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Three-dimensional (3D) compensated MnBi,Te, is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields,
resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in
MnBi,Te, originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle.
Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi,Te, with near-perfect compensation
that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic
response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into
saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We
reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings bring to light a
topological anomalous Hall response that can be found in non-collinear ferromagnetic, and antiferromagnetic phases.
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INTRODUCTION

Magnetic topological insulators (MTls) have attracted tremendous
attention in the past decade, as they host topological quantum
states that emerge when non-trivial band structures are subjected
to the Zeeman interactions'. These include Weyl fermions??, the
quantum anomalous Hall insulator*-®, and the axion insulator’.
MTIs were obtained by doping a topological insulator with Cr or
Mn until the recent discovery of intrinsic MTls that host layers of
magnetically ordered transition metals or rare earths®°. MnBi,Te,
is such an intrinsic MTI. Different magnetic states have been
shown to arise in MnBi,Te, on demand®'9-'2, This material is a
layered two-dimensional antiferromagnet with Mn atoms occupy-
ing a separate layer in a septuple layer (SL) structure resembling
that of the quintuple in Bi,Tes (see Fig. 1a). The intralayer
magnetic exchange between Mn atoms is ferromagnetic (FM) and
dominant. The interlayer exchange is antiferromagnetic (AFM).
These yield an AFM ground state with perpendicular anisotropy.

In flake form, in the ultra-thin limit, MnBi,Te, has been
studied”'>7"> and can either host a compensated AFM state if
its thickness amounts to an even number of SLs or an
uncompensated FM state if it amounts to an odd number. The
former is particularly interesting since, in the AFM state, the
bottom surface of this Tl will experience a magnetic exchange
interaction of opposite sign to that of the top surface, resulting in
an axion insulator state”’. In the bulk limit, MnBi,Te, has also been
studied and shown to host a surface-spin-flop transition followed
by a canted magnetic phase at intermediate magnetic fields® ',
At high field, when the ferromagnetic state is reached MnBi,Te,
was argued to host type-ll Weyl fermions®. However, in the
presence of non-collinear and canted magnetic orders'’~2, this
material, as well as MTls in general, can yield exciting undiscov-
ered electronic effects.

In this work, we grow a pure 24-SL MnBi,Te, thin film by
molecular beam epitaxy (MBE) that hosts a magnetic phase
diagram that includes a FM, an AFM and a canted phase, as in
bulk. We reveal this phase diagram through the observation of
changes in the anomalous Hall effect (AHE). We study the scaling
of the AHE in the presence of canting as well as its evolution with
temperature through the various magnetic phases hosted by
MnBi,Te,;. We show that the canting angle can alter the expected
scaling relation of the AHE with magnetization, even in the
absence of planar chiral textures such as skyrmions. Beyond
previous experimental studies, we experimentally show that an
AHE term proportional to the cube of magnetization is needed to
account for the observed scaling. We theoretically justify the
origin of this term in supplementary section 1. Our results provide
an important step in the understanding of non-collinear magnetic
orders and how they impact electric transport in MTls.

RESULTS

Material synthesis

MnBi,Te, films are synthesized by MBE on GaAs(111)B substrates.
The substrates are initially annealed up to 580 °C to desorb the
native surface oxide. A GaAs buffer layer (50 nm) is then grown to
improve the substrate surface quality. This step is critical to obtain
a flat interface, and a smooth layer. The GaAs surface is then
treated with a Te flux at 580 °C to obtain a Te-termination. A Bi,Te;
buffer layer (4 quintuple layers) is then grown at 280 °C. The Bi,Tes
layer is further annealed at 360°C under a Te flux to further
improve surface smoothness. We compare the growth of three
samples A, B,and C where we sequentially?? exposed the substrate
to a flux of the following: Mn-Bi-Te (for 30 s), Mn-Te (30 s for A and
C, and 15s for B) and Te (120s for A and B, and 180s for Q).
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Fig. 1 Structural and magnetic characterization of MnBi,Te, thin films. (a) Crystal structure of MnBi,Te;. Magnetic moments of individual
Mn atoms are induced by the black arrows. SL: septuple layer (b) X-ray diffraction patterns taken on samples A (red), B (blue), and C (green).
The expected Bragg peaks for MnBi,Te, and Bi,Te; are shown below the data. HS stands for heterostructure (of Bi,Tes and MnBi,T,). ¢ Bright
field TEM image of the 24-SL sample A. Red lines are a guide for the eye highlighting the layer stacking. d Magnetization of samples A (red), B
(blue) and C (green) versus temperature measured at a magnetic field of B=3 mT applied along the ¢ axis.

