Downloaded from ascelibrary.org by University of Michigan on 09/01/22. Copyright ASCE. For personal use only; all rights reserved.

Check for
updates

Interactive and Immersive Process-Level Digital Twin for
Collaborative Human—Robot Construction Work
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Abstract: Human cognition plays a critical role in construction work, particularly in the context of high-level task planning and in-field
improvisation. On the other hand, robots are adept at performing numerical computation and repetitive physical tasks with precise motion
control. The unstructured and complex nature of construction environments and the inability to maintain tight tolerances in assembled work-
pieces pose several unique challenges to the wide application of robots in construction work. Thus, the robotization of field construction proc-
esses is best conceived as a collaborative human-robot endeavor that takes advantage of both human and robot intelligence as well as robots’
physical operation capabilities to overcome uncertainties and successfully perform useful construction work onsite. This paper proposes an
interactive and immersive process-level digital twin (I2PL-DT) system in virtual reality (VR) that integrates visualization and supervision, task
planning and execution, and bidirectional communication to enable collaborative human—robot construction work. In this work paradigm, the
human worker is responsible for high-level task planning and work process supervision. The robot undertakes workspace sensing and mon-
itoring, detailed motion planning, and physical execution of the work. A drywall installation case study involving imperfect rough carpentry
(wall framing) is presented using a KUKA mobile industrial robotic arm emulator. A human-in-the-loop study involving 20 subjects was
conducted for system verification and to collect feedback for future improvements. The experimental results show that users can use the system
to specify work sequences, select optimal task plans, and perform robot trajectory guidance after simple training and felt positive about the
system functions and user experience. The system demonstrates the potential of transitioning the role of construction workers from physical task
performers to robot supervisors. In addition, the system establishes a promising framework for construction workers to remotely collaborate with

onsite construction robots. DOI: 10.1061/(ASCE)CP.1943-5487.0000988. © 2021 American Society of Civil Engineers.
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Introduction

Due to the unstructured and dynamic nature of construction sites
and the considerable physical demand construction work imposes
on workers, the construction industry has been susceptible to higher
fatalities and nonfatal injury rates among all the major industries
(CPWR 2018; Liu et al. 2017). In addition to safety issues, the con-
struction industry is vulnerable to natural and social restrictions be-
cause construction work generally cannot be performed remotely.
As a result, the outbreak of the Covid-19 pandemic significantly
affected construction projects across the US, causing 975,000 con-
struction job losses in a single month (April 2020) that resulted in
serious economic impacts (ENR 2020). Automation in construction
enabled by human-robot collaboration (HRC) offers a promising
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approach to mitigate these issues by making optimum use of both
human and robot capabilities and strengths (Liang et al. 2021; You
et al. 2018).

Human and Robot Capabilities for Construction Work

Robots are designed to manipulate objects with high precision and
perform tasks repetitively and thus offer a promising alternative
to relieve construction workers from physically demanding and
repetitive tasks (Liang et al. 2019; Xu and Garcia de Soto 2020).
Robots also allow some construction work to be conducted
remotely and facilitate social distancing onsite so that construction
projects are not significantly interrupted by unexpected circumstan-
ces such as the Covid-19 pandemic. Robots’ reasoning intelligence
in scene understanding, motion planning, and adaptability experi-
enced rapid growth in recent years because of the progress in ar-
tificial intelligence and computational power (Brosque et al. 2021).
However, construction robots face several challenges due to the un-
structured and complex nature of construction environments and
relatively loose tolerances of construction projects, which may lead
to frequent robot failures while performing tasks onsite (Lundeen
et al. 2019; Milberg 2006).

While robots are competent in the accurate and repetitive
manipulation of heavy components, detection of minor deviations,
and numerical computation, human beings are better at creative
planning and sequencing based on domain knowledge, experience,
and perceptual understanding (Seong et al. 2019; Sharif et al.
2016). Considering drywall installation as an example, when the
wall frame deviates from the design, the human carpenter will tune
the drywall panel or adjust nailing angles to ensure that the panel is
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firmly connected to the wall frame, which is acceptable to a certain
extent (NAHB 2015). Although human workers can quickly impro-
vise a new plan in such situations, it is difficult for a robot to make
decisions adaptively when it comes across unknown situations.
Therefore, human expertise and ability to improvise (i.e., adjust the
plan according to the current circumstance that differs from design)
play a crucial role in overcoming these uncertainties and are indis-
pensable during the construction process, making it unrealistic to
completely replace construction workers with robots (Kyjanek
et al. 2019).

Despite the significant promise of HRC, current techniques for
humans to interact with large, industrial, construction robots are
still inefficient (Kyjanek et al. 2019). One of the most common
HRC methods for construction robots is teleoperation. However, it
suffers from limited perception and accuracy reduction (Roldan
et al. 2019). When it comes to mobile robotic arms with multiple
degrees of freedom (DOFs) carrying large and heavy objects, a sig-
nificant amount of training is required for operators since any errors
or lapses can cause collisions and other safety issues (Hashimoto
etal. 2011). Another typical HRC method in construction is to lead
the robot by putting forward physical forces on the robot itself or
the object carried by the robot, which is also fraught with safety
issues since the worker needs to intimately share the workspace
with the robot (Chung et al. 2010). Moreover, both of these tech-
niques do not take advantage of robot intelligence in reasoning and
still require human workers to continuously perform manual tasks
during the whole work process.

Human—Robot Collaborative Construction System

In order to overcome the limitations of existing HRC techniques
and allow construction workers without robot programming exper-
tise to seamlessly communicate with and intuitively operate robots
for onsite construction work, this study proposes an interactive and
immersive process-level digital twin (I2PL-DT) system for collabo-
rative human—robot construction. The human worker is responsible
for high-level task planning and supervision, and the robot under-
takes detailed workspace sensing and monitoring, path planning,
and physical execution of the work. During the work process, the
human and the robot interact through a bidirectional seamless com-
munication interface. The characteristics of the enabled collabora-
tive workflow are as follows: (1) the workspace is continuously
sensed and monitored by the robot and the information can be visu-
alized by human workers through the VR digital twin, (2) human
workers can perform high-level task planning and send task objec-
tives and commands to the robot intuitively with the VR interface,
(3) the robot can automatically develop collision-free motion plans
and demonstrate the plans to human upon receiving requests from
human, (4) human workers can preview the motion plans and
approve a desirable plan for execution, and (5) the robot can phys-
ically execute the approved plan to perform the task while the
human worker supervising the execution process in VR.

Allowing workers to interact with onsite robots from remote
locations has the potential to reduce the number of onsite workers
or facilitate their physical separation. In addition, with the help of
immersive VR, people with disabilities (e.g., wheelchair users)
can also perform construction work in collaboration with construc-
tion robots, offering potentially game-changing benefits toward
making the construction workforce more inclusive. In order to
evaluate the system and obtain feedback for future improvements,
a drywall installation case study involving imperfect rough carpen-
try (wall framing) together with a human-in-the-loop experiment
are conducted.
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HRC Techniques for Robot Operation

HRC allows humans to operate robots for task execution. Human
operators take over the decision making process and lead the robot
to adaptively execute tasks. HRC techniques can thus significantly
reduce the effort and technical challenges of preprogramming con-
struction robots to be fully autonomous.

An intuitive method of human-robot collaborative operation is
to lead the robot through physical contact, requiring human oper-
ators to apply physical forces directly to the robot or the object the
robot is carrying to guide the robot to corresponding positions
(Devadass et al. 2019; Lee and Moon 2014). The approach has sev-
eral advantages. First, the robot is carrying the workpiece so that
human workers are relieved from physical stress and can pay more
attention to the task execution details. Second, the system retains
the agility of human workers who can adapt to uncertainties such as
workpiece deviations. This type of robot for physical interaction
with humans needs to be specifically designed with safeguard func-
tions. However, working alongside construction robots can still be
dangerous since robot failures can cause serious accidents or fatal-
ities in the presence of large and heavy construction workpieces
(Sawacha et al. 1999; You et al. 2018).

