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Chronic hyperglycemia in type Il diabetes results in impaired autophagy function,
accumulation of protein aggregates, and neurodegeneration. However, little is known
about how to preserve autophagy function under hyperglycemic conditions. In this
study, we tested whether progranulin (PGRN), a neurotrophic factor required for proper
lysosome function, can restore autophagy function in neurons under high-glucose
stress. We cultured primary cortical neurons derived from E18 Sprague-Dawley rat
pups to maturity at 10 days in vitro (DIV) before incubation in high glucose medium and
PGRN for 24-72 h before testing for autophagy flux, protein turnover, and mitochondrial
function. We found that although PGRN by itself did not upregulate autophagy, it
attenuated impairments in autophagy seen under high-glucose conditions. Additionally,
buildup of the autophagosome marker light chain 3B (LC3B) and lysosome marker
lysosome-associated membrane protein 2A (LAMP2A) changed in both neurons and
astrocytes, indicating a possible role for glia in autophagy flux. Protein turnover,
assessed by remaining advanced glycation end-product levels after a 6-h incubation,
was preserved with PGRN treatment. Mitochondrial activity differed by complex,
although PGRN appeared to increase overall activity in high glucose. We also found that
activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and glycogen synthase
kinase 3p (GSK3B), kinases implicated in autophagy function, increased with PGRN
treatment under stress. Together, our data suggest that PGRN prevents hyperglycemia-
induced decreases in autophagy by increasing autophagy flux via increased ERK1/2
kinase activity in primary rat cortical neurons.

Keywords: autophagy, neurodegeneration, progranulin, hyperglycemia, diabetes, cortical neurons

INTRODUCTION

Type II diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia,
or elevated blood glucose. Hyperglycemia specifically contributes to pathology through
several mechanisms, including pro-inflammatory signaling (Chang and Yang, 2016),
accumulation of glycated proteins (Singh et al, 2014), and impairment of autophagy
(Moruno et al, 2012; Mir et al, 2015). Additionally, hyperglycemia is a known risk
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factor for several neurodegenerative diseases such as Alzheimer’s
and Parkinson’s (Sergi et al, 2019; Madhusudhanan et al,
2020). The prevalence of Parkinson’s is higher in those with
diabetes compared to non-diabetics, and those with diabetes
experience more severe Parkinsonian symptoms (Pagano et al,,
2018). Despite the breadth of these conditions, all of them
share a common underlying pathology: protein aggregates that
are normally removed instead accumulate in the cells due to
downregulation of autophagy (Ross and Poirier, 2004).

Autophagy is a cellular self-degradation process that is
upregulated in response to a number of cell stressors, including
starvation (Mizushima and Klionsky, 2007), endoplasmic
reticulum stress (Ogata et al., 2006), and excessive buildup of
proteins and organelles (Liu and Li, 2019). Targeted substrates are
enclosed in a double-membrane vesicle called an autophagosome,
which fuses with a lysosome to facilitate controlled degradation
of its contents (Khandia et al., 2019). Despite its known pro-
survival properties, uncontrolled autophagy leads to cell death
(Denton and Kumar, 2019); because of this, the activity of this
process is low under basal conditions, and the signaling pathways
leading to its upregulation are tightly controlled. Nonetheless,
it remains a powerful tool for maintaining cellular well-being.
The importance of proper autophagy function is elevated in the
nervous system due to the limited regenerative capacity and
post-mitotic nature of neurons (Stavoe and Holzbaur, 2019).
However, evidence indicates that the surrounding glia also
contribute to neuronal health through regulation of autophagy
and protein clearance (Ortiz-Rodriguez and Arevalo, 2020).
Likewise, lysosomal dysfunction in astrocytes has been shown to
contribute to neurodegeneration (Di Malta et al., 2012).

Progranulin (PGRN) is an endogenous neurotrophic factor
expressed in high amounts in brain tissue (Nguyen et al., 2013b)
that is implicated in anti-inflammatory activity in microglia
(Martens et al,, 2012). Furthermore, mutations in the GRN
gene have been linked to Alzheimers and frontotemporal
lobar dementia (FTLD), indicating a protective role against
neurodegenerative disease (Baker et al., 2006; Cruts et al,
2006; Gass et al., 2006; Perry et al.,, 2013). FTLD is similar to
other neurodegenerative diseases in that it is also characterized
by buildup of protein aggregates, namely TAR DNA-binding
protein 43 (TDP-43) (Cairns et al., 2007). Interestingly, PGRN is
important to lysosome function, as it is trafficked to the lysosome
and cleaved into granulin subunits that facilitate lysosomal
function (Smith et al., 2012; Almeida et al., 2016). Accordingly,
overexpression of PGRN in Alzheimer’s disease mouse models
has been linked to decreased amyloid-p plaques (Minami et al.,
2014; Van Kampen and Kay, 2017). These findings suggest
a model in which PGRN may prevent the development of
neurodegenerative pathology arising from impaired degradation
of protein aggregates.

In this study, we examined the role and mechanism that high
glucose plays in development of neuropathology with regards
to autophagy inhibition, and the potentially protective role of
PGRN. We found that autophagic activity and protein turnover
were reduced in neurons incubated in high glucose conditions,
with PGRN pre-treatment attenuating its harmful effects. PGRN
treatment prevented pathology and reduced function due to high
glucose in both cases. Mitochondrial function was affected by

PGRN in cells cultured in high glucose, although the net effect
varied by complex. We also observed changes in extracellular
signal-regulated kinase (ERK) and glycogen synthase kinase 3-
beta (GSK3P) phosphorylation in response to PGRN under
high-glucose conditions.

The data we present suggest a potential role for PGRN
in restoring autophagy in neurons affected by high
glucose conditions, and further connect hyperglycemia and
neurodegeneration through downregulation of autophagy.

