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Abstract

A new format for commutator-free Lie group methods is proposed based on explicit
classical Runge-Kutta schemes. In this format exponentials are reused at every stage
and the storage is required only for two quantities: the right hand side of the differential
equation evaluated at a given Runge-Kutta stage and the function value updated at the
same stage. The next stage of the scheme is able to overwrite these values. The result
is proven for a 3-stage third order method and a conjecture for higher order methods is
formulated. Five numerical examples are provided in support of the conjecture. This
new class of structure-preserving integrators has a wide variety of applications for
numerically solving differential equations on manifolds.

Keywords Geometric integration - Structure-preserving integrators - Lie group
methods - Runge-Kutta methods

Mathematics Subject Classification 65105 - 65L06 - 34C40 - 34G20 - 37M15

1 Introduction

In many scientific and engineering applications there is a need to solve ordinary or
partial differential equations numerically. A variety of methods exist and one of the
popular ones is the Runge-Kutta method [5,14]. Often, one would like to build numer-
ical schemes that preserve the structure of the original differential equations. For
instance, for free rigid body rotation the (properly normalized) vector of the angular
momentum evolves on the S manifold, i.e. the surface of a three-dimensional sphere.

Communicated by Antonella Zanna Munthe-Kaas.

B Alexei Bazavov
bazavov@msu.edu

1 Department of Computational Mathematics, Science and Engineering, Department of Physics and

Astronomy, Michigan State University, East Lansing, MI 48824, USA

@ Springer



746 A. Bazavov

It is beneficial when a time-stepping scheme maintains this property at every step of
the integration.

Ideas along these lines have been pursued over last three decades and lead to devel-
opment of geometric integrators [13], see also [8,9] for recent reviews. As argued
in [9], preservation of geometric properties is beneficial and often leads to increased
stability, smaller local error as well as slower global error growth in long-time sim-
ulations. Many applications involve differential equation on Lie groups or manifolds
with Lie group action. The first major step in building Lie group methods based on
classical Runge-Kutta schemes was taken by Crouch and Grossman [10]. Their meth-
ods require a large number of exponentials (compared to the later developments) and
introduce specific order conditions for the coefficients. Later, Munthe-Kaas [21-23]
introduced a class of integrators that involve commutators and allow one to build a
Lie group integrator based on an arbitrary classical Runge-Kutta scheme. Then Celle-
doni, Marthinsen and Owren [7] developed another class of Lie group methods that
avoid commutators which results in a different structure of the coefficients and the
order conditions that complement the classical ones. The complete theory of order
conditions for commutator-free methods was worked out by Owren in Ref. [26].

The main purpose of the present paper is to introduce a new class of commutator-
free Lie group methods that is naturally related to classical low-storage schemes of
Williamson [32] and has different properties in terms of exponentials reuse compared
to the methods available in the literature. In the way the exponentials are reused this
class of methods is also related to the multirate infinitesimal step (MIS) methods of
Knoth and collaborators [18,31]. The first instance of a method that belongs to the new
proposed class in the literature is, to the best of our knowledge, the 3-stage third-order
coefficient scheme introduced by Liischer in Ref. [19].

This paper is organized as follows. In Sect.2 we review classical Runge-Kutta
integrators including low-storage schemes, in Sect.3 we review several types of Lie
group integrators that exist in the literature. In Sect.4 we propose a new class of low-
storage commutator-free Lie group integrators with reuse of exponentials and prove
that a 3-stage scheme in the new format is of order p = 3 global accuracy. We then
formulate a conjecture about low-storage commutator-free Lie group methods with
more than three stages and of order higher than three. In Sect. 5 we provide numerical
evidence in support of the conjecture and conclude in Sect. 6.

2 Classical Runge-Kutta integrators

We first review the well-known facts about explicit Runge-Kutta integrators and low-
storage schemes and introduce the notation that will be used in the following.

2.1 Definitions and notation

Consider a first-order differential equation for a function y(z)

d
=), @.1)

@ Springer
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A standard explicit s-stage Runge-Kutta (RK) scheme' for numerically integrating
Eq. (2.1) from time ¢ to ¢ + & is [5,14]

i—1

vi=yeth) aiki ki=fO+hey), i=1s (Q22)
j=1
N

Yern =i +h Y biki. 2.3)

i=1

In the context of manifold integrators introduced later in Sect. 3 we refer to this scheme
as classical RK method. For an explicit method, a;; = Ofor j > i and self-consistency
conditions require

i—1

¢ = Z aij . (2~4)
j=1

Without loss of generality we focus on autonomous problems dy/dt = f(y).
Extension to non-autonomous problems is straightforward.

By comparing the numerical solution (2.3) with the Taylor expansion of the exact
solution y(¢ + k) around y(#) one obtains the constraints, called the order conditions,
on the RK coefficients a;;, b;, ¢; so that the RK method provides a certain order of
accuracy. For a third-order RK method the minimum number of stages is three and
the order conditions then take the following form [5,14]

1 1 1
bitby+by=1, best+bcs == byc3 + bycl = 3 bane =2 25

Given that there are six a;;, b; coefficients (the coefficients ¢; follow from (2.4)) and
four constraints (2.5) one expects a two-parameter family of solutions. Due to the fact
that ¢ and c3 enter in the constraints nonlinearly, it is customary to take c¢» and ¢3
as free parameters and in this case, there are three branches of solutions. Picking the
most generic branch ¢z # 0 # ¢3 # ¢2 # 2/3 [5] one gets

c3 (C3 — C2) 36‘3 -2 2— 3C2
2=—r—7—, hh=———"— b3=———", (2.6)
(2 = 3c2) 6ca(c3 — c2) 6c3(c3 — 2)

and the other coefficients can be reconstructed trivially from the order conditions.
2.2 Williamson low-storage schemes

It was noted by Williamson in Ref. [32] that the RK scheme (2.2)—(2.3) with imposing
additional constraints and a suitable choice of coefficients A;, B; can be rewritten as

e is implied here and later on that when the upper bound on the index in a sum is smaller than the
lower bound, the sum is set to O and if the same conditions hold for a product, the product is set to 1, e.g.

Yoo =011 .. =1
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(A1 =0)
Ayi = AiAyi—1 +hf (yi-1),  yi =yi-1+ Bidyi, i=1,....s, 2.7)
Yo = Vir Yith = Ys- (2.8)

The utility of the scheme (2.7)—(2.8) is that at a given stage i one only needs to keep
the values of y; and Ay; and the previous values can be overwritten. For a system of N
degrees of freedom only 2N storage locations are required, independently of the order
and the number of stages of the RK method. This particular two-register low-storage
scheme is referred to as 2N -storage scheme. The original RK coefficients are related
to A;, B; as

Ajyiaij1+Bj, j<i—1, .
’ .. Air1biy1 + B, i <5,
ajj = Bj, ]:l—l, b,‘: {B?_H i+l ! i= (29)
0, otherwise, P )

The 2N-storage schemes of Williamson [32] have been modified in various ways
leading to the development of 2R, 25, 3R, etc. schemes [15,16] that differ in the
number of registers (quantities stored at each stage) and the constraints imposed on the
coefficients A;, B;. However, it is the 2N -storage schemes that possess the properties
that this discussion builds upon later, so we consider only them here.

