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Interaction between interface and massive states in multivalley topological heterostructures
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Topological interface states (TISs) in multivalley systems are studied to unravel their valley sensitivity.
For this purpose, multivalley IV–VI topological crystalline insulator (TCI) heterostructures are explored using
magnetooptical Landau level spectroscopy up to 34 teslas. We characterize the TISs emerging from the distinct
L valleys in Pb1−xSnxSe multiquantum wells grown along the [111] direction. It is shown that the shape of the
two-dimensional (2D) Fermi surfaces of TISs residing at the TCI-trivial insulator interfaces are strongly affected
by the valley anisotropy of topologically trivial Pb1−yEuySe barriers. This phenomenon is shown to be due to the
deep penetration of the TISs into the barriers. For the valleys tilted with respect to the confinement direction, a
significant interaction between topological states and the conventional massive quantum well states is observed,
evidenced by the resulting large anticrossings between Landau levels. These are theoretically well described by
a k · p model that considers tilt and anisotropy of the valleys in 2D. Therefore, in this paper, we provide a precise
characterization of the TIS valley splitting as well as an accurate determination of the anisotropy of their Dirac
cone dispersion.
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I. INTRODUCTION

Multivalley semiconductors offer additional degrees of
freedom for tuning of the electronic properties for valleytron-
ics device applications because these properties significantly
depend on the structure of the valleys as well as their inter-
action [1–5]. It is, however, a major challenge to control and
determine the valley splitting and valley anisotropy in semi-
conductors. For instance, qubit manipulation in multivalley
systems like Si, Si/Si1−xGex, or Ge/Ge1−xSix heterostructures,
which is based on spin manipulation, requires a fine-tuned
valley splitting to ensure Pauli blockade and avoid decoher-
ence [6–8]. Optimized valley splitting has recently allowed us
to obtain qubits at an enhanced operating temperature [9,10].
The additional valley degree of freedom can also be used to
control the electric current and constitutes the basis of val-
leytronics device applications such as valley-based classical
bits [11,12] and/or qubits [13,14]. From a fundamental point
of view, the valley anisotropy is also at the origin of sponta-
neous crystal symmetry breakings, leading to nematic phases,
or the quantum Hall ferroelectric state [15–18]. The lead
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salt semiconductors are a particularly interesting template for
valleytronics not only because of their multivalley band struc-
ture [19,20] but also because, through alloying with tin, they
can be converted into topological crystalline insulators (TCIs)
featuring massless and spin-polarized Dirac electrons with the
spin locked to the momentum [21–27]. Therefore, they can be
envisioned for topological valleytronics in which information
is stored, e.g., by the different chirality of electrons in different
valleys.

In lead salt compounds, the band extrema are located
at the four L points of their Brillouin zone (BZ), as illus-
trated in Fig. 1(a) [19,28], where in each valley, the band
structure consists of two mirror bands L+

6 and L−
6 with op-

posite symmetry [see Fig. 1(b)] [19,29,30]. In pseudobinary
Pb1−xSnxSe and Pb1−xSnxTe alloys, this symmetry can be
inverted when the Sn content exceeds a certain critical value
[20,22–24,26,27,31,32]. This leads to the emergence of the
TCI phase, whose hallmark is the existence of Dirac (interface
or surface) states protected by crystalline symmetry at the
(001) and (111) crystal faces [33,34]. Due to the multivalley
band structure, for the (111)-oriented surface, three Dirac
cones appear at the M̄ points of the two-dimensional (2D) BZ,
and one is located at the center �̄, as depicted in Fig. 1(a). The
M̄ and �̄ points can be regarded as the projection of the four L
points in the three-dimensional (3D) BZ to the 2D BZ of the
(111) surface, corresponding to the oblique and longitudinal
valleys, respectively. Extensive studies have been performed
to quantify the valley anisotropy in bulk lead salt materials

2643-1564/2022/4(1)/013179(13) 013179-1 Published by the American Physical Society

https://orcid.org/0000-0003-2375-5302
https://orcid.org/0000-0002-9633-507X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013179&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1103/PhysRevResearch.4.013179
https://creativecommons.org/licenses/by/4.0/


G. KRIZMAN et al. PHYSICAL REVIEW RESEARCH 4, 013179 (2022)

FIG. 1. (a) Three-dimensional (3D) Brillouin zone of cubic lead salt crystals and its two-dimensional (2D) projection onto the (111)
surface. Band minima in 3D are located at the four different L points: three in red and one in black. The surfaces of constant energy of these
band minima are plotted for the two types of valleys with respect to [111]: the longitudinal valley depicted in black and the three equivalent
oblique valleys in red, tilted by θ = 70.5 ◦ with respect to the surface normal [111]. They both have an anisotropic factor K , defined as the
ratio between the major and minor axis of the ellipsoids. The projection onto the (111) surface corresponds to the location of the topological
interface state (TIS) Dirac cones. Three at the M̄ points in red stem from the band inversion in the oblique valleys and one at the �̄ point in black
originates from the longitudinal valley. Note that these cones can be gapped with a hole part TIS′ and an electron part TIS. (b) Schematic band
alignment of L±

6 bands between Pb0.75Sn0.25Se (well) and Pb1−yEuySe (barrier) along Z parallel to the [111] growth direction. The confined
state energy levels at k‖ = 0 are represented by dashed lines in blue for TIS and TIS′ and in orange for massive states, labeled H2, H3, E2,
E3, … (c) Square of the F+ component of the envelope function spinor for TIS in blue and the two first massive confined states E2 and E3 in
orange calculated using the parameters for the sample multiquantum well (MQW)-39, see Table I. The curves are vertically shifted for clarity.