MATERIALS AND METHODS

Animals and Cell Culture

All experiments were performed on cortical neurons from the
brains of E18 Sprague-Dawley rat pups, which were removed
under sterile conditions according to the standard protocol
approved by the Institutional Animal Care and Use Committee
(IACUCQ), Saint Louis University, St. Louis, MO guidelines. The
dissected cortices were cut into small pieces and incubated in an
enzymatic solution containing 40 units of papain (Worthington
Biochemical, Cat# LS003126), 2 mM CaCl, (Sigma, Cat# C4901-
100G), 1 mM EDTA (Sigma, Cat# E9884-100G), and 1.5 mM
L-cysteine (Sigma, Cat# 168149-25G) in Neurobasal medium
(Gibco, Cat# 21103-049). Tissues in solution were incubated
for 30 min at 37°C, mixing every few minutes to ensure even
dissolution. Tissues were then triturated through fire-polished
glass pipettes, then plated on dishes coated with 2 pg/ml
laminin (Sigma, Cat# 11243217001) and 100 pg/ml poly-D lysine
(Sigma, Cat# P6407-5MG), and cultured in Neurobasal medium
supplemented with 1X GlutaMAX (Gibco, Cat# 35050-061), 1%
pen/strep (Gibco, Cat# 15140122), 2% B-27 supplement (Gibco,
Cat# 17504-044), and 4% fetal bovine serum (Avantor, Cat#
97068-086). One half of the medium was changed every 3 to
4 days, and cells were grown for 10 days in vitro (DIV) before
experimentation.

For qPCR and western blot studies in microglia, HMC3
human microglial cells (ATCC, Cat# CRL-3304) were cultured at
a density of 120,000 cells/dish in 6-well plates in EMEM (Eagle’s
Minimum Essential Medium) (Corning, Cat# MT10009CV)
supplemented with 10% fetal bovine serum (Gibco, Cat# 26140-
095), 10 U/ml penicillin, and 10 pg/ml streptomycin. Cells were
cultured for 24 h, then treated with filtered glucose dissolved in
autoclaved water to get a final concentration of 30 mM. An equal
volume of autoclaved water was used for the control. Cells were
incubated for 72 h, then checked for mRNA and protein levels.

Treatment in Hyperglycemic Conditions
and With Progranulin

For primary cortical neurons, medium was changed at DIV 10
for equivalent medium supplemented (Sigma, Cat# G6152) to
reach a final glucose concentration of 100 mM (with control
medium containing 25 mM glucose), similar to other in vitro
studies exploring hyperglycemia in neuronal cultures (Chen
et al,, 2016; Li et al.,, 2017). PGRN (R&D Systems, Cat# 2557-
PG050) was added to the medium at this time to achieve a
final concentration of 200 ng/ml, a concentration that is similar
to plasma concentrations in patients and used in previous cell
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culture studies (Youn et al., 2009; Zhou et al., 2019a). Cells were
treated under their respective conditions for 24 or 72 h before
assay testing or harvest. Status of cells was observed using a
phase-contrast microscope (IX73, Olympus) and images were
taken with a Retiga R1 camera (QImaging).

For protein harvest, primary neurons were washed thrice
in PBS (Gibco, Cat# 10010-031), then lysed using ice-cold
N-PER lysis buffer (ThermoFisher, Cat# 87792) containing
Halt protease inhibitor (ThermoFisher, Cat# 1860932) and
phosphatase inhibitor (ThermoFisher, Cat#78420), then scraped
from plates using a cell scraper. For PGRN measurements, HMC3
cells were rinsed with PBS, then lysed in RIPA buffer containing
protease inhibitors (cOmplete™, Mini, EDTA-free, Protease
Inhibitor Cocktail, Roche, Cat#11836170001). In both cell types,
lysates were centrifuged at 14,000 rpm for 10 min and the
supernatant was collected. Protein concentration was ascertained
using a BCA Protein Assay kit (ThermoFisher, Cat# 23225).

Cell Viability Determination

Cell viability was determined using a fluorescence-based reporter
dye kit (LIVE-DEAD™ Cell Imaging Kit, ThermoFisher,
R37601). After treatment, cells were washed thrice with PBS, then
incubated in HBSS containing 1 pM Calcein AM and 2 uM
ethidium homodimer for 45 min. Images were taken using a
phase-contrast microscope (IX73, Olympus) with fluorescence
light source (Lambda XL, Sutter Instrument) and Retiga R1
camera (QImaging). Viability was determined by counting the
number of Calcein AM-stained cells through visual observation
and calculating as a ratio to total cells in each image.

Quantitative PCR Analysis

Total RNA was isolated from cultured HMC3 cells using a
RNeasy Mini kit (Qiagen, Cat#74106) with on-column DNase
digestion (Qiagen, Cat#79256). RNA was reverse-transcribed
to obtain ¢cDNA using the iScript cDNA synthesis kit (Bio-
Rad, Cat#1708891), and qPCR was performed using PowerUp
SYBR Green Master Mix (ThermoFisher, Cat#A25777) with
a Bio-Rad CFX384 Real-Time System. The primer sequences
were as follows (with F for forward and R for reverse primers):
human CYCLO-E GGAGATGGCACAGGAGGAAA; human
CYCLO-R, CCGTAGTGCTTCAGTTTGAAGTTCT; human
GRN-F, AGGAGAACGCTACCACGGA; and human GRN-R,
GGCAGCAGGTATAGCCATCTG. Results for qPCR were
normalized to the housekeeping gene CYCLO and evaluated by
the comparative Ct method.

Immunoblotting
Samples were treated with Laemmli sample buffer (Bio-Rad, Cat#
1610611) containing 350 mM DTT (Bio-Rad, Cat# 1610747) and
run on a pre-cast MES-SDS gel (NuPage, Cat# NP0323BOX) in
a Novex Mini-Cell device (Invitrogen, Cat# EI0001). Transfer
to a 0.45 wm nitrocellulose membrane (Bio-Rad, Cat# 1620115)
was performed in a Mini Protean Tetra System (Bio-Rad, Cat#
1658004). For PGRN measurement, proteins were separated on
SDS-PAGE Bio-Rad TGX gels and transferred onto nitrocellulose
membranes using the Bio-Rad Turbo-Blot transfer system.
Membranes were blocked in TBST containing 5% milk (Bio-
Rad, Cat#1706404), then blotted using primary antibodies for