Teleoperation allows the motion of human operators from re-
mote locations to be replicated on the robot in real-time (David
et al. 2014). It can protect humans from dangerous environments
and thus is popular for construction robots. The joystick is often
found convenient for navigating and thus has been widely used
for unmanned ground vehicle (UGV) teleoperation (Khasawneh
et al. 2019). In addition to navigation, joysticks serve as a device
to operate robots with higher DOFs (Jung et al. 2013). During tele-
operation, the robot working environment is captured by fixed cam-
eras or robot onboard cameras. The human operator remotely
observes the robot working environment captured by these cameras
from computer screens. As a result, operators have a limited field of
view, choices of perspective, and depth perception of the environ-
ment, leading to increased difficulty and reduced accuracy of
manipulation (Chen et al. 2007; Roldén et al. 2019).

Haptic and force-reflecting devices can reflect contact force to
the operator and provide the operator with tactile responses from
the environment (Chotiprayanakul et al. 2012). It allows contact
force control and makes teleoperation safer and smoother. Haptic
and force-reflecting teleoperation have been used in a variety of
robotized construction tasks, such as glass window panel fitting
(Chung et al. 2010) and steel bridge grit blasting (Chotiprayanakul
et al. 2012).

Robots can also be guided with human gestures from distanced
or remote locations. Some studies have used vision-based systems
to detect human gestures for robot guidance, such as hand position
tracking (Du et al. 2012) and handheld light baton detection (Yu
et al. 2014). Some studies used wearable sensors to track human
body motions. Kim et al. (2009) used inclinometers, orientation
sensors, and rotary encoders to detect human arm movement to op-
erate an excavator. Seong et al. (2019) tracked dexterous human
hand movement with gesture-controlling gloves and replicated the
movement on a robotic hand.

In addition, researchers have also developed several other types
of robot teleoperation interfaces. For example, the mobile phone
has been used to teleoperate robots via text messages (Patra and
Ray 2007) or voice commands (Kubik and Sugisaka 2001). David
et al. (2014) remotely operate the cutting head of a tunnel boring
machine with a master-slave system. With the proliferation of
smartphones and tablets, multitouch interfaces with augmented
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reality (AR) techniques have been presented (Frank et al. 2016;
Hashimoto et al. 2011). In recent years, several immersive teleop-
eration interfaces have also been developed (Whitney et al. 2018).

Although teleoperation can reduce programming workload and
protect operators from danger, it has several limitations. First, the
robot is moving at the same time while the human is operating.
While real-time operation has some benefits, it poses additional
security risks since operators have limited perception of the robot
working environment; Second, the human operator needs to deter-
mine and lead the robot through the full path of manipulation and
persistently engage in the whole work process. The human effort
could be spared to some extent by making better use of robot in-
telligence; Lastly, teleoperating construction robots with multiple
DOFs is difficult, and comprehensive training and expertise are re-
quired for human operators. Operational difficulties and safety risks
increase significantly when it comes to the case of construction ro-
bots that manipulate heavy and large workpieces.

Digital Twins in Robotics Applications

The concept of digital twins has become increasingly popular in
recent years with the growth of sensing and computing capabilities
and visualization technologies (Bilberg and Malik 2019). Digital
twins include a virtual representation of the physical world that
contains necessary and pertinent information from the physical
world. Most importantly, digital twins also include data communi-
cation capabilities that connect and synchronize the virtual world
with the physical world and exchange information between them
(Deng et al. 2021). Such communication capabilities differentiate
digital twins from 3D simulations and are inevitable elements of
digital twins (Grieves 2014; Wang et al. 2017).

Digital twins have been used for several robotic applications in
the manufacturing industry. For example, Kuts et al. (2019) pro-
posed an industrial digital twin to program motions for an industrial
robot arm to repeat in a real manufacturing process. Bilberg and
Malik (2019) used a digital twin-based simulation for dynamic task
sequence arrangement and allocation between a human and a robot
in an assembly cell. Digital twins have also been used for HRC
assembly system validation (Malik and Brem 2021) and safety pro-
tection while humans shared workspace with robots (Maragkos
et al. 2019). Liang et al. (2020b) also developed a synchronization
system to connect construction robots and digital twin simulations.
However, the application of digital twins to construction robots is
still limited.

Immersive AR, VR, and Mixed Reality Technologies
in HRC

With the emergence of low-cost commercial immersive devices,
immersive technologies, including AR, VR, and MR, have been
introduced to facilitate HRC from different aspects, including robot
teleoperation (Sukumar et al. 2015; Whitney et al. 2018), joint an-
gle control (Kuts et al. 2019), task objectives specification (Rolddn
etal. 2019; Wang et al. 2020b), trajectories planning (Kyjanek et al.
2019), and robots’ intention indication (El Hafi et al. 2020; Walker
et al. 2018).

Immersive technologies have also been utilized to study HRC in
the construction industry. In a beam welding task, AR was used to
show target welding positions so that the human operator can adjust
the beam position for robotic welding (Tavares et al. 2019). Several

visualization, design, safety, and training purposes (Li et al. 2018;
Liu et al. 2020). Zhou et al. (2020) used VR-based robot teleop-
eration for civil engineering applications. However, the application
of immersive technologies for construction robot operation is lim-
ited in practice.

Comparison of I2PL-DT and Existing Studies

An efficient HRC system for construction must possess the follow-
ing properties: first, human workers should be able to assist onsite
construction robots to overcome loose tolerances and design devi-
ations through effective guidance, instructions, and communication
mechanisms; second, the system should relieve human physical and
mental effort by transitioning the role of human workers from
physical task performers to robot supervisors; last but not least,
the system should ensure the safety of both human workers and
construction site property with safeguards and collision avoidance
mechanisms.

Based on the nature of the construction industry, we propose
seven characteristics useful for HRC systems in construction, as
shown in Table 1. The proposed characteristics include necessary
information and functions that support users’ remote interaction
with onsite construction robots. Several closely related prior studies
from a variety of applications are selected and the proposed char-
acteristics they included are summarized in Table 2. The scale of
the presented case study and the scale of objects manipulated in
each study are summarized in the last column.

Although there are several existing studies utilizing immersive
technologies or digital twins for robot operation, they cannot be
directly applied to construction projects. On one hand, most of
these systems are at a tabletop scale with a fixed robotic arm
manipulating small objects. The same HRC approaches cannot be
simply scaled up to construction tasks where both the robot work-
space and the target objects are much larger than typical human
workers. For instance, specifying the end-effector position as task
goal (Characteristic 4) or previewing trajectory line for plan evalu-
ation (Characteristic 5) is sufficient for manipulating small objects
but is not adequate when objects are large (e.g., drywall panels).
When the robot is manipulating a large object, it is critical to show
how the object will move along with the robot for human workers
during both the plan preview and execution supervision processes
(Characteristic 5 and 6) to evaluate whether there are safety con-
cerns. On the other hand, the execution process of construction ro-
bots involves significant uncertainties and less repeatability. As a
result, HRC for construction robots needs a more intuitive approach
that allows frequent human intervention rather than setting up a
series of movements for the robot to repeat over an extended period
of time, which should be considered for system design.

Table 1. Highlighted characteristics for HRC systems in construction

Number Characteristics
1 Human interaction from remote locations
2 Real-time visualization of the physical environment
(if remote)
3 Augmented information useful for supervision purpose
4 Hierarchical task planning (high-level human task planning

and improvisation and low-level robot automation for
detailed motion plan)

studies have been conducted to study construction workers’ reac- 5 Robot motion plan preview and evaluation N
tions when they share the workspace with robots in order to develop 6 Real-time robot execution process and status supervision
safe HRC mechanisms (Kim et al. 2015; You et al. 2018). There are 7 B flrtecnonal communication between the human and the
extensive studies in construction using immersive technologies for rovo
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Table 2. Prior studies characteristics summary
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Prefabrication

(small)

Yes

Directly

Trajectory line

Work progress, detailed

robot status

AR

Kyjanek et al. (2019)

Tabletop (no)

Yes

Directly

Drag end effector

Yes

VR

Roldén et al. (2019)
Kuts et al. (2019)
Ong et al. (2020)

Frank et al. (2016)

Tabletop (no)

Yes

Robot synchronization

Directly

Robot movement

Specify end effector

Detailed robot status
Plan assistance

Yes

VR

Tabletop (small)

Yes

Select workpiece feature
Drag block on tablet

AR
MR

Tabletop (small)

