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1. Introduction

In this paper we study four end solutions to the following free boundary problem on
the plane R2,

Au=0, inQ:={-1<u<1l},
u==+1, outside €, (1.1)
[Vu| =1, on 09Q.

Throughout this paper solutions to this free boundary problem are understood in the
classical sense, that is,  is a smooth domain on R2, u € C?(Q), where both the equation
and the boundary conditions in (1.1) hold pointwisely. We will also assume € to be
connected, because the solution restricted to each connected component can be viewed
as a solution of (1.1).

Equation (1.1) arises as the Euler-Lagrange equation of the functional

/ (IVul® + X{-1<u<1}) - (1.2)

The second variation of this energy functional is

0o, 0) = / Vl? - / H,
oN

Q

where H is the mean curvature of 9 with respect to the inward unit normal vector.
(We have H > 0 by such a choice, see Proposition 3.2.) The linearized problem of (1.1)

1S

1.3
v, = Hp, on 09. (13)

{A(p =0, in €,
Here v denotes the unit outward normal vector of 9€2. The eigenvalue problem associated
to Q is

1.4
w, = Hp, on 0. 14

{Ago)\cp, in Q,

The Morse index of a solution is defined to be the number of negative eigenvalues of this

problem (counting multiplicity), or equivalently, the maximal dimension of the negative
space for the quadratic form Q. If the Morse index is 0, the solution is stable.

A special solution to problem (1.1) is Q@ = {(x,y) € R? : || < 1,y € R} and

u(x,y) = x in Q. This is a solution depending only on one direction. We call this solution
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a one dimensional solution or a two end solution. The one dimensional solution is unique
up to rotation and translation.

In this paper we are interested in solutions of (1.1) with four ends, which depend on
both variables.

Definition 1.1 (Solutions with finite ends). A solution to (1.1) is said to have finite ends,
if there exists an R > 0 such that 2\ Br(0) has only finitely many connected components
and each connected component has the form

(X eR?: f7(X ea)+ta <X ef < fHX ) +ta},

where e, is a unit vector and ¢, is a constant, f* are convex (concave) functions defined
on [R,400) satistying

lim f*(t) = +1

t——+oo

respectively.

Each connected component of 2\ Br(0) is called an end. The unit vector e, is called
the asymptotic direction of this end. In each end, the solution is in fact locally close to
the one dimensional solution (see Proposition 3.7 below).

One may wonder if the definition of solutions with finite ends could be weakened by
dropping the asymptotic behavior condition in Definition 1.1 and being replaced instead
by assuming Q\ By, for large R have a finite number of unbounded connected components
or R™\  have a finite number of unbounded connected components. We believe it is
possible, however, it may be very technical to prove so. To make the main ideas of the
paper more transparent, we focus on the solutions with the more restrictive condition,
which are satisfied if we assume the solution has a finite Morse index.

For Allen-Cahn equation

Au = u® —u,

solutions with finitely many ends, four end solutions in particular, have been studied
extensively in [5,6,10,11,13-15]. By now the following are known.

o Gui [10]: After a translation and rotation, u is evenly symmetric with respect to the
z and y axis. Changing the sign of w if it is necessary, in the first quadrant it holds
that

ou ou
%<07 6—y>0.
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o Kowalczyk-Liu-Pacard [13,14]: Let M C L*°(R?) be the set of evenly symmetric four
end solutions of the Allen-Cahn equation. Then M is a smooth manifold diffeomor-
phic to R.

o Kowalczyk-Liu-Pacard [13,14]: Let o € (0, 7/2) be the angle between the end in the
first quadrant and the x axis. Then o : M — (0,7/2) is a smooth proper map.

e Gui-Liu-Wei [11]: Via a sophisticated variational approach, it is shown that for each
a € (0,7/2), there exists a four end solution of the Allen-Cahn equation with angle
« whose Morse index is 1.

e Wang-Wei [22]: Every Morse index 1 solution of the Allen-Cahn equation has four
ends.

However, there is still an important problem remaining open: the uniqueness of four end
solutions with given angle a.

In this paper all of these issues will be considered for four end solutions to (1.1).
A complete classification as well as a Morse index characterization will be established.
We note that for the elliptic sine-Gordon equation

—Au =sinu, |u] <m,

Liu and Wei [17] obtained a complete classification for all finite end solutions in RZ.
However, our treatment will be very different.

The paper is organized as follows. In Section 2 main results of this paper are stated. We
present some preliminary results in Section 3. In Section 4, we prove the even symmetry
of four end solutions. In Section 5 an important notion, quasi Gauss map, is introduced,
where it is used to prove the uniqueness of solutions. A nondegeneracy property is es-
tablished in Section 6. The structure of moduli space is studied in Section 7. Then we
prove the existence of four end solutions in Section 9, after establishing the existence of
a special four end solution, the saddle solution, in Section 8. Finally in Section 10 we
find a Morse index characterization of four end solutions.

2. Main results
The main results of this paper are the following.

Theorem 2.1 (Even symmetry). A solution of (1.1) with four ends, after a translation
and a rotation, is evenly symmetric with respect to the x and y axis.

Theorem 2.2 (Geometric properties). Suppose u is a solution of (1.1) with four ends.
Then

(i) There are exactly two connected components of {u =1} and {u = —1} respectively.
(ii) Q is simply connected.
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(iii) Fach connected component of {u = +1} is strictly conver and unbounded. The
opening angle of every connected component of {u = £1}, i.e., the angle formed by
any two neighboring asymptotic directions, is strictly positive.

We note that —u is also a solution if w is a solution, we may focus only on one solution
and assume u has one whole component of {u = 1} contained in the upper half plane.
By the even symmetry of u, we can define

Definition 2.3. Suppose u is an evenly symmetric, four end solution. Take the end with
its asymptotic direction e in the first quadrant. The angle between e and the positive x
axis is denoted by a.

By the definition of a and Theorem 2.2 (iii), the value of « lies in (0,7/2). In this
setting, we may say —u has an angle « lies in (7/2, ).

Theorem 2.4 (Existence and uniqueness). For each « € (0,7/2), there exists a unique
evenly symmetric, four end solution of (1.1) with angle .

Since —ur/2_o(y, ) is also a four end solution with angle «, the uniqueness implies
that

Corollary 2.5. For any o € (0,7/2), ua(7,y) = —Urj2—a(y,2). In particular, u,,4 is
oddly symmetric with respect to {y = x} and {y = —x}, and may be called a saddle
solution.

For each a € (0,7/2), u, is nondegenerate in the following sense.

Theorem 2.6 (Nondegeneracy). Suppose u is a four end solution to (1.1) and ¢ € L>=(2)N
C?(Q) is a solution to the linearized equation (1.3), then there exist two constants a and
b such that

® = aug +buy in Q.

Remark 2.7. There do exist two other linearly independent kernels which grow linearly
along the asymptotic directions at infinity. One is the rotational derivative ¢ = yu, —zu,,
the other one is obtained by differentiating u, in c.

Definition 2.8 (Moduli space). Let M C Lip,(R?) be the set
{uq : evenly symmetric, four end solution with angle a}.
In the above Lip,(R?) denotes the space of bounded, Lipschitz continuous functions

on RZ.

By Theorem 2.4 we obtain
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Theorem 2.9 (Structure of moduli space). M is an embedded curve diffeomorphic to

(0,7/2).
Let us define the following two copies of one dimensional solutions,

1, otherwise
and

—r4+1, f0<z<2
uz(v,y) =z +1, if —2<z<0. (2.2)

-1, otherwise .
For the behavior of u, as o — 0 or 7/2, we have

Theorem 2.10 (Boundary behavior in moduli space). u, converges to ug uniformly on any
compact set of R? as o — 0; similarly, u, converges to uz uniformly on any compact
set of R? as a — /2.

Finally, we establish the following Morse index characterization of four end solutions.

Theorem 2.11 (Morse index characterization). A solution of (1.1) has four ends if and
only if its Morse index is 1.

