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1. Introduction

In this paper we study four end solutions to the following free boundary problem on 
the plane R2, ⎧⎪⎪⎨⎪⎪⎩

Δu = 0, in Ω := {−1 < u < 1},

u = ±1, outside Ω,

|∇u| = 1, on ∂Ω.

(1.1)

Throughout this paper solutions to this free boundary problem are understood in the 
classical sense, that is, Ω is a smooth domain on R2, u ∈ C2(Ω), where both the equation 
and the boundary conditions in (1.1) hold pointwisely. We will also assume Ω to be 
connected, because the solution restricted to each connected component can be viewed 
as a solution of (1.1).

Equation (1.1) arises as the Euler-Lagrange equation of the functional∫ (
|∇u|2 + χ{−1<u<1}

)
. (1.2)

The second variation of this energy functional is

Q(ϕ, ϕ) :=
∫
Ω

|∇ϕ|2 −
∫

∂Ω

Hϕ2,

where H is the mean curvature of ∂Ω with respect to the inward unit normal vector. 
(We have H ≥ 0 by such a choice, see Proposition 3.2.) The linearized problem of (1.1)
is {

Δϕ = 0, in Ω,

ϕν = Hϕ, on ∂Ω.
(1.3)

Here ν denotes the unit outward normal vector of ∂Ω. The eigenvalue problem associated 
to Q is {

− Δϕ = λϕ, in Ω,

ϕν = Hϕ, on ∂Ω.
(1.4)

The Morse index of a solution is defined to be the number of negative eigenvalues of this 
problem (counting multiplicity), or equivalently, the maximal dimension of the negative 
space for the quadratic form Q. If the Morse index is 0, the solution is stable.

A special solution to problem (1.1) is Ω = {(x, y) ∈ R2 : |x| < 1, y ∈ R} and 
u(x, y) = x in Ω. This is a solution depending only on one direction. We call this solution 
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a one dimensional solution or a two end solution. The one dimensional solution is unique 
up to rotation and translation.

In this paper we are interested in solutions of (1.1) with four ends, which depend on 
both variables.

Definition 1.1 (Solutions with finite ends). A solution to (1.1) is said to have finite ends, 
if there exists an R > 0 such that Ω \BR(0) has only finitely many connected components 
and each connected component has the form

{
X ∈ R2 : f−(X · eα) + tα ≤ X · e⊥

α ≤ f+(X · eα) + tα

}
,

where eα is a unit vector and tα is a constant, f± are convex (concave) functions defined 
on [R, +∞) satisfying

lim
t→+∞

f±(t) = ±1

respectively.

Each connected component of Ω \ BR(0) is called an end. The unit vector eα is called 
the asymptotic direction of this end. In each end, the solution is in fact locally close to 
the one dimensional solution (see Proposition 3.7 below).

One may wonder if the definition of solutions with finite ends could be weakened by 
dropping the asymptotic behavior condition in Definition 1.1 and being replaced instead 
by assuming Ω \BR for large R have a finite number of unbounded connected components 
or Rn \ Ω have a finite number of unbounded connected components. We believe it is 
possible, however, it may be very technical to prove so. To make the main ideas of the 
paper more transparent, we focus on the solutions with the more restrictive condition, 
which are satisfied if we assume the solution has a finite Morse index.

For Allen-Cahn equation

Δu = u3 − u,

solutions with finitely many ends, four end solutions in particular, have been studied 
extensively in [5,6,10,11,13–15]. By now the following are known.

• Gui [10]: After a translation and rotation, u is evenly symmetric with respect to the 
x and y axis. Changing the sign of u if it is necessary, in the first quadrant it holds 
that

∂u
< 0,

∂u
> 0.
∂x ∂y
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• Kowalczyk-Liu-Pacard [13,14]: Let M ⊂ L∞(R2) be the set of evenly symmetric four 
end solutions of the Allen-Cahn equation. Then M is a smooth manifold diffeomor-
phic to R.

• Kowalczyk-Liu-Pacard [13,14]: Let α ∈ (0, π/2) be the angle between the end in the 
first quadrant and the x axis. Then α : M �→ (0, π/2) is a smooth proper map.

• Gui-Liu-Wei [11]: Via a sophisticated variational approach, it is shown that for each 
α ∈ (0, π/2), there exists a four end solution of the Allen-Cahn equation with angle 
α whose Morse index is 1.

• Wang-Wei [22]: Every Morse index 1 solution of the Allen-Cahn equation has four 
ends.

However, there is still an important problem remaining open: the uniqueness of four end 
solutions with given angle α.

In this paper all of these issues will be considered for four end solutions to (1.1). 
A complete classification as well as a Morse index characterization will be established. 
We note that for the elliptic sine-Gordon equation

−Δu = sin u, |u| < π,

Liu and Wei [17] obtained a complete classification for all finite end solutions in R2. 
However, our treatment will be very different.

The paper is organized as follows. In Section 2 main results of this paper are stated. We 
present some preliminary results in Section 3. In Section 4, we prove the even symmetry 
of four end solutions. In Section 5 an important notion, quasi Gauss map, is introduced, 
where it is used to prove the uniqueness of solutions. A nondegeneracy property is es-
tablished in Section 6. The structure of moduli space is studied in Section 7. Then we 
prove the existence of four end solutions in Section 9, after establishing the existence of 
a special four end solution, the saddle solution, in Section 8. Finally in Section 10 we 
find a Morse index characterization of four end solutions.

2. Main results

The main results of this paper are the following.

Theorem 2.1 (Even symmetry). A solution of (1.1) with four ends, after a translation 
and a rotation, is evenly symmetric with respect to the x and y axis.

Theorem 2.2 (Geometric properties). Suppose u is a solution of (1.1) with four ends. 
Then

(i) There are exactly two connected components of {u = 1} and {u = −1} respectively.
(ii) Ω is simply connected.
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(iii) Each connected component of {u = ±1} is strictly convex and unbounded. The 
opening angle of every connected component of {u = ±1}, i.e., the angle formed by 
any two neighboring asymptotic directions, is strictly positive.

We note that −u is also a solution if u is a solution, we may focus only on one solution 
and assume u has one whole component of {u = 1} contained in the upper half plane. 
By the even symmetry of u, we can define

Definition 2.3. Suppose u is an evenly symmetric, four end solution. Take the end with 
its asymptotic direction e in the first quadrant. The angle between e and the positive x
axis is denoted by α.

By the definition of α and Theorem 2.2 (iii), the value of α lies in (0, π/2). In this 
setting, we may say −u has an angle α lies in (π/2, π).

Theorem 2.4 (Existence and uniqueness). For each α ∈ (0, π/2), there exists a unique 
evenly symmetric, four end solution of (1.1) with angle α.

Since −uπ/2−α(y, x) is also a four end solution with angle α, the uniqueness implies 
that

Corollary 2.5. For any α ∈ (0, π/2), uα(x, y) = −uπ/2−α(y, x). In particular, uπ/4 is 
oddly symmetric with respect to {y = x} and {y = −x}, and may be called a saddle 
solution.

For each α ∈ (0, π/2), uα is nondegenerate in the following sense.

Theorem 2.6 (Nondegeneracy). Suppose u is a four end solution to (1.1) and ϕ ∈ L∞(Ω) ∩
C2(Ω) is a solution to the linearized equation (1.3), then there exist two constants a and 
b such that

ϕ ≡ aux + buy in Ω.

Remark 2.7. There do exist two other linearly independent kernels which grow linearly 
along the asymptotic directions at infinity. One is the rotational derivative φ = yux−xuy, 
the other one is obtained by differentiating uα in α.

Definition 2.8 (Moduli space). Let M ⊂ Lipb(R2) be the set

{uα : evenly symmetric, four end solution with angle α} .

In the above Lipb(R2) denotes the space of bounded, Lipschitz continuous functions 
on R2.

By Theorem 2.4 we obtain
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Theorem 2.9 (Structure of moduli space). M is an embedded curve diffeomorphic to 
(0, π/2).

Let us define the following two copies of one dimensional solutions,

u0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
y − 1, if 0 ≤ y ≤ 2,

−y − 1, if − 2 ≤ y ≤ 0,

1, otherwise
(2.1)

and

u π
2
(x, y) =

⎧⎪⎪⎨⎪⎪⎩
−x + 1, if 0 ≤ x ≤ 2,

x + 1, if − 2 ≤ x ≤ 0.

−1, otherwise .

(2.2)

For the behavior of uα as α → 0 or π/2, we have

Theorem 2.10 (Boundary behavior in moduli space). uα converges to u0 uniformly on any 
compact set of R2 as α → 0; similarly, uα converges to u π

2
uniformly on any compact 

set of R2 as α → π/2.

Finally, we establish the following Morse index characterization of four end solutions.

Theorem 2.11 (Morse index characterization). A solution of (1.1) has four ends if and 
only if its Morse index is 1.

For simplicity of the presentation of the paper, we shall focus on the four end solutions. 
The existence and properties of 2k-end solutions will be discussed in future work. We 
note that the finiteness of number of ends of a solution should be equivalent to the 
finiteness of Morse index, and it is proven in [21] that finite Morse index of a solution 
implies finite number of ends of the solution while the two-end solution and four-end 
solution have Morse index 0 and 1 respectively as shown in this paper. It is also shown 
in Section 10 of this paper that a 2k-end solution must have Morse index at least �k/2
. 
The equivalence of general 2k-end solution and finite Morse index shall be addressed in 
future work. It is interesting to point out that the corresponding equivalent results for 
Allen-Cahn equation have been obtained in [13] and [22].