Directly

Estimated object pose

Tabletop (small)

Yes

Directly through camera
With teleoperation

Actual and target position

Stereo vision

Yes

AR
VR

Sukumar et al. (2015)
Zhou et al. (2020)

Cichon and

Tabletop (small)

Yes

Virtual screens

Yes

Tabletop (small)

Yes

Detailed robot status

Point clouds +

Yes
models

VR

Robmann (2018)
This study

Drywall

Yes

Robot + object

Robot + object
movement

Object target pose

Workspace BIM,

Point clouds +

Yes

VR

Installation (large)

synchronization

high-level robot status

meshes + models
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It should be noted that these HRC systems are highly config-
urable and customizable. Characteristics are implemented differ-
ently in each study depending on their scale, applications, and
focus. Take Characteristic 3 as an example, previous studies
mainly show augmented information such as detailed robot status
(e.g., joint angle), work progress (e.g., progress percentage), or
object-related information. This study focuses on providing more
intuitive high-level robot status (e.g., motion plan found) and
environment-related information that facilitates human inspection
and supervision. For Characteristic 2, this study combines 3D
building information modeling (BIM) models, reconstructed 3D
meshes, and point clouds to enable real-time visualization while
reducing computational resources. We used markers for Character-
istic 1 to show whether the system allows remote operation and
Characteristic 7 since the content of bidirectional communication
varies depending on the system needs.

In an effort to remedy the identified gaps in knowledge and
current capabilities, the objective of the presented research is to
develop an HRC system that is capable of conducting construction
tasks with large involved objects and can offer interactive commu-
nication abilities to construction workers without robot program-
ming expertise. Toward this end, an I2PL-DT HRC construction
system that covers all seven characteristics is proposed.

Technical Approach

System Overview

The proposed I2PL-DT system integrates an immersive VR in-
terface for human interaction, middleware for computation and
communication, and a robot operational environment (ROE) for
sensory data collection and construction task execution. The sys-
tem framework is presented in Fig. 1. The immersive VR interface,
developed on the Unity platform, allows users to interact with
robots remotely with an augmented telepresence experience. The
ROE is the construction environment in which the robot performs
tasks. It consists of the robot, construction workspace, and sensors
in the environment. The immersive VR interface is connected to
the ROE via the robot operating system (ROS) as the middleware
(Quigley et al. 2009). The middleware acts as the bridge between
the human and the robot in ROE. It receives and processes data
from both the immersive VR interface and the ROE, performs com-
putation based on the information presented, and publishes proc-
essed data to corresponding clients.

The general system workflow is shown in Fig. 2, in which the
roles of the human and the robot (i.e., middleware, sensors, and the
real robot in ROE) are illustrated. Workspace sensing and monitor-
ing are conducted as the system is initiated. The as-built workspace
environment and robot states captured by the sensors in the ROE
are processed by the middleware and sent to the VR interface con-
tinuously to be relayed in the human view. The human can perform
site inspection by comparing this as-built workspace geometry with
the as-designed BIM model in VR and based on this inspection
perform high-level task planning to make decisions on work se-
quence, object to manipulate, installation position, and other tasks.
High-level planning is achieved by interacting with objects and the
information dashboard (billboard) in VR. At this stage, the human
can test and compare different options without physical stress or
risks from repetitively manipulating heavy construction materials.
The user can confirm the task plan and send it to the middleware if
satisfied.

The middleware processes the high-level task plan into specific
goals for robot motion planning. The motion planner of the robot
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Fig. 2. System workflow and human-robot roles distribution.

then generates several collision-free motion plans to achieve the
goals. In the meantime, the human can visualize the planning status
messages of the robot from the billboard in VR. The motion plans
are converted into robot states and published to VR for demonstra-
tion while the human previews and evaluates the plans on the
virtual robot model. The motion plans are shown as full-scale real-
istic animations showing the robot and object movements that will
happen at the execution stage. After viewing the motion plan,
the human can approve the plan if satisfied or request a new plan
demonstration.

At the same time, the middleware is notified of which motion
plan has been approved by the user. It starts to control the real robot
in the ROE to execute the approved motion plan. Joint states of the
real robot are continuously captured by the encoders on the robot
actuators and sent to the middleware, which are then relayed to the
VR interface. Another virtual robot in VR synchronizes its joint
states with the real robot in the ROE in real-time based on the state
messages received. Therefore, the human can supervise the real ro-
bot states as it executes the task. In addition, the human can also
obtain robot execution status messages from the billboard in VR.

In the remainder of this section, the technical approaches for
developing the immersive VR interface and middleware are dis-
cussed in detail. The establishment of the ROE varies case-by-case
and thus is discussed later in the case study.

Immersive VR Interface

This study uses an immersive VR interface for several reasons.
First, compared to AR and MR, immersive VR allows users to
be present at remote locations away from the construction site,
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something that is particularly helpful to reduce construction site
congestion and improve safety. For example, it can facilitate social-
distancing requirements during periods such as the Covid-19 pan-
demic without compromising the progress of the work. Second,
immersive VR provides realistic experiences to users. The human
operator can navigate in the immersive VR environment and can
observe objects from different perspectives just as they would do
in the real world. This overcomes the limited field of view and
depth perception of traditional teleoperation approaches and pro-
vides freedom for human operators to easily switch observation
perspectives (Chen et al. 2007; Roldan et al. 2019). Furthermore,
users can overcome some constraints of the real world within im-
mersive VR. For example, users can defy gravity to “fly” near the
roof or move construction materials around without being encum-
bered by their physical weight. They can also receive augmented
information that cannot be directly obtained from the real world.
Studies also show that the robot operator’s situational awareness
is improved while working in VR (Rolddn et al. 2017; Ruiz
et al. 2015).

Immersive Virtual Environment Construction

The immersive virtual environment (IVE) is the digital twin of the
ROE, where the users can perceive real-time construction work-
space conditions, robot states, and augmented information such as
the as-designed building geometry from remote locations. It con-
sists of a virtual construction environment and two full-scale virtual
robots (Fig. 3). One robot demonstrates the motion plan to the
user, referenced as the “planning” robot in the rest of the paper
[Fig. 3(a)]. The other robot, referred to as the “execution” robot
[Fig. 3(b)], is synchronized with the actual robot [Fig. 3(c)] so that
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the user can supervise the actual robot’s execution process. The
robot digital model, represented in URDF format, has the same size
and configuration as the actual robot. It is first loaded in ROS and
then transferred to VR via the ROS# library to be loaded as a game
object. The VR robot models preserve the kinematic properties of
the actual robot and can be controlled by subscribing messages
from the middleware.

Some studies used 3D computer-aided design (CAD) building
models, such as BIM, as VR construction environments (Du et al.
2018). It can be loaded into IVE conveniently. However, this
approach does not reflect the latest construction site conditions
because the as-built structure may deviate from the design. It also
cannot capture the moving workers and temporary equipment and
structures onsite during the construction process, which should be
considered for task planning. Point clouds of real-time construction
site conditions can be captured using laser scanners or depth cam-
eras, but it is expensive to render large point cloud data in VR be-
cause of its high refresh rate (Fang et al. 2016). Wang et al. (2019)
generated BIM models from point clouds, which can be imported
into the IVE. However, the dataset labeling and training processes
consume significant resources.

In order to visualize actual construction site geometry in near
real-time [i.e., with minimal delays caused by automatic data
processing and electronic transmission (US DOD 2005)] while
reducing the computational load and time delay, this study pro-
poses a hybrid approach to create the IVE of the construction site.
Components in the construction environment are first grouped into
three categories, noncritical components, already-built structures,
and dynamic objects, as shown in Fig. 4. Noncritical components
indicate objects outside the robot workspace (e.g., walls outside
the workspace) or components inside the robot workspace but
with limited deviations from the design that do not affect the
user’s decision making or robot’s operation processes (e.g., ground
floor). For noncritical components, their as-designed BIM is di-
rectly used in the VR scene as a realistic working environment
for the user.