For simplicity of the presentation of the paper, we shall focus on the four end solutions.
The existence and properties of 2k-end solutions will be discussed in future work. We
note that the finiteness of number of ends of a solution should be equivalent to the
finiteness of Morse index, and it is proven in [21] that finite Morse index of a solution
implies finite number of ends of the solution while the two-end solution and four-end
solution have Morse index 0 and 1 respectively as shown in this paper. It is also shown
in Section 10 of this paper that a 2k-end solution must have Morse index at least [k/2].
The equivalence of general 2k-end solution and finite Morse index shall be addressed in
future work. It is interesting to point out that the corresponding equivalent results for
Allen-Cahn equation have been obtained in [13] and [22].

3. Preliminary

In this section we collect several basic results on solutions of (1.1) in R? as well as
some technical results needed in this paper. In this section, it is only assumed that u is
a solution of (1.1) with finite ends.

The following two propositions are Proposition 2.1 and Proposition 2.4 in [21].
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Proposition 3.1 (Modica inequality). In ), |Vu|? < 1, where the inequality is strict unless
u is one dimensional.

Proposition 3.2 (Convexity). Every connected component of Q¢ is convex. Moreover, it
is strictly convex unless u is one dimensional.

The following monotonicity formula is a consequence of the Modica inequality and
the Pohazaev identity, which is similar to the case of Allen-Cahn equation, see also [23,

Proposition 2.4] for a proof in a similar setting in the presence of free boundaries.

Proposition 3.3 (Monotonicity formula). For any X € R?,

=

1
E(R; X) := / [IVul® + x{-1<u<1}]
Br(X)

is non-decreasing in R.

The following two results can be obtained as in [10], or by a blowing down analysis,
using a Hutchinson-Tonegawa type theory as presented in [23, Section 3].

Proposition 3.4 (Energy quantization). Suppose u has 2k ends, k > 1. For any X € R?,

lim E(R; X) = 4k.
R—+o00

Proposition 3.5 (Balancing condition). Suppose u has 2k ends, k > 1, and e; is the
asymptotic direction of these ends, 1 < i < 2k. Then

2k
E €; — 0.
i=1

The proofs of Propositions 3.3-3.5 will be given in the Appendix A.
For four end solutions (k = 2), by this balancing condition and noting that each e; is
a unit vector, after a rotation, the asymptotic directions have the form

e1 = (cosq,sina), eg = (cosa, —sina), (3.1)

e3 = (—cosa,sina), eq = (—cosa,—sina),

where a € [0,7/2] is the angle defined in Definition 2.3. This configuration is evenly
symmetric with respect to the z and y axis.

From now on we assume the following lemma can be proved by using De Giorgi type
result, i.e. the characterization of one dimensional solutions (see [21, Lemma 3.4]).
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Lemma 3.6. For any X; € Q, |X;| = 400, there exists a subsequence of
ui (X)) == u(X; + X)
converging to a one dimensional solution in C' sense on any compact set of R2.
The following result is also taken from [21], see Lemma 4.5 and Section 5 therein.
Proposition 3.7 (Refined asymptotics). There exist two positive constants C and p so
that the following holds. Suppose u is a solution with finite ends. Then for every end

of Q, there exists a ray L (which we assume to be the positive x axis) so that outside a
compact set this end has the form

{(y): [ (@) <y < fH(2)},
where f* are convex (concave) functions, satisfying
IfE @) F1 < Ce ™ asx — +oo.

Moreover, as x — 400,

1, y=>1
u(z,y) > Sy, |yl <1
_la Y S -1

uniformly in R.
Next, we recall two results on nodal sets of solutions to (1.4).

Proposition 3.8. Let ¢ be a solution of (1.4). Then the nodal set {x = 0} NQ consists of
a singular set of isolated points and a family of smooth embedded curves with their end
points lying in the singular set, 02 or at infinity.

Proof. Results on the structure of nodal sets in the interior are classical, see [3]. For
nodal curves near boundary, see [8, Appendix B]. O

For the nodal set of directional derivatives u, := e - Vu, because it satisfies the
linearized equation (1.3), we can say something more.

Lemma 3.9. For any X € {u. = 0} N0, there is only one smooth curve belonging
to the nodal set of {u. = 0} emanating from X. Moreover, this curve intersects O}
orthogonally.
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Proof. Without loss of generality, assume X = 0, e = (1,0), and there holds locally
around X = 0,

Q={(z,y):y> f(z)},

where f is a smooth concave function satisfying f(0) = f/(0) = 0.
By Proposition 3.2, we have from the strict convexity of Q¢ that

U2 (0) = —H(0) < 0.

After extending u to 2¢ in a smooth way, we can use the implicit function theorem
to deduce that locally {u, = 0} is a single smooth curve. A differentiation of the free
boundary condition in (1.1) also shows that w4, (0) = 0, so this nodal curve is orthogonal
to0lat 0. O

It is also useful to note that, by the free boundary condition in (1.1), u.(X) = 0 if
and only if e is the tangent vector of 02 at X.

Finally we present a technical lemma on Liouville property for elliptic equations in
R2.

Lemma 3.10. Suppose D is a domain (bounded or unbounded) with piecewise smooth
boundary, o € C(D) is positive. Assume ¢ € C*(D) satisfies weakly (in distributional
sense)

(3.2)

p-div (02V<p) >0, inD
=0, on OD.

If op € L™(D), then p =0 in D.

Proof. If D is bounded, this follows directly from the maximum principle.
If D is unbounded, we use the method of [7] (see also [2]). For any n € C§°(R?),
testing (3.2) with 72 we get

[ 196l < aloglie [ 190 33)
D D

For each R > 1, take n to be the standard log cut-off function

1, IX| <R,
n(X):=q2- 8 R<|x| <R (3.4)
0, |X| > R2.

Substituting this function into (3.3) and then letting R — +00, we obtain
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/02|Vg0|2 =0.
D

Since p =00n 9D, p =0inD. O
4. Even symmetry: the method of moving planes

From now on u denotes a solution of (1.1) with four ends. Assume its four asymptotic
directions are given as in (3.1). In this section, we use the method of moving planes to
prove the even symmetry of u in z and y. We mainly follow the treatment in [10], with
one distinct point where Serrin’s method in [19] is applied to treat the case when two
free boundaries touch tangentially on the boundary.

There are two unbounded connected components of {u =1} (or {u = —1}), denoted
by Dii (i = 1,2) respectively. They are given by

Df ={y>f+(x)}, Dy ={y</f-(a)},
Dy ={z>g:(y)}, Dy ={z<g-()}
Here f and g4 are convex functions, f_ and g_ are concave functions, satisfying f > f_
and g4 > g¢g_.
First we show that

Lemma 4.1. 0 < a < 7/2.

Proof. Assume for example, & = 0. Because f is convex, this implies that

Using convexity once again we deduce that f; = const. Then by Proposition 3.2, u is
one dimensional, this is a contradiction. O

Denote k£ = tana > 0. By Proposition 3.7, there exist four constants A;, 1 <i < 4
such that, the end of {—1 < u < 1} in the i-th quadrant has the asymptotical expansion

1 1
{:l:k:L‘+Ai+O(1)<y<:‘:k$+z4i++0(l)}, (4.1)
COSs & COSs &

where we take the positive sign in the first and third quadrant and the negative sign in
the second and fourth quadrant.
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By (4.1), we have

1
— ket A+ —— +0(1), asz—
folz) = ko + 1+cosa+0( ), asx — +oo,

fr(z) = —kax+ As + L +o(1), asx— —o0,
cos & (4.2)

1
fo(z)=—kx+ Ay — —— +o0(1), asz— +oo,
cos &

f-(z) =kx+ A3 — 1 +o(1), aszxz— —oc.
Cos «
Similarly, if we write the two inverse functions of g4 (y) for z > x5 as y = g4 1(x) and
g+2(x) with y = g4 1(x) > g4 2(z),x > x2 and gy 1(x2) = g+ 2(x2), and write the two
inverse functions of ¢g_(y) for z < x1 as y = ¢g_ 1(z) and g_o(x) with y = g_ 1(x) >
g—o(z),x < x1 and g_ 1(z1) = g— 2(x1), then we have

1
—kr+A — —— +o(1 -
g+a1(2) =ke + Ay = ——+o(l), asz— +oo,

1
=—k A —_— 1 —
g+,2(2) A Aat o +0o(1), asx— +oo,

i (4.3)
g-1(x) =—kx+ A2 — ——+o(1), asz— —o0,
cos o
g—o(x) =kr+ As + —— +0(1), asz — —oo.
¢
Lemma 4.2. The four constants Ay, ..., Ay satisfy
AL+ Ay = Ay + As. (4.4)

Proof. Define

+oo
H(r) = / y [xa(@, ) + uy(@,9)° — us(z,9)?] dy.

