nanoparticle (Figure 4C). The results
from specific polymers, surfactants, and drug loading demonstrate
the searchability of querying the database. Queries 9a and 9b can be
efficiently changed to include different variable names or encom-
pass fewer variables by quickly altering the strings in the WHERE
clause. The hypothesis-driven queries leave the database explora-
tion to the researcher's expertise without burdening the researcher

with complex and time-consuming data science tasks.
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3.4 | Applying the database to enhance drug
screening capabilities

The goal of designing a nanoformulations database for probing and
treating neurological disease is to improve the screening of nan-
otherapeutics by providing insight between formulation variables,
nanoformulation characteristics, biological applications, and visualizing
the connections between them. Organotypic whole-hemisphere (OWH)
brain slice models have been developed as high-throughput screening
methods for nanoformulations.?>?% Partnering OWH brain slice
models with a nanoformulations database improves the connection
between nanoformulation characterization and biological outcome.
We developed queries 10a, 10b, and 11 to obtain all nano-
formulations from the database that were in OWH brain slices for an
individual biocompatibility experiment (Figure 5). Queries 10a and 10b
returned the nanoformulation methodological variables from the

Ql Q2 Q3 Q4 Q5 Q6 Q7

nanoprecipitation (Figure 5A) and double emulsion (Figure 5B) methods.
The nanoprecipitation methodology has a weak negative correlation
between the three physical characteristics—size, ZP, and PDI—of the
nanoformulations and the LDH assay 1-, 2-, 4-, and 8-h times ranging
from —0.27 to —0.38 (Figure 5A). The nanoprecipitation methodology
has a moderate negative correlation between the nanoparticle physical
characteristics—size, ZP, and PDI—for the 1-day LDH assay. In compari-
son, the double emulsion methodology shows increasing correlation
strength between size, PDI, and ZP, as time for the LDH assay
increases: a very weak correlation at 1-h LDH of —0.09, a strong corre-
lation at 2-hours LDH of 0.63, and a very strong correlation at 4-h, 8-h,
and 1-day LDH of 0.91, 0.94, and 0.95, respectively (Figure 5B).

The correlation strength differences between the nanoprecipitation
methodology and double emulsion methodology highlight the complex
effects of nanoformulation methodology on biological outcome. Mean-

while, the heatmaps show a visual representation of the capabilities of
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the database for studying nanoformulation and biological outcome
interaction. Specifically, the database enables a quick method to deter-
mine which methodological variables have the largest effect on a spe-
cific biological outcome or characterization. The effectiveness of the
database enables researchers to tailor and alter nanoparticle-based
nanoformulation-brain interactions efficiently.

Additionally, we used query 11 with the database to study the
correlation between nanoparticle methodology, nanoparticle charac-
teristics, and nanoparticle drug activity (Figure 5C). We found a strong
negative correlation of —0.8 between PDI for double emulsion
nanoparticles and nanoparticle activity. Additionally, there is a weak
to moderate correlation between ZP and the nanoparticle activity of

—0.38. We also found moderately negative correlations between

sonication time, size, and PDI ranging from —0.44 to —0.56. The cor-
relation between sonication time and nanoparticle characteristics
shows that the choice of sonication time does affect the size and
homogeneity of the samples without affecting their charge.
Interestingly, while there is a moderate correlation between the
sonication time and both PDI and size, and a strong correlation
between PDI and nanoparticle activity, there is no correlation
between sonication time and nanoparticle activity. These results high-
light the complexity of nanoformulation-brain interactions. The
nanoformulation methodologies affect nanoparticle characteristics in
a way that can be quantified by queries developed for the database.
However, the relationship between the nanoformulation physical vari-

ables and nanoparticle activity is still difficult to understand. The
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nanoformulation-brain database provides further insight into the com-
plexity of the data via flexible queries such as queries 10a, 10b, and
11. The relationships between nanoparticle characteristics and biolog-
ical outcomes quantified by the database allow researchers to select
already developed nanoformulations with desired outcome in previ-
ously studied biological models for application in new models or alter-
native species. Additionally, the researcher may select a desired
biological outcome for a specific nanoparticle batch and trace it back
to the methodological variables that produced the nanotherapeutic to
enhance or optimize the current outcome. For example, a researcher
may determine that a specific nanoparticle batch produces the desired
response from an LDH assay, so the researcher then reproduces the
original nanoparticle batch while slowly altering ZP or size to deter-
mine an optimal range for nanoparticle characteristics of a specific
methodology that still produce the desired outcome.

Utilizing a database for nanotherapeutic development and biological
application improves data connectively across diverse and variable sets
within academic laboratories. To successfully build and use formulation
databases, traditionally experimental wet-labs will either need to commit
to learning database fundamentals or outsourcing database development
and maintenance. Fortunately, developing and building databases is a
standard computer science and data science practice, and ample informa-
tion is available for free or paid online for mastering SQL and database
development within a few months. Once an experimental lab has data-
base development knowledge, each lab can assess and connect their own
methodologies through entity-relationship diagram design as we did with
LucidChart or with similar visual graphic software. From there, laborato-
ries partake in cleaning, standardizing, and implementing data upload prac-
tices for their own database according to the specifics of the data. The
created database with SQL abilities enables each lab to use their scientific
expertise to connect biological variables of interest with methodological
variables that the lab can control or manipulate.