This is repeated 20 times, all while maintaining a substrate
temperature of 320 °C. The growth is carried out under Te rich
conditions for all samples?®. The layers interdiffuse and yield a
continuous MnBi,Te, layer in sample A, and a MnBi,Te,-BiTes
heterostructure in sample B and C likely due to the lower Mn-Te
deposition time or longer annealing time.

Characterization

A combination of structural and magnetic characterization allows
us to confirm formation of a pure MnBi,Te, layer with no evidence
of interpenetrating Bi,Tes. From X-ray diffraction (XRD) measure-
ments shown in Fig. 1b, it is evident sample A hosts strong Bragg
peaks characteristic of MnBi,Te4, while the other samples contain
both Bi,Te; and MnBi,Te4. The XRD measurements thus reveal the
formation of a pure macroscopic film of MnBi,Te, in sample A
with a c-lattice constant equal to 41.20 A. Figure 1c shows a
transmission electron microscope (TEM) image taken on sample A.
The image reveals a near-ideal stacking of 24 SLs of MnBi,Te, with
no evidence of interpenetrating Bi,Tes layers seen in previous
studies®?*?> and in sample B (see Supplementary Discussion 2).
Figure 1d compares the remanent magnetization measured using
SQUID magnetometry at low magnetic field (3 mT) versus
temperature. A FM transition is observed in the samples contain-
ing both Bi,Te; and MnBi,Te,;, while sample A only exhibits a
slight deviation from the baseline of the measurement. This
deviation could result from antisite Mng; defects?S. This compar-
ison strongly indicates the quasi-compensated AFM nature of
sample A resulting from the structural homogeneity revealed by
TEM and X-ray diffraction measurements.

Anomalous Hall and magnetic response

The Hall effect measured in samples A, B and C at 4.2K are
compared in Fig. 2a. In samples B and C, a smaller amount of Mn is
introduced, and the AHE is dominated by a strong normal n-type
Hall response at high magnetic field. The normal Hall effect in
sample A is, however, positive and the overall Hall response of this
sample is dominated by the AHE. This AHE comes out qualitatively
very similar to the magnetization of MnBi,Te, single crystals
measured in previous works?”-?%, The magnetization of sample A
obtained from VSM magnetometry measurements at 2 K is plotted
in Fig. 2b versus magnetic field along with the anomalous Hall
resistance extracted by subtracting the high field slope from R,,. In
both measurements, magnetic regimes can already be identified
from discontinuities in the slopes as a function of magnetic field. A
total of five regimes are visible from the AHE. Numerical
simulations discussed next allow us to understand these regimes.
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Magnetic simulations are carried out by utilizing an energy
minimization scheme of the modified Mills model and a Monte
Carlo approach. In the Mills model'®?°, the total energy of the
system is given by:

N-1 N N
1 AN2
E:E Jisi - si f—E Ki(s; -z fH-E S (1)
- i2i i+1 2 — I( i ) - i

with the reduction rules, s; =s;+ i=1n(As —1)s;,Ji=J+6
i:]4N71()\J — 1)./, and Ki=K+ 6i:1,N(AK — 1)K /\A(A = S,J7 K) repre-
sents the reduction of the magnetization s;, of the exchange
coupling J;, and of the anisotropy energy K;, respectively. The
magnetization was computed from the modified Mills model for
N=24 layers with the parameter set J=235T,K=0.6J,
As = 0.6,\; = 0.8, and Ax = 0.6. The model is implemented with
open boundary conditions to account for two surfaces and only
includes the interaction of nearest-neighboring layers in the
vertical direction. In Fig. 2¢, we plot the perpendicular component
of magnetization obtained from the Mills model versus magnetic
field (red curve). Classical Monte Carlo simulations3°~32 at 2K, as a
function of increasing field, are also performed for a homo-
geneous 24-layer film with free surfaces. The exchange and
anisotropy parameters are shown in the methods section. The
single-ion anisotropy parameter is slightly reduced compared to
ref. 3° to better align the spin-flop fields with experimental data
and Mills model. The Monte Carlo simulations include an intralayer
exchange interaction unlike the Mills model. The implementation
of both models is discussed in the methods section. The
simulations reproduce the behavior of the modified Mills model
above 3 T. They are shown as the blue curve in Fig. 2c.