— 00

In fact, this integration is only on a finite interval because the integrands equal 0 in

y>fr@tufy < f-(2)}

Similar to [9], we have the following Hamiltonian identities after some computation

d2

Therefore H is a linear function. By the expansion in (4.2) (in particular, f, + f_ are
bounded as x — +o00) and the asymptotic behavior of u along each end from Proposi-
tion 3.7, we see that H(z) is bounded as * — +oo. Hence H(z) is a constant function,
in particular,
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lim H(z)= lim H(x).

r—+o0 T——00

Using the fact that u looks like one dimensional solutions at infinity (Proposition 3.7)
once again, we get a positive constant C'(«) depending only on « such that

lim H(z) = C(a) (A1 +Ay), lim H(z) = C(a)(As + As).

r—+00 r——00
The identity in (4.4) follows. O

_AI—A Y+ A1+A4)
2 b

With this relation in hand, after the translation (z,y) — (z 2

we
may assume for some constant A,

A=Ay =A, Az3=Ay=—A.
Then the four asymptotic rays in (4.2) and (4.3) are evenly symmetric with respect to
the z and y axis.
With these preliminaries now we come to

Proof of Theorem 2.1. We only prove the even symmetry in z. For each A € R, define

ux(z,y) == u(2A —x,y), Dy:={z> A}

Step 1. If ) is sufficiently large, then uy > u in D).
Indeed, let

Oy ={u>-1}NDy\{uy=1}
It is obvious that uy > u in
D\ ={u=-1}U{uy=1})ND,.
By the expansions in (4.2) and (4.3), if A is sufficiently large, then Q) is a bounded
set and uy > u on 0N2y. Hence by the maximum principle, uy > u in .
Therefore, the claim follows.
Step 2. Now the following constant is well defined:
A:=inf{\: uy >u in Dy, N >}
We claim that A = 0.

Assume by the contrary that A > 0. By the expansions in (4.2) and (4.3), when 2 > 1
and y > 0,
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{up =0} ={(z,y) :y=kax + A —2kA + o(1)}
lies below
{u=0}={(z,y) :y=kax+ A+ o(1)}.

Combining this fact with the strong maximum principle and Hopf lemma, we deduce
that the free boundaries 9{—1 < up < 1} N Dy and 9{—1 < u < 1} N Dy do not touch.
By definition, there exists a sequence A; < A and A\; — A such that

inf (uy, —u) <O0. (4.6)
Dki

Because A > 0, by the expansions in (4.2) and (4.3), when > 1 and y > 0,
{ur, =0} ={(z,y) ry=ka + A—2kX\; +0o(1)}
still lies below (with a fixed distance)
{u=0}={(z,y) :y=kax+ A+ o(1)}.

A similar phenomenon can be seen in {(z,y) : * > 1,y < 0}. Then by Proposition 3.7,
we find a constant R (depending only on A) such that

uyr, >u in {z> R}.

This inequality also holds trivially in Dy, N {|z| < R, |y| > R}, perhaps after enlarging
R, because we always have uy, = u =1 in Dy, N {|z| < R,|y| > R}.

Therefore the infimum in (4.6) is a minimum. Because uy, = u on {z = A;}, it is
attained at a point X; € D,,. By the above discussion, X; lies in a fixed compact set.
Assume they converge to a limit point X . Then by continuity and recalling that uy > u
in Dy, we get

’LL(XA) = uA(XA).
There are three cases depending on the position of X,.
Case 1. X € {x > A}.

In this case, either u(Xx) = ua(Xa) = 1 or u(Xa) = ua(Xa) = —1. Without loss
of generality, assume it is the first case. Then X, is an interior point of {uy = 1}. By
continuity, for all ¢ large, X; is an interior point of {uy, = 1}. In particular,
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This is a contradiction with (4.6).
Case 2. Xy e {x=A}Nn{-1<u<1}.

In this case, X, is an interior point of {—-1 < u < 1} and {-1 < up < 1}. By
continuity, for all ¢ large, X; lies in the interior of {—1 < u < 1} NDy, and {—1 < uy, <
1} N D,,. Hence

Vu(X;) — Vuy, (X;) =0.
Passing to the limit, we deduce that
Or (up —u) (Xp) =0.
By the Hopf lemma, u = up in Dp. This is a contradiction.
Case 3. Xp e {z=A}no{-1<u<1}.

Without loss of generality, assume X5 € {z = A} N d{u = 1}. We claim that the
vertical line {# = A} is normal to d{u = 1} at X,. (Recall that {u = 1} is a smooth
curve.) If this claim is true, we can follow the same argument of Serrin in [19] (in
particular, the second order Hopf lemma [19, Lemma 1] therein) to get a contradiction.

To prove the claim, denote X, := (A,ya) and X; := (z;,y;). Assume in a small
neighborhood of Xu, {u = 1} = {y > f(x)}, where f is a smooth, convex function.
First it is impossible that f/(A) < 0, because otherwise the reflection of a part of d{u =
1} Nn{z < A} would lie above {0{u =1} N {z > A}, which violates the assumption that
up > w. If f/(A) > 0, because u(2X\; — x4, yi) < u(x;,y;), we must have u(2X\; —z;,y;) < 1
and

Uy (X)) = lm u,(2X\; — x4,y;) > 0.

1——+00

This is a contradiction, because by the free boundary condition and the above assumption

on f/(A)’

UI(XA) = —A < 0.

V14 f1(A)?

In conclusion, the only possibility is that f/(A) = 0.
Step 3. A = 0 implies that
U(*x,y) Z u(:c,y) in {:E > 0}

We can repeat the moving plane procedure from the other direction, which leads to
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u(=z,y) > u(z,y) in {z<0}
Combining these two inequalities together, we get

u(z,y) =u(—z,y). O
Because uy > uwin {z > A} for any A > 0, by the strong maximum principle we obtain

Corollary 4.3. Suppose u is a four end solution to (1.1).

(i) In {x > 0}, uy <0 and in {x < 0}, u, > 0.
(ii) In {y > 0}, uy >0 and in {y <0}, u, <O0.

Finally, we show that Dii (¢ = 1,2) are the only components of €, that is, there
is no bounded component of €. Together with Lemma 4.1, this finishes the proof of
Theorem 2.2.

Lemma 4.4.

(i) There is no bounded component of Q€.
(ii) There is only one critical point of u in Q, which is the origin and it is nondegenerate
and of saddle type.

Proof. (i) Assume there is a bounded component of {u = 1}. Take a point (zo,yo) in
this component. Because u(zg, f7(x0)) = u(xg, f~(z0)) = 1, there exists a y; # 0 such
that (xo,y1) € @ and wuy(xo,y1) = 0. This is a contradiction with Corollary 4.3.

(ii) By Corollary 4.3, we have

o Vu(X)=0if and only if X = 0;

o because u,; = 0 on {x = 0}, a differentiation in y shows that u;,(0) = 0;

 because u, < 0in {x > 0}, by the Hopf Lemma, u,,(0) < 0, and similarly, u,, (0) >
0.

Hence 0 is a nondegenerate critical point and it is of saddle type. 0O
5. Quasi Gauss map and uniqueness

In this section we introduce the quasi Gauss map and use it to prove the uniqueness
part of Theorem 2.4. We will use the complex notation z = x + iy, where i is the
imaginary root corresponding to the vector (0,1).

Since u is harmonic, the map G := u, — iu, is holomorphic. Our main tool in this
section is the following result.
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Proposition 5.1. G is a biholomorphism between Q and B1(0).

Proof. By Proposition 3.1, G maps 2 into B1(0). Moreover, since |Vu| = 1 on 0f2, we
have

Uy (X T :7—f_’5_($) Uy (x x :—1
ZE( 7.f+( )) W? y( af—‘r( )) Wa (51)

and similar identities hold on {y = f_(x)} and {z = g+(y)}. Using the expansion
(4.2) and (4.3) (which also hold in C! sense by Lemma 3.6), G(9f) is the set S* \
{+e(579) 457} In particular, Vu(0Q) = S*.