light chain 3B (LC3B) (E7 x 45 XP(R), CST, Cat# 43566S),
lysosome-associated membrane protein 2A (LAMP2A) (Abcam,
Cat# ab18528), p-ERK1/2 (CST, Cat# 4370S), ERK1/2 (CST,
Cat# 4695S), phosphorylated GSK3p (CST, Cat# 9336S), GSK3p
(CST, Cat# 9315S), glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (CST, Cat# 2118S), PGRN (R&D Systems, Cat#
AF2557), hPGRN (an anti-human PGRN linker 5 polyclonal
antibody #614 that recognizes an epitope between residues 497
and 515 (Nguyen et al,, 2013a)), and B-actin (CST, Cat# 3700S).
All antibodies were used at a 1:1000 dilution, except for hPGRN,
which was at a 1:3000 dilution. A goat anti-rabbit (Invitrogen,
Cat# 31460) or donkey anti-sheep (ThermoFisher, Cat#A16041)
at a 1:5000 dilution or HRP-conjugated AffiniPure goat anti-
rabbit and anti-mouse antibodies (Jackson Immuno Research
Labs) at a 1:10000 dilution were used for secondary antibody
incubation. Western blot data were captured using an imager
(ThermoFisher, iBright FL1000) after incubating the membranes
in Pierce substrate (ThermoFisher, Cat#32106). hPGRN western
blots were visualized using a Chemi-Doc system (Bio-Rad).
Densitometric analysis was performed using Image] (NTH).

Immunofluorescence of Primary Cortical
Cells

Unless specified, primary cell cultures were fixed with 4%
paraformaldehyde (ThermoFisher, Cat# J19943-K2) for 20 min,
permeabilized with 0.3% Triton X-100 (VWR, Cat# 0694-1L) for
5 min, and blocked in PBS containing 5% goat serum (Gibco,
Cat# 16210-064) for 1 h at room temperature. To visualize
autophagosome and lysosome expression, antibodies for LC3B
(E7 x 45 XP(R), CST, Cat# 43566S), LAMP2A (Abcam, Cat#
ab18528), microtubule-associated protein 2 (MAP2) (Invitrogen,
Cat# 13-1500), and glial fibrillary acidic protein (GFAP) (EMD
Millipore, Cat# AB5541) were used at a 1:200 dilution in 5%
goat serum. To visualize PGRN expression in microglia, a
1:100 dilution of PGRN antibody (R&D Systems, Cat# AF2557)
and 1:3000 dilution of allograft inflammatory factor 1 (Ibal)
antibody (Wako, Cat# 019-19741) in 5% donkey serum were
used. For secondary incubation, the following antibodies were
used at a 1:500 dilution in 5% goat serum: goat anti-rabbit
conjugated with Alexa Fluor 568 (Invitrogen, Cat# A11036),
anti-mouse conjugated with Alexa Fluor 488 (Invitrogen, Cat#
A11029), and anti-chick conjugated with Alexa Fluor 488
(Abcam, Cat# ab150169). The following antibodies were used
at a 1:500 dilution in 5% donkey serum: donkey anti-rabbit
conjugated with Alexa Fluor 546 (Invitrogen, Cat# A10040) and
donkey anti-sheep conjugated with Alexa Fluor 647 (Invitrogen,
Cat# A21448). Slides were stained with DAPI (1 pg/ml)
included in the mounting media (Fluoroshield, Sigma, Cat#
F6507), and images were taken using a confocal microscope
(Leica, TCS SP8).

Fluorescence intensity analysis was performed by selecting
regions of interest (ROIs) of cell bodies, identified by staining
with the neuronal marker MAP2 or astrocytic marker GFAP.
The mean fluorescence intensity of each ROI was measured,
and values were normalized with control equal to 1. To prevent
differences in intensity due to user error, slides were viewed under
the same acquisition parameters for fluorescence images.
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Advanced Glycation End-Product

Degradation Assays

Cortical cells were incubated with 50 wg BSA-AGE (Cayman
Chemical, Cat# 22968) for 6 h at the end of the 72-h treatment
period. Protein samples were harvested and AGE detection was
performed using a fluorometric assay kit (Biovision, Cat# K929-
100), measuring emission at 460 nm in response to excitation
at 360 nm and using BSA control as the baseline. Levels of
AGEs were validated by western blot with anti-AGE antibody
(Bioss, Cat# bs-1158R) at a 1:1000 dilution, normalized to
GAPDH expression.

Mitochondrial Complex Enzyme Activity
Assay

Activity of ubiquinone oxidoreductase (UO), succinate
dehydrogenase (SDH), and cytochrome C oxidase (COX)
were tested to represent mitochondrial complexes I, II, and
IV, respectively. Protein samples were harvested after 72 h
of treatment at DIV 10 and tested in a 96-well microplate
format using a plate reader (Synergy H1, BioTek). Activity was
calculated as mAOD per min, accounting for differences in
protein concentration between samples. All reagents listed were
obtained from Sigma unless otherwise noted.

UO activity was measured as documented previously (Ma
etal., 2011). Samples were added to a reagent containing 25 mM
potassium phosphate (pH 7.2) (Cat# P5655), 5 mM MgCl, (Cat#
M4880), 1 mM KCN (Cat# 60178), 0.13 mM NADH (Cat#
N8129), 65 uM coenzyme Q10 (Cat# C9538), 2.5 mg/ml BSA
(Cat# A9418), and 2 pg/ml antimycin A (Cat# A8764). The
reagent was heated to 30°C for 10 min before adding 2 ug/ml
rotenone (Cat# R8875), followed by adding samples. Activity was
tied to reduction of NADH, measured as a decrease in absorbance
at 340 nm over a 20-min period.

SDH activity was measured as documented previously (Cimen
et al,, 2010). Samples were added to a reagent containing 10 mM
KCl (Cat# P5405), 5 mM MgCl,, 50 mM sodium succinate
(Cat# S2378), 40 mM NaNj3 (Cat# S2002), 300 mM mannitol
(Cat# M4125), and 20 mM potassium phosphate (pH 7.2) (all
reagents from Sigma). Activity was tied to the reduction of the
electron acceptor DPIP (Fisher Chemical, Cat# S286-5) (50 M),
which manifests as a decrease in absorbance at 600 nm over
a 30-min period.