Already-built structures are static building components or tem-
porary structures inside the workspace (e.g., columns and form-
work) that are closely related to the user’s decision making or
robot operation process. The as-built geometry of these structures
is captured by depth cameras or laser scanners onsite as point
clouds. The point clouds are reconstructed into 3D meshes in the
middleware and sent to the immersive VR interface via ROS# to be
loaded as scene objects in IVE (Bischoff 2020). The reasons for
converting point clouds of already-built structures into 3D meshes
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Non-critical components
e.g., walls outside
workspace, ground floor materials braces

Dynamic objects
e.g., workers, equipment,

Already-built structures
e.g., wall frame, formworks,

Fig. 4. Hybrid IVE construction.

are two-fold. First, it could significantly reduce the system compu-
tational load of refreshing large-size real-time point cloud data
at every frame. Second, it allows colliders to be added onto the
already-built structures for collision avoidance during the high-
level task planning process. Their BIM is also loaded into the IVE.
However, these models are set as semitransparent and are only used
for visualization purposes to show users any discrepancies between
the as-designed and the as-built structures.

The dynamic objects include human workers and moveable
equipment that might intrude into the robot workspace and ob-
stacles that temporarily stay in the robot workspace, which will af-
fect human decision making and robot operation. It is critical to
track these objects in near real-time because they may be present
and move in the robot workspace at any time. Once dynamic ob-
jects appear in the robot workspace, their point clouds captured by
depth cameras or laser scanners onsite are rendered in the VR scene
so that the user can view construction environment conditions in
real-time.

In the proposed approach, the categories of the components are
decided by manually defining regions or selecting components.
However, the proposed framework can be integrated with building
components detection and recognition algorithms (Bassier et al.
2019; Sharif et al. 2017; Wang et al. 2020a) to automatically detect
and classify components from point clouds into proposed catego-
ries. In addition, the greedy projection triangulation algorithm
(Marton et al. 2009) has been used for point cloud 3D reconstruc-
tion. Nevertheless, other point cloud reconstruction approaches
could be used based on the needs of different cases.

VR Interface Development
The immersive VR interface acts as a visualization tool for the
augmented telepresence experience, a planning tool for users to
perform high-level task planning, and a supervision tool for robot
motion plan evaluation and real-time status supervision. It contains
several interactive elements for the user to perform task planning,
guide the robot, and receive information. One of them is the mes-
sage display media. It shows instructions to users and system
messages. It may contain an internal user interface (e.g., buttons
and sliders) inside the VR scene as a supplement for handheld con-
trollers to provide the user with additional functions sending com-
mands and interacting with the system.

The interface also includes some task-specific interactive ele-
ments as part of the VR scene. For example, for the pick-and-
place related construction activities (e.g., assembly, installation),
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Carry object in 1:1 scale scene  Carry object in compact scene
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(d)

Fig. 5. Immersive VR interface interaction features: (a) scene scale adjustment; (b) elevation adjustment; (c) collision warning; and (d) material

access sequence control.

the construction objects to be placed (e.g., bricks, panels) are
included as interactive game objects in the VR interface. These
interactive materials are of the same size and position as the actual
construction materials onsite and can be grabbed, moved, and sus-
pended in the air based on task needs. Users can use these ele-
ments to perform high-level task planning, indicate task goals, and
guide the robot.

Several features have been developed in the interface to facili-
tate decision making and interaction processes (Fig. 5). The first
feature is scene scale and viewpoint elevation adjustment. The users
are given the ability to adjust the scene scale to be larger or smaller
than the real world with handheld controllers during the interaction
process [Fig. 5(a)]. The contracted scene can be used for general
planning and supervision, while the enlarged scene can be used
for detailed inspection and material pose fine-tuning. Furthermore,
the user can adjust the elevation of their viewpoint to move around
at any desired elevation to obtain an overview of the construc-
tion environment and inspect the geometry from the roof level
[Fig. 5(b)].

The second feature is collision avoidance and checking.
Colliders are added for the interactive construction materials, BIM
models of noncritical components, and the 3D meshes of already-
built structures. It provides collision protection at the user high-
level planning stage because the user cannot place the construction
materials in collision with the built structures. In addition, when
users place the construction materials in collision with the dynamic
objects, the part of the point cloud with collision will change its
color as a warning. As shown in Fig. 5(c), the interactive construc-
tion material (wood panel) that the user is holding in hand collides
with the point cloud of stacked boxes. As a result, the part of the
point cloud that collides with the panel changes its color from blue
to yellow.

The third included feature is material access sequence control.
Following the practical convention, the system only allows the user
to interact with materials stacked on the surface [Fig. 5(d)]. Once
the material on the surface is removed, the material lying under-
neath is then set to be interactable. It should be noted that although
this paper mainly discusses pick-and-place related cases, the sys-
tem can be generalized to many different types of construction tasks
(e.g., nailing, joint filling) after configuration.
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Middleware

ROS is used as the middleware for the proposed system, which is an
integrative open-source robotic software framework (Quigley et al.
2009). It supports and can communicate with a variety of sensors,
hardware, and robots. However, it is impractical for construction
workers without robot programming expertise to operate robots
directly through ROS. One of the reasons is that ROS is developed
as a tool to facilitate robot programming. Although some software
libraries in ROS provide operator interfaces, their availability and
functionality are limited (Roldan et al. 2019). It is insufficient and is
not intuitive to use when it comes to complex construction tasks
that typically involve several procedures and objects. Therefore,
in our framework, ROS is utilized as the middleware for commu-
nication between the human and the robot, robot motion planning,
sensor fusion, and robot control. In this section, the techniques to
establish the communication framework and conduct robot motion
planning and robot control are introduced. Sensor fusion varies
case-by-case and thus is discussed later in the case study.

Communication

The immersive VR interface and middleware communicates by
exchanging ROS messages, including a variety of formats based on
message types. The communication is established using ROS#,
which is an open-source library developed for connecting ROS
and Unity (Bischoff 2020). ROS can exchange messages with ro-
bots and their embedded sensors and environmental sensors with
the MQTT communication protocol (Liang et al. 2020b). ROS can
also communicate with robotics simulation software if ROE is
in simulation. For example, an open-source meta-package, gazebo_
ros_pkgs, can be used to exchange messages between ROS and the
robot and sensor emulators in the Gazebo simulator (ROS Wiki
2020).

Robot Motion Planning

The motion planning method discussed in this study is based on
the mobile industrial arm manipulator, which is a general case for
construction robotics. Industrial robotic arms offer high DOFs and
have high flexibility to be configured for a variety of complex con-
struction tasks (Bock 2007; Liang et al. 2020a).

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2021, 35(6): 04021023



Downloaded from ascelibrary.org by University of Michigan on 09/01/22. Copyright ASCE. For personal use only; all rights reserved.

Algorithm 1: Pseudo Code for Motion Planning
Input: target T,
point cloud of dynamic objects PCLp,
robot current pose P,
intermediate carrying pose (relative to robot base) P,
Output: motion plan MP, success indicator planSuccess
if 3 PCLp then
| Save PCLp
end
if 3 Plan(P to T') then
MP + Plan(P to T)
planSuccess + True //success (without moving base)
return

end

By + getBaseLocation(P)

Spr + getBaseLocations(T')

find Br in Sgr, 3 MP,, + Plan(By to Br)

if no By found then

planSuccess + False // fail (no valid base movement path)
return
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15 end

16 Py + getPose(P¢, By)

17 Pp + getPose(Pc, Br)

18 MP 4 <+ Plan(P to Pp)

19 MPp + Plan(Pr to T)

20 MP < concatenatePlan(MP 4, MP,,, MPp)

21 planSuccess + True //success (after moving base)

© ®w N o
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Fig. 6. Algorithm 1—Pseudocode for motion planning.

The motion plan is considered separately for the robot mobile
base and the robotic arm. The robotic arm movement is given a
higher priority than the mobile base movement. In other words,
the robot will only move its base if its arm cannot directly find
a motion plan to reach the target position from the target base
location. This setting aims at reducing the localization error
caused by frequent robot base movement. The robotic arm motion
plan is generated by Movelt (Chitta et al. 2012). The point cloud
sensing data of the environment is processed into a 3D occu-
pancy grid map with Octomap for collision avoidance (Hornung
et al. 2013).