3. Preliminary

In this section we collect several basic results on solutions of (1.1) in R2 as well as 
some technical results needed in this paper. In this section, it is only assumed that u is 
a solution of (1.1) with finite ends.

The following two propositions are Proposition 2.1 and Proposition 2.4 in [21].
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Proposition 3.1 (Modica inequality). In Ω, |∇u|2 ≤ 1, where the inequality is strict unless 
u is one dimensional.

Proposition 3.2 (Convexity). Every connected component of Ωc is convex. Moreover, it 
is strictly convex unless u is one dimensional.

The following monotonicity formula is a consequence of the Modica inequality and 
the Pohazaev identity, which is similar to the case of Allen-Cahn equation, see also [23, 
Proposition 2.4] for a proof in a similar setting in the presence of free boundaries.

Proposition 3.3 (Monotonicity formula). For any X ∈ R2,

E(R; X) := 1
R

∫
BR(X)

[
|∇u|2 + χ{−1<u<1}

]

is non-decreasing in R.

The following two results can be obtained as in [10], or by a blowing down analysis, 
using a Hutchinson-Tonegawa type theory as presented in [23, Section 3].

Proposition 3.4 (Energy quantization). Suppose u has 2k ends, k ≥ 1. For any X ∈ R2,

lim
R→+∞

E(R; X) = 4k.

Proposition 3.5 (Balancing condition). Suppose u has 2k ends, k ≥ 1, and ei is the 
asymptotic direction of these ends, 1 ≤ i ≤ 2k. Then

2k∑
i=1

ei = 0.

The proofs of Propositions 3.3-3.5 will be given in the Appendix A.
For four end solutions (k = 2), by this balancing condition and noting that each ei is 

a unit vector, after a rotation, the asymptotic directions have the form

e1 = (cos α, sin α), e2 = (cos α, − sin α), (3.1)

e3 = (− cos α, sin α), e4 = (− cos α, − sin α),

where α ∈ [0, π/2] is the angle defined in Definition 2.3. This configuration is evenly 
symmetric with respect to the x and y axis.

From now on we assume the following lemma can be proved by using De Giorgi type 
result, i.e. the characterization of one dimensional solutions (see [21, Lemma 3.4]).
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Lemma 3.6. For any Xi ∈ Ω, |Xi| → +∞, there exists a subsequence of

ui(X) := u(Xi + X)

converging to a one dimensional solution in C1 sense on any compact set of R2.

The following result is also taken from [21], see Lemma 4.5 and Section 5 therein.

Proposition 3.7 (Refined asymptotics). There exist two positive constants C and μ so 
that the following holds. Suppose u is a solution with finite ends. Then for every end 
of Ω, there exists a ray L (which we assume to be the positive x axis) so that outside a 
compact set this end has the form

{
(x, y) : f−(x) < y < f+(x)

}
,

where f± are convex (concave) functions, satisfying

|f±(x) ∓ 1| ≤ Ce−μx, as x → +∞.

Moreover, as x → +∞,

u(x, y) →

⎧⎪⎪⎨⎪⎪⎩
1, y ≥ 1,

y, |y| ≤ 1
−1, y ≤ −1

uniformly in R.

Next, we recall two results on nodal sets of solutions to (1.4).

Proposition 3.8. Let ϕ be a solution of (1.4). Then the nodal set {ϕ = 0} ∩ Ω consists of 
a singular set of isolated points and a family of smooth embedded curves with their end 
points lying in the singular set, ∂Ω or at infinity.

Proof. Results on the structure of nodal sets in the interior are classical, see [3]. For 
nodal curves near boundary, see [8, Appendix B]. �

For the nodal set of directional derivatives ue := e · ∇u, because it satisfies the 
linearized equation (1.3), we can say something more.

Lemma 3.9. For any X ∈ {ue = 0} ∩ ∂Ω, there is only one smooth curve belonging 
to the nodal set of {ue = 0} emanating from X. Moreover, this curve intersects ∂Ω
orthogonally.
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Proof. Without loss of generality, assume X = 0, e = (1, 0), and there holds locally 
around X = 0,

Ω = {(x, y) : y > f(x)} ,

where f is a smooth concave function satisfying f(0) = f ′(0) = 0.
By Proposition 3.2, we have from the strict convexity of Ωc that

uxx(0) = −H(0) < 0.

After extending u to Ωc in a smooth way, we can use the implicit function theorem 
to deduce that locally {ux = 0} is a single smooth curve. A differentiation of the free 
boundary condition in (1.1) also shows that uxy(0) = 0, so this nodal curve is orthogonal 
to ∂Ω at 0. �

It is also useful to note that, by the free boundary condition in (1.1), ue(X) = 0 if 
and only if e is the tangent vector of ∂Ω at X.

Finally we present a technical lemma on Liouville property for elliptic equations in 
R2.

Lemma 3.10. Suppose D is a domain (bounded or unbounded) with piecewise smooth 
boundary, σ ∈ C(D) is positive. Assume ϕ ∈ C1(D) satisfies weakly (in distributional 
sense) {

ϕ·div
(
σ2∇ϕ

)
≥ 0, in D

ϕ = 0, on ∂D.
(3.2)

If σϕ ∈ L∞(D), then ϕ ≡ 0 in D.

Proof. If D is bounded, this follows directly from the maximum principle.
If D is unbounded, we use the method of [7] (see also [2]). For any η ∈ C∞

0 (R2), 
testing (3.2) with η2 we get∫

D

σ2|∇ϕ|2η2 ≤ 4‖σϕ‖2
L∞(D)

∫
D

|∇η|2. (3.3)

For each R > 1, take η to be the standard log cut-off function

η(X) :=

⎧⎪⎪⎨⎪⎪⎩
1, |X| ≤ R,

2 − log |X|
log R , R ≤ |X| ≤ R2

0, |X| ≥ R2.

(3.4)

Substituting this function into (3.3) and then letting R → +∞, we obtain
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∫
D

σ2|∇ϕ|2 = 0.

Since ϕ = 0 on ∂D, ϕ ≡ 0 in D. �
4. Even symmetry: the method of moving planes

From now on u denotes a solution of (1.1) with four ends. Assume its four asymptotic 
directions are given as in (3.1). In this section, we use the method of moving planes to 
prove the even symmetry of u in x and y. We mainly follow the treatment in [10], with 
one distinct point where Serrin’s method in [19] is applied to treat the case when two 
free boundaries touch tangentially on the boundary.

There are two unbounded connected components of {u = 1} (or {u = −1}), denoted 
by D±

i (i = 1, 2) respectively. They are given by

D+
1 = {y > f+(x)} , D+

2 = {y < f−(x)} ,

D−
1 = {x > g+(y)} , D−

2 = {x < g−(y)} .

Here f+ and g+ are convex functions, f− and g− are concave functions, satisfying f+ > f−
and g+ > g−.

First we show that

Lemma 4.1. 0 < α < π/2.

Proof. Assume for example, α = 0. Because f+ is convex, this implies that

lim
x→±∞

f ′
+(x) = 0.

Using convexity once again we deduce that f+ ≡ const. Then by Proposition 3.2, u is 
one dimensional, this is a contradiction. �

Denote k = tan α > 0. By Proposition 3.7, there exist four constants Ai, 1 ≤ i ≤ 4
such that, the end of {−1 < u < 1} in the i-th quadrant has the asymptotical expansion

{
±kx + Ai − 1

cos α
+ o(1) < y < ±kx + Ai + 1

cos α
+ o(1)

}
, (4.1)

where we take the positive sign in the first and third quadrant and the negative sign in 
the second and fourth quadrant.
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By (4.1), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f+(x) = kx + A1 + 1
cos α

+ o(1), as x → +∞,

f+(x) = −kx + A2 + 1
cos α

+ o(1), as x → −∞,

f−(x) = −kx + A4 − 1
cos α

+ o(1), as x → +∞,

f−(x) = kx + A3 − 1
cos α

+ o(1), as x → −∞.

(4.2)

Similarly, if we write the two inverse functions of g+(y) for x ≥ x2 as y = g+,1(x) and 
g+,2(x) with y = g+,1(x) ≥ g+,2(x), x > x2 and g+,1(x2) = g+,2(x2), and write the two 
inverse functions of g−(y) for x ≤ x1 as y = g−,1(x) and g−,2(x) with y = g−,1(x) ≥
g−,2(x), x < x1 and g−,1(x1) = g−,2(x1), then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g+,1(x) = kx + A1 − 1
cos α

+ o(1), as x → +∞,

g+,2(x) = −kx + A4 + 1
cos α

+ o(1), as x → +∞,

g−,1(x) = −kx + A2 − 1
cos α

+ o(1), as x → −∞,

g−,2(x) = kx + A3 + 1
cos α

+ o(1), as x → −∞.

(4.3)

Lemma 4.2. The four constants A1, ..., A4 satisfy

A1 + A4 = A2 + A3. (4.4)

Proof. Define

H(x) :=
+∞∫

−∞

y
[
χΩ(x, y) + uy(x, y)2 − ux(x, y)2] dy.

In fact, this integration is only on a finite interval because the integrands equal 0 in 
{y > f+(x)} ∪ {y < f−(x)}.

Similar to [9], we have the following Hamiltonian identities after some computation

d2

dx2 H(x) = 0. (4.5)

Therefore H is a linear function. By the expansion in (4.2) (in particular, f+ + f− are 
bounded as x → ±∞) and the asymptotic behavior of u along each end from Proposi-
tion 3.7, we see that H(x) is bounded as x → ±∞. Hence H(x) is a constant function, 
in particular,
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lim
x→+∞

H(x) = lim
x→−∞

H(x).