The 2N-storage scheme introduces more constraints on the coefficients a;;, b;.
However, they may be implicit: once the classical coefficients a;;, b; are expressed
in terms of the 2N -storage coefficients A;, B;, one needs to search for a solution that
satisfies only the original classical order conditions. For low-order schemes it may be
useful to find the additional constraints explicitly, and we discuss a 3-stage third-order
RK method in detail here to illustrate this point. In this case the coefficients no longer
form a two-parameter family. The additional constraint can be imposed in different
ways and a particular form used in Ref. [32] is

- (dege =)+ (5-39)
cs(l—c)+c|lcs+zco—1)+|5—zc2)=0. (2.10)
2 3 2
Choosing ¢ and then solving for c3 from Eq. (2.10) allows one to reconstruct the
coefficients a;;, b; from (2.6), (2.5) and (2.4). Inverting the dependence (2.9) produces
the coefficients A;, B; of the 2N -storage scheme (2.7)—(2.8).
The two branches of solutions of c¢3 as function of ¢, resulting from (2.10) are
shown in Fig. 1. There is a reflection symmetry with respect to the ¢» + ¢3 = 1 axis
which is apparent after a change of variablescy =x +y,c3 =1—x + y.

3 Brief review of Lie group integrators with examples at third order

Let us now consider an equation of the form

dY—AYY 3.1
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where Y is a vector or a matrix. We use capital letters to emphasize that we now deal
with objects that may not necessarily commute. Again, for simplicity we consider
autonomous problems and extension to non-autonomous problems with A(z, Y) is
straightforward. Although the primary focus in this article is equations on Lie groups
where Y € G and A(Y) € g where G is a (matrix) Lie group and g its Lie algebra,
the discussion applies to structure-preserving integration of differential equations on
manifolds in general [13]. The numerical examples in Sect.5 include free rigid body
rotation, where Y is a three-dimensional vector of fixed length and the manifold is S 2
integration of the gradient flow on SU (3) where Y is an SU (3) matrix and the manifold
is obviously the SU (3) group, van der Pol oscillator where Y is a two-dimensional
vector and the manifold is R? and more.

We review several existing Lie group integrators with examples at third order to
define the building blocks necessary for the discussion in Sect.4.

3.1 Crouch-Grossman methods

An update from Y; to Y;, in the form of a classical RK method (2.2)—(2.3) is possible,
however, evenif Y € G, the updated value of the form Y +Const-hA(Y)Y isno longer
in the Lie group, in general. To maintain ¥ on the manifold one needs to construct an
update of the form exp(Const - hA(Y))Y. Then every stage of the RK-based method
and the resulting Y; 4, stays on the original manifold.

Crouch and Grossman [10] suggested an s-stage Lie group RK method of the
following form:

i—1

Y,':y Hexp(ha,-jKj) Y,, K,‘ZA(Y,‘), i=1,...,s, (3.2)
j=1
s
Yien=T {nexp(hb,-l(i)} Y. (3.3)
i=l1

Here 7 [] represents a “time-ordered”? product with a convention that an element
with smaller value of the index is always located 7o the right. An explicit example
clarifying this notation is given below in Eq. (3.5)—(3.8). In this case the number of a;;,
b; coefficients matches a classical s-stage RK method and can be represented with
a Butcher table. The coefficients need to satisfy the classical order conditions and
some additional constraints that result from non-commutativity. Ref. [10] considered
methods up to order three and found that for a third-order method one has the following
additional relation

1
Zi:b,?ci +2) bicibj = 3 (3.4)

i<j

2 by analogy with quantum field theory
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750 A. Bazavov

The order conditions for higher-order Lie group methods of this type were later derived
in [27]. It turns out that a 3-stage third-order RK Lie group method is possible (since
there are six coefficients and five constraints, giving a one-parameter family) and sets
of coefficients satisfying (2.5) and (3.4) were given in Ref. [10]. Let us for the later
convenience write the 3-stage third-order Crouch-Grossman RK method explicitly:

Yi=Y, Ki=AD), 3.5)
Y) = exp(hax K1)Y;, Kz = A(Y2), (3.6)
Y3 = exp(haxn Kz) exp(haz1 K1)Y:, K3z = A(Y3), 3.7
Yi+n = exp(hb3K3) exp(hby K2) exp(hb1 K1)Y;. (3.8)

From the computational perspective one can note the following. The method requires
three evaluations of the right hand side of the differential equation, six exponentiations
and storage for K; from all three stages, to be applied at the last step of the algorithm
(3.8).

3.2 Munthe-Kaas methods

Another direction in constructing Lie group methods was taken by Munthe-Kaas in
Refs. [21-23]. The most general approach worked out in Ref. [23] represents the
solution Y () as Y (t) = exp(U(¢))Y (0) and constructs an algorithm for solving the
equation for U (t)

dU .
o dexpy (A(Y (1)), (3.9)

where the inverse derivative of the matrix exponential can be written as an expansion
By,
—1 k
dexp, = E —ady;. (3.10)

By, are the Bernoulli numbers and the adjoint operator ady represents a mapping
ady(V) =[U,V]=UV — VU. The k-th power of ady is understood as an iterated
application of this mapping:

ad? (V) =V, (3.11)
adl, (V) = [U, V], (3.12)
ad¥, (V) = ady (ads (V) = [U, [U,[.... [U, VITII. (3.13)

Let a truncated approximation of d exp{]1 (V) be

p—1
B
dexpinv(U, V, p) = Z —kad]l‘](V). (3.14)

k!
k=0
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Then using the notation introduced in earlier sections, a Lie group s-stage order-p RK
method of Munthe-Kaas type has the following form:

i—1

Ui=hYy a;Kj, Yi=expUDY,, Ki=A(Y)), (3.15)
j=1
K; = dexpinv(U;, Ki, p), i=1,...,s, (3.16)
N
Yon=exp(V)Y;, V=h) bK;. (3.17)
i=1

As shown in Ref. [23], if the coefficients a;;, b; correspond to a classical RK method
of order p then the algorithm (3.15)—(3.17) with the truncation at p — 1 in (3.14)
is a Lie group integrator of order at least p. This procedure allows one to turn any
classical s-stage order p RK method into a Lie group integrator with the same number
of stages and the same order at the expense of introducing commutators at every stage,
Eq. (3.16). The number of commutators can be reduced as discussed in [24], and for
later comparisons we write explicitly an earlier version [22] of the 3-stage third-order
Lie group RK method of Munthe-Kaas type that requires only one commutator at the
final stage:

Yi=Y:,, Kj=Al)), (3.18)

Y, = exp(hax1 K1)Y;, Kz = A(Y2), (3.19)

Y3 =exp(h(an K> +az1K1))Y:, Kz = A(Y3), (3.20)
> i h

V=h§b,-1<,-, V=V-lK, V] (3.21)

Yiin = exp(V)Y;. (3.22)

Apart from the exponential action and the commutator in (3.21) this method resembles
a classical RK method in that respect that one adds K; in a similar fashion as in a
classical method and then exponentiates the result to produce Y; for the next stage.
Here one needs three evaluations of the right hand side, three exponentiations and
storage of K; from all three stages.