Alongside increasing data connectivity by improving the searchability
of interconnected variables from biological and formulation methodolo-
gies, the database also highlights experimental research gaps. For exam-
ple, the relationship between nanoformulation methodology and LDH
assay differs for nanoparticles with similar characteristics such as neutral
charge and sub 114 nm, but that are made via double emulsion or
nanoprecipitation. Size, ZP, and PDI with DLS are not sufficient character-
izations to fully elucidate the relationship between the chemistry or mate-
rial composition of the nanoformulations with different formulation
methodologies and resulting different biological outcomes. In this case,
the database has helped identify a needed area of experimental explora-
tion. With additional build-out of the database to include more features
and data, increased visualizations and insights will shed light on the rela-
tionships between nanoformulation methodology, nanoparticle characteri-
zation, and biological outcome.

While the nanoformulation-brain database we developed is cur-
rently tailored to our lab, our methodology and applications are general-
izable across research laboratories while being extendable to start-up
and large pharmaceutical applications. Outside of academic laboratories,
start-ups and larger pharmaceutical companies are likely familiar or
already utilizing databases with best business practices for product

tracking and quality control. However, these companies could consider
building and integrating databases to enhance product development
and information connectivity during the research and development to
manufacturing process. Both start-ups and big pharmaceutical compa-
nies can follow the methodology applied here for connecting biological
outcome variables to methodological features via each business's spe-
cific experimental metadata while extending database connectivity with
federally approved drug and therapeutic product databases for
enhanced drug development capabilities.

To improve the database as a tool to build translational capability,
several current limitations of the nanoformulation-brain database are
important to note and belong in two groups: software development and
the nature of experimental work. Currently, the database does not
include easy-to-use graphical interfaces or methodologies for automatic
data upload. We need to develop an interface for data upload by
researchers without data science or computer science expertise as well
as procedures for regular system back-up for local data storage. Addi-
tionally, experimental data can have high noise, vary in quality
depending on methodology or researcher, and is often in a continuous
state of optimization or evolution. To improve the database, future
work will develop a tagging system so researchers can annotate specific
data with qualitative notes that may impact the integrity of the data
such as contamination, user error, or data obtained during optimization
or training of specific methodologies.

Therefore, we envision future work in three areas: robust data-
base development, database-enabled drug screening, and experimen-
tal integration with molecular modeling. The first goal, to develop a
robust database, will create a database that is open access, easy to
contribute to, simple to query, and includes quality checks for data
accuracy. Additionally, to apply the database as a nanotherapeutic
screening method, we aim to integrate and validate the database-
enabled OWH model results with additional biological characteriza-
tion methods and nanoparticles with a wide range of physical and
drug-loading characteristics. Finally, computational modeling for nan-
otherapeutics provides large volumes of information to inform better
nanotherapeutic development. An experimental nanoformulation-
brain database integrated with the wealth of information from compu-
tation modeling enabled by machine learning enables high-throughput
insight between modeled and experimental nanotherapeutics and
experiment-informed prediction of biological outcome. Databases are
an organized way to store and access years of nanoformulation and
biological data to increase insight and connectivity of physical, chemi-

cal, and biological characteristics.

4 | CONCLUSIONS
We put forward that a preclinical experimental database can facilitate

translation for nano-based neurotherapeutics by connecting
nanoformulation methodology and nanoformulation characterization
with biological outcomes. Both nanotherapeutics and the brain have
similarities in the level of complexity—the physical, chemical, and biologi-

cal interdependencies and environment-dependent attributes create a
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vast design and application space. Tailoring nanotherapeutic design such
that nanotherapeutics can overcome biological barriers and reach target
sites at therapeutically relevant concentrations remains a need in the
nanomedicine field.?* In addition, limitations in measuring multi-faceted
in vivo interactions in clinically relevant models of brain disease can limit
nanotherapeutic translation for non-cancerous brain diseases.?>?¢ Our
nanoformulation-brain database connects nanoformulations to biological
applications through experimental details. The database builds a platform
that provides additional insight into 6 years of nanoformulation develop-
ment, including the ability to query nanoformulations based on PDI, ZP,
and nanoparticle size. We also developed queries that return all
nanoformulations made with specific methodologies, loaded with a spe-
cific drug, or formulated with certain surfactants or polymers. We demon-
strated the capacity of our database for drug screening using heat maps
of double emulsion and nanoprecipitation methodologies and their effects
on a measure of brain cell viability. Our querying results indicate different
strengths and patterns of correlations for nanoparticle physicochemical
properties and formulation methodologies with biological outcome. Based
on this initial investigation, well-designed nanoformulation-brain data-
bases have the potential to improve preclinical neurotherapeutic insight

and alleviate bottlenecks in clinical translation.
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