[32,35–38] and at free surfaces of Pb1−xSnxSe TCIs using
surface-sensitive techniques [24,27,39]. Here, we focus on
the topological states at buried interfaces of topological mul-
tilayer structures probed by magnetooptical spectroscopy to
accurately characterize both interface and bulk states, thereby
revealing the significant impact of the bulk on the valley
splitting and anisotropy in heterostructure systems.

The electronic properties of lead salt compounds are well-
described by a 4-band k · p Hamiltonian, which is like a
massive anisotropic 3D Dirac Hamiltonian [32,40]. The con-
stant energy surfaces are ellipsoids with an anisotropy factor
K defined by the ratio between the main and minor axes of
the ellipsoids [see Fig. 1(a)] [38,41]. Although K is identical
for the four valleys, their different locations within the BZ
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lead to different orientations of their major axes. One ellipsoid
has its long main axis aligned along the [111] direction, and
the three others are tilted by an angle θ = 70.5◦ with respect
to [111]. We will refer to these as longitudinal and oblique
valleys, respectively, as drawn in Fig. 1(a).

Here, we focus on the multivalley features of multiquan-
tum well (MQW) heterostructures composed of topologically
nontrivial Pb0.75Sn0.25Se quantum wells (QWs) separated
by topologically trivial barriers of Pb1−yEuySe, as shown
schematically in Fig. 1(b) [22,24,32,42]. In addition to the
usual quantum confined states localized within the QW [or-
ange states in Figs. 1(b) and 1(c)], the switching of the
topological character at each interface gives rise to topological
interface states (TISs) localized at the heterointerfaces, shown
in blue in Figs. 1(b) and 1(c) and already observed in our
previous work [43]. The relatively small thicknesses of the
wells yield hybridization between top and bottom TISs of
each QW that opens a gap 2δ in the Dirac cone, between the
electronlike and the holelike TISs, here denoted as TIS and
TIS′, respectively [43–45]. Surprisingly, using magnetoopti-
cal Landau level spectroscopy, we show that TIS and TIS′
are very sensitive to the valley anisotropy of the bulk barrier
material due to their remarkable property of being localized
mainly at the interface, contrary to trivial QW states found
in ordinary semiconductor heterostructures. Even though the
QW material Pb0.75Sn0.25Se has rather isotropic valleys, the
valley anisotropy of the barrier material Pb1−yEuySe is suf-
ficient to strongly impact the dispersion of the TIS. As a
result, the interaction between the TIS Landau levels and those
of trivial QW states is allowed and generates an observable
signature in Landau level spectroscopy. Lastly, we show that
this impact is unique to the M̄ points of the 2D BZ and does
not occur at the �̄ point.

The paper is divided as follows. In Sec. II, the experimental
results are introduced. We develop in Sec. III a complete
theory for the confinement effect on a 3D anisotropic Dirac
model, considering multivalley band structure, which applies
for lead salts. We show that the anisotropy and valley tilt of
the parent bulk materials allow for a finite interaction between
TISs and massive confined QW states [indicated in blue and
orange states in Figs. 1(b) and 1(c)], lifting valley degeneracy
at some magnetic fields or in-plane momenta. The analysis
of the experimental results using the theory is presented in
Sec. IV. We experimentally demonstrate that this anisotropy
induces interactions between these states, observable as a
set of repeated anticrossings that occur between the Landau
levels of topological and trivial states. Our spectroscopy also
allows us to quantify the strength of the interaction potential
between different levels and to accurately deduce the in-plane
anisotropy of the TIS Dirac cone dispersion [20,46].

II. PRESENTATION OF THE EXPERIMENTS

The investigated samples were grown by molecular beam
epitaxy on freshly cleaved (111) BaF2 substrates following
the procedures detailed in our previous works [43,47]. Two
MQWs were prepared with ∼15 periods of Pb0.75Sn0.25Se
(well material) and Pb1−yEuySe (barrier material) to which we
refer as MQW-39 and MQW-25 according to their well thick-
nesses (see Table I). Note that the barrier material composition

TABLE I. Structure parameters of the Pb0.75Sn0.25Se bulk refer-
ence sample and the two Pb0.75Sn0.25Se TCI MQWs with Pb1−yEuySe
barriers used in this paper. NA = not applicable.

Parameter Bulk MQW-39 MQW-25

dPbSnSe (nm) 2000 39 ± 2 25 ± 1
xSn 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01
dPbEuSe (nm) NA 200 120
yEu NA 0.10 ± 0.01 0.05 ± 0.01
Period number NA 15 16

is y = 0.05 and 0.1 for MQW-25 and MQW-39, respectively.
As a reference sample, a 2-μm-thick film of Pb0.75Sn0.25Se
was grown. The Sn content x = 0.25 ± 0.01 in the three sam-
ples ensures a topological phase for temperature <∼ 100 K
[21,42,43,48,49]. The ratio between the barrier and the well
thicknesses is fixed as 5 : 1 to suppress any coupling of con-
fined states between adjacent QWs. To obtain a low carrier
concentration in the three samples, Bi doping was employed
during growth to compensate the native p-type character of
Pb0.75Sn0.25Se due to Se vacancies. Carrier densities as low as
a few 1017 cm–3 and mobilities >104 cm2/(Vs) are obtained
in these samples [43,50].

