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Abstract

A new format for commutator-free Lie group methods is proposed based on explicit

classical Runge-Kutta schemes. In this format exponentials are reused at every stage

and the storage is required only for two quantities: the right hand side of the differential

equation evaluated at a given Runge-Kutta stage and the function value updated at the

same stage. The next stage of the scheme is able to overwrite these values. The result

is proven for a 3-stage third order method and a conjecture for higher order methods is

formulated. Five numerical examples are provided in support of the conjecture. This

new class of structure-preserving integrators has a wide variety of applications for

numerically solving differential equations on manifolds.

Keywords Geometric integration · Structure-preserving integrators · Lie group

methods · Runge-Kutta methods

Mathematics Subject Classification 65L05 · 65L06 · 34C40 · 34G20 · 37M15

1 Introduction

In many scientific and engineering applications there is a need to solve ordinary or

partial differential equations numerically. A variety of methods exist and one of the

popular ones is the Runge-Kutta method [5,14]. Often, one would like to build numer-

ical schemes that preserve the structure of the original differential equations. For

instance, for free rigid body rotation the (properly normalized) vector of the angular

momentum evolves on the S2 manifold, i.e. the surface of a three-dimensional sphere.
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746 A. Bazavov

It is beneficial when a time-stepping scheme maintains this property at every step of

the integration.

Ideas along these lines have been pursued over last three decades and lead to devel-

opment of geometric integrators [13], see also [8,9] for recent reviews. As argued

in [9], preservation of geometric properties is beneficial and often leads to increased

stability, smaller local error as well as slower global error growth in long-time sim-

ulations. Many applications involve differential equation on Lie groups or manifolds

with Lie group action. The first major step in building Lie group methods based on

classical Runge-Kutta schemes was taken by Crouch and Grossman [10]. Their meth-

ods require a large number of exponentials (compared to the later developments) and

introduce specific order conditions for the coefficients. Later, Munthe-Kaas [21–23]

introduced a class of integrators that involve commutators and allow one to build a

Lie group integrator based on an arbitrary classical Runge-Kutta scheme. Then Celle-

doni, Marthinsen and Owren [7] developed another class of Lie group methods that

avoid commutators which results in a different structure of the coefficients and the

order conditions that complement the classical ones. The complete theory of order

conditions for commutator-free methods was worked out by Owren in Ref. [26].

The main purpose of the present paper is to introduce a new class of commutator-

free Lie group methods that is naturally related to classical low-storage schemes of

Williamson [32] and has different properties in terms of exponentials reuse compared

to the methods available in the literature. In the way the exponentials are reused this

class of methods is also related to the multirate infinitesimal step (MIS) methods of

Knoth and collaborators [18,31]. The first instance of a method that belongs to the new

proposed class in the literature is, to the best of our knowledge, the 3-stage third-order

coefficient scheme introduced by Lüscher in Ref. [19].

This paper is organized as follows. In Sect. 2 we review classical Runge-Kutta

integrators including low-storage schemes, in Sect. 3 we review several types of Lie

group integrators that exist in the literature. In Sect. 4 we propose a new class of low-

storage commutator-free Lie group integrators with reuse of exponentials and prove

that a 3-stage scheme in the new format is of order p = 3 global accuracy. We then

formulate a conjecture about low-storage commutator-free Lie group methods with

more than three stages and of order higher than three. In Sect. 5 we provide numerical

evidence in support of the conjecture and conclude in Sect. 6.

2 Classical Runge-Kutta integrators

We first review the well-known facts about explicit Runge-Kutta integrators and low-

storage schemes and introduce the notation that will be used in the following.