COX activity was measured as documented previously (Ma
etal., 2011). Samples were added to a reagent containing 20 mM
potassium phosphate, pH 7.2, and 0.45 mM n-dodecyl-B-D-
maltoside (Sigma, Cat# D4641). Reagent was heated to 30°C for
10 min before adding 15 pM reduced cytochrome C (Sigma,
Cat# C2506), followed by adding samples. Activity was tied to
oxidation of cytochrome C, measured as a decrease in absorbance
at 550 nm over a 30-min period.

Statistical Analysis

Data were analyzed using Graphpad 8.4.3 software, with the
threshold for significance at p < 0.05. Values provided are
mean + S.E.M. Students ¢-test was used to assess significance
between two groups; for other experiments involving high
glucose and PGRN, one-way ANOVA was used. Post hoc testing

was performed using Fisher’s Least Significant Difference (LSD).
The N and p values for experiments are provided in the
figure legend or text.

RESULTS

Neuronal Morphology Is Promoted Due
to Progranulin and Maintained Under
High-Glucose Stress

To start, we examined neurons to determine if there were
any readily noticeable phenotypic differences due to high
glucose (HG) or PGRN. Since PGRN is a known neurotrophic
and neuroprotective factor (Van Damme et al, 2008), we
considered whether this property would be maintained under
high-glucose conditions. At DIV 10, cells were treated with
100 mM glucose and 200 ng/ml PGRN for 72 h before testing.
This concentration was used in other studies (Chen et al.,
2016; Li et al, 2017) and in our case because we saw a
significant decrease in cell viability under 100 mM, but not
50 mM, glucose (Supplementary Figure 1). Using a fluorescence-
based reporter assay, we found that cell viability decreased
significantly (F = 5.307, p = 0.005) (Figure 1A). Under high-
glucose conditions, viability decreased from 89.55 &+ 1.27% to
74.61 £ 4.80% (p = 0.001). Despite no difference compared to
control (from 89.55 & 1.27% to 87.94 & 1.98%, p = 0.699), PGRN
treatment led to increased viability under high glucose, from
74.61 £ 4.80% to 84.35 £ 2.29% (p = 0.025).

Cells viewed under phase-contrast microscopy showed
extensive growth of neuritic processes, while cells in high
glucose showed less growth of non-primary (i.e., secondary and
tertiary) neurites (Figure 1C). Neurite growth appeared to be
exceptionally robust with 200 ng/ml PGRN treatment, which
was maintained even under high-glucose treatment. While we
were unable to perform neurite tracing on matured neurons
in culture (>DIV 10) due to the density of cell growth, we
were able to assess the effect of PGRN on neurite outgrowth
in early developmental (DIV 4) neurons after treatment for
72 h. High glucose incubation resulted in a lower average
number of neurites, although this did not reach the threshold
of significance (from 9.067 £ 1.181 to 7.325 4 0.784 neurites,
p = 0.197) (Figure 1B). PGRN positively influenced neurite
outgrowth under high-glucose conditions (from 7.325 4= 0.784 to
10.353 £ 1.019 neurites, p = 0.030); when viewed in detail, there
was a trend toward an increase in primary neurites (4.471 4= 0.438
to 5.471 =+ 0.444 primary neurites, p = 0.080), and a significant
increase in non-primary neurites (2.765 4 0.481 to 4.882 =+ 0.857
non-primary neurites, p = 0.039). This indicates that PGRN
treatment promotes neuronal outgrowth and viability, even when
cultured in high glucose.

Primary and HMC3 Cells Show No
Change in Progranulin Expression Under
High Glucose

Prior studies have shown that microglia express high levels
of PGRN and may be important in neurodegeneration
(Mendsaikhan et al., 2019; Choi et al., 2020), so we explored
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FIGURE 1 | Neuronal viability and neurite outgrowth in neurons treated with high glucose and PGRN. (A) Viability of DIV 10 cortical neurons cultured in high-glucose
medium (HG) decreased after 72 h from 89.55 + 1.27% to 74.61 + 4.80%. PGRN treatment significantly preserved viability under high glucose, with a viability of
84.35 + 2.29% compared to 74.61 + 4.80% for HG alone. N = 8 fields of view (FoV). (B) Number of neurites per cell was counted at DIV 4 after 72 h of treatment
using Neurond. High glucose lowered mean neurite count from 9.067 + 1.181 to 7.325 + 0.784 neurites, while PGRN increased mean neurite count from

7.325 + 0.784 to 10.353 + 1.019 neurites. Specifically, this increase was significant in non-primary neurites (2.765 + 0.481 neurites to 4.882 + 0.857 neurites) and
trending toward significance in primary neurites (4.471 £ 0.438 neurites to 5.471 £ 0.444 neurites). N = 13-17 neurons. (C) Representative phase-contrast images
of primary neurons cultured under high glucose and PGRN after 72 h of treatment. Scale bar, 10 pm. *p < 0.05; **p < 0.01.

if high glucose affected the degree of PGRN expression in this
cell type. We performed qPCR and western blot analyses on
HMCS3 cells treated with high glucose (in this case, 25 mM, in
medium with a basal glucose level of 5.5 mM), and found that
mRNA and protein expression of PGRN were similar among
control and high glucose-treated cells (Figures 2A,B). The
mRNA level changed from 1.000 £ 0.139 Arbitrary Units, AU, to

1.022 + 0.099 AU, and the protein level from 1.000 &+ 0.212 AU
to 1.069 + 0.232 AU. This finding was confirmed in primary
cortical cultures, which showed abundant PGRN expression
in microglia (Figure 2C) but no difference due to glucose
concentration (from 1.000 4+ 0.315 AU to 0.714 4+ 0.163 AU
(Figure 2D). In summary, PGRN expression does not appear
to be significantly altered under high glucose, signifying that
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FIGURE 2 | PGRN expression in microglial cells treated with high glucose. HMC3 microglial cells were grown to confluence and treated with high glucose for 72 h
before harvest and testing for mRNA (A) and protein (B) levels of PGRN. A, PGRN mRNA levels were unaffected by high glucose, changing from 1.000 + 0.139 AU
to 1.022 + 0.099 AU. N = 10 samples. (B) PGRN protein levels were unaffected by high glucose, changing from 1.000 £ 0.212 AU to 1.069 + 0.232 AU. N = 8
samples. (C) Representative immunofluorescence images of primary microglia after 72 h of treatment, with blue as DAPI, green as Iba1, and red as PGRN. Scale
bar, 10 wm. (D) Western blot analysis of primary cortical cells revealed that PGRN levels were unaffected by glucose concentration, changing from

1.000 £ 0.315 AU to 0.714 4 0.163 AU. N = 6 samples.
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hyperglycemia-induced neurodegeneration is unlikely due to
differential PGRN levels per se.