3.3 Celledoni-Marthinsen-Owren methods

Celledoni, Marthinsen and Owren in Ref. [7] considered an approach that generalizes
Crouch-Grossman methods with the goal to avoid computation of commutators. Their
idea is to introduce more than one exponential per stage of a RK method but allow
for linear combinations of K; in the exponentials. An s-stage RK Lie group integrator
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752 A. Bazavov

can be written in the following form:

L; Jit
Yi=T {[Jexp | D awijK; |t Yo Ki=A), i=1....s (323
I=1 j=1

L I
Yon =T [ [expo | A Briki | { Vi (3.24)
=1 i=1

The notation here is similar but not the same as in Ref. [7] to be more in line with the
methods introduced earlier. Here L; is the number of exponentials used at stage i, J;; is
the upper bound on summation inside the /-th exponential at i -th stage, and, similarly, L
is the number of exponentials at the final stage and /; is the upper bound on summation
inside the /-th exponential at the final stage. By introducing more parameters one has
more room to satisfy the additional order conditions arising from non-commutativity
at the expense of introducing more exponentials at each stage. The new coefficients
ay;ij, Br;i are related to the coefficients of a classical RK method as [7]

L; L
Zal;ij = ajj, Zﬁl;i = b;. (3.25)
=1 =1
The Crouch-Grossman method, Egs. (3.5)-(3.8) is a subclass of the Celledoni-
Marthinsen-Owren methods where o;;;; = a;;8;; (and automatically L; = i — 1

for explicit methods).

Ref. [7] proceeded in a way that minimizes the number of exponentials and
constructed schemes of third and fourth order that have the minimal number of expo-
nentials and also reuse the exponentials at next stages. Here for comparison we write
explicitly one of the solutions found in [7]:

Yi=Y, K;=AD)), (3.26)
Y, =exp(hai;21K1)Y:, Kz = A(Y2), (3.27)
Y3 =exp(h(o;32K2 + 1,31 K1), K3 = A(Y3), (3.28)
Yion = exp(h(B2;3K3 + B2 Ko + B2.1K1)) exp(h i1 K1) Y. (3.29)

Requiring that B1.1 = «.2; allows one to reuse Y> and calculate only one exponential
at the last stage. This requirement also fixes these two coefficients to be equal to 1/3
and the other coefficients then form a one-parameter family of solutions and their
explicit form is given in Ref. [7]. Another branch of solutions reuses Y3 and results in
amethod with the same computational requirements: three right hand side evaluations,
three exponentiations and storage of K; from all stages and Y> or Y3.

As one can see, at third order the Munthe-Kaas and Celledoni-Marthinsen-Owren
methods have similar computational requirements, however, at fourth and higher order
the situation is different: while Munthe-Kaas method can be constructed with the
same number of exponentials as the number of stages in a classical RK method (with
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one exponential per stage), the Celledoni-Marthinsen-Owren methods require more
exponentials (e.g., at least, five at fourth order).

4 A new class of commutator-free Lie group integrators
4.1 Construction of the integrator

Here we construct a new class of Lie group integrators. It can be considered as a sub-
class of Celledoni-Marthinsen-Owren methods, however, the construction proceeds
differently and results in a family of solutions different from Ref. [7]. In particular this
new scheme has different properties in terms of storage and exponentials reuse. At the
same time, this new class can be considered as a subclass of the multirate infinitesimal
step (MIS) methods used as exponential integrators [31], however, again, the family
of solutions proposed here is different from the ones present in the literature.

Let us first construct a 3-stage third-order Lie group integrator and then comment on
generalization of this scheme. Let us take the structure introduced in Eq. (3.23)—(3.24)
and add the following requirements:

1. L; = i — 1 — as in the Crouch-Grossman method, stage i has exactly i — 1
exponentials.

2. Ji; = I — the number of terms within each exponential is equal to the index of that

exponential in the sequence. With the time-ordering convention this means that

the rightmost exponential has one term, the one to the left of it — two terms, etc.

L = s — at the final stage there is the maximum number, s exponentials.

4. I} = | — the convention on the number of terms inside exponentials at the final
stage is the same as in the previous stages.

(O8]

Explicitly, a 3-stage algorithm (its order is not yet determined) is

Yi=Y, Ki=AD)), “.1)
Y, = exp(hay;21K1)Y:, Ky = A(Y2), 4.2)
Y3 = exp(h(a2;32K2 + a2:31K1)) exp(ha1;31K1) Y, Kz = A(Y3), 4.3)
Yipn = exp(h(B3;3K3 + B3,2K2 + B3,1K1)) (4.4)
x exp(h(B2;2K2 + B2;1K1)) exp(hB1;1K1)Y. 4.5)

This algorithm has six exponentials as the Crouch-Grossman method and also requires
evaluating linear combinations of K; as in a classical RK method. There are 10 coef-
ficients o;;;;, By;; that are related to the classical RK coefficients via (3.25) and are
subject to the four classical order conditions (2.5) and possibly other constraints arising
from noncommutativity.

At first sight, there is nothing beneficial in this scheme as it requires more work
than any other Lie group method introduced previously and therefore we apply another
constraint:

5. The coefficients in the exponentials with the same number of terms are the same
at all stages.
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754 A. Bazavov

This means B1.1 = a1.31 = a1:21, f2:1 = a2:31 and Br.2 = a2.32. This requirement
allows one to reuse previous Y; at every stage and the scheme can be rewritten as

Yi=Y, K;i=AD)), 4.6)
Y, = exp(har21K1)Y1, Kz = A(Y2), 4.7)
Y3 = exp(h(an;32K2 + a2;31K1))Y2, K3 = A(Y3), (4.8)
Yion = exp(h(B3;3K3 + B3,2K2 + B3,1K1))Y3. 4.9)

Now there are only three exponentials, the method reuses values of ¥; from each pre-
vious stage and if the coefficients can be tuned that the scheme results in a third-order
method, it can be on par with the methods of Sect.3. There are now six indepen-
dent coefficients, as in the classical 3-stage RK method and they are related to the
coefficients of the classical method in a simple way:

Q121 = a1, ®2.3] =a3| —dadz, 0.3 = a3, (4.10)
B3.1 =b1 —az1, PB32=0br—azxn, P33 =b;s. (4.11)

Note that although a 3-stage third-order method is considered here as an example,
the construction (4.6)—(4.9) is applicable in general. Eqs. (3.23)—(3.24) with the five
requirements listed above essentially mean that in this format for a s-stage method
each stage i has only one exponential that contains a sum of all K; accumulated up to
that stage that multiplies Y;_; from the previous stage, Yy = Y;:

i—1
Y; = exp hzai,l;ijl{j Yio1, Ki=A®W), i=1,....s, (4.12)
j=1

s
Yiin = exp (h Z:Bs;iKt) Y. (4.13)

i=1

However, as will be shown immediately below, a more compact format may be pos-
sible.