The task plan received from VR is first converted into the cor-
responding robot end-effector pose in ROS. Then, the Open Motion
Planning Library (OMPL) (Sucan et al. 2012), which integrates
several cutting-edge sampling-based motion planning algorithms,
is used together with the Flexible Collision Library (Pan et al.
2012) to generate kinematics (i.e., position, velocity, and acceler-
ation) of each joint to achieve the goal without collision. If the robot
is carrying an object, the object is considered as part of the robot
during the motion planning and collision checking process. As a
result, both the robot and the object carried by the robot will not
collide with the environment or with each other. The motion plan is
only considered to be successful if it is collision-free.

The algorithm for motion planning is shown in Fig. 6. After
receiving the target T, the robot first checks whether there are any
dynamic objects in its workspace by checking if there are point
clouds other than the ones that represented the already-built build-
ing structure. If any point cloud of dynamic objects PCLy, is de-
tected, the system will save it for future comparison at the execution
stage. Then, the robotic arm attempts to find a motion plan MP to
reach T from its original base location By (i.e., location of its base
stays at without moving). If the robotic arm cannot find a plan after
several attempts, it will try to move its base to a target base location
By while holding the arm at an intermediate object carrying pose P,
(Fig. 7). The user can define the criteria to determine a set of By
options Sgr, which may contain one or multiple By near the target.
For example, in our system, it is the nearest available location to the
target on a specific path.
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(a) (b)

Fig. 7. Example of intermediate carrying pose: (a) without object; and
(b) with object.

First, the robot checks whether there is a valid pathway to move
its base from B, to By. For robots that move forward and backward
along a straight line, this process can be achieved by setting a
bounding box along the robot pathway and checking the occupancy
within that bounding box using point clouds captured by onsite
depth cameras. For robots that can move around the workspace
freely, more advanced path planning algorithms like Dijkstra’s
Algorithm are needed to find a valid path (Dijkstra 1959). If multi-
ple B options are determined, the robot will attempt all the poten-
tial options in Sy until a valid pathway is found.

Once a valid pathway from B, to By is found, the robotic arm
will generate its motion plan MP,4 to move to the intermediate car-
rying pose Py (i.e., P. with the base at By) in preparation for the
base movement. It will then generate another motion plan MPp
from the intermediate carrying pose Py (i.e., P, with the base at
By) to T. These two robotic arm motion plans, together with
the robot base movement plan MP,,, are combined into the robot
final motion plan MP.

The system can generate and save several motion plans. The
user can specify the cost functions (e.g., time duration) to sort mo-
tion plans so that the plans can be demonstrated within a certain
order (e.g., time duration from short to long) in the VR interface
based on users’ preferences. To view the arm plan in VR, we extract
discrete joint states from the generated motion plan and publish it
to VR at its timepoint specified in the motion plan to move the
“planning” robot in VR. For the mobile base movement plan visu-
alization, we simulate the base movement plan in the middleware
by selecting discrete location points along the base movement path,
publish it to VR at a given frequency, and have the “planning” robot
move to certain points while maintaining its arm pose as the inter-
mediate carrying pose.

Robot Control and Execution

The approved trajectory plan is converted into robot control com-
mands with the ros_control package, which generates output to real
robot actuators with PID controllers according to the motion plan
(Chitta et al. 2017). When the robot is executing the task, joint
states and location data from the encoders of the robot actuators
are obtained and sent to VR. As the “execution” robot in VR re-
ceives the data, it adjusts its joint states and location to synchronize
itself with the real robot.
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The construction environment is relatively open and dynamic.
Even though the robot is not designed to share the workspace with
workers and other moveable equipment, they may still acciden-
tally intrude into the robot workspace. Therefore, instead of
blindly following the trajectory approved by the user in VR, safe-
guard functions are needed during the execution process to pre-
vent accidents.

As mentioned, at the start of the planning stage, the point cloud
of the dynamic objects is saved for future use. These objects are
considered for collision avoidance during motion planning. There-
fore, it is acceptable if the objects stay at the same place during the
execution process. However, if point clouds other than the previ-
ously detected ones are detected in the workspace, it means that
either the workspace is intruded upon or the previously detected
objects are moved after planning. As soon as an intrusion is de-
tected, the robot will stop emergently. The user can inspect the site
condition and request the robot to replan its motion based on the
latest environment. If the robot workspace is very large, it can be
separated into different areas. The robot will only stop if a certain
area is intruded upon. In addition to the system safeguard functions,
the user has the privilege to stop the robot with the handheld con-
troller at any time.

Case Study and Experiments

A drywall installation case study involving imperfect rough carpen-
try (wall framing) is used to demonstrate the proposed I2PL-DT
HRC system. For some complex systems, there are several distinct
and interdependent technologies and subsystems that need to come
together before the system can be computationally analyzed or ap-
plied in real world settings. For example, a variety of technological
advancements (e.g., perception, localization, hardware design) are
needed for a construction robot to successfully perform construc-
tion activities onsite (Lundeen 2019). Instead of attempting to ad-
dress all these challenges at once, we focus on verifying that the
proposed I2PL-DT system framework and its associated modules
allow human workers to interact with and collaboratively perform
construction tasks with the robot; as well as receiving feedback to
further improve our system in the future.

The use of virtual simulators such as ROS Gazebo is the first
step of evaluating the feasibility of this new method as indicated
by several existing studies such as Lin and Berenson (2016) and
Murali et al. (2020). Gazebo is a robotics simulator with a robust
physical engine that allows rapid prototyping of robotic tasks and
direct subsequent transfer of the methods to the corresponding real
robotic platforms (Koenig and Howard 2004). When connected
with ROS, Gazebo is capable of communicating with real physical
robots with high accuracy. It has been demonstrated that a real
KUKA KR120 robotic arm can be synchronized with its emula-
tor in Gazebo with average errors of each joint angle less than
2.4 x 107 in radians (Liang et al. 2020b). In addition, Gazebo
allows emulation of unstructured and dynamic construction site
conditions such as generating dynamic objects, which would be
especially useful for offline system testing before physically de-
ploying the system on actual construction sites. Therefore, the case
study utilizes a 6DOF KUKA industrial robotic arm emulator
mounted on a tracked mobile robotic platform, which is capable of
construction work. The ROE, including the construction site, sen-
sors, and the robot, is emulated in Gazebo.

With the focus on demonstrating the interaction framework be-
tween the human worker and the robot, three assumptions are made
and considered reasonable because they have already been exten-
sively studied in the literature. First, the case study assumes
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accurate registration of the IVE and ROE (Feng et al. 2015). Sec-
ond, it is assumed that the construction materials are firmly placed
(i.e., no sliding) and their placement locations are known (Son et al.
2010). Third, we assume the robot can accurately localize itself
onsite (Lundeen et al. 2017; Xu et al. 2020).

Verification is defined as the “process of evaluating a system
or components to determine whether the products of a given devel-
opment phase satisfy the conditions imposed at the start of that
phase” (IEEE 2017). It involves special tests to model a subsystem
(e.g., developing scenarios as proof-of-concept implementation) or
using repeating tests to ensure the system meets initial design re-
quirements. For an interfacing system like the one proposed in this
study, proof-of-concept implementation is used as verification to
confirm that all the modules of the proposed system can work well
with each other to reach the goal (Ge and Kuester 2015; Kim et al.
2012, 2021; Kurien et al. 2018). Some studies also conducted user
tests as the preliminary usability study (Akanmu et al. 2020; Chen
et al. 2016; Mantha et al. 2020; Quintero et al. 2015). In this study,
we presented three scenarios from the drywall installation case
study as proof-of-concept implementation. The drywall installation
system setup and the technical details of the three scenarios are
discussed in depth. A human-in-the-loop study with 20 subjects is
also conducted as the preliminary usability study of the system, in
which the subject guides the robot to pick up different types of dry-
wall panels stacked on the ground and places the panels on a wall
frame which is built with deviations from design. Feedback and
suggestions from human subjects are used for system evaluation
and to propose future improvements.

Digital Twin Environment Setup

We emulated the ROE in Gazebo [Fig. 8(a)]. An imperfect wall
frame with a window opening has already been constructed. A few
pieces of drywall panels in three different sizes are stacked near the
wall frame. A robotics arm emulator on a tracked mobile robotic
base is ready for conducting the work. The environment also con-
tains a few Microsoft Kinect camera emulators, which are fixed at
certain locations, facing the wall frame and the robot.