Progranulin Preserves Light Chain 3B
Flux Under High Glucose Conditions

Impairment of autophagy is seen in diabetes and
neurodegenerative conditions, so we tested how high glucose
affected autophagy flux using LC3B as an autophagosome
marker. Conjugation of LC3 with phosphatidylethanolamine
(PE) is an essential step in maturation of the autophagosome,
and the rate of autophagy flux can be estimated by measuring
the ratio of conjugated to unconjugated protein (i.e., LC3-IL:I
ratio) via western blot (Mizushima and Yoshimori, 2007). While
the overall ANOVA did not reach the threshold of significance
(F = 2.195, p = 0.108), there appears to be a trend toward a
decrease in the LC3-II:I ratio due to high glucose compared to
control, from 1.000 &= 0.208 AU to 0.464 4= 0.092 AU (Figure 3A).
PGRN treatment did not appear to alter LC3B levels in either
control (from 1.000 £ 0.208 AU to 0.931 & 0.309 AU) or
high-glucose conditions (to 0.474 £ 0.076 AU). Treatment with
the lysosomal inhibitor chloroquine (CQ) led to an increased

LC3-II:I ratio (F = 5.643, p = 0.000), indicative of impaired
lysosomal clearance (Supplementary Figure 2A). The change in
LC3B was significant in all treatment groups except for PGRN
alone (0.940 + 0.426 AU to 2.147 &+ 0.595 AU, p = 0.056).
Treatment with the autophagy inducer rapamycin also increased
LC3B lipidation (F = 2.378, p = 0.042), although this was
significant only in cells treated with PGRN (0.940 =+ 0.426 AU to
7.012 £ 3.711 AU, p = 0.006) (Supplementary Figure 2B).

Light chain 3B can also be used to measure autophagosome
formation by immunofluorescence, with an increase in punctate
formation indicating increased autophagosome formation
or decreased autophagosome clearance. We performed
immunofluorescence in cortical cells, with LC3B as red and
co-stained with either MAP2 as a neuronal marker or GFAP as a
glial cell marker (both in green). We found significant changes in
LC3B expression in neurons (F = 10.45, p = 0.001), with a lower
(but not significantly so) level of LC3B fluorescence seen when
cultured under high-glucose conditions, from 1.000 £ 0.069 AU
t0 0.916 £ 0.045 AU (p = 0.331) (Figure 3B). On the other hand,
under high-glucose conditions, PGRN increased puncta levels
to 1.190 £ 0.097 AU (p = 0.003). It is worth noting that cells
labeled with the neuronal marker MAP2 exhibited substantial
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FIGURE 3 | LC3B lipidation and punctate formation in cortical neurons due to high glucose and PGRN. (A) Western blot analysis of LC3 lipidation (i.e., LC3-II:I ratio)
in primary cortical neurons after 72 h of treatment. The LC3-II: ratio decreased from control to high glucose (1.000 + 0.208 AU to 0.464 + 0.092 AU), an effect that
appeared unaffected when treated with PGRN alongside high glucose (0.474 4+ 0.076 AU). No difference was observed between control and PGRN-treated samples
(0.938 + 0.309 AU). N = 9 samples. (B) Immunofluorescence analysis of LC3B puncta expression in neurons after 72 h of treatment. The amount of punctate
expression trended toward an increase due to PGRN (from 1.000 £ 0.069 AU, to 1.183 4 0.077 AU). This difference was significant under high-glucose conditions
(from 0.916 £ 0.045 AU, to 1.190 £ 0.097 AU). N = 11-29 cells. (C) Representative immunofluorescence images of primary neurons after 72 h of treatment, with
blue as DAPI, green as MAP2, and red as LC3B. Scale bar, 10 pm. (D) Immunofluorescence of LC3B puncta expression in astrocytes after 72 h of treatment
increased significantly due to high glucose as well as PGRN treatment (from 1.000 + 0.0374 AU to 1.512 4+ 0.087 AU and 2.792 + 0.099 AU, respectively). This
decreased to control levels under HG + PGRN treatment, to 0.899 + 0.049 AU. N = 12-29 cells. (E) Representative immunofluorescence images of primary
astrocytes after 72 h of treatment, with blue as DAPI, green as GFAP, and red as LC3B. Scale bar, 10 um. **p < 0.01; ***p < 0.001.

neurite growth in control conditions, while neurons incubated
in high glucose appear to have fewer major primary neurites
(Figure 3C), similar to our phase-contrast images (Figure 1C).
Differences in LC3B puncta were also pronounced in astrocytes
(F = 104.6, p = 0.000), albeit in the opposite direction, with
high glucose significantly increasing LC3B fluorescence in these

cells from 1.000 £ 0.037 AU to 1.512 £ 0.087 AU (p = 0.001).
PGRN increased LC3B intensity even more so, to 2.792 £ 0.099
(p = 0.000), but decreasing under high-glucose conditions
from 1.512 £ 0.087 AU to 0.899 £ 0.049 AU (p = 0.000)
(Figures 3D,E). These data on LC3B expression collectively
suggest that autophagy flux is decreased under high-glucose
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conditions and that PGRN alleviates this impairment, with
neurons and astrocytes being affected in different ways.