2.1 Definitions and notation

Consider a first-order differential equation for a function y(t)

dy

dt
= f (t, y). (2.1)
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Commutator-free Lie group methods with… 747

A standard explicit s-stage Runge-Kutta (RK) scheme1 for numerically integrating

Eq. (2.1) from time t to t + h is [5,14]

yi = yt + h

i−1
∑

j=1

ai j k j , ki = f (t + hci , yi ), i = 1, . . . , s, (2.2)

yt+h = yt + h

s
∑

i=1

bi ki . (2.3)

In the context of manifold integrators introduced later in Sect. 3 we refer to this scheme

as classical RK method. For an explicit method, ai j = 0 for j ≥ i and self-consistency

conditions require

ci =
i−1
∑

j=1

ai j . (2.4)

Without loss of generality we focus on autonomous problems dy/dt = f (y).

Extension to non-autonomous problems is straightforward.

By comparing the numerical solution (2.3) with the Taylor expansion of the exact

solution y(t + h) around y(t) one obtains the constraints, called the order conditions,

on the RK coefficients ai j , bi , ci so that the RK method provides a certain order of

accuracy. For a third-order RK method the minimum number of stages is three and

the order conditions then take the following form [5,14]

b1 + b2 + b3 = 1, b2c2 + b3c3 = 1

2
b2c2

2 + b3c2
3 = 1

3
, b3a32c2 = 1

6
. (2.5)

Given that there are six ai j , bi coefficients (the coefficients ci follow from (2.4)) and

four constraints (2.5) one expects a two-parameter family of solutions. Due to the fact

that c2 and c3 enter in the constraints nonlinearly, it is customary to take c2 and c3

as free parameters and in this case, there are three branches of solutions. Picking the

most generic branch c2 �= 0 �= c3 �= c2 �= 2/3 [5] one gets

a32 = c3(c3 − c2)

c2(2 − 3c2)
, b2 = 3c3 − 2

6c2(c3 − c2)
, b3 = 2 − 3c2

6c3(c3 − c2)
, (2.6)

and the other coefficients can be reconstructed trivially from the order conditions.

2.2 Williamson low-storage schemes

It was noted by Williamson in Ref. [32] that the RK scheme (2.2)–(2.3) with imposing

additional constraints and a suitable choice of coefficients Ai , Bi can be rewritten as

1 It is implied here and later on that when the upper bound on the index in a sum is smaller than the

lower bound, the sum is set to 0 and if the same conditions hold for a product, the product is set to 1, e.g.
∑0

j=1 ... = 0,
∏0

j=1 ... = 1.
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748 A. Bazavov

(A1 = 0)

∆yi = Ai∆yi−1 + h f (yi−1), yi = yi−1 + Bi∆yi , i = 1, . . . , s, (2.7)

y0 ≡ yt , yt+h ≡ ys . (2.8)

The utility of the scheme (2.7)–(2.8) is that at a given stage i one only needs to keep

the values of yi and ∆yi and the previous values can be overwritten. For a system of N

degrees of freedom only 2N storage locations are required, independently of the order

and the number of stages of the RK method. This particular two-register low-storage

scheme is referred to as 2N -storage scheme. The original RK coefficients are related

to Ai , Bi as

ai j =







A j+1ai, j+1 + B j , j < i − 1,

B j , j = i − 1,

0, otherwise,

bi =
{

Ai+1bi+1 + Bi , i < s,

Bi , i = s.
(2.9)

The 2N -storage schemes of Williamson [32] have been modified in various ways

leading to the development of 2R, 2S, 3R, etc. schemes [15,16] that differ in the

number of registers (quantities stored at each stage) and the constraints imposed on the

coefficients Ai , Bi . However, it is the 2N -storage schemes that possess the properties

that this discussion builds upon later, so we consider only them here.

The 2N -storage scheme introduces more constraints on the coefficients ai j , bi .