Infrared magnetospectroscopy is used to characterize the
electronic properties of Pb1−xSnxSe MQWs and the TIS band
structure. Experiments in magnetic fields up to 34 T are
performed at the Laboratoire National des Champs Magné-
tiques Intenses in Grenoble. A setup as previously described
in Ref. [51] is used to measure the infrared transmission of the
samples with a magnetic field B//[111] (Faraday geometry).
The transmitted radiation through the samples is collected in
the same bath by a composite Si bolometer operating at 1.8 K,
which is thus also the sample temperature.

Figure 2 compares the magnetooptical fan charts ob-
tained on the bulk sample [Fig. 2(a)] with that of MQW-39
[Fig. 2(b)]. The dots are obtained by pinpointing the energy
of the experimentally determined transmission minima and
plotting these vs magnetic field, and the solid lines in Fig. 2(a)
represent the Landau level transitions calculated by solving
the 4-band k · p Hamiltonian for bulk material, as described
below. In the Faraday geometry, the interband transitions obey
the selection rules n → n ± 1 with a Landau level spin flip
[52]. The data are in perfect agreement to our model using the
parameters listed in Table II. For the given composition, we
obtain a negative bulk bandgap 2� = −52.5 meV, in good
agreement with previous studies [25,32,48,53]. Only one se-
ries of Landau levels with v‖ = 4.50×105 m/s is required to
explain our results, meaning that the longitudinal and oblique
valleys are indistinguishable in the bulk material, i.e., the
constant energy surfaces are approximately spheres (K ∼ 1).

Comparing Figs. 2(a) and 2(b), a striking difference be-
tween the fan charts of the bulk and the MQW-39 samples is
observed. Whereas the bulk sample displays a high regularity
of the transmission minima vs magnetic field that evolves as
∼ √

B as expected for bulk Dirac materials, in the MQW, a
pronounced nonmonotonic dependence of the interband tran-
sition energies as a function of B emerges. In the following,
we will show that this behavior arises from an interaction
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FIG. 2. Magnetooptical transition fan charts for (a) the bulklike Pb0.75Sn0.25Se film and (b) multiquantum well (MQW)-39. Dots represent
the energy of transmission minima plotted vs applied magnetic field. For MQW-39, two series of transitions are highlighted to emphasize the
difference between (a) and (b). In (a), the solid lines represent the calculated interband Landau level transitions for the thick film sample that
perfectly fit to the experimental data, whereas for the MQW, the dependence is highly nonmonotonic. The interband transitions are labeled by
the indices n of the two involved Landau levels. The shaded area denotes the experimentally nonreachable range of photon energies <60 meV
due to energy cutoff of the ZnSe windows used in the experimental setup.

between TIS and massive confined states in the MQW. This
coupling is an inherent consequence of the topological and
valley degenerate character of Pb1−xSnxSe.

III. THEORY

The electronic properties of lead salts including
Pb1−xSnxSe or Pb1−yEuySe can be well described by a
4-band k · p Hamiltonian, written near the L points on
the basis of the L+

6 and L−
6 conduction and valence bands

TABLE II. Band parameters determined by the fit of the magne-
tooptical data in the three investigated samples. NA = not applicable.

Parameter Bulk MQW-39 MQW-25

2� (meV) −52.5 −45 −55
V (meV) NA 250 175
m̃ (m0) 0.35 0.35 0.35
vl

‖ (105 m/s) 4.50 4.60 4.70
vl

z (105 m/s) 4.50 4.40 4.40
K�̄ NA 1.00 1.00
vo

‖ (105 m/s) 4.50 4.90 4.95
vo

z (105 m/s) 4.50 3.90 4.15
KM̄ NA 1.23 1.17

[19,32,41]:

H =
⎡
⎣−
(
� + p2

‖
2m̃ + p2

z

2μ̃

)
1 v‖p‖ · σ‖ + vz pzσz

v‖p‖ · σ‖ + vz pzσz

(
� + p2

‖
2m̃ + p2

z

2μ̃

)
1

⎤
⎦. (1)

In this equation, 1 is the 2×2 identity matrix and
σ the Pauli matrices. Here, 2� denotes the bulk bandgap
of the system, which is positive for Pb1−yEuySe and neg-
ative for Pb0.75Sn0.25Se at T = 1.8 K. Here, m̃ represents
the contribution of all the remote bands to the in-plane ef-
fective mass. It exerts a rather small influence, as these are
at ∼1 eV above and below L+

6 and L−
6 [30]. Note that

the far-band correction μ̃ to the longitudinal effective mass
can be safely neglected, as it has been demonstrated to be
very small in lead salt compounds [52]. In Eq. (1), the
anisotropy is encoded by the in-plane and longitudinal Dirac
velocities v‖ and vz respectively, and thus, the anisotropy
factor of bulk states is given by K = v‖/vz. The Hamiltonian
is written for the z axis parallel to the major axis of the
ellipsoid.