By (5.1), Vu is homotopic to the vector field (—z,y) on 9. Therefore, the topological
degree deg(Vu,9Q) = —1. Hence for any e € B;(0), there exists a z € Q such that
G(z) = e, that is, G is surjective.

Next, for any z € G~!(e), because u. is holomorphic, the index of Vu at z is a negative
integer. Then by the Poincare-Hopf index formula, we get a contradiction with the fact
that deg(Vu, dQ) = —1 unless there is only one point in G~1(e). O

Remark 5.2. The map G corresponds to the Gauss map for minimal surfaces. For min-
imal surfaces, the image of Gauss map lies in the unit sphere, while here (and more
generally, for many semilinear elliptic equations) the image of G is the unit ball. This
is different from the correspondence established in [20], where the one-to-one correspon-
dence between certain minimal surfaces and the solutions to the one phase free boundary
problem in R2 is proven. Indeed, the nature of the problem discussed in this paper is
very different from the one in [20] despite of similarity in the equation: the free boundary
here consists of two components at both = 1 and u = —1 while the one phase problem
only deals with the free boundary at © = 0. Also we are looking at the geometry of entire
solutions which have four ends structure and exhibit minimal surface behavior without
adding one additional dimension.

Let F : B1(0) — Q be the inverse of G. Denote

It is a harmonic function in B (0), satisfying the boundary condition

- 3 3
v(ew):l7 f0r0€(g—a,g+a)u<7ﬂ—a,§+a>,
(5.2)

v(e?) = -1, forfe <g+a,3§a>u(g+a,ga).

By Poisson representation formula, v is uniquely determined by «a.
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Since u(z) = v(G(z)), taking derivative in z gives
G(2) = u(2) = v.(G(2))G (2). (5.3)

Because F' is the inverse of G, this identity is equivalent to

Fl(z) = ”Ziz). (5.4)

Using this quasi Gauss map, now we prove the uniqueness part of Theorem 2.4.

Proof of Theorem 2.4: Uniqueness. Suppose there are two even, four end solutions u;
and uy with angle «. Define G1, G5 and their inverse Fy, F5 as above. Then u; o F} =
ug o Fy in B1(0), which implies that Fy = F5 because both F{ and F are given by (5.4)
and they satisfy F1(0) = F»(0) = 0. Hence F;(B1(0)) = F2(B1(0)), and u; = uz in this
domain, because they have the same boundary value. 0O

6. Nondegeneracy

This section is devoted to the proof of Theorem 2.6. In fact, for applications in Sec-
tion 10, we prove something more.

Proposition 6.1. Suppose u is a four end solution to (1.1) and ¢ € L=(Q) N C?(Q) is a
solution of the eigenvalue problem (1.4), where X < 0. Then we have

(i) if A <0, either o =0 or ¢ > 0 in Q;
(ii) if A =0, ¢ = auy + buy in Q for two constants a and b.

This proposition follows from the following two lemmas.
Lemma 6.2. Assume the condition of Proposition 6.1.

e If A <0, ¢ is even in x and y.
o If A =0, there exist two constants a and b such that ¢ — au, — bu, is even in x and

Y.

Proof. Let ¢(z,y) := p(z,y) — ¢(—z,y). Note that ¢ is an odd function of z and ¢ =0
in QN {z =0}

Although u, = 0 on {z = 0} N, by Corollary 4.3, u, has definite signs on the two
sides of {x = 0} N, hence by the Hopf lemma as well as Proposition 3.2, u,, < 0 strictly
on {z = 0} N Q. This then implies that $/u, is well defined and it is smooth in Q.
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It can be directly checked that

—div <u§v‘p> = A\pug, in QN {z#£0},
Uy
N (6.1)
Byuﬁ =0, ondQn{z#0}.

For any n € C§°(R?), multiplying (6.1) by %772, integrating in Q N {z > 0} and
QN {x < 0} respectively, and then adding these two equalities, we obtain

2 E 2 9 2 o |2 ~2 2
uz |V n° <2 U n 7|V
Uy

Q QN{Vn#£0} QN{Vn#£0}

=
N

Taking 1 to be the standard log cut-off function as in the proof of Lemma 3.10, we
deduce that = is constant in @ N {z > 0} and QN {z < 0}. By continuity, we get a
constant a such that ¢ = 2au, in .

Similarly setting ¢(z,y) = 3[(p(z, ) + @(~2,1)) — (¢(z, ~y) + @(~2,~y))], an odd
function of y, we can prove that there exists a constant b such that ¢ = 2bu, in Q2. Note
that

y) — [@(x,y) + ¢z, y)]

[\~
BS
—~

8

N =

[((z,y) + o(—2,9) + (p(2, —y) + o(—z, —y))]
= Qb(.%', y)7

where ¢ is even with respect to both the x and y variables.

If A\ < 0, substituting the equality @ = 2au, into (6.1) we get a = 0. Hence ¢ is even
in z. Similar argument gives b = 0, which yields that ¢ is also even in y.

If A = 0, the relation ¢ = o — 1[5+ @] = ¢ — (au, +buy) gives the desired result. 0O

Lemma 6.3. Suppose u is a four end solution to (1.1) and ¢ € L*>®(Q) N C?*(Q) is a
solution of the eigenvalue problem (1.4), where A < 0. If ¢ is even in x and y, then
either ¢ >0 or ¢ =0 in Q.

Proof. We set the nodal set of ¢

N = {(z,y) € Q: o(z,y) =0}

If V= Q, then ¢ =0in Q. If N = ), then ¢ > 0 in Q (perhaps after changing the sign
of ).
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Fig. 1. Three Cases.

If AV is not an empty set, from Proposition 3.8 we know that A consists of a singular
set of isolated points and a family of smooth embedded curves with their end points
lying in the singular set, 92 or at infinity.

By Lemma 3.10, there is no nodal domain of ¢ disjoint from 0f). Hence we only need
to rule out the case that the piecewise smooth nodal curves of ¢ have their end points
lying in 09).

There are three cases. Denote the four parts {y = fi(z)},{z = g+(v)},{y =
(@)} {zx=9g-(2)} of O as T; (i = 1,2,3,4) respectively. See Fig. 1.

Case 1: There exists a nodal curve I' connecting I'y and I's. If I intersects y-axis, by the
even symmetry of ¢ in « and y, we know that there exists a nodal curve I connecting I'y
to I'; and being above the z-axis and symmetric about y-axis. We leave the discussion of
this special sub case to Case 3 below. So we assume in Case 1 without loss of generality
that T' does not intersect y-axis. Note that there exists other nodal curve I connecting
T'; and I's by the even symmetry of ¢ in y and we can assume that I'; is above z-axis if
it is connected with I'. We denote the unbounded domain lying at the upper right side
of T and being enclosed by T' and part of dQ as Q. We note that Q is located on the
right side of I and should not contain a portion of y-axis (since it is the unbounded part
of T') except that it may touch y-axis at the origin, while the latter will be discussed in
Case 3. Hence, the argument from Lemma 6.2 works. Similar argument as in Lemma 6.2
gives ¢ = au, in Q. By the unique continuation theorem, ¢ = au, in ). Since ¢ is even
in x and y, a = 0, which yields ¢ =0 in Q). We obtain a contradiction.

Case 2: A nodal curve I" connects I'; and I's directly. (The case that a nodal curve
connects I's and I'y directly can be proved with the same method.) As in Case 1, we can
assume that I' does not intersect with y-axis, and denote the unbounded domain lying at
the right side of I and being enclosed by I' and 99 as 2. We also note that € is located
on the right side of the I' and should not intersect the y-axis (since it is the unbounded
part). Similar argument as in Case 1 shows that this case is also impossible.
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Fig. 2. Sub Cases: Intersection with z-axis.