Using the fact that u looks like one dimensional solutions at infinity (Proposition 3.7) 
once again, we get a positive constant C(α) depending only on α such that

lim
x→+∞

H(x) = C(α) (A1 + A4) , lim
x→−∞

H(x) = C(α) (A2 + A3) .

The identity in (4.4) follows. �
With this relation in hand, after the translation (x, y) �→ (x − A1−A2

2k , y + A1+A4
2 ), we 

may assume for some constant A,

A1 = A2 = A, A3 = A4 = −A.

Then the four asymptotic rays in (4.2) and (4.3) are evenly symmetric with respect to 
the x and y axis.

With these preliminaries now we come to

Proof of Theorem 2.1. We only prove the even symmetry in x. For each λ ∈ R, define

uλ(x, y) := u(2λ − x, y), Dλ := {x > λ}.

Step 1. If λ is sufficiently large, then uλ ≥ u in Dλ.
Indeed, let

Ωλ := {u > −1} ∩ Dλ \ {uλ = 1}

It is obvious that uλ ≥ u in

Dλ \ Ωλ = ({u = −1} ∪ {uλ = 1}) ∩ Dλ.

By the expansions in (4.2) and (4.3), if λ is sufficiently large, then Ωλ is a bounded 
set and uλ ≥ u on ∂Ωλ. Hence by the maximum principle, uλ ≥ u in Ωλ.

Therefore, the claim follows.

Step 2. Now the following constant is well defined:

Λ := inf{λ : uλ′ ≥ u in Dλ′ , λ′ ≥ λ}.

We claim that Λ = 0.
Assume by the contrary that Λ > 0. By the expansions in (4.2) and (4.3), when x � 1

and y > 0,
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{uΛ = 0} = {(x, y) : y = kx + A − 2kΛ + o(1)}

lies below

{u = 0} = {(x, y) : y = kx + A + o(1)}.

Combining this fact with the strong maximum principle and Hopf lemma, we deduce 
that the free boundaries ∂{−1 < uΛ < 1} ∩ DΛ and ∂{−1 < u < 1} ∩ DΛ do not touch.

By definition, there exists a sequence λi ≤ Λ and λi → Λ such that

inf
Dλi

(uλi
− u) < 0. (4.6)

Because Λ > 0, by the expansions in (4.2) and (4.3), when x � 1 and y > 0,

{uλi
= 0} = {(x, y) : y = kx + A − 2kλi + o(1)}

still lies below (with a fixed distance)

{u = 0} = {(x, y) : y = kx + A + o(1)}.

A similar phenomenon can be seen in {(x, y) : x � 1, y < 0}. Then by Proposition 3.7, 
we find a constant R (depending only on Λ) such that

uλi
≥ u in {x > R}.

This inequality also holds trivially in Dλi
∩ {|x| < R, |y| > R}, perhaps after enlarging 

R, because we always have uλi
= u = 1 in Dλi

∩ {|x| < R, |y| > R}.
Therefore the infimum in (4.6) is a minimum. Because uλi

= u on {x = λi}, it is 
attained at a point Xi ∈ Dλi

. By the above discussion, Xi lies in a fixed compact set. 
Assume they converge to a limit point XΛ. Then by continuity and recalling that uΛ ≥ u

in DΛ, we get

u(XΛ) = uΛ(XΛ).

There are three cases depending on the position of XΛ.

Case 1. XΛ ∈ {x > Λ}.

In this case, either u(XΛ) = uΛ(XΛ) = 1 or u(XΛ) = uΛ(XΛ) = −1. Without loss 
of generality, assume it is the first case. Then XΛ is an interior point of {uΛ = 1}. By 
continuity, for all i large, Xi is an interior point of {uλi

= 1}. In particular,

uλi
(Xi) = u(Xi).
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This is a contradiction with (4.6).

Case 2. XΛ ∈ {x = Λ} ∩ {−1 < u < 1}.

In this case, XΛ is an interior point of {−1 < u < 1} and {−1 < uΛ < 1}. By 
continuity, for all i large, Xi lies in the interior of {−1 < u < 1} ∩ Dλi

and {−1 < uλi
<

1} ∩ Dλi
. Hence

∇u(Xi) − ∇uλi
(Xi) = 0.

Passing to the limit, we deduce that

∂x (uΛ − u) (XΛ) = 0.

By the Hopf lemma, u ≡ uΛ in DΛ. This is a contradiction.

Case 3. XΛ ∈ {x = Λ} ∩ ∂{−1 < u < 1}.

Without loss of generality, assume XΛ ∈ {x = Λ} ∩ ∂{u = 1}. We claim that the 
vertical line {x = Λ} is normal to ∂{u = 1} at XΛ. (Recall that ∂{u = 1} is a smooth 
curve.) If this claim is true, we can follow the same argument of Serrin in [19] (in 
particular, the second order Hopf lemma [19, Lemma 1] therein) to get a contradiction.

To prove the claim, denote XΛ := (Λ, yΛ) and Xi := (xi, yi). Assume in a small 
neighborhood of XΛ, {u = 1} = {y > f(x)}, where f is a smooth, convex function. 
First it is impossible that f ′(Λ) < 0, because otherwise the reflection of a part of ∂{u =
1} ∩ {x < Λ} would lie above {∂{u = 1} ∩ {x > Λ}, which violates the assumption that 
uΛ ≥ u. If f ′(Λ) > 0, because u(2λi −xi, yi) < u(xi, yi), we must have u(2λi −xi, yi) < 1
and

ux(XΛ) = lim
i→+∞

ux(2λi − xi, yi) ≥ 0.

This is a contradiction, because by the free boundary condition and the above assumption 
on f ′(Λ),

ux(XΛ) = − f ′(Λ)√
1 + f ′(Λ)2

< 0.

In conclusion, the only possibility is that f ′(Λ) = 0.

Step 3. Λ = 0 implies that

u(−x, y) ≥ u(x, y) in {x > 0}.

We can repeat the moving plane procedure from the other direction, which leads to
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u(−x, y) ≥ u(x, y) in {x < 0}.

Combining these two inequalities together, we get

u(x, y) = u(−x, y). �
Because uλ ≥ u in {x > λ} for any λ > 0, by the strong maximum principle we obtain

Corollary 4.3. Suppose u is a four end solution to (1.1).

(i) In {x > 0}, ux < 0 and in {x < 0}, ux > 0.
(ii) In {y > 0}, uy > 0 and in {y < 0}, uy < 0.

Finally, we show that D±
i (i = 1, 2) are the only components of Ωc, that is, there 

is no bounded component of Ωc. Together with Lemma 4.1, this finishes the proof of 
Theorem 2.2.

Lemma 4.4.

(i) There is no bounded component of Ωc.
(ii) There is only one critical point of u in Ω, which is the origin and it is nondegenerate 

and of saddle type.

Proof. (i) Assume there is a bounded component of {u = 1}. Take a point (x0, y0) in 
this component. Because u(x0, f+(x0)) = u(x0, f−(x0)) = 1, there exists a y1 �= 0 such 
that (x0, y1) ∈ Ω and uy(x0, y1) = 0. This is a contradiction with Corollary 4.3.

(ii) By Corollary 4.3, we have

• ∇u(X) = 0 if and only if X = 0;
• because ux = 0 on {x = 0}, a differentiation in y shows that uxy(0) = 0;
• because ux < 0 in {x > 0}, by the Hopf Lemma, uxx(0) < 0, and similarly, uyy(0) >

0.

Hence 0 is a nondegenerate critical point and it is of saddle type. �
5. Quasi Gauss map and uniqueness

In this section we introduce the quasi Gauss map and use it to prove the uniqueness 
part of Theorem 2.4. We will use the complex notation z = x + iy, where i is the 
imaginary root corresponding to the vector (0, 1).

Since u is harmonic, the map G := ux − iuy is holomorphic. Our main tool in this 
section is the following result.
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Proposition 5.1. G is a biholomorphism between Ω and B1(0).

Proof. By Proposition 3.1, G maps Ω into B1(0). Moreover, since |∇u| = 1 on ∂Ω, we 
have

ux (x, f+(x)) = − f ′
+(x)√

1 + f ′
+(x)2

, uy (x, f+(x)) = 1√
1 + f ′

+(x)2
, (5.1)

and similar identities hold on {y = f−(x)} and {x = g±(y)}. Using the expansion 
(4.2) and (4.3) (which also hold in C1 sense by Lemma 3.6), G(∂Ω) is the set S1 \
{±ei( π

2 −α), ±e−i( π
2 −α)}. In particular, ∇u(∂Ω) = S1.

By (5.1), ∇u is homotopic to the vector field (−x, y) on ∂Ω. Therefore, the topological 
degree deg(∇u, ∂Ω) = −1. Hence for any e ∈ B1(0), there exists a z ∈ Ω such that 
G(z) = e, that is, G is surjective.

Next, for any z ∈ G−1(e), because uz is holomorphic, the index of ∇u at z is a negative 
integer. Then by the Poincare-Hopf index formula, we get a contradiction with the fact 
that deg(∇u, ∂Ω) = −1 unless there is only one point in G−1(e). �
Remark 5.2. The map G corresponds to the Gauss map for minimal surfaces. For min-
imal surfaces, the image of Gauss map lies in the unit sphere, while here (and more 
generally, for many semilinear elliptic equations) the image of G is the unit ball. This 
is different from the correspondence established in [20], where the one-to-one correspon-
dence between certain minimal surfaces and the solutions to the one phase free boundary 
problem in R2 is proven. Indeed, the nature of the problem discussed in this paper is 
very different from the one in [20] despite of similarity in the equation: the free boundary 
here consists of two components at both u = 1 and u = −1 while the one phase problem 
only deals with the free boundary at u = 0. Also we are looking at the geometry of entire 
solutions which have four ends structure and exhibit minimal surface behavior without 
adding one additional dimension.