The VR digital twin of the ROE is created in Unity [Fig. 8(b)].
Some stacked drywall panels of the same size and position as the
ones in the ROE are created as interactive construction materials,
which will be used for high-level task planning and robot guidance.
Only the pieces sitting on the top of each stack are activated to be
interactable. As the top one is removed, the interactivity of the piece
below is activated.

An interactive billboard is developed as an integration of the
display media and the internal user interface. The interactive bill-
board can be separated into three functional zones, as shown in
Fig. 9. The upper zone is used to display augmented robot status
messages (e.g., robot planning) and instructions to users (e.g., robot
needs to pick first). The middle zone is the function panel. It pro-
vides some functions to facilitate user’s interaction with the VR
scene. The function provided by each button in this panel is sum-
marized in Table 3. The bottom zone is the command panel for the
user to send instructions to the robot. It consists of four buttons,
“Pick,” “Place,” “Hold,” and “Release.” The detailed usage of these
buttons is introduced along with the scenarios in the following
subsections.

Sensor Fusion

The type and number of sensors to use and their placement should
be decided according to the environment and the type of work the
robot will conduct. The sensors should be able to provide sufficient
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Fig. 8. Digital twin environment settings: (a) robot operational environment; and (b) immersive VR environment.

Robot status

message Robot Planning

Function Panel

Fig. 9. Interactive billboard functional zones.

Table 3. Buttons on the functional panel

Button Function

Rotate Open a new page with options to snap the target panel
orientation along the X-, Y-, and Z-axis to certain
angles quickly and accurately.

Snap Snap the target panel to be side by side and at the
same orientation with a designated previously
installed panel.

Align Show highlighted vertical lines from each corner of
the drywall to the ground panel for users to check
panel alignment with the wall frame.

Rescale Quickly rescale the VR scene back to a 1: 1 scale.

information to support human high-level planning, robot trajectory
planning and collision avoidance, and any customized functions
to achieve the specific goal of the system. In our case study, four
Microsoft Kinect depth cameras are used to visually capture the
drywall installation workspace in Gazebo. We chose Kinect since

the work is done indoors and Kinect offers acceptable performance
under such conditions. They are fixed in the construction environ-
ment instead of being installed onboard the robot because the views
of cameras mounted on the robot can be easily occluded when the
robot is carrying large construction objects. In addition, fixed cam-
eras have lower noise compared to cameras mounted on robots.
While depth cameras such as Kinect have relatively lower costs,
their performance is limited in outdoor environments because they
use infrared sensors to capture depth data and have limited meas-
urement ranges (Liu et al. 2019). Therefore, for outdoor construc-
tion tasks or large robot workspaces, 3D laser scanners or stereo
cameras that have larger measurement ranges and better outdoor
performance should be considered for point cloud capture
(Wang et al. 2020a). The process of sensor data processing is
shown in Fig. 10.

First, the RGB and depth images captured by each Kinect
camera are converted into point clouds and concatenated into a
single point cloud. The point cloud is downsampled with the voxel
grid filter [Fig. 11(a)]. The downsampled point cloud is then sent to
Movelt and goes through the self-filtering process. Self-filtering
removes the points that represent the robot itself [Fig. 11(b)]. The
ground plane, stacked drywall panels, and Kinect cameras installed
onsite are added as collision objects in Movelt. As a result, they are
considered for collision checking, but their point clouds are re-
moved by self-filtering.

The point cloud after self-filtering is converted into a 3D occu-
pancy grid map using Octomap for collision avoidance during mo-
tion planning (Hornung et al. 2013). After that, a PassThrough filter
is used to separate the point cloud of the already-built structure
[Fig. 11(c)], which is then converted into a 3D mesh with the
greedy projection triangulation algorithm (Marton et al. 2009) and
sent to Unity, and dynamic objects [Fig. 11(d)], which is sent to
Unity for visualization after further downsampling and updates in
real-time. The point cloud for dynamic objects is also used to detect
workspace clearance.

3D Mesh

? —-I Concatenation |—-| Downsample |—-[ Self-filter

PassThrough
Filter

Cameras

Downsample

Collision
Checking

Fig. 10. Sensor data processing.
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Experimental Verification Scenarios

Working Sequence Guidance

Most construction tasks involve the installation of materials in a certain order (e.g., top to bottom, large to small). According to the wall frame
condition, the user can control the work sequence, including determining the order of conducting tasks and selecting the specific workpiece to
manipulate.

The user can aim the controller at the panel they want to install next and grab it. Then, the user can place the panel onto the wall frame at
their preferred position and orientation. The pose of the panel can be fine-tuned several times at different scene scales until the user is satisfied.
As the user confirms the task plan, the position (P') and orientation (Q’) of the target panel are sent to the middleware. After receiving the task
goal, the middleware processes the target panel pose into the target end-effector pose. The target panel pose is first converted from the VR
world coordinate (P’,Q’) to the ROS world coordinate (P, Q) with Eq. (1)

[P, P,.P,| = [P.,—Px', Py]

[QxaQy’ Q1~Qw] = [_Qzlv Qxlﬁ_Q}/'!Qvlv} (1)

It is then subsequently converted into the end-effector pose (Pg, Qr) with Eq. (2)

1-20,0,-20.0, 20.0,-20.0, 20,0, +20,0,
AP = ZQ,\‘Qy + 2Q1Qw 1 2QxQx - ZQzQz 2Qsz - 2Qwa T _?_ T (2)
2Q,\'Qz - 2Qwa 2Qsz + 2Qwa 1— 2QxQx - 2QyQy 5 2 ’
Op =0

where T, = thickness of the drywall panel; and T, = thickness of the gripper.

There are four types of instructions the user can send through
the command panel on the interactive billboard, “Pick,” “Place,”
“Hold,” and “Release.” Because the robot uses a vacuum gripper,
it does not directly reach the target end-effector pose while picking

(d)

Fig. 11. Point cloud processing procedures: (a) concatenated point
cloud; (b) self-filtered point cloud; (c) already-built structures; and
(d) dynamic objects.
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or placing objects with the “Pick” and “Place” commands. Instead,
the gripper needs to first pause at an intermediate prepick or pre-
place pose, which is 10 cm before it reaches the target. The inter-
mediate end-effector pose can also be calculated with Eq. (2) by
replacing (T, + T,)/2 with 10 cm. Then, the robot end-effector
follows the cartesian path to move from the intermediate pose to
the target. The cartesian motion is divided into several small steps
at a resolution of 1 cm. If a collision is detected before the target
position is reached, the robot will stop.

For the “Pick” command, the robot picks up the drywall panel as
soon as it reaches the target or the collision point. For the “Place”
command, the robot will wait until the user presses the “Release”
button to release the drywall panel from the end-effector, indicating
that the user confirmed the drywall was secured (e.g., screwed or
nailed) and is safe to release. For the “Hold” command, the robot
directly moves to the target (without pausing at the intermediate
pose) and waits for another command before taking any action.

By repeatedly specifying target panels, installation positions,
and guiding the robot through the pick-place or pick-hold-place
installation process, the user can collaboratively work with the ro-
bot to complete a series of construction activities in a specific work
sequence. The snapshot graphs in Fig. 12 show the work sequence
guidance process of installing four drywall panels onto the wall
frame. The yellow arrows point to the human-specified targets,
which provide information in terms of types of panels and the target
installation positions at this step. The four figures in each step show
the real robot in ROE and the virtual VR robot picking up the
corresponding panel and placing it in the target position.

Optimal Motion Plan Selection

Although OMPL can plan trajectories for the robot to reach
the target, it does not guarantee that the trajectory is optimal.
Therefore, the proposed system requires the middleware to generate
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Fig. 12. Work sequence guidance process demonstration.

multiple motion plans and allows the user to select the most desir-
able plan after viewing generated plans in VR.

The robot motion consists of several planning stages. Prepro-
cessing is needed so that entire planned motions can be viewed
by the user before the actual robot can take any action. This de-
pends on the type of command the user gives and whether the robot
base movement is needed, as shown in Table 4.