Case 3: A nodal curve I starts from I'y and returns back to I'y. (The case that a nodal
curve starts from I’y and return back to I'y can be proved by the same method.) Denote
the bounded domain enclosed by I and T’y as €. We also note that € should not contain
a portion of the z-axis in view of the even symmetry of ¢ in y and can be chosen as above
x-axis by the reflection of I about z-axis, although it may touch z-axis at some points.
Indeed, we may assume that € can only touch z-axis at the origin, since otherwise we
can reduce the case to Case 2 by replacing I' properly (for example by picking I" as the
right branch of the nodal curve symmetric about z-axis, see Fig. 2 (B)). Hence we only
need to focus on the worst scenario when the origin is the intersection point of I" with
z-axis (and y-axis). It is well known that the nodal set of the eigenfunction ¢ behaves
locally like that of a harmonic polynomial, i.e., finitely many lines forming equal angles
at the origin. See, for example, Theorem 2.5 in [4]. By the even symmetry of ¢ with
respect to both axes, we know that the nodal set consists of at least two lines and it does
not coincide with the axes. Hence we may choose I' to be symmetric about y-axis and
there exists no nodal curve inside Q (see Fig. 2 (A)). In particular, we have |z| < Cy
when (z,y) € Q for some constant C' > 0.

Now we define Q; := {(z,y) € Q, 2% + y> > &} for any § > 0 sufficiently small. Then

we have
20 ®) @ dow]? 1 °
0= —/le (uyvu—y> _uy :/uy V—uy + 3 / (SDVSD_ Uy Vuy)-(x,y)ds.

Qg Qs Qﬂ@Bg

Letting § — 0, we obtain
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which gives ¢ = au, in Q, and a contradiction follows similarly. We note that here even
when I" touches the x-axis at the origin, - is still bounded since that w,, < 0 strictly

7uy

on {y = 0} N Q, hence the boundary integral above tends to 0 as ¢ goes to 0. O
7. Moduli space

Theorem 2.4 implies that « — u,, a € (0,7/2) is a parametrization of M. (That
this map is surjective will be proven in Section 9.) In this section, we study the global
structure of M, including the closedness of M and its boundary behavior.

We need a technical result on the distance between 9{u = 1} and 9{u = —1}.

Lemma 7.1. There exists a universal constant C' such that, for any solution u of (1.1) in
R? and X € 0{u =1}, dist(X,0{u = —1}) < C.

Proof. Assume by the contrary, there exist a sequence of solutions u; of (1.1) in R?, and
X; € 0{u; = 1} such that

diSt(XZ‘, 3{ul = —1}) > 7.

Let v;(X) := 1—u;(X;+X), which satisfies 0 < v; < 2 and Av; = 01in {v; > 0}NB;(0).
(Note that v; < 2 in B;(0).)

By the Lipschitz bound in Proposition 3.1, we can assume (after passing to a subse-
quence) v; converges to a limit v, uniformly on any compact set of R?. Because vo, > 0
and Avy = 0 in {ve > 0}, v is subharmonic in the entire space. Since v < 2, by the
Liouville theorem

In particular,

Avae = 0. (7.1)
B1(0)
On the other hand, since X; € 9{u; = 1}, |Vu;| = 1 on d{u; = 1} and 9{u; =

1} N By/2(X;) is a convex curve with end points in 0B /5(X;) and it also contains X,
for all ¢ large,

[ du=100 =130 By 2 1
By2(0)

Here H'(8{u; = 1} N By/5(0)) denotes the length of the curve d{u; = 1} N By /2(0).
Passing to the limit we obtain a contradiction with (7.1). O
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Proposition 7.2 (Closedness of M). Given a sequence o; € (0,7/2) and a sequence of
four end, evenly symmetric solutions u,, with angle o, if

lim o = o € (0,7/2),
1— 400

then u,, converges to ua, uniformly on any compact set of R%, where uq, is the four
end, evenly symmetric solution with angle ay.

Proof. Because |u,,| < 1 and |Vu,,| < 1 in R?, passing to a subsequence we get a limit

u.
Recall that d{us, = 1} N{y > 0} has the form

y = fOti (l‘),
and Huqe, = —1} N {x > 0} has the form

T = gOéi (y)7

where both f,, and g,, are positive convex even functions. Moreover,

Jm fo (@) =tanas,  lim g, (y) = tai ot

By Lemma 7.1, both f,,(0) and g,,(0) remain bounded as a; — «ag. From these facts
we deduce that, after passing to a subsequence, f,, and g,, converges uniformly on any
compact set of R to two limits f and g respectively, where f and g are nonnegative
convex even functions.

Because |Vu,,| < 1, the distance between {y = fo,(z)} and {x = gn,(y)} is larger
than 2. Hence {y = f(z)} and {x = ¢g(y)} do not touch.

As in [9], the following Hamiltonian identity for u,, holds,

fa; (0)
Ouy, 2 Ouy,. 2 4
— L : 1| dy = . 2
/ [ ‘ ox (O,y)’ +‘ y (O,y)‘ + } 4 CoS o (7.2)
_foé,;(o)

Substituting |Vue,| < 1 into this identity we get

1

cosay

Passing to the limit we get
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Recall that 0 is the global minimal point of f, because it is a C? even convex function.
Therefore f > 0 strictly. In other words, the two components of d{u = 1} do not touch,
too.

By the regularity theory on free boundaries in [1], the C* norms of f,, and g,, are
uniformly bounded. Hence they also converge in C* and f,g € C*4(R). By standard

elliptic estimates, ||uq,||cs@ ) are uniformly bounded, where

Qo ={(,9) : —fa,(2) <y < fa,(2), =ga, (y) <@ < 9o, (y)}-
Then it is readily verified that u is an evenly symmetric solution of (1.1), where
{-1<u<1}=A{(z,9): =f(@) <y < f(x), —g(y) <z <g(y)}.

We have shown that u has four ends. Assume its angle is a. By the above smooth
convergence of f,, and u,,, passing to the limit in (7.2) gives

£(0)

ou 2 |0u 2 4
/ [— %(O,y)‘ +’a—y(0,y)‘ +1} W= osan
~1(0)

Since Hamiltonian identity also holds for u, we must have a« = . Therefore u is the
evenly symmetric, four end solution with angle ap. O

Finally, we study the boundary behavior of the moduli space, that is, the behavior of
U when oo — 0 or 7/2.

Proof of Theorem 2.10. We only need to consider the case when o — 0 since the case
a — /2 is similar. As in Proposition 7.2, after passing to a subsequence, we can assume
u; converges to a limit 4y uniformly on any compact set of R2.

Recall that 0{u; =1} N{y > 0} = {y = fi(z)}, and H{u; = -1} Nn{x >0} = {z =
9i(y)}, where both f; and g; are positive convex even functions. Moreover,

1
. , . /
zgr_{_loo fi(z) =tana; — 0, ygar_loo gi(y) = r—" — +00. (7.3)
By Lemma 7.1, both f;(0) and g¢;(0) remain bounded as a; — 0. From these we deduce
that, after passing to a subsequence, f; converges uniformly on any compact set of R to
a limit f. By the convexity of f; and (7.3), f/ — 0 uniformly on R. Thus f = a for some
constant a > 0.

When z > ¢;(0) and y > 0, there exists a concave function h; such that {z = g;(y)} =
{y = h;(x)}. After subtracting a subsequence, assume g;(0) — b for some constant b > 0.
Assume h; converges to h uniformly on any compact set of (b, +00). It is clear that h is
continuous on [b, +00) and h(b) = 0.
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Because |Vu;| < 1, the distance between {y = f;(z)} and {z = ¢,(y)} is larger than
2. For any X; € {y = f;(x)}, if 7 is large enough, v; := 1 — u; is a classical solution of
the one phase problem

{A’Ui =0, in {Ui > 0} n Ba/Q(Xi)7 (7 4)

Vg =1, on d{v; > 0} N By o(X;).

Furthermore, the free boundary d{v; > 0} N B, /2(X;) is the graph of a function. Since
these functions converge to constant functions uniformly, the regularity theory in [1]
applies, which says d{v; > 0} N B, /2(X;) are uniformly bounded in C*. Then standard
elliptic estimates lead to a uniform bound on the C?({v; > 0} N B, 4(X;) norm of v;.
By pulling back via a diffeomorphism, we have that v; = vs in C? sense in B, /a(Xoo),
where v is still a classical solution of (7.4).

Since the curves in 0{vy > 0} are flat, by Proposition 3.2, v, is a one dimensional
solution. Coming back to ug, we get

y—a+1, ifa—2<y<a,
u(z,y) =< —y—a+1, if —a<y<—a+2,
1 ify>2ory< —a.