Let F : B1(0) → Ω be the inverse of G. Denote

v(z) := u(F (z)).

It is a harmonic function in B1(0), satisfying the boundary condition

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(eiθ) = 1, for θ ∈

(π

2 − α,
π

2 + α
)

∪
(

3π

2 − α,
3π

2 + α

)
,

v(eiθ) = −1, for θ ∈
(

π

2 + α,
3π

2 − α

)
∪
(

−π

2 + α,
π

2 − α
)

.

(5.2)

By Poisson representation formula, v is uniquely determined by α.



Z. Du et al. / Advances in Mathematics 404 (2022) 108395 17
Since u(z) = v(G(z)), taking derivative in z gives

G(z) = uz(z) = vz(G(z))G′(z). (5.3)

Because F is the inverse of G, this identity is equivalent to

F ′(z) = vz(z)
z

. (5.4)

Using this quasi Gauss map, now we prove the uniqueness part of Theorem 2.4.

Proof of Theorem 2.4: Uniqueness. Suppose there are two even, four end solutions u1

and u2 with angle α. Define G1, G2 and their inverse F1, F2 as above. Then u1 ◦ F1 ≡
u2 ◦ F2 in B1(0), which implies that F1 ≡ F2 because both F ′

1 and F ′
2 are given by (5.4)

and they satisfy F1(0) = F2(0) = 0. Hence F1(B1(0)) = F2(B1(0)), and u1 ≡ u2 in this 
domain, because they have the same boundary value. �
6. Nondegeneracy

This section is devoted to the proof of Theorem 2.6. In fact, for applications in Sec-
tion 10, we prove something more.

Proposition 6.1. Suppose u is a four end solution to (1.1) and ϕ ∈ L∞(Ω) ∩ C2(Ω) is a 
solution of the eigenvalue problem (1.4), where λ ≤ 0. Then we have

(i) if λ < 0, either ϕ ≡ 0 or ϕ > 0 in Ω;
(ii) if λ = 0, ϕ = aux + buy in Ω for two constants a and b.

This proposition follows from the following two lemmas.

Lemma 6.2. Assume the condition of Proposition 6.1.

• If λ < 0, ϕ is even in x and y.
• If λ = 0, there exist two constants a and b such that ϕ − aux − buy is even in x and 

y.

Proof. Let ϕ̃(x, y) := ϕ(x, y) − ϕ(−x, y). Note that ϕ̃ is an odd function of x and ϕ̃ = 0
in Ω ∩ {x = 0}.

Although ux = 0 on {x = 0} ∩ Ω, by Corollary 4.3, ux has definite signs on the two 
sides of {x = 0} ∩Ω, hence by the Hopf lemma as well as Proposition 3.2, uxx < 0 strictly 
on {x = 0} ∩ Ω. This then implies that ϕ̃/ux is well defined and it is smooth in Ω.
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It can be directly checked that

⎧⎪⎪⎨⎪⎪⎩
− div

(
u2

x∇ ϕ̃

ux

)
= λϕ̃ux, in Ω ∩ {x �= 0},

∂ν
ϕ̃

ux
= 0, on ∂Ω ∩ {x �= 0}.

(6.1)

For any η ∈ C∞
0 (R2), multiplying (6.1) by ϕ̃

ux
η2, integrating in Ω ∩ {x > 0} and 

Ω ∩ {x < 0} respectively, and then adding these two equalities, we obtain

∫
Ω

u2
x

∣∣∣∇ ϕ̃

ux

∣∣∣2η2 ≤ 2

⎛⎜⎝ ∫
Ω∩{∇η �=0}

u2
x

∣∣∣∇ ϕ̃

ux

∣∣∣2η2

⎞⎟⎠
1
2
⎛⎜⎝ ∫

Ω∩{∇η �=0}

ϕ̃2|∇η|2

⎞⎟⎠
1
2

.

Taking η to be the standard log cut-off function as in the proof of Lemma 3.10, we 
deduce that ϕ̃

ux
is constant in Ω ∩ {x > 0} and Ω ∩ {x < 0}. By continuity, we get a 

constant a such that ϕ̃ ≡ 2aux in Ω.
Similarly setting ϕ̂(x, y) = 1

2 [(ϕ(x, y) + ϕ(−x, y)) − (ϕ(x, −y) + ϕ(−x, −y))], an odd 
function of y, we can prove that there exists a constant b such that ϕ̂ ≡ 2buy in Ω. Note 
that

2ϕ(x, y) − [ϕ̃(x, y) + ϕ̂(x, y)]

= 1
2 [(ϕ(x, y) + ϕ(−x, y)) + (ϕ(x, −y) + ϕ(−x, −y))]

=: ϕ̌(x, y),

where ϕ̌ is even with respect to both the x and y variables.
If λ < 0, substituting the equality ϕ̃ ≡ 2aux into (6.1) we get a = 0. Hence ϕ is even 

in x. Similar argument gives b = 0, which yields that ϕ is also even in y.
If λ = 0, the relation 1

2 ϕ̌ = ϕ − 1
2 [ϕ̃+ ϕ̂] = ϕ − (aux +buy) gives the desired result. �

Lemma 6.3. Suppose u is a four end solution to (1.1) and ϕ ∈ L∞(Ω) ∩ C2(Ω) is a 
solution of the eigenvalue problem (1.4), where λ ≤ 0. If ϕ is even in x and y, then 
either ϕ > 0 or ϕ ≡ 0 in Ω.

Proof. We set the nodal set of ϕ

N := {(x, y) ∈ Ω̄ : ϕ(x, y) = 0}.

If N = Ω̄, then ϕ ≡ 0 in Ω̄. If N = ∅, then ϕ > 0 in Ω̄ (perhaps after changing the sign 
of ϕ).
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Fig. 1. Three Cases.

If N is not an empty set, from Proposition 3.8 we know that N consists of a singular 
set of isolated points and a family of smooth embedded curves with their end points 
lying in the singular set, ∂Ω or at infinity.

By Lemma 3.10, there is no nodal domain of ϕ disjoint from ∂Ω. Hence we only need 
to rule out the case that the piecewise smooth nodal curves of ϕ have their end points 
lying in ∂Ω.

There are three cases. Denote the four parts {y = f+(x)}, {x = g+(y)}, {y =
f−(x)}, {x = g−(x)} of ∂Ω as Γi (i = 1, 2, 3, 4) respectively. See Fig. 1.

Case 1: There exists a nodal curve Γ connecting Γ1 and Γ2. If Γ intersects y-axis, by the 
even symmetry of ϕ in x and y, we know that there exists a nodal curve Γ̃ connecting Γ1
to Γ1 and being above the x-axis and symmetric about y-axis. We leave the discussion of 
this special sub case to Case 3 below. So we assume in Case 1 without loss of generality 
that Γ does not intersect y-axis. Note that there exists other nodal curve Γ̂ connecting 
Γ2 and Γ3 by the even symmetry of ϕ in y and we can assume that Γ1 is above x-axis if 
it is connected with Γ̂. We denote the unbounded domain lying at the upper right side 
of Γ and being enclosed by Γ and part of ∂Ω as Ω̃. We note that Ω̃ is located on the 
right side of Γ and should not contain a portion of y-axis (since it is the unbounded part 
of Γ) except that it may touch y-axis at the origin, while the latter will be discussed in 
Case 3. Hence, the argument from Lemma 6.2 works. Similar argument as in Lemma 6.2
gives ϕ = aux in Ω̃. By the unique continuation theorem, ϕ = aux in Ω. Since ϕ is even 
in x and y, a = 0, which yields ϕ ≡ 0 in Ω̃. We obtain a contradiction.

Case 2: A nodal curve Γ connects Γ1 and Γ3 directly. (The case that a nodal curve 
connects Γ2 and Γ4 directly can be proved with the same method.) As in Case 1, we can 
assume that Γ does not intersect with y-axis, and denote the unbounded domain lying at 
the right side of Γ and being enclosed by Γ and ∂Ω as Ω̃. We also note that Ω̃ is located 
on the right side of the Γ and should not intersect the y-axis (since it is the unbounded 
part). Similar argument as in Case 1 shows that this case is also impossible.
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Fig. 2. Sub Cases: Intersection with x-axis.

Case 3: A nodal curve Γ starts from Γ1 and returns back to Γ1. (The case that a nodal 
curve starts from Γ2 and return back to Γ2 can be proved by the same method.) Denote 
the bounded domain enclosed by Γ and Γ1 as Ω̃. We also note that Ω̃ should not contain 
a portion of the x-axis in view of the even symmetry of ϕ in y and can be chosen as above 
x-axis by the reflection of Γ about x-axis, although it may touch x-axis at some points. 
Indeed, we may assume that Ω̃ can only touch x-axis at the origin, since otherwise we 
can reduce the case to Case 2 by replacing Γ properly (for example by picking Γ as the 
right branch of the nodal curve symmetric about x-axis, see Fig. 2 (B)). Hence we only 
need to focus on the worst scenario when the origin is the intersection point of Γ with 
x-axis (and y-axis). It is well known that the nodal set of the eigenfunction ϕ behaves 
locally like that of a harmonic polynomial, i.e., finitely many lines forming equal angles 
at the origin. See, for example, Theorem 2.5 in [4]. By the even symmetry of ϕ with 
respect to both axes, we know that the nodal set consists of at least two lines and it does 
not coincide with the axes. Hence we may choose Γ to be symmetric about y-axis and 
there exists no nodal curve inside Ω̃ (see Fig. 2 (A)). In particular, we have |x| ≤ Cy

when (x, y) ∈ Ω̃ for some constant C > 0.
Now we define Ω̃δ := {(x, y) ∈ Ω̃, x2 + y2 > δ} for any δ > 0 sufficiently small. Then 

we have

0 = −
∫

Ω̃δ

div
(

u2
y∇ ϕ

uy

)
ϕ

uy
=

∫
Ω̃δ

u2
y

∣∣∣∣∇ ϕ

uy

∣∣∣∣2 + 1
δ

∫
Ω̃∩∂Bδ

(
ϕ∇ϕ − ϕ2

uy
∇uy

)
·(x, y)ds.