The spin texture obtained from Monte Carlo simulations allows
us to identify a variety of magnetic phases arising as the field is
swept. In Fig. 2d, we plot the spin texture of the 24-layer system
versus magnetic field between 0 and 10 T. At low fields, in region
(i), the system is a collinear antiferromagnet (AFM) and yields the
AFM Hall plateau observed in Fig. 2b. Up to 3.4 T, in region (ii), the
surface layer that is antiparallel with respect to field starts to flip
yielding a positive slope in the magnetization versus field plot
shown in Fig. 2c and corresponds to a change in the observed
AHE slope in Fig. 2b. In the modified Mills model, this transition is
abrupt and yields a sudden surface spin flop state (SSF). The
Monte Carlo simulation at 2 K results in a smeared transition due
to thermal fluctuations, yielding a progressive spin flip with
increasing field. At 3.4 T, in region (iii), the bulk spin flop transition
(BSF) occurs yielding a sudden jump in the AHE observed in
Fig. 2b. While region (iii) appears as an abrupt BSF transition in the
simulation (Fig. 2d), it is broadened in the experiment as various
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Fig.2 Anomalous Hall resistance, magnetization and magnetic structure of 24-SL MnBi,Te,. a R,, measured in samples A, Band Cat 4.2K.
b Anomalous Hall resistance Rﬁy (red at 1.4 K) measured in sample A compared to its magnetization (blue at 2 K). Labels (i-v) mark 5 different
magnetic regimes discussed in the text. Rfy is obtained by subtracting the high field linear Hall effect from R,,. ¢ Magnetization measured in
sample A at 2K and 5K using two different instruments (see methods) compared with calculated magnetization using the modified Mills
model (red) and Monte Carlo simulations (blue). d Evolution of the spin texture of the 24-SL system as a function of magnetic field, obtained
from Monte Carlo simulations at 2 K. Regions (i-v) correspond to the 5 magnetic regimes observed in (b). The color of the arrows represents

the magnitude of the z-component (fully up: red, fully down: blue).

domains in the sample go through this transition at slightly
different fields. Afterwards in region (iv) the magnetization is
canted and slowly rotates towards the z axis. This is the canted
antiferromagnetic (CAFM) phase identified in previous works'”33,
In Fig. 2b, a linear increase of the AHE is observed in region (iv).
Above 8 T, the system is a saturated ferromagnet (region (v)).
While R,y is far from being quantized (<< h/e?) in this region, the
Hall conductance G,, extracted from the Drude tensor saturates
close to 0.2e?/h above 8 T.

Despite the remarkable agreement of the magnetic simulations
with the AHE, the magnetization exhibits some differences at low
magnetic field. The remanent magnetic hysteresis loop at low field
seen in Fig. 2b, c (and in Supplementary Discussion 3 for the AHE)
may be due to a defect state arising from antisites®*3*3 in the
structure or a disordered surface layer. The Monte Carlo
simulations do yield a remanent surface magnetization, however,
the measured relative remanence (M(OT)/M(7T)) is larger than
what is seen in calculations. Between 34T and 7T, the
measurements and simulations converge at most within two
standard deviations, but the magnetization saturates close to
4ug/u.c. lower than the maximum expected for MnBi,Te,. This
could be due to Mng; antisites that were shown to couple
antiferromagnetically to the Mn layers, yielding a drop in the net
moment. However, these Mn atoms are not expected to yield a
field dependent magnetization at the fields of interest®>.

Temperature dependence and AHE phase diagram

In Fig. 3a, we plot the temperature dependence of the Hall
resistance from sample A. The magnetoresistance is shown in
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Supplementary Discussion 4. The Hall resistance allows us to
construct a magnetic phase diagram, from electrical measure-
ments. We take the first derivative of the R,, versus B data
shown Fig. 3a and plot it in Fig. 3b to evidence more strongly
the temperature dependence of each magnetic transition. The
resulting magnetic phase diagram is shown in Fig. 3c and
agrees with previous work on single crystals'”. As can be seen
in that figure, the onset of each magnetic regime decreases
with increasing temperature. Particularly, we can see a
suppression of the AFM phase close to 15 K. Between 15 and
20K, the canted surface and bulk magnetic phases remain
present. Above 20 K, the Hall response remains non-linear, but
the discrete slope changes observed at low temperature
disappear, indicating that the material enters a paramagnetic/
ferromagnetic phase.

The temperature dependent measurements also elucidate a
possible ambipolar behavior at high magnetic field as the slope of
the Hall effect is seen to change with increasing temperature. We
hypothesize that sample A hosts coexisting electrons and holes
possibly from Mn acting as an acceptor if it substitutes for Bi.