4.2 Order conditions for the new three-stage third-order Lie group method

By Taylor expanding the scheme (4.6)—(4.9) and comparing with the expansion of
the exact solution one finds that the additional order conditions for this scheme to be
globally of third order can be written as

byc3 4 byl + (bacy + bacs)(by + by + by + ¢3) 4+ azaca(cy — by — by — b3) = 1,
(4.14)

1
(baco + b3c3)(by + by + b3 — c3) +azpca(by + by + b3 —2) = 3 (4.15)
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With the use of the classical order conditions (2.5) one finds that these two conditions
are not independent and result in a single condition:

1
azycy(l —c) = 6(3C3 —1). (4.16)

We can now multiply both sides by b3 # 0, use Egs. (2.5) and (2.6), and rewrite (4.16)
as a relation between ¢, and c3:

1 11
A —c)+e (e% + 502 - 1) + <§ — EcZ> =0. 4.17)

Eq. (4.17) is exactly the same (!) as the relation (2.10) for the 2/N-storage scheme
discussed in Sect.2.2.

Let us summarize what has been achieved so far. We proposed a new format for
a 3-stage commutator-free Lie group RK method (4.1)—-(4.5) and, by requiring that
it is of third order global accuracy, found that the order conditions on the classical
RK coefficients of this method are the same as on the 3-stage third-order 2 N-storage
scheme. Note, that the 2 N-storage schemes [32] were not intended as Lie group inte-
grators and were designed as classical RK methods. The other way around, this means
that although it was not imposed in (4.6)—(4.9), the relations between the coefficients
are such that one does not need to store K; from all stages and this scheme can be
rewritten in a 2N -storage format by analogy with (2.7)—(2.8) as’ (A} = 0)

AY; = AjAY;  +hAYi—1), Yi =exp(BiAY)Y; 1,
i=1,...s, (4.18)
Yign =Y, (4.19)

where the coefficients A;, B; are related to a;;, b; in Eq. (2.9).

4.3 Conjecture about higher order commutator-free Lie group integrators

The first main result of this paper derived in the previous section can be summarized
as follows: The family of classical 2N -storage 3-stage third-order RK schemes are
also automatically third-order commutator-free Lie group integrators.

In fact, the third-order scheme, presented without derivation in the Appendix of Ref.
[19] and used as a Lie group method for integration of SU (3) gradient flow, belongs
to the class of integrators proposed in Sect.4.1 with a specific choice of coefficients
from the one-parameter family of Eq. (4.17). This is discussed in more detail in the
third numerical example in Sect.5.3.

A natural question is: Are the 2N-storage schemes at third order with more than
three stages and at orders four and higher also commutator-free Lie group methods of

3 The clash of notation here is unfortunate, but it is customary in the literature on low-storage schemes to
use A; for the coefficients, while it is customary in the literature on Lie group methods to use A(Y) on the
right hand side of Eq. (3.1).
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756 A. Bazavov

the same order? While there is no analytic proof immediately available, the numerical
evidence that is examined in Sect. 5 suggests that the answer to this question may be
positive.

The second main result of this paper is the following conjecture: 2N -storage s-stage
classical RK schemes of order p are also automatically commutator-free Lie group
methods of the format proposed in Eqs. (4.18)—(4.19) of order p for orders p = 3,4, 5
and possibly higher.

5 Numerical experiments

We now consider a few 2N-storage classical RK schemes and apply them in several
examples to provide support for the conjecture stated in Sect. 4.3.

First, we consider a 3-stage third-order family of 2/N-storage schemes for which it
is proven in Sect. 4.2 that they are Lie group integrators of order p = 3. We would like
to choose a set of coefficients for which the truncation error is minimal in the sense of
Ref. [28]. We need to emphasize the difference with the classical RK case. The 3-stage
third-order classical RK scheme that has minimal truncation error found by Ralston
[28]isnota 2 N-storage scheme and is not of third order if used as a Lie group integrator
as defined in (4.6)—(4.9). However, one can follow the error minimization criteria of
[28] with the additional constraint between ¢, and c3, Eq. (4.17). The resulting set
of classical RK coefficients was found by Williamson [32] and they turn out to be
not rational. Unfortunately, Ref. [32] provided the coefficients with only five digits of
accuracy which is not sufficient for the tests in this section. Therefore we improve on
this by following the minimization procedure of [28] with the constraint (4.17) and
the resulting set of coefficients is

az1 = 0.45737999756938819, az; = —0.13267640849031470, 5.1
azy = 0.92529641092092174, by = 0.19546562910003523, (5.2)
by = 0.41072077622489378, b3 = 0.39381359467507099. (5.3)

By using (2.9) they are transformed into the 2N-storage format and used in the
commutator-free Lie group method, Egs. (4.18)—(4.19). We use this scheme, called
BWRRK33, in the examples below, and we also tested it with the nine sets of rational
coefficients shown in Fig. 1, six of which were found in [32].

Next, we also consider thirteen 2 N -storage schemes available in the literature. The
nomenclature used here is the following. Letters “RK” in the middle indicate that this
is a classical RK method, the letters in front abbreviate the names of the authors or
the name given to the scheme in the original article, the last digit is the order of the
method, the digits in front of it represent the number of stages and the additional letters
after “RK” possible notation from the original article to distinguish integrators with
different properties. The list of all fourteen 2 N -storage schemes tested in the examples
is given in Table 1.