9

Since Aug = 0 in the open set {—1 < ug < 1}, by unique continuation principle uy must
have the form as given in (2.1). In particular, a =2 and b=0. O

Remark 7.3. For any « > 0, locally around (z,0), u; + 1 converges to a two copy solution
of (7.4).
At the origin (0,0), denote r; := g;(0), which goes to 0 as «; — 0. Define

vi(, ) = — [1+ wglria, ray)].

?

Then v; converges to the hairpin solution of the one phase problem (7.4) constructed by
Hauswirth, Hélein and Pacard [12]. In high dimensions, the same phenomena have been
observed in [16].

8. Saddle solution
In this section we prove

Proposition 8.1. There exists an evenly symmetric, four end solution with angle o = 7 /4.
By the uniqueness part of Theorem 2.4, this solution is unique, hence it is oddly

symmetric with respect to the line {# = y}. In fact, its nodal set {u = 0} is exactly
{z =y} U {x = —y}. This is called the saddle solution.
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The existence of such a solution will be proved by finding a minimizer in the first
quadrant with Dirichlet condition and then taking successive reflections across the axes.
For any R > 1, consider the square

Qr ={(r,y):0<z <R, 0<y<R}.
Take ¢pr to be the function on 0Q g, defined as
0, ifxz=0 ory=0,

1, fz=R1<y<R ory=R,1<z<R,

PR =
z, ify=R, 0<zx<l,

y, ifx=R, 0<y<l.

Let ug € HY(Qg) be a minimizer of the functional

Ton(w)i= [ (Vu + xpuen). (1)
Qr
with Dirichlet data pr on 0Qg. The existence of such a minimizer can be proved as in

[1]. Moreover, the results in [1] imply that

(1) 0<up <1
(2) there exists a constant C' independent of R such that [Vug| < C in Qp_1;
(3) 9{ur = 1} consist of smooth curves.

By constructing a suitable competitor, we get the following energy bound on ug:

Lemma 8.2. For any R > 1,

/ (IVurl® + X{up<1y) <4R.
Qr

Proof. Take a test function wg in Qg, defined as

zy, if0<z<1, 0<y<l1,
1, ifl<z<R, 1<y<R,
T, fl<y<R, 0O<z<l,
Y, fl<z<R, O<y<l

WR =

It is easy to obtain the estimate

/ (|va|2 + X{U)R<1}) <4R.
Qr
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The lemma follows by the minimality of ug. O

Extend ug by successive odd reflections to Dg := {|x| < R,|y| < R}, which is still
denoted by ug. It is clear that ug is a solution of (1.1) in Dg with a proper domain Q.
By the monotonicity formula (Proposition 3.3), we have

Lemma 8.3. For any r € (0, R),

(‘VURF + X{—1<un<1}) < 167
B,.(0)

As R — +o00, by the Lipschitz bound on ug in Dg_1, we can assume that ug converges
to a limit « uniformly on any compact set of R2.

By definition, ur = 0 on {zy = 0}. Because |Vug| < C in Dg_1, the distance between
{zy = 0} and 0{—1 < ug < 1} in Dgr_1 is not less than 1/C. Then by the regularity
theory for the free boundary in [1] (in combination with the compactness for minimizers

of (8.1), see [1, Section 4.7]), {—1 < ug < 1} are uniformly bounded and converge in
L1/

loc

Let

-norm as R goes to infinity.

dr = dist(0,0{—1 < ugr < 1}).

By Lemma 8.3,

ﬂ'd% < / [|VUR|2 + X{—1<UR<1}] < 16dR.
BdR(O)

Hence dr < 16/m. Therefore the free boundary 0{—1 < ur < 1} cannot escape to
infinity. In particular, {u = 1} is nonempty and w is not identically 0.
To describe the geometry of u, we need a monotonicity property for wu.

Lemma 8.4. In {0 <u < 1}Nn{xz >0,y > 0}, uz >0 and uy > 0.

Proof. We only prove the claim for u,. Because u, is harmonic in {0 < v < 1} N
{z > 0,y > 0}, by the strong maximum principle, we need only to show that u, > 0.
Assume by the contrary, {u; < 0} N {0 < u < 1} N{x > 0,y > 0} is non-empty. By
Proposition 3.8, there exists a point X € {u, =0} N{0 <u <1} N{z >0,y > 0} and
a ball B,(X) C {0 <u < 1}n{zx >0,y > 0} such that Vu, # 0 in B,(X), i.e. X is a
regular point of the nodal set {u, = 0}.

Because v = 0 on {zy = 0} and u > 0 in the first quadrant, u, > 0 on {zy = 0}. (Note
that we have shown that {zy = 0} is contained in {—1 < u < 1}.) For any n € C§(R?),
because u, satisfies the linearized equation (1.3), testing it with u;n? and integrating
by parts, we obtain
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VuwP- [ HewP= [ @R 62

{z>0,y>0} {z>0,y>0}No{u=1} {z>0,y>0}
Define a function ¢ in the following way: ¢ = u, outside B,(X), and it is the harmonic
function in B,(X) with Dirichlet boundary value u; on 0B,(X). By this choice of B,(X),
we know that v is not a harmonic function in B,(X) and hence does not minimize the

Dirichlet integral. Therefore there exists a constant § > 0 (depending only on p and the
choice of B,(X) above) such that

/ |Vo|* < / |V |? — 6. (8.3)
By (X) B,(X)
Combining this inequality with (8.2), we get
[ owenr- [ mewrs [ @wiE-s s
{z>0,y>0} {z>0,y>0}Nd{u=1} {z>0,y>0}

Since ¢ € L*(R?), we can choose 71 to be a suitable log cut off function (see (3.4)) so
that the first term in the right hand side of (8.4) is as small as we wish, just as in the
proof of Lemma 3.10. Note that once B,(X) is chosen and ¢ is fixed, the choice of 1 can
be achieved by choosing R sufficiently large (depending on 4). Hence we get

IV (6m)? — / H(gn)? <0.
{z>0,y>0} {z>0,y>0}Nd{u=1}

This is a contradiction because w is stable in the first quadrant. O
By this monotonicity of u, we obtain

Corollary 8.5. There exists a decreasing function f defined on an interval (T, 400), such
that

Hu>1}n{z >0,y >0} ={(z,y) :y = f(z),z > T}

By this corollary, we see that the free boundary of u consists of {y = f(z)} and its
reflections with respect to the x and y axis. Therefore u is a solution with four ends.
After a rotation of angle /4, we get the four end solution with angle 7/4. The proof of
Proposition 8.1 is thus complete.

9. Existence in the general case

In this section, we prove the existence part in Theorem 2.4. We will mainly rely on
the quasi Gauss map introduced in Section 5.
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Given a € (0,7/2), take v, to be the (unique) harmonic function in Bq(0) with
boundary value as in (5.2). Because v, is even in z and y, Vv, (0) = 0. Hence v, . is
a holomorphic function in B; satisfying v, .(0) = 0. Then v, ,/z is also holomorphic
in B;. Let F, be its primitive function satisfying F,(0) = 0. Note that F, is evenly
symmetric in z and y.

The main result of this section is

Proposition 9.1. For each o € (0,7/2), F, is injective on By.

By the following lemma, the existence part of Theorem 2.4 will follow from Proposi-
tion 9.1.

Lemma 9.2. There exists an evenly symmetric, four end solution with angle « if and only
if Fy, is injective on Bj.

Proof. Denote Q, := F,(B1), which is an evenly symmetric, open domain in the complex
plane, because F,, is even and it is an open map. If F, is injective, then it is a biholo-
morphism between B; and €2,. Moreover, by its definition, F,, extends continuously to
OB\ {9, ei(%+°‘), ei(%’r*a), ei(%r+°‘)}, so there are four ends of ), represented by
the image of F,, of these four points.

Let Gy := F;! and ug = vy 0 Go. By (5.3) and (5.4), u, satisfies (1.1) with Q, =
{-1 < uq < 1}. Hence u, is an evenly symmetric, four end solution. Because v, is a
solution of (5.2), the angle of u, is exactly a.

Conversely, by the discussion in Section 5, if u, is an evenly symmetric, four end
solution with angle «, then the holomorphic map F, defined therein is injective on
B,. O

Proof of Proposition 9.1. Let Z C (0,7/2) be the set of those a such that F,, is injective
on Bj. By Proposition 8.1, 7/4 € Z, hence it is non-empty. By Proposition 7.2, 7 is
closed. Therefore we need only to prove the openness of Z, that is,

Claim. If for some ag € (0,7/2), F,, is injective on By, then there exists an & > 0 such
that for any o € (g — €, + €), Fy is injective on By.