A. Bulk Landau levels

To interpret the magnetooptical data with the magnetic
field parallel to [111], we calculate in the following the
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Landau levels. For the longitudinal valley, the z axis is aligned
with the [111] direction and therefore with B. Here, px and py

are expressed in terms of the ladder operators following the
Peierls substitution. The Hamiltonian at kz = 0 is given by

H =

⎡
⎢⎢⎣

−� − h̄ω̃(n − 1) 0 0 v‖
√

2eh̄Bn
0 −� − h̄ω̃(n + 1) v‖

√
2eh̄Bn 0

0 v‖
√

2eh̄Bn � + h̄ω̃(n − 1) 0
v‖

√
2eh̄Bn 0 0 � + h̄ω̃(n + 1)

⎤
⎥⎥⎦, (2)

where n is the Landau level index, and ω̃ = eB/m̃. As for
the effective mass corrections, the remote bands induce a
small correction to the g factor that accounts for h̄ω̃/2 in this
system [50,54]. The Hamiltonian in Eq. (2) leads to Dirac-like
Landau levels, whose energies are given by

En = ±h̄ω̃ ±
√

(� + h̄ω̃n)2 + 2eh̄

(
v2

‖ + �

m̃

)
Bn. (3)

These energies were computed at kz = 0, where the joint
density of state of the interband magnetooptical transitions is
maximal.

For the oblique valleys, the main ellipsoidal axes are not
aligned with the magnetic field. It is therefore convenient
to introduce a new coordinate system (X , Y , Z) with the Z
axis parallel to B, thus parallel to [111]. Here, (x, y, z) and
(X , Y , Z) are connected by a rotation combined with a scale
change according to relative sizes of v‖ and vz. Using the
Hamiltonian transformation as described in Refs. [40,41], the
Landau levels of the oblique valleys are given by Eq. (3) in
which v‖ is replaced by [54,55]

v‖

(
cos2θ + 1

K2
sin2θ

)1/4

.

The Landau levels are thus described by Eq. (3) for both
types of valleys using two different electron velocities, which
account for the anisotropy effect in the bulk sample.

B. QW Landau levels

Confinement effects in the QWs are calculated by adding
a square potential V (Z ) into Eq. (1), where Z//[111] is the
heterostructure growth axis. The confinement potential V (Z ),
whose value depends on the Eu content y, is electron-hole
symmetric for PbSnSe/PbEuSe MQWs [35,43], as shown
schematically in Fig. 1(b), where the variation of the band
edges is drawn vs the growth direction. The potential V (Z )
makes [111] a preferential direction that will clearly differen-
tiate the properties of the two types of valleys: longitudinal
and oblique.

Let us first compute the energy and wave function of the
jth confined state at k‖ = 0. To this end, we follow the pro-
cedure carried out in Ref. [43], which consists of solving
the following equation and applying the probability current
continuity conditions at each interface [56–58]:

[−� + V (Z ) − E ( j) ih̄ξvz
d

dZ
−ih̄ξvz

d
dZ � + V (Z ) − E ( j)

][
F ( j)

+
ξF ( j)

−

]
= 0,

where ξ = ±1 represents the two spin components, and F ( j)
±

are the components on L±
6 of the envelope function. Solving

this equation leads to two confined states TIS and TIS′ [plotted
in blue in Figs. 1(b) and 1(c)], directly emerging from the
topological character of the well material, as well as the usual
confined states (plotted in orange) which emerge from the
quantification of L±

6 . While TIS and TIS′ wave functions are
peaked at the interfaces, as shown in Fig. 1(c), the higher
energy confined states (E2, H2, …) remain mainly localized
in the heart of the QW, thus, representing massive QW states.
If we consider the parity of the F+ component of the jth
confined state envelope wave function, TIS and E3 are odd,
while E2 is even, and so on for the following confined states.
As F− is proportional to dF+/dZ , the parity of F− follows the
opposite interplay.

For the calculation of the in-plane motions of the longitudi-
nal valley, no Hamiltonian transformation is needed. We treat
the k‖ terms (or B terms if we consider an applied magnetic
field) in perturbation. It requires us to calculate the matrix ele-
ments 〈F (i)

± |δW |F ( j)
± 〉 where 1 � i, j � N with N the number

of confined states obtained by solving the previous equation
for k‖ = 0, and δW is given by

δW =
(

− p2
‖

2m̃1 v‖p‖ · σ‖

v‖p‖ · σ‖
p2

‖
2m̃1

)
.

For an applied magnetic field B//[111], the numerical solu-
tions yield the Landau levels of the longitudinal valley. Those
originating from the conduction band states are shown in
Fig. 3(a) for MQW-39. Symmetric (i.e., related to energies
of opposite sign) Landau levels are obtained for the confined
hole states, as V (Z ) is electron-hole symmetric. Note that no
interactions are obtained between Landau levels.

For the oblique valleys, an axis rotation is needed to ac-
count for their tilt with respect to the [111] orientation of
the samples [55], as described in detail in Appendix A. As
a result, the following Hamiltonian is obtained:{−[� − V (Z )]1 vzPZ	Z

vzPZ	Z [� + V (Z )]1

}

+
(

− P2
‖

2m̃1 v‖P‖ · �‖

v‖P‖ · �‖
P2

‖
2m̃1

)

+ sinθ

[ − 1
2m̃ h(X, Z ) (v‖ − vz )H(X, Z )

(v‖ − vz )H(X, Z ) 1
2m̃ h(X, Z )

]
. (4)

Here, P and � are the momentum and Pauli operators in the
new coordinate system (X,Y, Z). The two first terms of Eq. (4)
are identical to those of the longitudinal valley. The third term
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FIG. 3. (a) Calculated Landau level energies of confined states at the �̄ point for multiquantum well (MQW)-39 for parameters given in
Table II. The Landau level from topological interface states (TISs; massive states) are drawn in red (black). Some of the Landau level indices
are indicated. (b) Landau level energies of confined states at the M̄ point for MQW-39. (c) Expanded view of the region encompassed by the
yellow contour shown in (b). Dark and bright blue lines refer the different spin states. The anticrossings due to the two coupling potentials W1

and W2 are highlighted.