Letting δ → 0, we obtain

∫
u2

y

∣∣∣∣∇ ϕ

uy

∣∣∣∣2 = 0

Ω̃
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which gives ϕ = auy in Ω̃, and a contradiction follows similarly. We note that here even 
when Γ touches the x-axis at the origin, ϕ

uy
is still bounded since that uyy < 0 strictly 

on {y = 0} ∩ Ω, hence the boundary integral above tends to 0 as δ goes to 0. �
7. Moduli space

Theorem 2.4 implies that α �→ uα, α ∈ (0, π/2) is a parametrization of M. (That 
this map is surjective will be proven in Section 9.) In this section, we study the global 
structure of M, including the closedness of M and its boundary behavior.

We need a technical result on the distance between ∂{u = 1} and ∂{u = −1}.

Lemma 7.1. There exists a universal constant C such that, for any solution u of (1.1) in 
R2 and X ∈ ∂{u = 1}, dist(X, ∂{u = −1}) ≤ C.

Proof. Assume by the contrary, there exist a sequence of solutions ui of (1.1) in R2, and 
Xi ∈ ∂{ui = 1} such that

dist(Xi, ∂{ui = −1}) ≥ i.

Let vi(X) := 1 −ui(Xi+X), which satisfies 0 ≤ vi ≤ 2 and Δvi = 0 in {vi > 0} ∩Bi(0). 
(Note that vi < 2 in Bi(0).)

By the Lipschitz bound in Proposition 3.1, we can assume (after passing to a subse-
quence) vi converges to a limit v∞ uniformly on any compact set of R2. Because v∞ ≥ 0
and Δv∞ = 0 in {v∞ > 0}, v∞ is subharmonic in the entire space. Since v∞ ≤ 2, by the 
Liouville theorem

v∞ ≡ v∞(0) = 0.

In particular, ∫
B1(0)

Δv∞ = 0. (7.1)

On the other hand, since Xi ∈ ∂{ui = 1}, |∇ui| = 1 on ∂{ui = 1} and ∂{ui =
1} ∩ B1/2(Xi) is a convex curve with end points in ∂B1/2(Xi) and it also contains Xi, 
for all i large, ∫

B1/2(0)

Δvi = H1(∂{ui = 1} ∩ B1/2(0)) ≥ 1.

Here H1(∂{ui = 1} ∩ B1/2(0)) denotes the length of the curve ∂{ui = 1} ∩ B1/2(0). 
Passing to the limit we obtain a contradiction with (7.1). �



22 Z. Du et al. / Advances in Mathematics 404 (2022) 108395
Proposition 7.2 (Closedness of M). Given a sequence αi ∈ (0, π/2) and a sequence of 
four end, evenly symmetric solutions uαi

with angle αi, if

lim
i→+∞

αi = α0 ∈ (0, π/2),

then uαi
converges to uα0 uniformly on any compact set of R2, where uα0 is the four 

end, evenly symmetric solution with angle α0.

Proof. Because |uαi
| ≤ 1 and |∇uαi

| ≤ 1 in R2, passing to a subsequence we get a limit 
u.

Recall that ∂{uαi
= 1} ∩ {y > 0} has the form

y = fαi
(x),

and ∂{uαi
= −1} ∩ {x > 0} has the form

x = gαi
(y),

where both fαi
and gαi

are positive convex even functions. Moreover,

lim
x→+∞

f ′
αi

(x) = tan αi, lim
y→+∞

g′
αi

(y) = 1
tan αi

.

By Lemma 7.1, both fαi
(0) and gαi

(0) remain bounded as αi → α0. From these facts 
we deduce that, after passing to a subsequence, fαi

and gαi
converges uniformly on any 

compact set of R to two limits f and g respectively, where f and g are nonnegative 
convex even functions.

Because |∇uαi
| ≤ 1, the distance between {y = fαi

(x)} and {x = gαi
(y)} is larger 

than 2. Hence {y = f(x)} and {x = g(y)} do not touch.
As in [9], the following Hamiltonian identity for uαi

holds,

fαi
(0)∫

−fαi
(0)

[
−
∣∣∣∂uαi

∂x
(0, y)

∣∣∣2 +
∣∣∣∂uαi

∂y
(0, y)

∣∣∣2 + 1
]

dy = 4
cos αi

. (7.2)

Substituting |∇uαi
| ≤ 1 into this identity we get

fαi
(0) ≥ 1

cos αi
.

Passing to the limit we get

f(0) ≥ 1
.
cos α0
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Recall that 0 is the global minimal point of f , because it is a C2 even convex function. 
Therefore f > 0 strictly. In other words, the two components of ∂{u = 1} do not touch, 
too.

By the regularity theory on free boundaries in [1], the C4 norms of fαi
and gαi

are 
uniformly bounded. Hence they also converge in C3 and f, g ∈ C4(R). By standard 
elliptic estimates, ‖uαi

‖C3(Ωαi
) are uniformly bounded, where

Ωαi
= {(x, y) : −fαi

(x) < y < fαi
(x), −gαi

(y) < x < gαi
(y)}.

Then it is readily verified that u is an evenly symmetric solution of (1.1), where

{−1 < u < 1} = {(x, y) : −f(x) < y < f(x), −g(y) < x < g(y)} .

We have shown that u has four ends. Assume its angle is α. By the above smooth 
convergence of fαi

and uαi
, passing to the limit in (7.2) gives

f(0)∫
−f(0)

[
−
∣∣∣∂u

∂x
(0, y)

∣∣∣2 +
∣∣∣∂u

∂y
(0, y)

∣∣∣2 + 1
]

dy = 4
cos α0

.

Since Hamiltonian identity also holds for u, we must have α = α0. Therefore u is the 
evenly symmetric, four end solution with angle α0. �

Finally, we study the boundary behavior of the moduli space, that is, the behavior of 
uα when α → 0 or π/2.

Proof of Theorem 2.10. We only need to consider the case when α → 0 since the case 
α → π/2 is similar. As in Proposition 7.2, after passing to a subsequence, we can assume 
ui converges to a limit u0 uniformly on any compact set of R2.

Recall that ∂{ui = 1} ∩ {y > 0} = {y = fi(x)}, and ∂{ui = −1} ∩ {x > 0} = {x =
gi(y)}, where both fi and gi are positive convex even functions. Moreover,

lim
x→+∞

f ′
i(x) = tan αi → 0, lim

y→+∞
g′

i(y) = 1
tan αi

→ +∞. (7.3)

By Lemma 7.1, both fi(0) and gi(0) remain bounded as αi → 0. From these we deduce 
that, after passing to a subsequence, fi converges uniformly on any compact set of R to 
a limit f . By the convexity of fi and (7.3), f ′

i → 0 uniformly on R. Thus f ≡ a for some 
constant a ≥ 0.

When x > gi(0) and y > 0, there exists a concave function hi such that {x = gi(y)} =
{y = hi(x)}. After subtracting a subsequence, assume gi(0) → b for some constant b ≥ 0. 
Assume hi converges to h uniformly on any compact set of (b, +∞). It is clear that h is 
continuous on [b, +∞) and h(b) = 0.
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Because |∇ui| ≤ 1, the distance between {y = fi(x)} and {x = gi(y)} is larger than 
2. For any Xi ∈ {y = fi(x)}, if i is large enough, vi := 1 − ui is a classical solution of 
the one phase problem {

Δvi = 0, in {vi > 0} ∩ Ba/2(Xi),

|∇vi| = 1, on ∂{vi > 0} ∩ Ba/2(Xi).
(7.4)

Furthermore, the free boundary ∂{vi > 0} ∩ Ba/2(Xi) is the graph of a function. Since 
these functions converge to constant functions uniformly, the regularity theory in [1]
applies, which says ∂{vi > 0} ∩ Ba/2(Xi) are uniformly bounded in C4. Then standard 
elliptic estimates lead to a uniform bound on the C3({vi > 0} ∩ Ba/4(Xi) norm of vi. 
By pulling back via a diffeomorphism, we have that vi → v∞ in C2 sense in Ba/4(X∞), 
where v∞ is still a classical solution of (7.4).

Since the curves in ∂{v∞ > 0} are flat, by Proposition 3.2, v∞ is a one dimensional 
solution. Coming back to u0, we get

u0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
y − a + 1, if a − 2 ≤ y ≤ a,

−y − a + 1, if − a ≤ y ≤ −a + 2,

1, if y ≥ 2 or y ≤ −a.

Since Δu0 = 0 in the open set {−1 < u0 < 1}, by unique continuation principle u0 must 
have the form as given in (2.1). In particular, a = 2 and b = 0. �
Remark 7.3. For any x > 0, locally around (x, 0), ui +1 converges to a two copy solution 
of (7.4).