Since the processes for MoveBase and CartesianMotion are
relatively monotonous in this case study, multiple motion plans
are developed for ArmToCarryPose and ArmToPrePick/Place/
Hold stages only. For each of these stages, five stage-level motion
plans are generated. After concatenating stage-level plans into en-
tire motion plans that cover all needed stages, four entire motion
plans with the shortest time durations are saved. The entire motion
plan with the shortest time duration is demonstrated to the user
first. If the user is satisfied with the plan, they approve it by press-
ing a controller button and the robot will execute the plan.

Table 4. Motion plan preprocessing for visualization in different situations

Otherwise, the next plan, the one with the second shortest time
duration is demonstrated, and so on. Fig. 13 shows the snapshots
of robot execution supervision processes for the different stages of
picking operation with the temporal order from left to right. The
description of each stage is given at the bottom. The execution
robot the user sees in VR is synchronized with the real robot
in ROE.

Trajectory Guidance with Intermediate Object Poses

The construction environment presents more challenges to the ro-
bot motion planning process than ordinary robot working environ-
ments because of its complexity. Therefore, the motion planner
might fail to develop a motion plan or the robot might be stuck
at some locations even if a valid trajectory exists. Even though
in some situations the robot can find valid motion plans, the user
may have preferences for the robot to perform the task in a spe-
cific way.

Base Command Planning stages

Move base Pick ArmToCarryPose + MoveBase + ArmToPrePick + CartesianMotion
Place ArmToCarryPose + MoveBase + ArmToPrePlace + CartesianMotion
Hold ArmToCarryPose + MoveBase + ArmToHold

Not move base Pick ArmToPrePick + CartesianMotion
Place ArmToPrePlace + CartesianMotion
Hold ArmToHold
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Fig. 13. Robot execution processes demonstration: (a) arm to carry pose; (b) move base; (c) arm to prepick; and (d) cartesian motion.

Some existing studies allow users to guide the robot by speci-
fying end-effector paths or waypoints (Fang et al. 2012; Ong et al.
2020). However, it is very challenging for users to specify collision-
free paths or waypoints when the manipulated object is large and
the workspace is complex. In addition, paths and waypoints only
possess the end-effector position information. When the object is
large, its orientation on the trajectory is also important and can
make a notable difference. Therefore, in the proposed system, the
user guides the robot by specifying the intermediate object poses on
the trajectory. The user sets the poses by placing the interactive
drywall panels at desired positions and pressing the “Hold” button.
The robot carries the panel to the intermediate poses and holds the
panel to wait for another command. Multiple intermediate poses
can be specified to guide the robot trajectory step by step. Fig. 14

Intermediate object poses ROE

demonstrates the process that the user guides the robot trajectory in
four steps from top to bottom. In each step, the user specifies an
intermediate object pose (Target 1-3) by placing the virtual panel
and finally guides the robot to the final installation target.

Human-in-the-Loop User Study

We conducted a human-in-the-loop user study as a preliminary us-
ability test of the [2PL-DT system on collaborative human—robot
construction work and to receive feedback and suggestions for
future improvements. There were 20 subjects recruited to perform
the drywall installation task with the proposed system. The main
objective of the user study is to verify that subjects who were not
involved in the system development process and unfamiliar with

Robot execution VR

/ final target

Fig. 14. Trajectory guidance with intermediate object poses.
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the system’s technical background can successfully use the system
to collaborate with the robot and achieve task objectives. Following
the drywall installation task, a survey is carried out to collect
user feedback for improving the system functions and interac-
tion design. The survey supports three main functions: (1) evaluate
the general usefulness, effectiveness, and understandability of the
system, (2) assess system functions and user experience with the
VR interface, and (3) elicit user feedback and suggestions. In this
section, the experimental protocol is introduced and the quantitative
ratings from users are analyzed according to their feedback and
suggestions.

Experimental Protocol

The experiments were conducted one subject at a time in a univer-
sity research laboratory following all health-informed safety guide-
lines in place at the time on account of the Covid-19 pandemic. The
experimental protocol was approved by the Institutional Review
Board at the University of Michigan. There were 20 subjects,
eleven female and nine male, who were recruited and completed
the experiment. Several prior studies have invited college students
to test a system at its prototype stage to assist with system verifi-
cation and design (Akanmu et al. 2020; Chen et al. 2016; Mantha
et al. 2020; Quintero et al. 2015). Since the VR interface of the
proposed system is fundamentally different from the traditional
drywall installation approaches, we invited graduate students, who
have basic knowledge of visualization and are more familiar with
gaming and computer technologies, as the users for our study at this
stage. Most subjects have civil engineering, construction, and/or
robotics backgrounds, and they were introduced to the basic dry-
wall installation knowledge at the start of the experiment. This
allows for minimal training time before they can perform the re-
quested task.

The timeline of the experiment can be found in Fig. 15. As
the experiment started, the researcher spent 15 min introducing the
experiment to the subject and answer their questions. Next, the
subject put on the headset and completed a trial session to get
familiar with the system.

After trial, the system was reset and the subject was given
30 min to perform the main task. The environment settings of the
main task are the same as shown in Fig. 8. The subject was re-
quested to install four drywall panels vertically onto the wall frame.
Installations of the first three panels were implemented with the
pick-place approach. As the subjects got more familiar with the
system while installing the first three, they were requested to use
the pick-hold-place approach for the last panel by indicating inter-
mediate object poses on the trajectory. The subject made their own
decisions on the working sequence and the type of drywall to install
for each operation.

The subject was asked to take a survey after the main task. The
survey contained five different sections. The first section asked
the subjects’ basic information and their task completeness. In the
second to the fourth sections, subjects evaluated different aspects
of the system with a 7-point scale, where 7 represents the most
positive evaluation and 1 represents the most negative evaluation.

0= = [
I | | | I

I Introduction I Trial Main Task | Survey I

(15 min) (10 min) (30 min) (10 min)

Fig. 15. Experiment timeline.

In the last section, subjects provided written comments on the sys-
tem and made suggestions for improvements.

Results

All subjects were able to use the proposed I2PL-DT system and
take advantage of the provided system functions to collaborate with
the robot. Out of 20 subjects, 16 completed the installation of all
four panels during the 30-min main task period. In addition, 19 out
of 20 subjects successfully noticed and avoided the deviation on the
wall frame. An approximate productivity comparison between the
subjects using the [2PL-DT system and the standardized data of an
experienced carpenter (assuming they will complete the installation
by themselves) obtained from RSMeans data (Gordian/RSMeans
Data 2019) has been performed. Fig. 16 shows the cumulative time
taken to install one to all four panels with the orange line indicating
the average time taken for all subjects and the box plot illustrating
the time distribution among subjects. The standardized RSMeans
data is shown in the dark red line. The RSMeans database uses
the area of panels installed as the output to quantify productivity.
Therefore, the time required to install a larger panel is proportion-
ally longer than a smaller one. In this comparison, it is assumed that
the panels are installed in the order from larger size to smaller size
when calculating with RSMeans. While a robot performs the task,
the time taken for installing a larger and smaller panel is almost
the same, and the panels are installed with an individual subject’s
preferred order. Although it is an approximate comparison, it can
clearly show that the proposed system takes significantly less time
than traditional methods in addition to reducing the physical stress
and increasing the safety of construction workers.

In the second section of the survey, subjects gave a general as-
sessment of the system’s usefulness, effectiveness, and understand-
ability. The mean and standard deviation of ratings along with the
box plots are shown in Fig. 17. Subjects generally thought that the
system is very useful and understandable. However, the ratings of
system effectiveness are relatively lower. One of the comments we
received is that the plan preview process almost doubles the time
needed because the subjects first previewed the motion plan anima-
tion and then supervised the robot to execute the same plan.
Although safety is ensured, the subjects reflected that the pro-
cess reduces the overall equipment effectiveness and thus the job
progress is not optimal. Nevertheless, even with the plan preview
process, the approximate productivity comparison between the sub-
jects using the I2PL-DT system (9.20 m?/30 min) and RSMeans
data [6.64 m? (71.43 S.F.)/h] shows that subjects’ productivity

Drywall Installation Time Comparison
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E
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Fig. 16. Drywall installation time comparison.
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Indicator Mean SD Rating

Usefulness 6.200 0.616

Effectivenss 5.500 0.827

Undertandability 6.250 0.910 ‘ i . ' ' : .