However, they may be implicit: once the classical coefficients ai j , bi are expressed

in terms of the 2N -storage coefficients Ai , Bi , one needs to search for a solution that

satisfies only the original classical order conditions. For low-order schemes it may be

useful to find the additional constraints explicitly, and we discuss a 3-stage third-order

RK method in detail here to illustrate this point. In this case the coefficients no longer

form a two-parameter family. The additional constraint can be imposed in different

ways and a particular form used in Ref. [32] is

c2
3(1 − c2) + c3

(

c2
2 + 1

2
c2 − 1

)

+
(

1

3
− 1

2
c2

)

= 0. (2.10)

Choosing c2 and then solving for c3 from Eq. (2.10) allows one to reconstruct the

coefficients ai j , bi from (2.6), (2.5) and (2.4). Inverting the dependence (2.9) produces

the coefficients Ai , Bi of the 2N -storage scheme (2.7)–(2.8).

The two branches of solutions of c3 as function of c2 resulting from (2.10) are

shown in Fig. 1. There is a reflection symmetry with respect to the c2 + c3 = 1 axis

which is apparent after a change of variables c2 = x + y, c3 = 1 − x + y.

3 Brief review of Lie group integrators with examples at third order

Let us now consider an equation of the form

dY

dt
= A(Y )Y , (3.1)
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where Y is a vector or a matrix. We use capital letters to emphasize that we now deal

with objects that may not necessarily commute. Again, for simplicity we consider

autonomous problems and extension to non-autonomous problems with A(t, Y ) is

straightforward. Although the primary focus in this article is equations on Lie groups

where Y ∈ G and A(Y ) ∈ g where G is a (matrix) Lie group and g its Lie algebra,

the discussion applies to structure-preserving integration of differential equations on

manifolds in general [13]. The numerical examples in Sect. 5 include free rigid body

rotation, where Y is a three-dimensional vector of fixed length and the manifold is S2,

integration of the gradient flow on SU (3) where Y is an SU (3) matrix and the manifold

is obviously the SU (3) group, van der Pol oscillator where Y is a two-dimensional

vector and the manifold is R2 and more.

We review several existing Lie group integrators with examples at third order to

define the building blocks necessary for the discussion in Sect. 4.

3.1 Crouch-Grossmanmethods

An update from Yt to Yt+h in the form of a classical RK method (2.2)–(2.3) is possible,

however, even if Y ∈ G, the updated value of the form Y +Const ·h A(Y )Y is no longer

in the Lie group, in general. To maintain Y on the manifold one needs to construct an

update of the form exp(Const · h A(Y ))Y . Then every stage of the RK-based method

and the resulting Yt+h stays on the original manifold.

Crouch and Grossman [10] suggested an s-stage Lie group RK method of the

following form:

Yi = T







i−1
∏

j=1

exp(hai j K j )







Yt , Ki = A(Yi ), i = 1, . . . , s, (3.2)

Yt+h = T

{

s
∏

i=1

exp(hbi Ki )

}

Yt . (3.3)

Here T
∏

represents a “time-ordered”2 product with a convention that an element

with smaller value of the index is always located to the right. An explicit example

clarifying this notation is given below in Eq. (3.5)–(3.8). In this case the number of ai j ,

bi coefficients matches a classical s-stage RK method and can be represented with

a Butcher table. The coefficients need to satisfy the classical order conditions and

some additional constraints that result from non-commutativity. Ref. [10] considered

methods up to order three and found that for a third-order method one has the following

additional relation

∑

i

b2
i ci + 2

∑

i< j

bi ci b j = 1

3
. (3.4)

2 by analogy with quantum field theory
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750 A. Bazavov

The order conditions for higher-order Lie group methods of this type were later derived

in [27]. It turns out that a 3-stage third-order RK Lie group method is possible (since

there are six coefficients and five constraints, giving a one-parameter family) and sets

of coefficients satisfying (2.5) and (3.4) were given in Ref. [10]. Let us for the later

convenience write the 3-stage third-order Crouch-Grossman RK method explicitly:

Y1 = Yt , K1 = A(Y1), (3.5)

Y2 = exp(ha21 K1)Yt , K2 = A(Y2), (3.6)

Y3 = exp(ha32 K2) exp(ha31 K1)Yt , K3 = A(Y3), (3.7)

Yt+h = exp(hb3 K3) exp(hb2 K2) exp(hb1 K1)Yt . (3.8)

From the computational perspective one can note the following. The method requires

three evaluations of the right hand side of the differential equation, six exponentiations

and storage for Ki from all three stages, to be applied at the last step of the algorithm

(3.8).