@ Springer



Commutator-free Lie group methods with... 757

0.9 — : : . . .
0s |

0.7 .
0.6 | ]
0.5 | ]
0.4 | .
0.3 | :
02} ]

0.1 | e |

0 . . N . . .
0.2 0.4 0.6 0.8 1 1.2 1.4

Fig.1 The two branches of solutions [32] of Eq. (2.10) shown as blue and green lines. The red circles show
the solutions with rational coefficients found in [32] and the blue squares the solutions (c; = 7/12,¢3 =
2/15), (¢ =7/12,¢3 = 3/4) and (c3 = 13/15, c3 = 5/12) that were missed in [32]. The orange square
corresponds to the solution with minimal truncation error as defined in [28] which is used later as a basis
of the BWRRK33 commutator-free Lie group method, see Sect. 5

Table1 Method 1, BWRRK33 is proven to be a third-order commutator-free Lie group method in Sect. 4.2.
Methods 2-14 are classical 2/N-storage RK methods available in the literature used to test the conjecture
formulated in Sect. 4.3. We note that for the BWRRK33 method we also ran numerical tests with the rational
coefficients shown in Fig. 1 and for the CKRK54 method we ran tests with all four sets of coefficients found
in Ref. [6]. For presenting results we, however, chose only one, recommended set of coefficients from [6].
Similarly, there are four sets of coefficients for the BPRKO73 method in Ref. [4] which we tested, but for
presenting the results we chose the set called ORK37-6 in Ref. [4]. Note also that BBBRKNLG64 is called
RK46-NL in Ref. [3]

Name Stages Order Reference

1 BWRRK33 3 3 Here, [32], [28]
2 BPRKO73 7 3 [4]

3 TSRKC73 7 3 [30]

4 CKRKS54 5 4 [6]

5 SHRK64 6 4 [29]

6 BBBRKNL64 6 4 [3]

7 HALERK64 6 4 [1]

8 HALERK74 7 4 [1]

9 TSRKC84 8 4 [30]

10 TSRKF84 8 4 [30]

11 NDBRK124 12 4 [25]

12 NDBRK134 13 4 [25]

13 NDBRK 144 14 4 [25]

14 YRK135 13 5 [33]

It is important to stress that while we proved that the BWRRK33 scheme® is a
commutator-free Lie group integrator with global accuracy of order p = 3, Sect. 4.2,

4 and all 3-stage third-order explicit RK schemes satisfying the constraint (4.17)
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none of the other schemes in Table 1 were originally designed as Lie group integrators.
They are 2N-storage classical RK methods which were designed to have specific
properties such as increased stability regions, low dissipation, etc. If one attempts
to use an order p arbitrary classical RK scheme whose coefficients satisfy only the
classical RK constraints as a Lie group integrator, the order of accuracy is less than p,
and as numerical experiments show, typically second order at best. Thus, the thirteen
2N-storage schemes (in addition to BWRRK33) collected in Table 1 are a perfect test
of the conjecture in Sect.4.3 if they maintain the same order of accuracy when used
as commutator-free Lie group methods in the sense of Egs. (4.18)—(4.19).

Also, while it is not yet proven (or refuted) that any 2 N-storage method of order p
is also a commutator-free Lie group integrator of order p, for a given set of numerical
values of the coefficients the order conditions can be algorithmically checked by using
B-series [17]. All the methods of Table 1 were independently checked by Knoth with
the software available at [ 17] and they indeed fulfill the order conditions corresponding
to the order shown in the table when used as Lie group integrators.

For numerical experiments in our code we also implemented integrators of other
types, namely, Crouch-Grossman method of order p = 3 [10], Munthe-Kaas methods
of order p = 3,4, 5, 8 [23], Celledoni-Marthinsen-Owren methods [7] of order p = 3
and 4. In the tests below as a reference we use the following Lie group integrators
of Munthe-Kaas (RKMK) type: 3-stage third-order with Ralston coefficients, 4-stage
fourth-order with Ralston coefficients, 6-stage fifth-order with Butcher coefficients.

5.1 Example 1: Free rigid body rotation

As a first numerical example we consider rotation of a free rigid body with the center
of mass fixed at the origin. This example was used in Ref. [7,11]. In this case, Y is a
three-dimensional vector of angular momentum and the Euler equation is

dy X
= =yxIly, 5.4
R X (5.4

where I is the inertia tensor. By using the hat map ": R — s0(3) defined as

V1] . 0—-v3 wm
V=lumn|—>V= v 0 —ug (5.5)
v3 —U2 V1 0

the Euler equation can be rewritten in the form (3.1)

dy —

— =—Ilyy 5.6

dt (5-6)
with A(Y) = —I-'Y. For the tensor of inertia we take the same value I =

diag(7/8,5/8,1/4) as in [7] but choose a different initial condition Y (0) =
(—+/8/3,0, 1/3). Such an initial condition matches the simplifying assumptions of
[20] where the exact solution is given in terms of Jacobi’s elliptic functions. First, to
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Fig. 2 Comparison of the exact solution for the three components of the angular momentum (see text),
shown as the gray lines, with the results produced by the fourteen integrators listed in Table 1. If plotted as
lines, all results are indistinguishable from the exact solution. Therefore we plot the results from different
integrators as symbols of different shape and color skipping 140 steps in the sequence and starting to plot
the first integrator at a shift of O steps, second at a shift of 10 steps and so on

0.01

0.0001
1x10°®
1x10°®

1x1071°

1x10712

0.001 0.01 0.1

Fig. 3 Distance from the reference (exact) solution d(4) for various integrators as function of step size h
shown in a log-log plot for the rigid body problem, Eq. (5.6). The red lines represent the three integrators
of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three integrators of order
p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange line one integrator
of order p = 5 from the same table. For the p = 4 integrators the minimum step size shown is 1/256 and
for p = 5 1/64 since when d (h) becomes comparable to 10~ 13 the roundoff errors prevent correct scaling
behavior. The black dashed lines are shown to guide the eye and represent from top to bottom 13, h* and
", respectively

check the implementation of the integrators in our code, we compare the trajectory
integrated from t = 0 to + = 20 with the time step # = 0.025 with all fourteen
integrators of Table 1 with the exact solution. The result is shown in Fig. 2.

Next, to study the order of the methods we integrate the equation of motion from
t = 0tot = 3 by using the step size h = 1/2" wheren =3, ..., 11.LetY(t =3, h)
be the solution evaluated at a particular step size & and Y, (t = 3) the exact solution
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Fig.4 Distance from the 1x10°8
reference solution d(h) at

h = 1/16 for all fourth-order v

integrators from Table 1 for the ]
rigid body problem, Eq. (5.6).
The symbols and colors are the
same as in Fig.2 and the v
numbers on the horizontal axis
correspond to the numbering in
Table 1

1x107 | W

4 5 6 7 8 9 10 11 12 13
[20]. We define a distance metric as

d(h) =Yt =3,h) — Yyrer(t = 3)|, 5.7

where | .. .| is the usual Euclidean vector norm. If an integrator has the global order
of accuracy p then one expects d(h) ~ h?. The results for d(h) for the fourteen
integrators of Table I and the three reference integrators are shown in Fig. 3. We note
that the BPRKO73, SHRK64 and BBBRKNL64 integrators are somewhat problematic
since their coefficients are given with less than full double precision accuracy. Their
scaling breaks down when d (k) reaches about 1078, 10~7 and 10~!!, respectively.
Therefore we plot d (k) approximately down to those limits for those integrators.