Lysosomal Turnover Is Promoted by
Progranulin Under High-Glucose
Conditions Despite Unchanged
Lysosome-Associated Membrane

Protein 2A Levels

Later steps of autophagy consist of autophagosome fusion with
lysosomal vesicles, which has been shown to be impaired in
diabetes (Ma et al., 2017). To see if this step was affected by
PGRN, we performed western blot and immunofluorescence
studies for LAMP2A, a lysosome membrane protein that
localizes in the perinuclear region upon autophagy activation.
By western blot, we observed no change in total LAMP2A
levels in cells (F = 3.271, p = 0.621) (Figure 4A) and an
increase when cells were treated with the lysosomal inhibitor
CQ (F = 5.75, p = 0.002) and autophagy inducer rapamycin
(F =3.763, p = 0.004) (Supplementary Figures 3A,B). LAMP2A
protein levels increased in all groups due to rapamycin and
due to CQ except control, which trended toward an increase
(1.000 £ 0.074 AU to 2.453 £ 0.497 AU, p = 0.094).

However, we observed differential LAMP2A punctate
formation in the perinuclear region of cells treated with
PGRN. By immunofluorescence, we observed an increase in
LAMP2A puncta in neurons (F = 4.423, p = 0.007), with high
glucose increasing punctate levels from 1.000 £+ 0.137 AU
to 1.463 £+ 0.108 AU (p = 0.005) (Figures 4B,C). PGRN co-
treatment alongside high glucose reduced punctate formation
to 1.246 £ 0.096 AU, which was no longer significantly different
from control (from 1.000 £+ 0.137 AU, p = 0.160) or PGRN
treatment alone (from 1.031 £ 0.083 AU, p = 0.152). In
astrocytes, we saw a non-significant trend toward an increase
in LAMP2A expression in cells treated with PGRN (F = 1.825,
p = 0.151) (Figures 4D,E). Combined with our data on LC3B,
this indicates that lysosome levels are affected by PGRN in cells
under high-glucose stress, and that this effect is also different in
neurons and astrocytes.

Turnover of AGEs Is Promoted by
Progranulin Under High-Glucose Stress

AGEs build up under hyperglycemic conditions as excess glucose
spontaneously glycosylates proteins (Singh et al., 2014). Under
conditions of impaired autophagy, these modified proteins build
up due to a lack of clearance (Takahashi et al., 2017). As a more
direct metric of protein turnover, we incubated cortical cells at
the end of a 72-h treatment period with 50 g of AGE-BSA and
continued treatment for 6 h at 37°C before harvest. We observed
a significant change in AGE levels (F = 3.271, p = 0.047); in
particular, AGE levels were higher in cells under high glucose
compared to the control, increasing from 5.067 £ 0.385 pg/mg
protein to 8.004 £ 0.852 pg/mg protein (p = 0.007) (Figure 5A).
While AGE levels were slightly higher in samples treated with
200 ng/ml PGRN than in control at 6.158 &= 0.734 jLg/mg protein,
this was not significant (p = 0.266), and high glucose did not
increase concentration further (up to 6.033 % 0.575 pg/mg

protein; p = 0.812 between PGRN and HG + PGRN), suggesting
that PGRN treatment aided in clearance of AGE from cells.
We also found similar results via western blot (F = 3.231,
p = 0.047), with an overall increase due to high glucose from
1.000 £+ 0.196 AU to 1.726 & 0.150 AU (p = 0.009 between
control and high glucose). There was no significant increase due
to PGRN (to 1.195 % 0.078 AU) compared to control (p = 0.438
between control and PGRN) and high-glucose treatment did not
increase this further (to 1.377 &£ 0.260; p = 0.472 between PGRN
and HG + PGRN) (Figure 5B). These data indicate that PGRN
may aid in clearance of protein substrates that accumulate due to
high-glucose stress.

Progranulin Modulates Mitochondrial
Activity Under High-Glucose Stress in a

Complex-Specific Manner

Mitochondrial activity is dysregulated in diabetes and
neurodegenerative diseases like Parkinson’s. Mitochondrial
damage is a major contributor of reactive oxygen species
(ROS) leakage and cellular dysfunction, and is also seen in
hyperglycemic conditions (Rolo and Palmeira, 2006). Because
proper maintenance of mitochondrial function through regular
turnover is important to neuronal metabolic health (Rugarli
and Langer, 2012), we aimed to see if preserving autophagy
also improved mitochondrial function. We therefore monitored
mitochondrial enzymatic activity as a metric of mitochondrial
function, measuring the function of complex I (ubiquinone
oxidoreductase, UO), complex II (succinate dehydrogenase,
SDH), and complex IV (cytochrome C oxidase, COX). Our
results were mixed, with results varying by complex. UO activity,
measured in terms of AmODsy49, did not change under any
treatment condition (F = 1.373, p = 0.283) (Figure 6A). SDH
activity trended toward significance (F = 2.209, p = 0.119), with a
trend toward a decrease under high-glucose conditions, observed
as a decrease in AmODgqgg from 1.138 = 0.069 to 0.817 =& 0.172
(p = 0.060). PGRN treatment attenuated the decrease due to
high glucose from 1.203 £ 0.026 to 1.069 % 0.129 AmODggg
(p = 0.414 between PGRN and HG + PGRN) (Figure 6B).
COX activity was significantly altered by high glucose and
PGRN (F = 20.89, p = 0.000), with AmODs5s( increasing under
high-glucose conditions from 1.596 % 0.100 to 2.167 £ 0.122
(p = 0.028). PGRN treatment amplified this increase from
1.948 £ 0.183 to 3.482 % 0.274 (p = 0.000 between PGRN and
HG + PGRN) despite no change when comparing control
to PGRN treatment alone (AmODss5¢ from 1.596 4 0.100 to
1.948 + 0.183, p = 0.156) (Figure 6C). This indicates that the
impact of hyperglycemia and PGRN on the mitochondria is
complex-specific.