includes the anisotropy effects with (v‖ − vz ) as well as the
tilt effect with sinθ . It is proportional to sinθ and thus cancels
for the longitudinal valley. Its diagonal elements write as

± 1

2m̃
h(X, Z ) = ± 1

2m̃

[
sinθ

(
P2

Z − P2
X

)− 2cosθPZ PX
]
1. (5)

These diagonal terms come from the anisotropic far-band
correction terms that are m̃ in the XY plane and μ̃ ∼ ∞ along
Z . Similarly, the off-diagonal elements are proportional to
(v‖ − vz ) = vz(K−1) and account for the anisotropy effect of
the valence and conduction bands. They are given by

(v‖ − vz )H(X, Z ) = (v‖ − vz )[(sinθPZ − cosθPX )	Z

− (sinθPX + cosθPZ )	X ]. (6)

Solving Eq. (4) in the framework of the perturbation the-
ory, which is detailed in Appendix B, yields the subband
dispersions of the oblique valleys as well as the corresponding
Landau levels. The intricate behavior of these Landau levels in
which many anticrossings appear is revealed in Fig. 3(b). We
focus on the first two anticrossings zoomed-in in Fig. 3(c).
They occur between Landau levels originating from TIS and
E2 or E3 confined states. More generally, all these anticross-
ings stem from two distinct kinds of couplings W1 and W2.
The first coupling W1 between the ith and jth confined states
is given by

|W1(nB)|

=
√

h̄eBn

2

sin2θ

2

∣∣∣∣
∫ +∞

−∞

{
h̄

m̃

[
F (i)

+
dF ( j)

+
dZ

+ F (i)
−

dF ( j)
−

dZ

]

− (v‖ − vz )
[
F (i)

+ F ( j)
− − F ( j)

+ F (i)
−
]}

dZ

∣∣∣∣. (7)

The parities of F (i)
± and F ( j)

± impose j = i ± 1 so that this
coupling involves two successive confined states. The anti-
crossings take place between two Landau levels of successive
subbands with indices n and n ± 1 and identical spins (see
Appendix B). As an example, we highlight the anticrossings
that occur for magnetic field ∼6 T and an energy ∼40 meV
between subbands TIS and E2 on Figs. 3(b) and 3(c).

The second potential W2 is responsible for an interaction
between TIS and E3 due to the parities of F (i)

± and F ( j)
± . It

involves Landau levels with indexes n and n ± 1 and opposite
spins. Such anticrossings correspond, for instance, to the one
computed ∼14 T and 60 meV in Figs. 3(b) and 3(c). This
second coupling W2 is given by

|W2| = (v‖ − vz )h̄
sin2θ

2

∣∣∣∣
∫ +∞

−∞

[
F (i)

+
dF ( j)

−
dZ

+ F (i)
−

dF ( j)
+

dZ

]
dZ

∣∣∣∣.
(8)

We highlight that W1 and W2 are proportional to the tilt θ of
the valley axis with respect to the growth direction and to the
valley anisotropy (v‖ − vz ). Note also that the confinement,
whether it occurs in the longitudinal or in the oblique valleys,
leads to different energy quantization of the subbands, as
shown by the extrapolations to B = 0 of the distinct Landau
level series of Figs. 3(a) and 3(b). This valley splitting is due
to the valley-dependent effective mass along the confinement
direction [35,59]. For instance, the valley splitting for the
confined state E4 is calculated as 3 meV.

As a remark, it is found that the slope of the n = 0 Landau
levels depend on the valleys and are different for TIS and
massive states. This slope scales as h̄e/m̃ at the �̄ point and as
h̄ecos2θ/m̃ for oblique valleys. Therefore, as seen in Fig. 3(b),
the slope of the n = 0 Landau levels are drastically reduced at
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FIG. 4. (a) Magnetooptical fan chart of multiquantum well (MQW)-39. Dots are experimental transmission minima, and lines are
calculated transitions between Landau levels. The red (black) color denotes absorptions that mainly involve topological interface states
(massive states). The solid lines correspond to the oblique transitions and the dashed lines to the longitudinal valley transitions. The transition
labeling is only efficient for the longitudinal valley (see Fig. 3). (b) Magnetooptical spectra within the yellow rectangle in (a), highlighting the
characteristic anticrossings. The two absorptions are marked by arrows whose transparencies mimic absorption intensities.

the M̄ points because of the anisotropic far-band contribution.
Furthermore, this slope is negative for massive states and
positive for TIS. This effect accounts for the band symmetry
of the 2D confined states. The massive states stem from the
QW material bands, which are inverted, while TIS and TIS′
emerge in a trivial ordering in IV–VI. As the symmetry order-
ing of the remote bands remains identical, their effects on L±

6
are constant and tend to push up (down) in magnetic field a
n = 0 Landau level that has a L−

6 (L+
6 ) symmetry. Thus, the

sign of the n = 0 Landau level slope is a direct indication of
the confined state Bloch function symmetries. The far-band
contribution, which is sometimes called inversion parameter,
is therefore a good marker of band inversion in this system.