As one can observe from Fig. 3, the 2N -storage classical RK schemes provide the
same global order of accuracy when used as manifold integrators of a the new format
defined in Eqs. (4.18)—(4.19), supporting the conjecture stated in Sect.4.3.

Some of the RK methods of fourth order shown in Fig. 3 as green lines have com-
parable global errors and their lines are hard to distinguish on the scale of the plot. In
Fig.4 we show the distance from the exact solution d (k) at h = 1/16 for each method
of order 4 from Table 1. For instance, methods 4 and 7, 5 and 8, 9 and 11, and 6, 10,
12 and 13 produce similar d () in this example. Similar features are observed in the
other examples considered below but which particular methods produce close results
depends on the differential equation.

A simple Matlab script illustrating the usage of BWRRK33, TSRKF84 and
YRK135 as Lie group integrators for this example is given in Appendix A.

5.2 Example 2: SO(5) from Ref. [23]

Our second numerical example is the one’ used in [23], where Y is an SO (5) matrix
and the skew-symmetric matrix A(Y) on the right hand side in Matlab notation is

A(Y) = diag(diag(Y, +1), +1) — diag(diag(Y, +1), —1). (5.8)

5 up to the dimension: we use 5 x 5 orthogonal matrices and Ref. [23] used 4 x 4
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Fig. 5 Distance from the reference solution d (/) for various integrators as function of step size 7 shown
in a log-log plot for the SO (5) manifold in example 2, Eq. (5.8). As in Fig.3, the red lines represent the
three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three
integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange
line one integrator of order p = 5 from the same table. For the p = 4 integrators the minimum step size
shown is 1/128 and for p = 5 1/32 since when d(h) becomes comparable to 10~ 13 the roundoff errors
prevent correct scaling behavior. The black dashed lines are shown to guide the eye and represent from top
to bottom h3, h* and h5, respectively

The inital condition Y (0) = Y is produced randomly with
rand(‘seed’, 0); [Yo, R] = gqr(rand(5, 5)). 5.9)

We integrate the equation of motion from # = 0 to t = 5 using the step size h = 1/2",
n = 1,...,10. As the reference solution at time t = 5 Y,.r(t = 5) we use the
solution produced by the package Dif fMan [12] with the RKMK method of order
p = 6 butcher6 with the step size h = 1/512. As in the previous example we
define the distance from the reference solution

d(h) =Y(t =5,h) — Yyer(t =35)|, (5.10)

where | .. . | is the matrix 2-norm, evaluated in Matlab as norm. The results for d (h) are
shown in Fig. 5. The integrators again show expected scaling supporting the conjecture
stated in Sect.4.3.

5.3 Example 3: SU(3) gradient flow

As a third example we consider an application that is relevant for a non-perturbative
approach to quantum field theory called lattice gauge theory. In this case the degrees
of freedom are SU (3) group elements that reside on links of a four-dimensional space-
time grid and the interactions in the system are encoded in traces of products of the
SU (3) matrices taken along closed paths on the grid. Liischer in Ref. [19] introduced a
diffusion-like procedure that suppresses short-wavelength fluctuations in the system.
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Fig.6 Comparison of the reference solution (see text) for the real and imaginary parts of the SU (3) matrix
elements Y11 (¢), Y12(), shown as the four gray lines, with the results produced by the fourteen integrators
listed in Table 1. If plotted as lines, all results are indistinguishable from the exact solution. Therefore we
plot the results from different integrators as symbols of different shape and color skipping 140 steps in the
sequence and starting to plot the first integrator at a shift of O steps, second at a shift of 10 steps and so on

This procedure leads to the following equation on the SU (3) manifold:

dy
T =-Z{HY)Y, (5.11)

where Y € SU(3) and H € GL(3, C) encodes the interactions with the neighboring
degrees of freedom on the grid. Here for numerical experiments we consider a single
degree of freedom Y in the presence of a fixed background H. The projection

P (M) = % (M - M*) - %Tr (M - MT) (5.12)

produces an element of the algebra su(3) and the right hand side of Eq. (3.1) in this case
isA(Y) = — 2 {HY}, where H is constant. We choose H as a random 3 x 3 complex
matrix and take a diagonal initial condition Y (t = 0) = di ag(ei, e, e~ 2. Here again,
to test the implementation of the integrators, we compare the trajectory integrated with
the fourteen methods of Table 1 with the solution obtained with Di f fMan with the
RKMK integrator butcher6 at step size 4 = 1/512. The results for the real and
imaginary parts of the matrix elements Y1 () and Y1>(¢) are shown in Fig. 6.

For the scaling study we use the same random matrix H and the same initial
condition. The trajectory is integrated from t = O to ¢t = 10 with &z = 1/2", n =
1, ..., 10 and as before we use the 2-norm as a measure of deviation from the reference
solution

d(h) = |Y(t =10,h) — Y, (t = 10)]. (5.13)
The results for d(h) are shown in Fig. 7.
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Fig. 7 Distance from the reference solution d (/) for various integrators as function of step size 7 shown
in a log-log plot for the SU (3) manifold in example 3, Eq. (5.11). As in Fig. 3, the red lines represent the
three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three
integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange
line one integrator of order p = 5 from the same table. For the p = 4 integrators the minimum step size
shown is 1/128 and for p = 5 1/64 since when d(h) becomes comparable to 10~ 13 the roundoff errors
prevent correct scaling behavior. The black dashed lines are shown to guide the eye and represent from top
to bottom h3, h* and h5, respectively

The integrator suggested by Liischer in the Appendix of Ref. [19] for integrating
this system, Eq. (5.11) is, in fact, a 3-stage third-order 2/N-storage integrator of the
family (4.17) for which we have proven in Sect. 4.2 that all integrators of this family
are third-order Lie group methods. The choice of the classical coefficients equivalent
to the scheme in [19] is

_8 (5.14)
=5 ,

(5.15)

Although the integrator in Ref. [19] was not written in the 2/N-storage format, it was
realized there that this scheme can be used as a low-storage scheme®, independently of
the earlier work [32]. Applications to lattice gauge theory is a case where low-storage
schemes are especially attractive, since realistic systems include grids of the size up
to 96° x 192 [2] which translates to about 1.2 x 1019 double precision numbers to be
stored on a (super)computer just to represent the system. While using a 2N -storage
scheme requires twice that amount, an equivalent 3-stage third-order RKMK method
requires four times this amount, with further increasing requirements for higher order
schemes. Since the conjecture about higher than order p = 3 2N-storage classical
RK methods holds true numerically for the SU(3) case, as illustrated in Fig.7, this
opens a possibility of constructing higher order Lie group 2N -storage methods for
applications in lattice gauge theory.