At the origin (0, 0), denote ri := gi(0), which goes to 0 as αi → 0. Define

vi(x, y) := 1
ri

[1 + ui(rix, riy)] .

Then vi converges to the hairpin solution of the one phase problem (7.4) constructed by 
Hauswirth, Hélein and Pacard [12]. In high dimensions, the same phenomena have been 
observed in [16].

8. Saddle solution

In this section we prove

Proposition 8.1. There exists an evenly symmetric, four end solution with angle α = π/4.

By the uniqueness part of Theorem 2.4, this solution is unique, hence it is oddly 
symmetric with respect to the line {x = y}. In fact, its nodal set {u = 0} is exactly 
{x = y} ∪ {x = −y}. This is called the saddle solution.
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The existence of such a solution will be proved by finding a minimizer in the first 
quadrant with Dirichlet condition and then taking successive reflections across the axes. 
For any R > 1, consider the square

QR := {(x, y) : 0 < x < R, 0 < y < R}.

Take ϕR to be the function on ∂QR, defined as

ϕR =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if x = 0 or y = 0,

1, if x = R, 1 ≤ y ≤ R or y = R, 1 ≤ x ≤ R,

x, if y = R, 0 < x < 1,

y, if x = R, 0 < y < 1.

Let uR ∈ H1(QR) be a minimizer of the functional

JQR
(u) :=

∫
QR

(
|∇u|2 + χ{u<1}

)
, (8.1)

with Dirichlet data ϕR on ∂QR. The existence of such a minimizer can be proved as in 
[1]. Moreover, the results in [1] imply that

(1) 0 ≤ uR ≤ 1;
(2) there exists a constant C independent of R such that |∇uR| ≤ C in QR−1;
(3) ∂{uR = 1} consist of smooth curves.

By constructing a suitable competitor, we get the following energy bound on uR:

Lemma 8.2. For any R > 1, ∫
QR

(
|∇uR|2 + χ{uR<1}

)
≤ 4R.

Proof. Take a test function wR in QR, defined as

wR =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xy, if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

1, if 1 ≤ x ≤ R, 1 ≤ y ≤ R,

x, if 1 ≤ y ≤ R, 0 < x < 1,

y, if 1 ≤ x ≤ R, 0 < y < 1.

It is easy to obtain the estimate∫ (
|∇wR|2 + χ{wR<1}

)
≤ 4R.
QR



26 Z. Du et al. / Advances in Mathematics 404 (2022) 108395
The lemma follows by the minimality of uR. �
Extend uR by successive odd reflections to DR := {|x| < R, |y| < R}, which is still 

denoted by uR. It is clear that uR is a solution of (1.1) in DR with a proper domain ΩR. 
By the monotonicity formula (Proposition 3.3), we have

Lemma 8.3. For any r ∈ (0, R),∫
Br(0)

(
|∇uR|2 + χ{−1<uR<1}

)
≤ 16r.

As R → +∞, by the Lipschitz bound on uR in DR−1, we can assume that uR converges 
to a limit u uniformly on any compact set of R2.

By definition, uR = 0 on {xy = 0}. Because |∇uR| ≤ C in DR−1, the distance between 
{xy = 0} and ∂{−1 < uR < 1} in DR−1 is not less than 1/C. Then by the regularity 
theory for the free boundary in [1] (in combination with the compactness for minimizers 
of (8.1), see [1, Section 4.7]), ∂{−1 < uR < 1} are uniformly bounded and converge in 
C

1,1/2
loc -norm as R goes to infinity.
Let

dR := dist(0, ∂{−1 < uR < 1}).

By Lemma 8.3,

πd2
R ≤

∫
BdR

(0)

[
|∇uR|2 + χ{−1<uR<1}

]
≤ 16dR.

Hence dR ≤ 16/π. Therefore the free boundary ∂{−1 < uR < 1} cannot escape to 
infinity. In particular, {u = 1} is nonempty and u is not identically 0.

To describe the geometry of u, we need a monotonicity property for u.

Lemma 8.4. In {0 < u < 1} ∩ {x > 0, y > 0}, ux > 0 and uy > 0.

Proof. We only prove the claim for ux. Because ux is harmonic in {0 < u < 1} ∩
{x > 0, y > 0}, by the strong maximum principle, we need only to show that ux ≥ 0. 
Assume by the contrary, {ux < 0} ∩ {0 < u < 1} ∩ {x > 0, y > 0} is non-empty. By 
Proposition 3.8, there exists a point X ∈ {ux = 0} ∩ {0 < u < 1} ∩ {x > 0, y > 0} and 
a ball Bρ(X) ⊂ {0 < u < 1} ∩ {x > 0, y > 0} such that ∇ux �= 0 in Bρ(X), i.e. X is a 
regular point of the nodal set {ux = 0}.

Because u = 0 on {xy = 0} and u > 0 in the first quadrant, ux ≥ 0 on {xy = 0}. (Note 
that we have shown that {xy = 0} is contained in {−1 < u < 1}.) For any η ∈ C1

0 (R2), 
because ux satisfies the linearized equation (1.3), testing it with u−

x η2 and integrating 
by parts, we obtain
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∫
{x>0,y>0}

|∇(u−
x η)|2 −

∫
{x>0,y>0}∩∂{u=1}

H(u−
x η)2 =

∫
{x>0,y>0}

(u−
x )2|∇η|2. (8.2)

Define a function φ in the following way: φ ≡ u−
x outside Bρ(X), and it is the harmonic 

function in Bρ(X) with Dirichlet boundary value u−
x on ∂Bρ(X). By this choice of Bρ(X), 

we know that u−
x is not a harmonic function in Bρ(X) and hence does not minimize the 

Dirichlet integral. Therefore there exists a constant δ > 0 (depending only on ρ and the 
choice of Bρ(X) above) such that∫

Bρ(X)

|∇φ|2 ≤
∫

Bρ(X)

|∇u−
x |2 − δ. (8.3)

Combining this inequality with (8.2), we get∫
{x>0,y>0}

|∇(φη)|2 −
∫

{x>0,y>0}∩∂{u=1}

H(φη)2 ≤
∫

{x>0,y>0}

φ2|∇η|2 − δ. (8.4)

Since φ ∈ L∞(R2), we can choose η to be a suitable log cut off function (see (3.4)) so 
that the first term in the right hand side of (8.4) is as small as we wish, just as in the 
proof of Lemma 3.10. Note that once Bρ(X) is chosen and δ is fixed, the choice of η can 
be achieved by choosing R sufficiently large (depending on δ). Hence we get∫

{x>0,y>0}

|∇(φη)|2 −
∫

{x>0,y>0}∩∂{u=1}

H(φη)2 < 0.

This is a contradiction because u is stable in the first quadrant. �
By this monotonicity of u, we obtain

Corollary 8.5. There exists a decreasing function f defined on an interval (T, +∞), such 
that

∂{u > 1} ∩ {x > 0, y > 0} = {(x, y) : y = f(x), x > T}.

By this corollary, we see that the free boundary of u consists of {y = f(x)} and its 
reflections with respect to the x and y axis. Therefore u is a solution with four ends. 
After a rotation of angle π/4, we get the four end solution with angle π/4. The proof of 
Proposition 8.1 is thus complete.

9. Existence in the general case

In this section, we prove the existence part in Theorem 2.4. We will mainly rely on 
the quasi Gauss map introduced in Section 5.
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Given α ∈ (0, π/2), take vα to be the (unique) harmonic function in B1(0) with 
boundary value as in (5.2). Because vα is even in x and y, ∇vα(0) = 0. Hence vα,z is 
a holomorphic function in B1 satisfying vα,z(0) = 0. Then vα,z/z is also holomorphic 
in B1. Let Fα be its primitive function satisfying Fα(0) = 0. Note that Fα is evenly 
symmetric in x and y.

The main result of this section is

Proposition 9.1. For each α ∈ (0, π/2), Fα is injective on B1.

By the following lemma, the existence part of Theorem 2.4 will follow from Proposi-
tion 9.1.

Lemma 9.2. There exists an evenly symmetric, four end solution with angle α if and only 
if Fα is injective on B1.

Proof. Denote Ωα := Fα(B1), which is an evenly symmetric, open domain in the complex 
plane, because Fα is even and it is an open map. If Fα is injective, then it is a biholo-
morphism between B1 and Ωα. Moreover, by its definition, Fα extends continuously to 
∂B1 \ {ei( π

2 −α), ei( π
2

+α), ei( 3π
2 −α), ei( 3π

2 +α)}, so there are four ends of Ωα, represented by 
the image of Fα of these four points.

Let Gα := F −1
α and uα := vα ◦ Gα. By (5.3) and (5.4), uα satisfies (1.1) with Ωα =

{−1 < uα < 1}. Hence uα is an evenly symmetric, four end solution. Because vα is a 
solution of (5.2), the angle of uα is exactly α.

Conversely, by the discussion in Section 5, if uα is an evenly symmetric, four end 
solution with angle α, then the holomorphic map Fα defined therein is injective on 
B1. �
Proof of Proposition 9.1. Let I ⊂ (0, π/2) be the set of those α such that Fα is injective 
on B1. By Proposition 8.1, π/4 ∈ I, hence it is non-empty. By Proposition 7.2, I is 
closed. Therefore we need only to prove the openness of I, that is,

Claim. If for some α0 ∈ (0, π/2), Fα0 is injective on B1, then there exists an ε > 0 such 
that for any α ∈ (α0 − ε, α0 + ε), Fα is injective on B1.