IV. RESULTS AND DISCUSSION

The model derived for bulk Pb1−xSnxSe samples (see
Sec. III A) is used to interpret the magnetooptical fan chart
presented in Fig. 2(a). Only one Dirac velocity is used
to fit the data with Eq. (3), meaning that no anisotropy
is measured. The absence of valley splitting in the mag-
netooptical data of the bulk sample implies that indeed
Pb0.75Sn0.25Se is a quasi-isotropic system, as we pointed out
previously [32]. In the following, we show, however, that in
Pb1−x SnxSe/Pb1−yEuySe MQWs, the barrier material causes
a nonnegligible anisotropy of the matrix elements.

The barrier material Pb1−xEuySe is known to be anisotropic
[35,36]. The electron velocities in Pb1−yEuySe were determi-
ned as v‖∼ 6.5×105 m/s and vz= 3

√
1.96−3.98 y×105 m/s,

so that vz ∼ 3.75×105 m/s for MQW-39 (K = v‖/vz = 1.73)
and vz ∼ 4.00×105 m/s for MQW-25 (K = 1.63) [35]. The
confined states in Pb1−xSnxSe/Pb1−yEuySe MQWs, whose
probability densities in the barrier are nonnegligible (cal-
culated to be 16 and 10% for MQW-25 and MQW-39,
respectively), are sensitive to this anisotropy. TIS and TIS′,
whose probability densities are peaked at the interface [see
Fig. 1(c)], are expected to be significantly influenced by the
valley anisotropy of the barriers. The electron velocities of
the QW states v‖ and vz depict averaged velocities between
those of the QW and barrier materials. They contain the effect
of the barrier anisotropy and are treated as fitting parameters.

We use our theoretical model with v‖ �= vz to interpret
the magnetooptical data of MQW-39 shown in Fig. 2(b) and
replotted in Fig. 4(a), where the calculated intersubband tran-
sitions between Landau levels from longitudinal (θ = 0◦) and
oblique valleys (θ = 70.5◦) are shown by dashed and solid
lines, respectively. Magnetooptical transitions occur between
electronlike and holelike confined states of opposite parities;
thus, the allowed transitions involve, for instance, TIS′ and
TIS, H2 and E2, … Otherwise, the selection rules are like
that obtained in the bulk case (n → n ± 1 and a spin flip) in
the Faraday geometry. The absorptions shown by red dots are
attributed to transitions between TIS′ and TIS, and those in
black dots correspond to transitions involving excited states
(H2, E2, E3, …) [see Figs. 3(a) and 3(b)]. The observed mag-
netooptical absorptions mainly correspond to oblique valley
transitions, as they are three times more numerous than the
longitudinal valley.
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FIG. 5. (a) Derived constant energy contours of topological interface states (TISs) at M̄ (in red) and �̄ (in black) for arbitrarily chosen
E = 13 meV and multiquantum well (MQW)-39. It is directly deduced from the experimental observation. (b) Map of the two-dimensional
(2D) Brillouin zone with the calculated dispersions of the MQW-39 TIS and TIS′ near the M̄ and �̄ points.

The oblique valley transitions nicely fit the nonmonotonic
behavior of the Landau level transitions observed in the MQW
sample, which is unequivocally due to the tilt and anisotropy
of the oblique valleys that induce Landau level anticrossings.
The unusual dispersions of the absorptions (red and black
dots) vs magnetic field are clearly well-described by con-
sidering the interactions between TIS and massive states, as
elaborated in Sec. III. For instance, the second red absorp-
tion line, which involves TIS′ and TIS, has an oscillatory
behavior vs magnetic field. This is due to the interactions of
the Landau levels of the TIS with the ones of E2, then E3,
etc., as the magnetic field is increased. These interactions not
only change the transition energies vs magnetic field but also
yield a relaxation of the selection rules near the Landau level
anticrossings. To illustrate this effect, Fig. 4(b) highlights one
of these interactions occurring at around B = 20 T and photon
energies ∼180 meV. The two red arrows account for the swing
of the intensity between two absorption lines, which is typical
of Landau level anticrossings [51,60]. Note that it is difficult
to model quantitatively the absorption intensities as a function
of the magnetic field, as the large number of involved Landau
levels is strongly mixed between subbands, spins, and their
indices. Therefore, our model provides very accurate transi-
tion energies, but it is rather difficult to provide a quantitative
description of their intensities. These anticrossings are clear
experimental manifestations and proofs of the anisotropic and
tilted valleys found in the investigated multivalley MQWs.

The parameters used to fit the magnetooptical absorptions
in MQW-39 are listed in Table II. The slight discrepancy of
the gap values between the well material and Pb0.75Sn0.25Se
thick film can be explained by small Sn content variations
or/and residual strain imposed by the barriers in the MQWs.
The velocities are found to be slightly different for both types
of valleys. Note that the anisotropy induced by the barriers has
no reason to be similar for the two types of valleys [59,61]. In-
deed, the penetration depth of the envelope functions depends
on vz, which is valley dependent [43].