6 The simplification that allows for this observation can be traced to the fact that b, = 0.
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Fig.8 The dependence of the 10
coordinate x(¢) (blue) and the 0 iy
velocity X (¢) (red) on time for
the van der Pol system, -10 - T T x(t) ——
Eq. (5.16). This solution is 20 g ax/dt ——
produced with the BWRRK33
. . . -30
integrator with step size
h = 0.001. The other integrators -40
produce results indistinguishable 50 |
on the scale of the figure and are
not shown. The inset magnifies -60
the horizontal scale in the =70 }
vicinity of the “needle” * *
80 15 152 154 1.56 t
-90 ' : ' ' '
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5.4 Example 4:Van der Pol oscillator
The van der Pol equation
Px - 2o (5.16)
— —u(l —=x")— +x = .
dr? dt

has also been used as a test case in the literature on Lie group methods [11]. In this
case, a Lie group method is used as an exponential integrator that may handle stiff
systems better than classical RK schemes. Eq. (5.16) can be rewritten in a vector form

d (x 0 1 X
()=o) (F) 617

where we can identify Y as a two-dimensional vector and A(Y) € GL(2, R). As in
Ref. [11] we choose « = 60 and the initial condition

Y (0) = (i) (5.18)

At such a large value of p the system is stiff as shown in Fig. 8 and the “needle” occurs
approximately at r = 1.53.

We integrate the system from ¢+ = 0 to t = 2, i.e. past the “needle”, with step
size h = 1/2", n = 7,...,12. As a reference solution Y,.r(t = 2) we use the
result from the Di f fMan package with the RKMK integrator butcher6 at step size
h = 1/4096 and define the distance from the reference solution d (h) the same way as
in the Example 1 in Sect.5.1. The results for d (/) for various 2N -storage schemes of
Table 1 are shown in Fig.9.

Notice that given the stiffness of the system, we use, in general, a range of smaller
step sizes than in the other examples, but all the integrators do show the scaling
expected from the conjecture in Sect. 4.3.
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Fig. 9 Distance from the reference solution d (/) for various integrators as function of step size 7 shown
in a log-log plot for the van der Pol oscillator in example 4, Eq. (5.16). As in Fig. 3, the red lines represent
the three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three
integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the
orange line one integrator of order p = 5 from the same table. For the p = 5 integrators the minimum step
size shown is 1/2048 since when d (/) becomes comparable to 10~ 13 the roundoff errors prevent correct
scaling behavior. The black dashed lines are shown to guide the eye and represent from top to bottom "3,
h* and h°, respectively

5.5 Example 5: Non-autonomous problem in SO(3)

As the final example we consider a non-autonomous problem which is included as
one of the examples in DiffMan [12]: ¥ € SO(3) and

0+ 1
A, Y)=| —t 0—1> | € s0(3). (5.19)
-1 0

This test is different from the previous ones since the coefficients c;, Eq. (2.4), now
enter the game and we investigate if that may lead to a breakdown of the conjecture of
Sect.4.3. We choose a unit matrix as the initial condition, as in Di f fMan, and integrate
the trajectory from r = O to r = 1 with step sizes h = 1/2", n = 1,...,10. As the
reference solution we take the result from D1 f fMan integrated with but cher6 with
h = 1/1024. The distance from the reference solution d (%) is defined the same way
as in examples 2, Sect.5.2 and 3, Sect.5.3. The results for d(h) for the methods of
Table 1 is shown in Fig. 10. As can be observed from the figure, the integrators again
show the expected scaling.

6 Conclusions
We have shown in Sect. 4.2 that 3-stage third-order classical 2/N-storage Runge-Kutta

methods of Ref. [32] are also third-order commutator-free Lie group methods, since
the coefficients satisfy the same order conditions in both cases: four classical ones and
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Fig. 10 Distance from the reference solution d () for various integrators as function of step size 4 shown in
alog-log plot for the SO (3) matrix Y in example 5 (non-autonomous problem), Eq. (5.19). As in Fig. 3, the
red lines represent the three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines
represent the three integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order
p = 4 and the orange line one integrator of order p = 5 from the same table. For the p = 4 integrators the
minimum step size shown is 1/256 and for p = 5 1/64 since when d(h) becomes comparable to 10-13
the roundoff errors prevent correct scaling behavior. The black dashed lines are shown to guide the eye and
represent from top to bottom 13, h* and b, respectively

an additional one arising either from writing the scheme in 2 N-storage format [32] or
constructing a commutator-free Lie group integrator in a specific format proposed in
Egs. (4.1)-(4.5) that automatically leads to Egs. (4.6)-(4.9).

Given this similarity, we conjectured in Sect.4.3 that this observation holds also
for third-order 2N-storage classical RK methods with more than three stages and
for methods of order four and five. In Sect.5 we considered five different numerical
examples and studied how the global error of the 2/N-storage classical RK methods
available in the literature [1,3,4,6,25,29,30,33] scales with the step size when the
schemes are used as commutator-free Lie group methods of the 2 N-storage format
proposed in Eqgs. (4.18)—(4.19). We found that in all test cases numerical evidence
supports the conjecture.

As a next step, it is obviously desirable to find an analytic proof of the conjecture
of Sect.4.3. In the meantime, one can check the order conditions for a Lie group
integrator based on a given 2N -storage coefficients scheme with the methods of Ref.
[17] or determine what order is achieved numerically as in the examples presented in
Sect. 5.

If the conjecture is proven to be correct, there are two possible benefits of the
proposed low-storage commutator-free Lie group integrators. First, in large-scale cal-
culations one can significantly reduce memory requirements compared to the available
Lie group methods (both, commutator-free and with commutators) and also reuse the
exponentials at every step of the calculation which leads to the requirement of evaluat-
ing exactly s exponentials for a s-stage method. Second, it may be easier to develop new
schemes of this type for differential equations on manifolds in a way it has been done
for the classical 2N -storage methods. Once the scheme is written in a 2N -storage for-
mat, Egs. (4.18)—(4.19), one needs to find the coefficients of the 2N -storage scheme
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from satisfying only classical Runge-Kutta order conditions. The property that the
scheme is a 2N-storage scheme will automatically (again, if the conjecture is true)
satisfy all the additional constraints arising from non-commutativity.

Acknowledgements I thank Andrea Shindler for careful reading and comments on the manuscript and
Oswald Knoth for bringing my attention to Ref. [18,31], comments on the manuscript and, most impor-
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integrators of the form (4.18)—(4.19)) with his software available at [17] and explaining me the theory and
algorithmic details behind that software. This work was in part supported by the U.S. National Science
Foundation under award PHY-1812332.