Scaling of the AHE

We next investigate the scaling of the AHE with magnetization to
understand the impact of the magnetic structure of MnBi,Te, on
its AHE. We focus on the canted AFM regime, for which the
magnetization and magnetic simulations show a good agreement.
Generally speaking, the intrinsic AHE in magnetic materials is

npj Quantum Materials (2022) 46
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canting.

given by3¢
0y, = appM @

Here, a is a coefficient proportional to the Berry curvature, p;‘y is
the anomalous Hall resistivity and p,, is the longitudinal resistivity.
M is the magnetization. Thus, the Hall conductance of, = p’)‘}y/pfx is
simply proportional to M. Even in the presence ovaeyI nodes
expected for this material, the Hall conductance is proportional to
the node separation?, which in turn is proportional to the
magnetization. If the field dependence of p,, is small such as in
our case, then both Rfy and o2 should be linear versus M. In
Fig. 4a, we plot afy versus M for cfifferent temperatures. We restrict
this analysis to the shaded region in Fig. 2c, for which the
magnetization and the simulations agree the most (within error).
The uncertainty on the magnetization is also included in the scaling
analysis shown in Fig. 4a (see Supplementary Discussion 5). While at
20to 30K the ofy is seen to scale almost linearly with M, we recover
a remarkable change in this scaling relation at low temperature. At
temperatures where the material hosts a canted phase, the AHE
starts to exhibit a super-linear scaling with magnetization.

This super-linear behavior violates the established scaling
relation of the AHE. The “excess” Hall effect resembles what is
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observed in non-collinear magnetic systems such SrRu0;*"8 and
in materials that host magnetic skyrmions°. The crystal structure
of MnBi,Te, is centrosymmetric, thus reducing its likelihood to
host skyrmions*®. Note that a recent work has investigated a
similar “excess” AHE in MBE grown MnTe,/MnBi>Te,*', but did not
reach sufficiently high fields to measure the AHE in the canted
phases.

To account for the non-linear scaling, we model the anomalous
Hall conductance by adding an additional unexpected component
due to canting. The Berry curvature driven response of the AHE
due to canted magnetism has only been recently investigated*>~*4,
Theoretical studies suggest that additional AHE components -
referred to as a chiral and a crystal AHE - can arise depending on
crystallographic symmetry of the material (Supplementary Discus-
sion 1)*24345 For MnBi,Te, we determine the symmetry-allowed
contributions to the AHE up to third order in the out-of-plane
ferromagnetic moment M as well as in the in-plane antiferromag-
netic moment M_ =My —Mp . Here Mg are the magnetic
moment of two Mn sublattices. We find*%4

M M3 MM?
o = — — — 3
Xy YaHE Msar + YnaHE Ms3at + YX M3 ( )

sat
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when assuming the space group symmetry R-3m*°#8, The series
coefficients y; are material parameters. Under the constraint that
the magnitude of the individual magnetic moments is fixed, one
can write M*> = M2, — M?. This expansion is therefore able to
justify why of(‘y ~ M?* with 1 <a <3 is a good approximation.
Further, Fig. 4a demonstrates that approximately y,,ue = 0, since
a=1is close to the exact exponent in the ferromagnetic phase for
T>20 K. The anomalous scaling behavior in the CAFM phase could
then be related to a finite y,. The term MM? can be reformulated
in a way, which makes its physical content more apparent.
Namely, we introduce the vector chirality x=M_xM and
consider the experimentally relevant case, where M = Me, and
M_ = M_e,. Then, one can write the additional Hall contribution
in terms of the chirality in two ways as
X2
s “)

Near the purely antiferromagnetic state this anomalous Hall
contribution is therefore linear in the components of the vector
chirality and the canting is introduced via the small ferromagnetic
component. By definition, it therefore classifies as a so-called chiral
Hall effect*. In the vicinity of the ferromagnetic state, the canting
enters via a small antiferromagnetic component and the effect is
seen to be quadratic in the chirality (Supplementary Discussion 1).
This can be seen as the defining quality of a crystal Hall effect for
canted ferromagnets*?.

Overall, MM is a manifestly canting-driven contribution to the
AHE, not proportional to the overall magnetization. To compare
with the experiment, we write

A
O)Z(m) ~m+y—Xm(1 —m?) (5)
af (1) YaHE

The non-linear scaling exponent is therefore controlled by the
relative magnitude of the canting contributions m = M/Ms, =
cos(¢) where ¢ is the canting angle with respect to the vertical.
Indeed, canting is clearly visible in the spin texture shown in Fig. 2d
between 3.8 T and 7.8 T. In Fig. 4b, we compare our calculated
anomalous Hall conductivity (Eq. 3) to the experimental data. The
red curve uses yu; = 2.55(Q.T.cm) ', Yy = —0.75(Q.T.cm) 'and
the blue curve uses y, =0. It is evident that a nonlinear
contribution is required to account for the difference in slope
between the magnetization obtained from the Mills model and the
AHE. To get a better comparison with the magnetization data, we
also plot the scaling relation obtained by comparing the calculated
anomalous Hall resistance to the simulated magnetization. A
super-linear scaling relation with M is reproduced in the canted
phase (Fig. 4c). We have hence shown that the AHE in MnBi,Te,
can be a direct function of the canting angle.