Our analysis and the parameters determined in Table II
lead to the accurate determination of the TIS anisotropy in

the XY plane [12,24]. Because of the anisotropy and differ-
ent tilts of the 3D ellipsoids [see Fig. 1(a)], their projection
on the 2D BZ are not equivalent at the M̄ and �̄ points,
leading to anisotropic constant energy contours, as sketched
in Fig. 5(a). Remarkably, this projection due to confinement
allows for a different anisotropy factor at �̄ and M̄, which is
not possible with bulk materials where the anisotropy factor
K is identical for oblique and longitudinal valleys. We thus
define the two anisotropy factors KM̄ and K�̄ associated with
the constant energy surfaces of the TIS located at M̄ and
�̄. They are determined by the ratios between the in-plane
velocities in the Y and X directions and are listed in Table II.
The coordinate rotation detailed in Appendix A defines M̄-�̄
as the X direction and M̄-K̄ as the Y axis [see Fig. 1(a)]. The
expression for the TIS dispersions is given in Appendix C. For
the longitudinal valley, we obtain an isotropic dispersion in the
XY plane, with the velocity vl

‖. Therefore, one gets K�̄ = 1
at the �̄ point, which follows directly from the isotropy of
the well and barrier materials in the layer plane [see Eq. (1)]
for this geometry. However, the TIS dispersions near the M̄
points are anisotropic with electron velocities vo

‖ along M̄-K̄
and cos2θvo

‖ + sin2θvo
z in the M̄-�̄ directions (see Appendix

C). The magnetooptical determination of vo
‖ and vo

z by fitting
the anticrossing magnitudes allows the deduction of the topo-
logical state dispersion anisotropy, which is given by

KM̄ =
(

cos2θ + vo
z sin2θ

vo
‖

)−1

.

For the sample MQW-39, we find KM̄ = 1.23, which yields
the constant energy surface shown in red in Fig. 5(a) at 13
meV. For comparison, the isotropic constant energy surface of
the longitudinal TIS is drawn in black. The TIS dispersions
near the M̄ and �̄ points are shown in Fig. 5(b). These data
demonstrate that magnetospectroscopy is a powerful tech-
nique to determine accurately the anisotropy of the massive
or massless Dirac cones (TIS and TIS′) at the M̄ points.

The magnetooptical spectra up to 34 T obtained on the sec-
ond MQW sample (MQW-25) are shown in Fig. 6(a), and the
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FIG. 6. (a) Magnetooptical spectra of multiquantum well (MQW)-25. Some transmission minima are marked by colored arrows. (b)
Magnetooptical fan chart of MQW-25. Dots represent transmission minima pointed out in (a). Those in red represent absorptions mainly
involving topological interface state (TIS) and TIS′, while the black dots are mainly due to massive states. Dashed (solid) lines are the fit from
the Landau level transitions emerging from the longitudinal valley (oblique valleys). The transition labels are given for the longitudinal valley.

interpretation is summarized by Fig. 6(b). The solid lines are
transitions between Landau levels of the oblique valleys, and
the dashed lines account for the longitudinal one. The fitting
parameters are listed in Table II and are found to be like those
of MQW-39. Again, our theoretical model remarkably ac-
counts for the observed magnetooptical transitions, including
several anticrossings between TIS and massive state Landau
levels emerging at the M̄ points. For this sample MQW-25,
the anisotropy factor for the TIS dispersion at the M̄ point is
deduced as KM̄ = 1.17 and is found to be slightly lower than
the one of MQW-39. These results confirm our analysis and
fully demonstrate the interaction of TIS Landau levels with
those of the massive states in the MQWs in the presence of
valley tilt and anisotropy.

V. CONCLUSIONS

We have demonstrated significant interactions between
topological and massive states in multivalley TCI QW het-
erostructures. The anisotropy induced by the barrier normal
insulator allows us to differentiate between the electronic
properties of the topological states emerging from the lon-
gitudinal and oblique valleys. The Landau levels associated
to the oblique valleys show anticrossings between TISs and
massive states near the M̄ points of the 2D BZ, which is
not the case for Landau levels emerging from the longitu-
dinal valley, near the �̄ point. Moreover, our work allows
us to accurately determine the anisotropy of the topological
states of both kinds of valleys. In this way, we demonstrate
an isotropic, i.e., circular dispersion for TIS near �̄ and a

tunable elliptical anisotropy of TIS near the M̄ points induced
by the strong valley anisotropy within the barrier. In this
paper, we establish a link between the parent 3D ellipsoids
of bulk materials and their projection when a quantum con-
finement is superimposed and thus opens the door to valley
and anisotropy engineering of topological states. The effects
demonstrated in this paper (Landau levels avoided crossings
and TIS anisotropy) should also be observed in Pb1−xSnxTe-
based heterostructures, where the anisotropy of the TIS should
be greatly enhanced, as Pb1−xSnxTe is much more anisotropic
(K ∼ 3.2) than Pb1−xSnxSe [52,60,62].

In this paper, we thus pave the way to valley engineering
in topological insulators and to future investigations showing
valley effects that can spontaneously break crystalline symme-
try, such as nematic valley ordering. The anisotropy of the TIS
dispersions in Pb1−xSnxSe QWs is indeed predicted to pro-
mote a valley polarization that would drive the formation of
quantum Hall ferroelectric states as theoretically anticipated
for different material systems [15–17,63,64].
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APPENDIX A: OBLIQUE VALLEY HAMILTONIAN
IN HETEROSTRUCTURE

As pointed out in Sec. III B, for an oblique valley with
main axis (x, y, z), the quantum operators have to be expressed
in a new coordinate system (X,Y, Z) where Z//B//[111]. The
relation between operators in both coordinate systems is en-
coded in a rotation matrix M, which leads to p = MP and
σ = M� for the momentum and spin operators, respectively
[55]. Using the invariance of a scalar product under rotation,
the off-diagonal terms of the Hamiltonian in Eq. (1) transform
as

v‖p‖σ‖ + vz pZσZ → v‖P‖�‖ + vzPZ	Z + (v‖ − vz )