Extracellular Signal-Regulated Kinase
1/2 and GSK3p Phosphorylation Are
Affected by Progranulin Under

High-Glucose Conditions

Several signaling pathways are implicated in diabetes, including
those involved in cell stress such as GSK3B and ERKI1/2.
The former is implicated in autophagy activation through
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N =12-27 cells. (C) Representative immunofluorescence images of primary neurons after 72 h of treatment, with blue as DAPI, green as MAP2, and red as
LAMP2A. Scale bar, 10 wm. (D) Perinuclear LAMP2A punctate formation appeared to show a trend toward an increase due to PGRN but was not statistically
significant (F = 1.825, p = 0.151). N = 16-22 cells. (E) Representative immunofluorescence images of primary astrocytes after 72 h of treatment, with blue as DAP,

downstream ULKI1 activation (Lin et al., 2012), and the latter
has been shown to promote autophagy induction under stressful
conditions (Cagnol and Chambard, 2010). We found that PGRN
influences the phosphorylation of these kinases in high-glucose
conditions, albeit with different timings. Inhibitory GSK38
phosphorylation at serine 9 was not significantly affected after
24 h of treatment (F = 0.809, p = 0.504) (Figure 7A). After 72 h
of treatment, phosphorylation increased significantly (F = 7.606,
p = 0.002), with high glucose increasing phosphorylation
from 1.000 £ 0.078 AU to 2.044 + 0.445 AU (p = 0.009)

(Figure 7B). PGRN treatment reduced phosphorylation from
1.000 + 0.078 AU to 0.551 £ 0.112 AU (p = 0.221), although
a statistically significant decrease was only observed under
high-glucose conditions (2.044 £ 0.445 AU to 0.628 & 0.178 AU,
p = 0.001). On the other hand, we found that activatory
threonine 202 and tyrosine 204 phosphorylation of ERK1/2
significantly increased after 24 h of treatment (F = 7.750,
p = 0.009) (Figure 7C) and returned to baseline within 72 h
(F = 0.759, p = 0.530) (Figure 7D). At 24 h of treatment,
it increased under simultaneous high-glucose and PGRN
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treatment from 1.000 + 0.145 AU to 2.403 =+ 0.381 AU
(p = 0.004 between control and HG + PGRN). However, high
glucose and PGRN treatments alone did not elicit any change,
only changing ERK1/2 phosphorylation to 1.342 4 0.398 and
0.932 4 0.241 AU, respectively (p = 0.352 and 0.848, respectively).
This effect appears to affect ERK2 (F = 8.436, p = 0.007)
as well as ERK1 phosphorylation despite a non-significant

change in the latter (F = 1.206, p = 0.368). The lack of
significance at 72 h was also present when looking at ERKI
(F = 1.784, p = 0.183) and ERK2 (F = 1.115, p = 0.366) in
particular. These findings suggest that GSK3p and ERK1/2
activation may play a role in PGRN’s autophagy-modulating
response in neurons cultured in high glucose in a
time-dependent manner.
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DISCUSSION

In this study, we posit that PGRN may have neuroprotective
roles against high glucose-induced reductions in neuronal health
and autophagy function. Previous work has connected PGRN
to neurodegeneration due to FTLD (Paushter et al, 2018),
Alzheimer’s (Minami et al., 2014), and Parkinson’s (Kampen
et al., 2014). Research in T2D is mixed, with brain and renal
tissues showing a protective effect (Kampen et al., 2014; Zhou
et al.,, 2019b), while in adipose tissue, higher PGRN is deleterious
(Zhou et al, 2015). However, no published work to our
knowledge has looked at PGRN in the context of hyperglycemia-
impaired neuronal autophagy flux and protein turnover. In line
with evidence of PGRN’s neuroprotective and growth factor
properties, we observed preserved cellular viability (Figure 1A)
and neurite outgrowth in cultured neurons (Figures 1B,C) under
high-glucose stress.

Microglia express high levels of PGRN (Mendsaikhan et al.,
2019), and while studies have explored PGRN levels in brain
tissue, those that studied PGRN in the context of T2D
examined serum (Youn et al., 2009; Qu et al., 2013) and non-
neuronal cell levels (Zhou et al., 2019b). We found that while
microglia expressed high levels of PGRN, treatment with high
glucose for 72 h did not significantly affect PGRN mRNA or
protein expression (Figure 2). This suggests that short-term
hyperglycemia does not regulate PGRN levels in brain tissue.

Progranulin has been demonstrated to protect against
neurodegeneration through autophagy activation (Paushter et al,,
2018; Zhou et al,, 2019a), but this has not been explored
in the context of hyperglycemia; for that reason, we looked
into autophagy flux in response to high glucose. The process
of autophagy can be broken down into initiation, nucleation,
fusion, and degradation steps, with blockage of each having
a distinct signature (Khandia et al.,, 2019). During nucleation,
the light chain protein LC3 is conjugated with PE and
attached to both membranes of the developing phagophore,
serving as a useful metric of autophagy flux via western blot

(Mizushima and Yoshimori, 2007). We observed a decrease in
the LC3-ILI ratio in neurons under high glucose, with a minor
attenuation due to PGRN (Figure 3A). Treatment of cells with
the lysosomal inhibitor CQ resulted in the expected increase in
LC3-II:I due to autophagosome buildup, although this increase
did not reach the level of significance when treated with
PGRN (Supplementary Figure 2A). Rapamycin treatment also
increased this ratio, reflective of increased autophagy activation
due to mTORCI1 inhibition (Li et al., 2014), but this was
only significant in cells treated with PGRN (Supplementary
Figure 2B). Studies of hyperglycemia in other cell types have
shown increased LC3 puncta (Lenoir et al., 2015; Ma et al., 2017;
Sakai et al., 2019), so we performed immunofluorescence studies
as well. We observed greater LC3 accumulation in PGRN-treated
neurons and decreased accumulation in astrocytes under high
glucose (Figure 3). Despite no significant change in the LC3-
IT:I ratio with PGRN under high-glucose conditions, it is possible
that the increased LC3 puncta formation is indicative of greater
autophagosome maturation due to PGRN.

While total protein levels of the lysosomal membrane protein
LAMP2A were unchanged (Figure 4A), we observed increased
perinuclear punctate expression of neurons treated with high
glucose that was attenuated with PGRN (Figures 4B,C). This,
coupled with the increase in LAMP2A protein due to CQ
(Supplementary Figure 3A) and seemingly inverse relationship
between LAMP2A puncta and autophagy flux (Figure 3A),
suggests a buildup of lysosomes in addition to impaired
autophagy in neurons under high glucose. PGRN may also
play a role in attenuating this, given the reduced buildup of
LC3-1II when treated alongside CQ (Supplementary Figure 2A).
Transfecting cells with dual fluorescence-tagged LC3 (Kimura
et al, 2007) could determine if the increased LAMP2A
observed represents lysosomes or autolysosomes (the fusion of
autophagosome and lysosome).