A Matlab code

To illustrate the usage of the 2 N -storage schemes as commutator-free Lie group inte-
grators we present below a Matlab script that generates a scaling plot similar to Fig. 3
using the integrators BWRRK33, TSRKF84 and YRK135 from Table 1.
L L L L R L T

% main function in the script:

% get scaling with step size

% by comparing to exact solution

FITIIBITLLLLLLIITLLLLLL23999%

function lie_integrate
format long;

global I;

o°

initial condition

second component is 0 to match

simplifying assumptions of exact solution

in Marsden, Ratiu, Introduction to Mechanics and Symmetry
y0 = [ -sqrt(8)/3; 0; 1/3 1;

o0 0P

o°

% moment of intertia, same as in

% Celledoni, Marthinsen, Owren

% Future Generation Computer Systems, 19 (2003) 341-352
I1 = 7/8; I2 = 5/8; I3 = 1/4; I = diag( [ I1 I2 I3 1 );

% integration parameters
TO = 0; T = 3;

% set array with time steps

array_dt =

[ 1/2048 1/1024 1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1;
Ndt = length( array_dt );

% number of integrators

Nint = 3;

% storage
error_dt = zeros( Ndt, Nint );
sol = zeros( 3, Ndt, Nint);

2

% coefficients for low-storage integrators
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% 3-stage third-order BWRRK33

Nstages_3 = 3;

A3 =10 -0.637694471842202 -1.306647717737108 1;

B_.3 = [ 0.457379997569388 0.925296410920922 0.393813594675071 1];
C_3 =1 0 0.457379997569388 0.792620002430607 1;

% 8-stage fourth-order TSRKF84 of

% Toulorge, Desmet, J. Comp. Phys. 231 (2012) 2067-2091

Nstages_4 = 8;

A_4 = [ 0 -0.5534431294501569 0.01065987570203490
-0.5515812888932000 -1.885790377558741 -5.701295742793264

.113903965664793 -0.5339578826675280 1;

.08037936882736950 0.5388497458569843 0.01974974409031960

.09911841297339970 0.7466920411064123 1.679584245618894

.2433728067008188 0.1422730459001373 1;

0.08037936882736950 0.3210064250338430 ...

.3408501826604660 0.3850364824285470 0.5040052477534100

0.6578977561168540 0.9484087623348481 1;

% 13-stage fifth-order YRK135 of

% Yan, Chin. J. Chem. Phys 30 (2017) 277-286

Nstages_5 = 13;

A5 =0 -0.33672143119427413 -1.2018205782908164
-2.6261919625495068 -1.5418507843260567 -0.2845614242371758
-0.1700096844304301 -1.0839412680446804 -11.61787957751822
-4.5205208057464192 -35.86177355832474 -0.000021340899996007288
-0.066311516687861348 ];

B 5 = [ 0.069632640247059393 0.088918462778092020 1.0461490123426779

0.42761794305080487 0.20975844551667144 -0.11457151862012136
-0.01392019988507068 4.0330655626956709 0.35106846752457162
-0.16066651367556576 -0.0058633163225038929 0.077296133865151863

0.054301254676908338 1;

0.069632640247059393 0.12861035097891748

.34083022189561149 0.54063706308495402 0.59927749518613931

.49382042519248519 0.48207852767699775 0.82762865209834452

.82923953914857933 0.67190565554748019 0.87194975193167848

.94930216564503562 1;

O O O o oN

O O O o o

% parameters for exact solution

Ily0 = (I"-1) * y0; h = 1/2 * ( y0.’*I1ly0 );

y02 = y0.'*y0; a = y02 / (2*h); b = 2*h / sqrt(y02);
alpha = sqgrt( a*I2*(a-I3)/(I2-I3) ) * b;

beta = sqgrt( a*I2*(Il-a)/(I1-I2) ) * b;
mu = sqgrt( a*(Il-a)*(I2-I3)/(I1*I2*I3) ) * Db;
k = sqrt( (I1-I2)*(a-I3)/(Il-a)/(I2-I3) );
delta = sqgrt( I3*(Il-a)*a/(I1-I3) ) * b;
gamma = sqgrt( Il*(a-I3)*a/(I1-I3) ) * b;

% exact solution at T

snmt = jacobiSN( mu*T, k"2 );

cnmt = jacobiCN( mu*T, k"2 );

dnmt = jacobiDN( mu*T, k"2 );

y_exact = [ -gamma * cnmt; alpha * snmt; delta * dnmt ];

% loop over step sizes
for idt = 1:Ndt

% integrate with current step size
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for iint=1:Nint
dt = array_dt(idt);
if iint==1
sol( :, idt, iint ) = ...
integrate( TO, T, dt, y0, @rhs_f, Nstages_3, A_3, B_3, C_3 );
elseif iint==2
sol( :, idt, iint ) = ...
integrate( TO, T, dt, y0, @rhs_f, Nstages_4, A_4, B_4, C_4 );
elseif iint==
sol( :, idt, iint ) = ...
integrate( TO, T, dt, y0, @rhs_f, Nstages_5, A_5, B_5, C_5 );
end
% get error
error_dt( idt, iint ) = norm( sol( :, idt, iint ) - y_exact );
end
end
% plot
for iint=1:Nint
if iint==
cc = [1 0 0]; xaxis = array_dt; yaxis = error_dt( :, iint );
elseif iint==2
cc = [0 0.7 0]; xaxis = array dt( 3:Ndt ); yaxis = error_dt( 3:Ndt, iint );
elseif iint==3
cc = [0 0 1]; xaxis = array_dt( 5:Ndt ); vaxis = error_dt( 5:Ndt, iint );
end
loglog( xaxis, yaxis, ’‘Color’, cc, 'LineWidth’, 3 );
if iint==
hold on
end
end
hold off
end

533555353 %5%%%%%%%%%3%53%%%%%

% right hand side function
% t - current time
% v - current function value
L2523 %53%53%53%9%%3%%%%%
function r = rhs_f( t, v )
global I;
Ily = (I"-1) * y; r = zeros(3,3);
r(l,2) = Ily(3); r(2,1) = -I1ly(3); r(1l,3) = -Ily(2);
r(3,1) = Ily(2); r(2,3) = Ily(l); r(3,2) = -Ily(1l);
end
B0 53555595595535585%5%%%%
% low-storage commutator-free Lie group integrator

o°

TO0 - initial time

T - final time

dt - step size

Y0 - initial function wvalue

rhs - function to evaluate right hand side

o°

o0 0P o°

o°

Ns - number of stages of the integrator
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% A, B, C - coefficients in 2N-storage format
% Note: A(1l)=0 is required

% result - function value at time T Y (t=T)
L2252 52555532%252525593%2%25255%%3%%%%%

function result = integrate( TO, T, dt, Y0, rhs, Ns, A, B, C )
% current time

Tcur = TO;

% initial function value

Y = YO;

dy = 0;

while Tcur < T
if dt > T-Tcur
dt = T - Tcur;
end

for k=1:Ns

dy = A(k)*dY + dt*rhs( Tcur + C(k)*dt, Y );
Y = expm( B(k)*dy )*Y;

end

% set values for next iteration

Tcur = Tcur + dt;

end

result = Y;

end
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