V] i § 2 3 4 5 6 7

Fig. 17. General assessment results.

with the proposed system is highly comparable to that of experi-
enced construction workers (Gordian/RSMeans Data 2019).

In the third section, subjects evaluated different system func-
tions (Fig. 18). The functions correspond with the seven useful
characteristics for HRC construction systems (Table 1). Subjects
thought the motion plan evaluation process is clear and that they
could easily and clearly supervise real robot states with the VR
robot models. They can understand the differences between as-
designed and as-built geometry. However, they have relatively
lower satisfaction with the automatic motion plan generated by the
system since there are some unnecessary rotations on the panel that
reduce the system efficiency. Some subjects also expected the robot
to move faster.

Some subjects experienced difficulties communicating with the
robot because they were not familiar with the usage of the handheld
VR controller, especially when their eyes were covered by the VR
headset. For the information from the robot, they suggested adding
haptic and sound feedback in addition to visual messages. One sub-
ject suggested showing messages in front of the users’ view instead
of showing them on the TV screen. For the high-level task plan-
ning, a subject suggested planning the installation poses of all
four panels before the robot starts to develop the motion plan and

perform the task instead of planning and installing the panels one-
by-one. In addition, one subject suggested adding a function to
indicate whether the intermediate pose the user selected for the
robot to temporarily hold the object is valid (i.e., within the robot’s
reaching range).

In the fourth section of the survey, the subjects were asked to
evaluate their VR user experience from eight aspects. The as-
sessment results are shown in Fig. 19. The questions in this survey
are adapted from the presence questionnaire developed by UQO
Cyberpsychology Lab (UQO Cyberpsychology Lab 2004). Sub-
jects were generally satisfied with their VR experience. They indi-
cated that the interaction with the VR environment is natural and
they could well-anticipate system responses to their actions. They
could quickly adapt to the VR experience and visually search the
environment for information they need. However, some subjects
reported they experienced some difficulties manipulating the panel.
Even though they can scale down the scene, the panel still blocked
their vision to some extent because it was very close to their body
when they hold it in their hand. Haptic feedback would also be
helpful for accurate manipulation of the drywall panel. In addition,
several subjects reflected that they experienced motion sickness
after working for a while in VR and the handheld controllers were

Indicator Characteristics Mean SD Rating

Construction site condition visualization 2 5.600 0.598 [
| As-design VS. as-built 3 5750  1.164 i N B
High-level task planning 4 5.750 0.550 [
Robot automatic motion plan 4 4.900 1.518 '—::I_
Motion plan evaluation 5 6.150 0.933 —
Real robot states supervision 6 5.850 0.933 '—:D_
Communicate to robot 7 5.550 0.686 —.

[Information from robot 7 5.400 1.046 ' ' '—'L:’_

Fig. 18. System functions assessment results.

Indicator Mean SD Rating

Involvement 5.900 0.912 o I
Events control 5500  0.888 ——
Visual search 6.000  0.858 LT |
‘Movement and Manipulation 5.450 1.050 '—1:}—
[Interaction (Natural) 6.050 0.826 s —
Interaction (Overall) 5.650 0.933 s T
Concentration 5.750 0.910 ——
Adaption 6.000  1.076 o '—:I:

0 1 2 3 4 5 6 7

Fig. 19. VR user experience assessments results.

© ASCE 04021023-15 J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2021, 35(6): 04021023



Downloaded from ascelibrary.org by University of Michigan on 09/01/22. Copyright ASCE. For personal use only; all rights reserved.

not sensitive enough to show the laser pointer in some situations,
affecting their concentration and overall interaction experience.
Some subjects reported delays in graphics rendering near the end.

Discussion

Overall, subjects felt positive about the proposed I2PL-DT system
for HRC construction. In addition, the valuable feedback from sub-
jects has provided us with remarkable insights for improving the
proposed system. To reduce the work progress delay caused by
motion plan preview while ensuring safety, the motion plan dem-
onstration speed can be adjusted to be faster than the real robot’s
movement speed to save plan preview time. Another possible
solution to this problem is to offer the users the option to skip
previewing the motion plan with a disclaimer that it is better to pre-
view to ensure safety and prevent unexpected accidents. However,
the real robot’s movement speed could not be made faster because
of the hardware limitation of the robot. Several changes could be
made to improve the system experience, including adding haptic
and audible feedback to facilitate communication and improve
object manipulation, showing messages in front of the user’s view,
making the panel semitransparent when being grabbed to pre-
serve users’ vision while manipulating large-size objects, allowing
several steps of high-level task planning to be developed at once,
validating the intermediate poses for robot “Hold” operation, and
optimizing the system for fast rendering. Interface design tech-
niques should be used to reduce motion sickness. More advanced
motion planning algorithms should be developed to reduce unnec-
essary robot movement. Moreover, systematic training is needed to
get users familiar with the system before applying it to real-world
construction projects.

In addition to user feedback, the authors identify several limi-
tations to be addressed in future work. First, the robotic arm has a
fixed intermediate pose to carry the object while moving its mobile
base, which will not change during the moving process. In the fu-
ture, algorithms will be developed for the robotic arm to dynami-
cally adjust its pose according to the environment geometry while
moving the robot base. This will provide more flexibility in colli-
sion avoidance for a mobile robotic arm carrying large-size objects.

Second, the robot will follow the exact motion plan once the
plan is approved. If a new object appears in the robot’s workspace
during execution, the robot will terminate its execution and wait for
instructions from human workers for safety reasons. In future work,
the robot’s autonomy can be enabled out of human supervision to
dynamically adapt its path during execution along with the inves-
tigation of how to reduce the impact of certain autonomy on system
safety.

Third, this study assumes the material stacked position is known
to the robot. In fact, the materials stacked onsite might be moved
from time to time and the position recorded might not be accurate.
Computer vision and deep learning-based approaches can be used
for the robot to automatically detect materials.

Fourth, there will be time delays caused by point cloud process-
ing and rendering and data exchange, especially when the working
environment is large and complex. In the future, more advanced
optimization algorithms and computational power could be used
for the system to stay close to real-time for large-scale projects.

Lastly, since the main focus of this study is the system frame-
work design and its verification instead of field tests, the ex-
periments are conducted in simulation primarily to ensure user
and workspace safety in this first set of experiments. The authors
are exploring gripper hardware design that is capable of large con-
struction object manipulation (e.g., drywall panels) and improving
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the bidirectional communication for state synchronization between
the Gazebo simulation and the physical robot to experiment on real
KUKA KR120 robotic arms (Liang et al. 2020b). We will also con-
duct human factor studies and invite construction workers to use
the system to improve system design and investigate the long-term
effects of the system on workers’ physical workload, mental stress,
and job satisfaction.

Conclusions

This paper proposed an I2PL-DT system for construction workers
without robot programming expertise to remotely collaborate with
construction robots to perform construction work. The proposed
system has several contributions. First, it uses immersive VR and
proposes a hybrid approach to create an augmented telepresence
experience for the human workers while preventing them from
being exposed to potential hazards on construction sites and allows
people with physical disabilities to participate in performing con-
struction activities. Not only can workers access pertinent informa-
tion they will obtain by actually present on construction sites, but
they can also obtain augmented information that they cannot di-
rectly perceive onsite, such as the as-designed building model and
robot status information.

Second, the system provides an intuitive interface to assist
human workers to perform high-level task planning. The user can
specify task objectives by interacting with virtual objects in VR and
try different options without exerting substantial physical effort or
using up actual resources.

Third, human effort can be notably reduced since the robot is
responsible for planning collision-free trajectories after receiving
the task objectives. The user can also guide the robot to perform
the task by specifying intermediate object poses on the trajectory.

Fourth, the system enables seamless bidirectional communica-
tion between the human worker and the robot and allows real-time
robot status supervision. The human worker can easily send task
objectives or commands to the robot by clicking buttons on hand-
held controllers. It also allows supervision of robots’ intentions,
actual states, and implicit robot status information in VR.

Overall, the proposed system offers a promising approach for
construction workers to collaborate with onsite construction robots
from remote locations and demonstrates the potential of transition-
ing the role of construction workers from physical task performers
to robot supervisors, laying the groundwork for future construction
work at the collaborative human-robot frontier.
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