An unexpected finding in our observations is that LC3B and
LAMP2A puncta expression differed in astrocytes and in neurons
(Figures 3, 4). Specifically, we observed a marked decrease in
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LC3B puncta in astrocytes due to PGRN under high glucose
(Figure 4D). Glia, particularly astrocytes, play important roles
in maintaining neuronal health, including mediating immune
responses and regulating glucose metabolism (Garcia-Céceres
et al,, 2016; Ortiz-Rodriguez and Arevalo, 2020). While there
is less research focusing on their role in autophagy, recent
work supports a model in which glia, and astrocytes specifically,
contribute to autophagy in neurons (Di Malta et al, 2012;
Ortiz-Rodriguez and Arevalo, 2020), possibly through secretion
and clearance by surrounding microglia (Choi et al., 2020).
Future studies in isolated astrocytic and neuronal fractions are
needed to verify if high glucose differentially affects autophagy in
these cell types.

While LC3B and LAMP2A are commonly-used markers,
there are caveats to consider when interpreting (Mizushima
and Yoshimori, 2007; Kaushik and Cuervo, 2009). We therefore
sought a more direct metric of protein turnover using AGE-BSA
as a substrate. Other studies have monitored protein turnover
as a measure of autophagy function using radioisotope and
fluorescent reporters (Lui et al., 2016; Orhon and Reggiori, 2017),
and our interest in AGE specifically is due to its accumulation
under hyperglycemic conditions (Nowotny et al., 2015). Through
western blot and microplate assay, we observed increased AGE
levels under high-glucose conditions, with PGRN preventing this
increase (Figure 5). Alongside our images of LAMP2A punctate
formation (Figure 4B), this further supports a model in which
proteins targeted for autophagy accumulate under high-glucose
conditions, and that PGRN promotes in their breakdown.

Dysfunctional glucose metabolism from hyperglycemia leads
to impaired mitochondrial well-being (Sears and Perry, 2015).
Defective mitochondria are normally degraded via autophagy
as a quality control mechanism (Um and Yun, 2017), which
has been shown to be dysregulated under hyperglycemic
conditions (Rovira-Llopis et al., 2017). Because prior research
has implicated PGRN mutations to impaired mitophagy signaling
(Gaweda-Walerych et al., 2021), we investigated if PGRN would
aid in preserving mitochondrial function as a downstream
consequence of improved mitophagy regulation. Enzymatic
studies of mitochondrial function focus on complexes I, II,
and IV, so we examined each to obtain a more granular
understanding of how high glucose and PGRN affect activity. Our
data showed that PGRN and hyperglycemia affect mitochondrial
enzyme activity in a complex-specific manner (Figure 6), which
may be due to the difference in reaction dynamics involved
between enzymes. Interestingly, we found that the decrease in
SDH activity due to high glucose was prevented by PGRN
(Figure 6B), and that the increase in COX activity due to high
glucose was potentiated by PGRN despite no change due to
PGRN alone (Figure 6C). Hyperglycemic cell stress increases
intracellular Ca?* levels in the cytosol of neurons (Pereira
et al., 2010), an effect that has been shown to contribute to
de-phosphorylation of an inhibitory site on COX (Ramzan
et al., 2021). Since uncontrolled mitochondrial activity leads to
excess ROS generation and subsequent cell death, it is possible
that PGRN’s neuroprotective effects enable cells under high-
glucose conditions to sustain increased COX activity with less
deleterious outcomes.

Hyperglycemia activates pathways that both upregulate
and downregulate autophagy, and it is the balance between
them that determines the overall trajectory of the cell. For
instance, cell stressors like high glucose can activate autophagy
through ERK activation (Cagnol and Chambard, 2010), although
hyperglycemia also inhibits it through mTORCI activation and
subsequent GSK3f inhibition (Kim et al., 2011; Muriach et al.,
2014). Because of this, we investigated the role of ERK1/2
and GSK3p. We found that activatory ERK1/2 phosphorylation
increased in neurons treated with high glucose and PGRN
simultaneously after 24 h (Figure 7C). Similar time-course
results were also observed in the hypothalamus of diabetic
mouse models treated with Fibroblast Growth Factor 1 (Brown
et al., 2021). This activation of ERK1/2 may also contribute to
increased mitochondrial activity, as its activation is implicated
in proper mitophagy function (Lei et al., 2018; Liu et al,
2021). Interestingly, GSK3p phosphorylation was unchanged
at 24 h, but decreased significantly with simultaneous high
glucose and PGRN treatment after 72 h (Figure 7B). This
could suggest some interplay between the two kinases, as
GSK3p has been demonstrated to prevent nuclear localization
of ERK1/2, a downstream effect of the latter’s activation (Ma
et al., 2008). GSK3p has also been implicated in autophagy
activation through the GSK3B-TIP60-ULK1 pathway, so this
reduced phosphorylation may also reflect autophagy induction
(Nie et al., 2016).

Diabetes is a widespread disease that results in impaired
autophagy, protein  buildup, and neurodegeneration.
Hyperglycemia specifically contributes to pathology in the
nervous system, and in the search for a mechanistic cause,
multiple pathways have been implicated. Dysfunction in the final
steps of autophagy, fusion, and degradation via lysosomes, has
been postulated as the cause behind hyperglycemic impairment
of autophagy (Nixon et al, 2008; Ma et al, 2017). While
PGRN has been a candidate of interest in neurodegeneration
and diabetes (Nicoletto and Canani, 2015; Paushter et al.,
2018), there has been a lack of research tying PGRN, diabetes-
induced neurodegeneration, and autophagy together. We
found that PGRN may alleviate high-glucose pathology
through upregulation of autophagy, and that it also seems to
preserve mitochondrial function under high-glucose conditions.
Furthermore, our studies indicate that ERK signaling may
also play a role in PGRN’s mechanism of action. However,
further research in diabetic cell and animal models needs to
be performed to verify PGRN’s neuroprotective role against
diabetic stress.
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