DISCUSSION

We have studied the AHE in a 24-SL MnBi,Te, layer obtained by
MBE and shown that the anomalous Hall response of topological
origin in this material contains a canting angle contribution at low
temperature. A symmetry analysis has allowed us to observe an
AHE scaling that comprises a remarkable contribution that scales
cubically with magnetization. This explains the origin of the non-
linear scaling of the Hall conductivity with magnetization
observed in the experiment. We show that its origin is related
to the canting of the magnetic moment induced by the bulk spin
flop transition before saturation. Specifically, we have revealed
that the AHE measured here can be explained by the first non-
trivial, canting-dependent correction which is allowed by the
crystallographic symmetry of MnBi,Te;. A detailed symmetry
analysis showing the origin of this effect can be found in
Supplementary Discussion 1. In referring to prior theoretical work,
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this term has been identified as the chiral Hall effect of canted
antiferromagnets*>*3, By elucidating these effects in MnBi,Te,, we

have explained the origin of the unusual scaling of the Hall effect
when canting is present.

METHODS
X-ray diffraction

X-ray diffraction measurements are carried out at room temperature in a
Bruker D8 Discover diffractometer equipped with Cu-Ka-source.

Magnetometry

SQUID magnetometry is carried out in a Quantum Design MPMS, down to
4.2 K at various magnetic fields up to 7 T. The field is applied perpendicular
to the sample plane. The diamagnetism of the GaAs substrate assumed to
contribute a linear slope between 6T and 7T is subtracted at each
temperature. VSM magnetometry is carried out in a Quantum Design PPMS
system equipped with a VSM head up to 9T. The diamagnetism of the
GaAs substrate is subtracted at each temperature.

Transmission electron microscopy

High-resolution cross-sectional TEM images were acquired using a double
tilt holder and Titan 80-300 transmission electron microscope (Thermo
Fisher Scientific, USA) equipped with a field emission gun, operated at
300 kV. STEM images were acquired using a high-angle, annular dark field
detector (HAADF) and bright field detector (Fischione Instruments). For
compositional analysis, energy-dispersive X-ray spectroscopy (EDS) maps
were obtained in STEM mode using the Ultim Max TLE EDS system (Oxford
Instruments) equipped with a large solid angle silicon drift detector. TEM
samples were prepared by focused ion beam etching using the standard
lift-out technique.

Electrical transport

Electrical Hall effect and magnetoresistance measurements are carried out
in an Oxford Instruments cryostat up to 16T and down to 1.4 K. The
excitation current is maintained at 100 pA. Rectangular samples cleaved
from the GaAs wafer are measured in a 5-wire Hall configuration. The Hall
conductivity is extracted as follows:

pr
O = — 22— 6
Y P+ py ©
R
Pxy = Rytandp,, = szt 9

w, L and t are the sample width, length, and thickness respectively. For
sample A, the measurements are carried out on a rectangular piece with
wx L= 1.05mm2.ofy utilizes the anomalous Hall resistance signal after a
linear Hall background is removed at high magnetic field from R,,.

Mills model

The red magnetization curve in Fig. 2c was obtained by using the revised
Mills model shown in Eq. (1) with N=24. The ground state at a positive
high field is searched by comparing total energies of spin configurations
relaxed from 100 initial random configurations. After that, each sampling
points are searched from previous configurations. In this model, we did not
consider the effect of thermal fluctuation and the ferromagnetic intralayer
exchange coupling.

Monte Carlo model

The blue magnetization curve in Fig. 2c was obtained by using a Monte Carlo
simulation®'2 similar to the ones carried out in ref. 3. The simulation includes
an intralayer ferromagnetic exchange coupling between Mn nearest-neighbors
within the same layer. The calculations are carried out at 2K and include the
effect of thermal fluctuations. The following parameters are used during the
simulation as they yielded the best agreement with the experimental data:
m = 5pg/Mn, Jinter = —0.0081MRY, Jinra = 0.03mRy, K = —0.01mRy, system
size: (11 X 11 Mn in layer) X (24 layers).
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The data that support the findings of this study are available from the corresponding
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