First by the Poisson representation formula for harmonic functions in B1, there exists 
a small radius ρ1 > 0 and ε1 > 0 such that, for any α ∈ (α0 − ε1, α0 + ε1) and z ∈
B1 ∩ Bρ1(ei( π

2 −α0)),

F ′
α(z) = a

z − ei( π
2 −α) + O(1),

where a is a complex constant. Then there exists another complex constant b such that 
in the same domain,
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Fα(z) = a log
(

z − ei( π
2 −α)

)
+ b + O

(
|z − ei( π

2 −α)|
)

, (9.1)

where we take the principal branch for the log function.
Let ρ2 = ρ1/2. In the closure of

Dρ2 := B1 \
[
Bρ2(ei( π

2 −α0)) ∪ Bρ2(ei( π
2 +α0)) ∪ Bρ2(ei( 3π

2 −α0)) ∪ Bρ2(ei( 3π
2 +α0))

]
,

Fα depends continuously on α. Hence by our assumption on Fα0 , there exists an ε2 > 0
such that for any α ∈ (α0 − ε2, α0 + ε2), Fα is injective in this domain. In particular, 
z = 0 is the only zero of Fα in this domain and it is simple.

Finally, by letting ε := min{ε1, ε2}, we deduce that for any α ∈ (α0 − ε, α0 + ε), z = 0
is the only zero of Fα in B1 and it is simple. By the argument principle, this implies that 
for all ρ sufficiently small,

1
2πi

∫
∂Dρ

F ′
α(z)

Fα(z)dz = 1.

For any w ∈ Ωα, in view of (9.1), for any sufficiently small ρ, by the homotopy invariance,

1
2πi

∫
∂Dρ

F ′
α(z)

Fα(z) − w
dz = 1

2πi

∫
∂Dρ

F ′
α(z)

Fα(z)dz = 1.

Thus there exists only one z ∈ B1 satisfying Fα(z) = w. �
10. Morse index characterization

10.1. Morse index of four end solutions is 1

Let u be a solution with four ends, which is evenly symmetric with respect to the x
and y axis.

By the Stable De Giorgi theorem [21, Theorem 1.2], u cannot be stable, so the Morse 
index solution of u is at least 1. By the standard elliptic theory, for any R > 0 large 
enough, there exists a λ1,R < 0 and the associate positive first eigenfunction ϕR ∈
H1

0 (BR(0)). The first eigenfunction is unique up to the multiplication of constants.
Let λ2,R be the second eigenvalue. Take a second eigenfunction ψR ∈ H1

0 (BR(0)). It 
must change sign in Ω ∩ BR(0). If λ2,R < 0, by Proposition 6.1, we get a contradiction. 
Hence we must have λ2,R ≥ 0. Therefore for any R large, the index of the quadratic form 
Q in H1

0 (BR) is exactly 1. Hence the Morse index of u is exactly 1.
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10.2. Morse index of solutions with more than four ends is larger than 1

Suppose u has 2k ends with k ≥ 3. Take an R large so that Ω \ BR(0) = ∪2k
i=1Di, 

1 ≤ i ≤ 2k. Denote the asymptotic directions of these ends by e1, · · · , e2k, which are in 
anticlockwise order but not necessarily distinct.

Take a direction e so that it does not equal ei, ∀i = 1, · · · , 2k. The directional deriva-
tive ue satisfies the linearized equation (1.3). By Proposition 3.7 and Lemma 3.6, perhaps 
after taking a larger R, for each i = 1, · · · , 2k, ue has a fixed sign in Di. Moreover, the 
sign of ue in every two adjacent ends is different, except those two pairs lying on different 
sides of the line {te, t ∈ R}.

Recall that the nodal set of ue consists of finitely many singular points and finitely 
many smooth curves, with the end points of these curves lying in this singular set or ∂Ω. 
Because ue has a fixed sign in each Di, the nodal set of ue is contained in a compact 
set.

Using the nodal domains of ue we build a planar graph, with each vertex point repre-
senting one end of ue and two vertex points connected by an edge if they belong to the 
same nodal domain.

Lemma 10.1. The number of nodal domains of ue is not less than k.

Proof. By the previous analysis, we can assume for some R > 0 large, {ue �= 0} \ BR(0)
consists of 2k connected components Di, i = 1, 2, · · · 2k. Among them, there are two pairs 
of adjacent sets which indeed belong to the same nodal domain of ue. We may denote 
by C±

i , 1 ≤ i ≤ k − 1 these sets by combining each of the pairs into one set so that 
ue > 0 in C+

i and ue < 0 in C−
i . In other words, each C±

i contains exactly one connected 
component of Ω \ BR(0), except two of which are composed of two adjacent connected 
components of Ω \ BR(0) respectively.

Without loss of generality, in the following we assume C+
1 , C−

1 , · · · are arranged in 
anti-clockwise direction. C±

i form a graph with each of C+
1 , C−

1 , · · · being a vertex point 
and two vertex points are connected by an edge if they belong to the same nodal domain. 
Denote this graph by G.

We claim that the number of connected components in G is at least k. This can be 
seen by performing the following surgery on a sequence of graphs, starting from an initial 
special graph with k connected components and all C−

i being connected and all C+
i being 

disconnected, and terminating when the graph has the same connectivity of C+
i as the 

real planar graph G constructed above.

Step 1. Consider the special case that each C+
i belongs to a distinct nodal domain of ue, 

and all of C−
i belong to a single nodal domain of ue. In other words, we assume 

C+
i are disconnected vertex points of an initial graph G0, while all C−

i are all 
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Fig. 3. The Surgery Process.

connected. Obviously, in this special case, the number of connected components 
of G0 is exactly k.

Step 2. If there exist two C+
i belonging to the same nodal domain of ue, then we start 

with the smallest pair (i, j) with i < j (in the standard order of integer pairs) by 
connecting C+

i and C+
j in the graph G0 with an edge. To illustrate the connectiv-

ity, we may use a Jordan curve to connect the ends C+
i and C+

j to indicate that 
they belong to the same nodal domain, as in Fig. 3. By the previous analysis, 
this Jordan curve separates the plane into at least two connected components, 
and there are connected component of ∪k−1

i=1 C−
i on both sides of this curve. 

Correspondingly, this process splits the connected subgraph with vertex points 
∪k−1

i=1 C−
i into two disconnected sub graphs. We keep all edges of these two sub 

graphs of G0, resulting a new graph G1 with the least number of possible con-
nected components. It is clear that the total number of connected components 
in G1 is at least k.

Step 3. Repeat Step 2 for the graph Gm to obtain the graph Gm+1, until we reach the 
graph GN so that GN has the same connectivity of subgraph ∪k−1

i=1 C+
i as the 

graph G.
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In the above procedure, each time we eliminate one connected component of Gm by 
connecting a pair of C+ according to their being in the nodal domain of ue, we produce 
at least one more connected component in Gm for C−. Therefore the number of connected 
components in the resulting graph Gm+1 is non-decreasing. Since the initial number of 
connected component of G0 is k, the number of connected components in GN is at least 
k. Note that the graph G has at most as many edges as GN , and hence must have at 
least k connected components. This implies that there are at least k nodal domains of 
ue. �

Let �k/2
 be the first integer number not smaller than k/2. Note that G can be 
naturally divided into two sub graphs G±, with ue > 0 in each nodal domain represented 
by a connected component of G+ while ue < 0 in each nodal domain represented by a 
connected component of G−. By the strong maximum principle, each nodal domain in 
G+ has a part of regular boundary belonging to G−, and vice versa. Thus we arrive at 
the following conclusion:

Lemma 10.2. There exist at least �k/2
 nodal domains of ue, Cα, 1 ≤ α ≤ �k/2
, so that 
each Cα has a part of regular boundary not contained in ∪1≤β �=α≤
k/2�Cβ.

Now for each α = 1, · · · , �k/2
, take a regular curve Γα ⊂ ∂Dα satisfying the previous 
lemma. Let

ϕα =
{

|ue|, in Dα,

0, outside Dα,

which is a continuous subsolution of the linearized problem (1.3). By definition, for 
1 ≤ α �= β ≤ �k/2
, ϕα and ϕβ have almost disjoint supports (i.e. at most the boundaries 
∂{ϕα > 0} and ∂{ϕβ > 0} could intersect).

Take a point Xα ∈ Γα and an rα > 0 so that Brα
(Xα) ⊂ Ω does not intersect 

∪1≤β �=α≤
k/2�Dβ . Let ϕ̄α be the solution of

{
Δϕ̄α = 0, in Brα

(Xα),

ϕ̄α = ϕα, on ∂Brα
(Xα).

Because ϕα = 0 in the open set Brα
(Xα) \ Dα, there exists a constant δα > 0 such that∫

Brα (Xα)

|∇ϕ̄α|2 ≤
∫

Brα (Xα)

|∇ϕα|2 − δα. (10.1)

Extend ϕ̄α outside Brα
(Xα) to be ϕα. Defined in this way, for 1 ≤ α �= β ≤ �k/2
, ϕ̄α

and ϕ̄β still have disjoint supports.
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For any R large, take ηR to be a standard log cut-off function. Multiplying the equation 
for ue by ϕαη2

R and integrating by parts leads to

∫
Ω

|∇(ϕαηR)|2 −
∫

∂Ω

Hϕ2
αη2

R ≤ C

log R
, α = 1, · · · , �k/2
.

Combining this with (10.1), we see, once R is large enough, for each α = 1, · · · , �k/2
,

∫
Ω

|∇(ϕ̄αηR)|2 −
∫

∂Ω

Hϕ̄2
αη2

R ≤ C

log R
− δα < 0.