First by the Poisson representation formula for harmonic functions in By, there exists
a small radius p; > 0 and &1 > 0 such that, for any a € (g — 1,00 + €1) and z €
By N By, (e37)),

a

Fo(z) = +0(1),

z —eilz—a)

where a is a complex constant. Then there exists another complex constant b such that
in the same domain,
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F,(2) =alog (z - ei(%_“)) +b+0 (\z - ei(%_“)o , (9.1)

where we take the principal branch for the log function.
Let pa = p1/2. In the closure of

Dy, = Bi\ | By, (3700 U B, (/3 T00)) U B, (¢! F ~20)) U B, (¢{F +eo)y ||

F,, depends continuously on «. Hence by our assumption on Fi,,, there exists an €2 > 0
such that for any a € (ag — €2, g + €2), F, is injective in this domain. In particular,
z = 0 is the only zero of F, in this domain and it is simple.

Finally, by letting € := min{ey, 2}, we deduce that for any o € (apg—¢,a9+¢), 2 =0
is the only zero of F, in By and it is simple. By the argument principle, this implies that
for all p sufficiently small,

For any w € Q,, in view of (9.1), for any sufficiently small p, by the homotopy invariance,

1 F’ 1
L[ B 1
2mi Fo(z) —w 271

oD, 0D,

Thus there exists only one z € By satisfying Fi,(z) = w. O

z

Fo(z)
ul )dz—l.

z

10. Morse index characterization
10.1. Morse index of four end solutions is 1

Let u be a solution with four ends, which is evenly symmetric with respect to the x
and y axis.

By the Stable De Giorgi theorem [21, Theorem 1.2], u cannot be stable, so the Morse
index solution of u is at least 1. By the standard elliptic theory, for any R > 0 large
enough, there exists a A\; g < 0 and the associate positive first eigenfunction pp €
H}(BRr(0)). The first eigenfunction is unique up to the multiplication of constants.

Let A2 g be the second eigenvalue. Take a second eigenfunction ¢ r € H(Bg(0)). It
must change sign in Q N Bg(0). If A2 g < 0, by Proposition 6.1, we get a contradiction.
Hence we must have Ay p > 0. Therefore for any R large, the index of the quadratic form
Q in H(Bg) is exactly 1. Hence the Morse index of u is exactly 1.



30 Z. Du et al. / Advances in Mathematics 404 (2022) 108395

10.2. Morse index of solutions with more than four ends is larger than 1

Suppose u has 2k ends with k > 3. Take an R large so that Q\ Br(0) = U?k, D;,
1 < i < 2k. Denote the asymptotic directions of these ends by ey, - - -, ear, which are in
anticlockwise order but not necessarily distinct.

Take a direction e so that it does not equal e;, Vi = 1,--- ,2k. The directional deriva-
tive u, satisfies the linearized equation (1.3). By Proposition 3.7 and Lemma 3.6, perhaps
after taking a larger R, for each ¢ = 1,--- |2k, u. has a fixed sign in D;. Moreover, the
sign of u, in every two adjacent ends is different, except those two pairs lying on different
sides of the line {te,t € R}.

Recall that the nodal set of u. consists of finitely many singular points and finitely
many smooth curves, with the end points of these curves lying in this singular set or 0f2.
Because u,. has a fixed sign in each D;, the nodal set of u. is contained in a compact
set.

Using the nodal domains of u. we build a planar graph, with each vertex point repre-
senting one end of u, and two vertex points connected by an edge if they belong to the
same nodal domain.

Lemma 10.1. The number of nodal domains of u. is not less than k.

Proof. By the previous analysis, we can assume for some R > 0 large, {u. # 0} \ Br(0)
consists of 2k connected components D;, i = 1,2, - - - 2k. Among them, there are two pairs
of adjacent sets which indeed belong to the same nodal domain of w.. We may denote
by Cii, 1 < i < k — 1 these sets by combining each of the pairs into one set so that
e > 0in C;” and u, < 0 in C; . In other words, each C:¥ contains exactly one connected
component of Q \ Br(0), except two of which are composed of two adjacent connected
components of 2\ Br(0) respectively.

Without loss of generality, in the following we assume Cj",C; ,--- are arranged in
anti-clockwise direction. CijE form a graph with each of C;,C;, -+ being a vertex point
and two vertex points are connected by an edge if they belong to the same nodal domain.
Denote this graph by G.

We claim that the number of connected components in G is at least k. This can be
seen by performing the following surgery on a sequence of graphs, starting from an initial
special graph with k connected components and all C;” being connected and all C;r being
disconnected, and terminating when the graph has the same connectivity of C;r as the
real planar graph G constructed above.

Step 1. Consider the special case that each C;" belongs to a distinct nodal domain of .,
and all of C;” belong to a single nodal domain of u.. In other words, we assume
Ci+ are disconnected vertex points of an initial graph Gy, while all C;” are all
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Step 3.
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If there is a pair of domains being in the same positive nodal region in the
whole plane, there would be one more separate negative domains divided
by the positive nodal region.

Fig. 3. The Surgery Process.

connected. Obviously, in this special case, the number of connected components
of Gy is exactly k.

If there exist two C;” belonging to the same nodal domain of w,, then we start
with the smallest pair (¢, j) with ¢ < j (in the standard order of integer pairs) by
connecting C;r and C;-r in the graph Gy with an edge. To illustrate the connectiv-
ity, we may use a Jordan curve to connect the ends C;r and C;-r to indicate that
they belong to the same nodal domain, as in Fig. 3. By the previous analysis,
this Jordan curve separates the plane into at least two connected components,
and there are connected component of U*!C;” on both sides of this curve.
Correspondingly, this process splits the connected subgraph with vertex points
uf;fc; into two disconnected sub graphs. We keep all edges of these two sub
graphs of Gy, resulting a new graph G; with the least number of possible con-
nected components. It is clear that the total number of connected components
in G is at least k.

Repeat Step 2 for the graph G, to obtain the graph G,,+1, until we reach the
graph Gy so that Gy has the same connectivity of subgraph UF=!'C;H as the
graph G.
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In the above procedure, each time we eliminate one connected component of G, by
connecting a pair of C* according to their being in the nodal domain of u., we produce
at least one more connected component in G,,, for C~. Therefore the number of connected
components in the resulting graph G,, 1 is non-decreasing. Since the initial number of
connected component of Gy is k, the number of connected components in Gy is at least
k. Note that the graph G has at most as many edges as Gy, and hence must have at
least k connected components. This implies that there are at least k£ nodal domains of
Ue. O

Let [k/2] be the first integer number not smaller than k/2. Note that G can be
naturally divided into two sub graphs G*, with u. > 0 in each nodal domain represented
by a connected component of G while u. < 0 in each nodal domain represented by a
connected component of G~. By the strong maximum principle, each nodal domain in
G has a part of regular boundary belonging to G, and vice versa. Thus we arrive at
the following conclusion:

Lemma 10.2. There exist at least [k/2] nodal domains of ue, Co, 1 < a < [k/2], so that
each Cy has a part of regular boundary not contained in Ulg/#agk/g]@.

Now for each a = 1,-- - , [k/2], take a regular curve I',, C 9D,, satisfying the previous
lemma. Let

|te|, in D,
Pao = .
0, outside D,

which is a continuous subsolution of the linearized problem (1.3). By definition, for
1 <a# B <[k/2], po and g have almost disjoint supports (i.e. at most the boundaries
O{pa > 0} and d{ps > 0} could intersect).

Take a point X, € I'y, and an 7, > 0 so that B, (X,) C Q does not intersect
Ulgg#agk/ﬂD_g. Let ¢, be the solution of

Ap, =0, in B, (X,),
Pa = Po, on 0B, (Xa).
Because ¢, = 0 in the open set B,_(X4) \ Da, there exists a constant §, > 0 such that
/ [V@al® < / IVal? — da- (10.1)
Bro(Xa) Bro (Xa)

Extend ¢, outside B,_(X,) to be ¢,. Defined in this way, for 1 < a # 8 < [k/2], ¢a
and @g still have disjoint supports.
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For any R large, take ng to be a standard log cut-off function. Multiplying the equation
for ue by gpan}% and integrating by parts leads to

[ 19 /HsoanR_l = a=1 k2],
Q

Combining this with (10.1), we see, once R is large enough, for each « = 1,--- | [k/2],

Because @,nr are orthogonal in L?(R?), this implies that the Morse index of u is at
least [k/2].