× (PZ	Z − pzσz ),

with

PZ	Z − pzσz = mzx[(mzxPZ − mzzPX )	Z

− (mzxPX + mzzPZ )	X ],

where mαβ denote the matrix elements of M. The three
oblique valleys are tilted by an angle θ with respect to Z
[see Fig. 1(a)] so that mzz = cos θ . As MM−1 = 1, one gets
m2

zx + m2
zy + m2

zz = 1. The isotropic dispersion in the xy plane
allows us to arbitrarily choose mzy = 0 (i.e., choosing a rota-
tion with respect to y//[11̄0]), which leads to mzx = |sin θ |.
One ends up with PZ	Z − pzσz = sinθH(X, Z ) as defined in
Eq. (6). A similar transformation is done for the diagonal
terms (p2

‖/2m̃)1 of (1):

p2
‖

2m̃
1 → P2

‖
2m̃

1 + 1

2m̃

(
P2

Z − p2
z

)
1,

where pz = mzxPX + mzzPZ . The resulting Hamiltonian is
given by Eq. (4) as (P2

Z −p2
z )1 = sinθh(X, Z ) [Eq. (5)].

APPENDIX B: OBLIQUE VALLEY LANDAU LEVELS

The perturbative terms for the oblique valleys [second and
third terms of Eq. (4)] are given by

⎡
⎢⎣ − P2

‖
2m̃1 − sinθ

2m̃ h(X, Z ) v‖P‖ · �‖ + sinθ (v‖ − vz )H(X, Z )

v‖P‖ · �‖ + sinθ (v‖ − vz )H(X, Z )
P2

‖
2m̃1 + sinθ

2m̃ h(X, Z )

⎤
⎥⎦,

with h(X, Z ) and H(X, Z ) given by Eqs. (5) and (6), respec-
tively. Under a magnetic field along the Z direction, we can
write

PZ = − ih̄d

dZ

PX =
√

eh̄B

2
(a + a+)

PX + iPY =
√

2eh̄Ba+

PX − iPY =
√

2eh̄Ba,

where a and a+ are the ladder operators. The perturba-
tive Hamiltonian cannot be projected into a trivial basis of
harmonic oscillator functions, as it was the case for the lon-
gitudinal valley. The envelope function needs to be expressed
in its general form, and for the jth confined state, it is given
by

ψ ( j) =
∑
n,i

⎧⎪⎪⎨
⎪⎪⎩αn,i

⎡
⎢⎢⎣

F ( j)
+
0

F ( j)
−
0

⎤
⎥⎥⎦+ βn,i

⎡
⎢⎢⎣

0
F ( j)

+
0

−F ( j)
−

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭|n〉,

where |n〉 is the harmonic oscillator function with n =
0, 1, 2, . . ., and α and β are the coefficients in front of the

two spin components. The perturbative theory requires us to
calculate matrix elements 〈ψ (i)|δW |ψ ( j)〉, where 1 � i, j � N
with N the number of confined states obtained at k‖ = 0.
This leads to two equations on αn, j and βn, j that are coupled
with αn±1, j , βn±1, j , αn±2, j , … We solved these equations
by taking 1 � j � N and 0 � n � 8, which insures a con-
vergence. For n = 0, only the equation on β0, j is considered,
the equation on α0, j being unphysical in this system. Indeed,
the two n = 0 Landau levels are spin polarized [50,51]. This
resolution leads to the oblique valley Landau levels shown in
Fig. 3(b). Moreover, we can extract from these equations the
two coupling potentials W1 and W2. They occur between βn+1, j

and βn, j±(2q+1) [or between αn+1, j and αn, j±(2q+1)] for W1 and
between βn, j and αn+1, j±(2q+2) for W2 (q ∈ N).

APPENDIX C: ANISOTROPY OF THE TISs

The theoretical model detailed in Sec. III B gives the
perturbative matrix for the in-plane dispersion calculations.
The resolution is like the one in Appendix B.

As an illustration, in the subspace TIS and TIS′ (twofold
degenerated due to the spin), the perturbation theory leads to
the diagonalization of the following matrix (for the sake of
simplicity, small terms like remote band effects are neglected):

{ −δ	Z −i[h̄v‖k− − h̄sin2θ (v‖ − vz )kX ]	X

i[h̄v‖k+ − h̄sin2θ (v‖ − vz )kX ]	X −δ	Z

}
.
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Here, ±δ are the energies of TIS′ and TIS calculated at
k‖ = 0 and k± = kX ± ikY . In a good approximation, the TIS
dispersions are thus twofold degenerated with

E (θ ) = ±
√

δ2 + h̄2v2
‖k2

Y + h̄2[v‖ − sin2θ (v‖ − vz )]2k2
X .

For the longitudinal valley, we have θ = 0◦ so that the
intersubband matrix element of momentum between TIS and
TIS′ is v‖. At the M̄ point, where θ = 70.5◦, one immediately
obtains the in-plane velocities and the anisotropy factor KM̄
mentioned in Sec. IV.

As a final remark, when a magnetic field along Z is ap-
plied, the Hamiltonian above gives, in a good approximation,

the Landau levels of TIS′ and TIS for the two types of
valley:

En(θ ) = ±
√

δ2 + 2eh̄Bn

[
v‖ + vz

2
+ cos2θ

2
(v‖ − vz )

]2

.

Therefore, the in-plane (XY plane) motions of the electrons
under magnetic field in both valleys are characterized by the
following velocity:

[
v‖ + vz

2
+ cos2θ

2
(v‖ − vz )

]
.
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