Because ϕ̄αηR are orthogonal in L2(R2), this implies that the Morse index of u is at 
least �k/2
.

Remark 10.3. In a recent paper of Mantoulidis [18], he established a similar lower bound 
for the Morse index of finite end solutions to the Allen-Cahn equation.
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Appendix A. Proof of several technical results

We will give the proofs of Propositions 3.3-3.5 as well as the Hamiltonian identity 
(4.5) in this appendix.

A.1. Proof of Proposition 3.3

For any solution u of (1.1) and any X0 ∈ R2, we have the Pohazaev identity

∫
BR(X0)

4F (u) =
∫

∂BR(X0)

[|∇u|2 + 2F (u)](X − X0) · ν − 2
∫

∂BR(X0)

(∇u · ν)(∇u · (X − X0)),

where F (u) = 1
2χ{−1<u<1} and ν(X) = X−X0

R for X ∈ ∂BR(X0), and so

∫
BR(X0)

4F (u) = R

∫
∂BR(X0)

[|∇u|2 + 2F (u)] − 2R

∫
∂BR(X0)

(∇u · ν)2. (A.1)

Recall that E(R; X0) = 1 ∫
0

[
|∇u|2 + χ{−1<u<1}

]
. Simple computation shows that
R BR(X )
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dE(R, X0)
dR

= − 1
R2

∫
BR(X0)

[|∇u|2 + 2F (u)] + 1
R

∫
∂BR(X0)

[|∇u|2 + 2F (u)].

From this equality and (A.1), we obtain

dE

dR
= 2

R

∫
∂BR(X0)

(∇u · ν)2 + 1
R2

∫
BR(X0)

[2F (u) − |∇u|2].

From the Modica inequality (see Proposition 3.1), we deduce that 2F (u) − |∇u|2 =
1 −|∇u|2 ≥ 0 in BR(X0) ∩Ω. In the other domain BR(X0)\Ω, one has 2F (u) −|∇u|2 = 0, 
since χ{−1<u<1} = |∇u| ≡ 0 in this domain. Therefore

dE

dR
≥ 2

R

∫
∂BR(X0)

(∇u · ν)2 > 0,

which gives the desired result of this proposition. �
A.2. Proof of Proposition 3.4

Suppose u is a solution with 2k ends. We first show that for any X ∈ R2 there exists 
a positive constant C such that

E(R, X) ≤ C for any R > 0. (A.2)

From Proposition 3.7, for some end of Ω, we may suppose that there exists two positive 
constants c and μ so that outside a compact set this end has the form

{
(x, y) : f−(x) < y < f+(x)

}
,

where f+, f− are convex and concave functions respectively, satisfying

|f±(x) ∓ 1| ≤ ce−μx, as x → +∞.

For some R0 > 0 we define Ω1 := {(x, y) ∈ Ω : x > R0}. Let

ρ(x) :=
f+(x)∫

f−(x)

[1 + (u2
y − u2

x)]dy.

It is easy to see that
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|ρ′(x)|
= |2(uyux)|y=f+(x)

y=f−(x) + [1 + (u2
y − u2

x)]|y=f+(x)(f+)′(x) − [1 + (u2
y − u2

x)]|y=f−(x)(f−)′(x)|
≤ ce−μx, ∀x > R0.

Hence we have

|ρ(R1) − ρ(R2)| ≤ ce−μR1 , ∀R2 ≥ R1 > R0.

In particular, we have

|ρ(x)| ≤ c, ∀x > R0.

This and the definition of ρ give∫
BR(X)∩Ω1

[1 + (u2
y − u2

x)] ≤ CR.

From the Modica inequality, we have u2
y ≤ 1 + (u2

y − u2
x), and so∫

BR(X)∩Ω1

u2
y ≤ CR.

Now we choose another Cartesian coordinates (x′, y′) so that the x′-axis is a small 
rotation of x-axis. Then we can obtain∫

BR(X)∩Ω1

u2
y′dx′dy′ =

∫
BR(X)∩Ω1

u2
ydxdy ≤ CR.

Therefore we obtain∫
BR(X)∩Ω1

(1 + |∇u|2)dxdy ≤
∫

BR(X)∩Ω1

[1 + (u2
y − u2

x)]dxdy + C

∫
BR(X)∩Ω1

(u2
y + u2

y′)dxdy

≤ CR.

(A.3)

Similarly we can define 2k−1 domains Ωi ⊂ Ω(i = 2, 3, . . . , 2k) contain the rest 2k−1
ends outside a compact set respectively. Denote Ω0 as a bounded domain in Ω such that 
Ω = ∪2k

i=0Ωi. Repeat the above argument 2k − 1 times, we obtain∫
i

(1 + |∇u|2) ≤ CR, i = 2, . . . , 2k. (A.4)

BR(X)∩Ω
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Note that ∫
BR(X)∩Ω0

(1 + |∇u|2) ≤ C̃, (A.5)

where C̃ is independent of R. Plainly we have∫
BR(X)\Ω

(2F (u) + |∇u|2) = 0, (A.6)

where F (u) = 1
2χ{−1<u<1} is given in the proof of Proposition 3.3. Hence for large R, 

from (A.3)-(A.6), we obtain (A.2).
From (A.2) and Proposition 3.3, we know that the limit limR→+∞ E(R, X) exists.
Proposition 3.7 tells us that the nodal sets of u are asymptotically straight lines. 

Applying the Hutchinson-Tonegawa theory, we obtain

lim
R→+∞

E(R, X) = 2ke.

Here e := 1
2
∫ ∞

−∞[|g′(x)|2 + χ{−1<g(x)<1}]dx, where g is the one dimensional solution 
given in Section 1. Namely

g(x) =

⎧⎪⎪⎨⎪⎪⎩
−1, if x < −1,

x, if − 1 < x < 1,

1, if x > 1.

Simple computation shows that e = 2. So limR→+∞ E(R, X) = 4k. �
A.3. Proof of Proposition 3.5

Denote the asymptotic direction of the ends of u by ei = (cos θi, sin θi), 1 ≤ i ≤ 2k

with 0 < θi < θi+1 < 2π, 1 ≤ i ≤ 2k − 1. Applying Hamiltonian identity as in the proof 
of Theorem 1.3 in [10], we obtain

2k∑
i=1

sin(θi + θ) = 0

for almost all θ. The desired result of this proposition follows. �
A.4. Proof of the Hamiltonian identity (4.5)

We divide the proof of this identity into two steps.
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Lemma A.1.

d

dx
H(x) = −2

+∞∫
−∞

uxuydy. (A.7)

Proof. It is clear that the right hand side of (A.7) is continuous in x. (We need only to 
verify this at those points where the number of connected components of {−1 < u <
1} ∩ ({x} × R) changes.)

We will perform the calculation by assuming u is a classical solution of (1.1) in {|x| <
1}, with the free boundary given by {y = f±(x)}. The general case follows from this 
calculation by first showing the identity for one sided derivatives and then using the 
continuity of the right hand side of (A.7).

Under this simplified setting, we find that

d

dx
H(x) = 2

f+(x)∫
f−(x)

y (uyuyx − uxuxx) dy

+ f+(x)
[
1 + uy(x, f+(x))2 − ux(x, f+(x))2] f ′

+(x)

− f−(x)
[
1 + uy(x, f−(x))2 − ux(x, f−(x))2] f ′

−(x)

= 2
f+(x)∫

f−(x)

y (uyuyx + uxuyy) dy

+ 2uy(x, f+(x))2f+(x)f ′
+(x) − 2uy(x, f−(x))2f−(x)f ′

−(x)

= −2
f+(x)∫

f−(x)

uxuydy

+ 2uy(x, f+(x))ux(x, f+(x)f+(x) − 2uy(x, f+(x))ux(x, f+(x))f−(x)

+ 2uy(x, f+(x))2f+(x)f ′
+(x) − 2uy(x, f−(x))2f−(x)f ′

−(x)

= −2
f+(x)∫

f−(x)

uxuydy.

In the above, we have used the following three facts: (i) Δu = 0 in {−1 < u < 1}; (ii) the 
free boundary condition; (iii) the identity ux + uyf ′

+ = 0 on {y = f+(x)} and a similar 
one on {y = f−(x)}. �



38 Z. Du et al. / Advances in Mathematics 404 (2022) 108395
Lemma A.2.

d

dx

+∞∫
−∞

uxuydy = 0.

Proof. As in the proof of the previous lemma, we still assume u is a classical solution of 
(1.1) in {|x| < 1}, with the free boundary given by {y = f±(x)}. Under this simplified 
setting, we find that

d

dx

f+(x)∫
f−(x)

uxuydx =
f+(x)∫

f−(x)

(uxuyx + uyuxx) dy

+ uy(x, f+(x))ux(x, f+(x))f ′
+(x) − uy(x, f−(x))ux(x, f−(x))f ′

−(x)

=
f+(x)∫

f−(x)

(uxuyx − uyuyy) dy

+ uy(x, f+(x))ux(x, f+(x))f ′
+(x) − uy(x, f−(x))ux(x, f−(x))f ′

−(x)

= ux(x, f+(x)2 − uy(x, f+(x))2

2 − ux(x, f−(x))2 − uy(x, f−(x))2

2
+ uy(x, f+(x))ux(x, f+(x))f ′

+(x) − uy(x, f−(x))ux(x, f−(x))f ′
−(x)

= −1
2 |∇u(x, f+(x))|2 + 1

2 |∇u(x, f−(x))|2

= 0.

In the above, we have used exactly the same three facts as in the proof of the previous 
lemma. �
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