Remark 10.3. In a recent paper of Mantoulidis [18], he established a similar lower bound
for the Morse index of finite end solutions to the Allen-Cahn equation.
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Appendix A. Proof of several technical results

We will give the proofs of Propositions 3.3-3.5 as well as the Hamiltonian identity
(4.5) in this appendix.

A.1. Proof of Proposition 3.3

For any solution u of (1.1) and any X° € R?, we have the Pohazaev identity

/ 4F (u) = / [[Vu|? +2F(u)](X = X°) -v—2 / (Vu-v)(Vu- (X — X)),
Br(X9) OBR(X0) OBR(X0)
where F(u) = $x{—1<u<1} and v(X) = X’TXJ for X € 9Br(X"), and so
/ 4F(u) = R / [[Vul? +2F(u)] — 2R / (Vu - v)2. (A1)
Br(X9) OBR(X9) OBRr(X?)

Recall that E(R; X°) = % fBR(XO) [[Vul? + X{—1<u<1}]. Simple computation shows that
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dE(R, X% 1 , 1 ,
) [ v rra e [ (9P 2r),
Br(X°) OBRr(X9)
From this equality and (A.1), we obtain

dE 2

9 1 2
i _2 (Vu-0)? + g / 2F(u) — V.

9BRr(X?) Br(X?)
From the Modica inequality (see Proposition 3.1), we deduce that 2F(u) — |Vu|? =
1—|Vul? > 0in Br(X°)NQ. In the other domain Br(X?)\(2, one has 2F (u) —|Vu|?* = 0,
since x{—1<u<1} = |Vu| = 0 in this domain. Therefore
dE _ 2
— > Vu-v)? >0
R = R / (Vu-v)">0,

OBR(X0)

which gives the desired result of this proposition. 0O
A.2. Proof of Proposition 3.4

Suppose u is a solution with 2k ends. We first show that for any X € R? there exists
a positive constant C' such that

E(R,X)<C forany R>0. (A.2)

From Proposition 3.7, for some end of §2, we may suppose that there exists two positive
constants ¢ and p so that outside a compact set this end has the form

{(zy): (@) <y < fH(2)},
where fT, f~ are convex and concave functions respectively, satisfying
|fE(@) F1] <ce™, asz— +oo.
For some Ry > 0 we define Q! := {(z,y) € Q: 2 > Ro}. Let

()
pla)i= [ [+ (a2l

[ (=)

It is easy to see that
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10/ ()
= 1200y 0) P21 + [ (02 = ) lym s (0 (F ) (@) = [+ (2 = 2]y - (o (F ) ()]
< ce M, Vx> Ry.

Hence we have
|p(R1) — p(Ry)| < ce ™ YRy, > Ry > Ry.

In particular, we have

lp(x)| < e, Yz > Ry.
This and the definition of p give

/ 1+ (2 —2)] < CR.
Br(X)N01
From the Modica inequality, we have u < 1+ (u — u2), and so
ui < CR.
Br(X)NO!

Now we choose another Cartesian coordinates (z',y’) so that the z’-axis is a small
rotation of x-axis. Then we can obtain

ul da'dy’ = / uzdxdy < CR.

Br(X)NQ! Br(X)NQ!

Therefore we obtain

(1 + |Vu|*)dzdy < / [1+ (up — ul)]dxdy + C / (uy + uz))dzdy
Br(X)nQ! Br(X)NQ! Br(X)nQ!
< CR.
(A.3)

Similarly we can define 2k —1 domains Q' C Q(i = 2,3, ...,2k) contain the rest 2k — 1
ends outside a compact set respectively. Denote Q° as a bounded domain in € such that
Q = UZ* Q. Repeat the above argument 2k — 1 times, we obtain

(1+|Vul*) <CR, i=2,...,2k. (A.4)
Br(X)NQ?
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Note that

(1+|Vu?) <C, (A.5)

Br(X)NQO

where C is independent of R. Plainly we have

(2F (u) + |Vul?*) =0, (A.6)

Br(X)\Q

where F(u) = %X{—1<u<l} is given in the proof of Proposition 3.3. Hence for large R,
from (A.3)-(A.6), we obtain (A.2).
From (A.2) and Proposition 3.3, we know that the limit limp_, 1o E(R, X) exists.
Proposition 3.7 tells us that the nodal sets of u are asymptotically straight lines.
Applying the Hutchinson-Tonegawa theory, we obtain

lim E(R,X) = 2ke.
R—+o00

Here e := § [7 [|¢'()]* + X{—1<g(s)<1}]dx, Where g is the one dimensional solution
given in Section 1. Namely

~1, ifz<-—1,
g(z) =1 =z, if —1l<z<l1,
1, ifx>1.

Simple computation shows that e = 2. So limg_ 4o E(R, X) =4k. O

A.3. Proof of Proposition 3.5

Denote the asymptotic direction of the ends of u by e; = (cos8;,sinb;),1 < i < 2k
with 0 < 0; < 0,41 < 2m,1 <4 <2k — 1. Applying Hamiltonian identity as in the proof
of Theorem 1.3 in [10], we obtain

2k
Z sin(f; +6) =0

i=1

for almost all . The desired result of this proposition follows. O
A.J. Proof of the Hamiltonian identity (4.5)

We divide the proof of this identity into two steps.
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Lemma A.1.

+oo
d
%’H(x) =2 / UpUydy. (A7)

— 00

Proof. Tt is clear that the right hand side of (A.7) is continuous in z. (We need only to
verify this at those points where the number of connected components of {—1 < u <
1} N ({2} x R) changes.)

We will perform the calculation by assuming u is a classical solution of (1.1) in {|z| <
1}, with the free boundary given by {y = fi(z)}. The general case follows from this
calculation by first showing the identity for one sided derivatives and then using the
continuity of the right hand side of (A.7).

Under this simplified setting, we find that

p f4(z)
EH(JU) =2 / Y (Uylye — UglUszg) dy
f-(x)

+ fr(@) [+ uy(a, fr(2))? = ua(z, f1(2))?] fi(2)
— f-(2) [L+uy (@, f-(2))? = ug(z, f-(2))?] fL(2)
fr(2)
=2 / Y (UyUyg + Uz lyy) dy
f-(=)
+ 2uy (x, f4(2))? f4(2) i (2) = 2uy (2, f-(2))* f-(2) [ ()
f+(x)
=-2 Ug Uy dy
A
+ 2uy (@, f4 (2))ue (@, f+(2) f+(2) = 2uy(2, f1(2))ua (2, f1+(2)) - (@)
+ 2uy (x, f4(2))? fo (@) i (2) = 2uy (2, f-(2))* f-(2) [ ()
f+(x)
=-2 Ug Uy dy.
A

In the above, we have used the following three facts: (i) Au=0in {—1 < u < 1}; (ii) the
free boundary condition; (iii) the identity u, 4+ u, f} = 0 on {y = fy ()} and a similar
oneon {y=f_(x)}. O
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Lemma A.2.

Proof. As in the proof of the previous lemma, we still assume u is a classical solution of
(1.1) in {]z| < 1}, with the free boundary given by {y = fi+(z)}. Under this simplified
setting, we find that

p fr () Ji(z)
e Uztydr = (Uplyg + UyUzy) dy
(@) £ (@)
+uy(@, fr (@) us(z, f4(2)) 1 (2) = uy(z, f-(2))ua(z, f-(2))fL(2)
fi(2)
= (UpUyg — Uylyy) dy
f-(z)

o (@), F4 0 F4(2) =y o, S (@)ta, () (2)
_ 'U,z(ll, f+($)2 — uy(xv f+($))2 _ ur(xa f—(x))Q — uy(xa f—(x))2

2 2
by (o £ (), £ ()7 ) s S (@), S (@) (2)
= 3 IVule, fy @) + 5 [Vute, £ ()P
=0.

In the above, we have used exactly the same three facts as in the proof of the previous
lemma. 0O
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