3.2 Munthe-Kaas methods

Another direction in constructing Lie group methods was taken by Munthe-Kaas in

Refs. [21–23]. The most general approach worked out in Ref. [23] represents the

solution Y (t) as Y (t) = exp(U (t))Y (0) and constructs an algorithm for solving the

equation for U (t)

dU

dt
= d exp−1

U (A(Y (t))), (3.9)

where the inverse derivative of the matrix exponential can be written as an expansion

d exp−1
U =

∞
∑

k=0

Bk

k! adk
U . (3.10)

Bk are the Bernoulli numbers and the adjoint operator adU represents a mapping

adU (V ) = [U , V ] = U V − V U . The k-th power of adU is understood as an iterated

application of this mapping:

ad0
U (V ) = V , (3.11)

ad1
U (V ) = [U , V ], (3.12)

adk
U (V ) = adU (adk−1

U (V )) = [U , [U , [. . . , [U , V ]]]]. (3.13)

Let a truncated approximation of d exp−1
U (V ) be

dexpinv(U , V , p) =
p−1
∑

k=0

Bk

k! adk
U (V ). (3.14)

123



Commutator-free Lie group methods with… 751

Then using the notation introduced in earlier sections, a Lie group s-stage order-p RK

method of Munthe-Kaas type has the following form:

Ui = h

i−1
∑

j=1

ai j K̃ j , Yi = exp(Ui )Yt , Ki = A(Yi ), (3.15)

K̃i = dexpinv(Ui , Ki , p), i = 1, . . . , s, (3.16)

Yt+h = exp(V )Yt , V = h

s
∑

i=1

bi K̃i . (3.17)

As shown in Ref. [23], if the coefficients ai j , bi correspond to a classical RK method

of order p then the algorithm (3.15)–(3.17) with the truncation at p − 1 in (3.14)

is a Lie group integrator of order at least p. This procedure allows one to turn any

classical s-stage order p RK method into a Lie group integrator with the same number

of stages and the same order at the expense of introducing commutators at every stage,

Eq. (3.16). The number of commutators can be reduced as discussed in [24], and for

later comparisons we write explicitly an earlier version [22] of the 3-stage third-order

Lie group RK method of Munthe-Kaas type that requires only one commutator at the

final stage:

Y1 = Yt , K1 = A(Y1), (3.18)

Y2 = exp(ha21 K1)Yt , K2 = A(Y2), (3.19)

Y3 = exp(h(a32 K2 + a31 K1))Yt , K3 = A(Y3), (3.20)

V = h

3
∑

i=1

bi Ki , Ṽ = V − h

6
[K1, V ], (3.21)

Yt+h = exp(Ṽ )Yt . (3.22)

Apart from the exponential action and the commutator in (3.21) this method resembles

a classical RK method in that respect that one adds Ki in a similar fashion as in a

classical method and then exponentiates the result to produce Yi for the next stage.

Here one needs three evaluations of the right hand side, three exponentiations and

storage of Ki from all three stages.

3.3 Celledoni-Marthinsen-Owrenmethods

Celledoni, Marthinsen and Owren in Ref. [7] considered an approach that generalizes

Crouch-Grossman methods with the goal to avoid computation of commutators. Their

idea is to introduce more than one exponential per stage of a RK method but allow

for linear combinations of Ki in the exponentials. An s-stage RK Lie group integrator
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can be written in the following form:

Yi = T







L i
∏

l=1

exp



h

Jil
∑

j=1

αl;i j K j











Yt , Ki = A(Yi ), i = 1, . . . , s, (3.23)

Yt+h = T







L
∏

l=1

exp



h

Il
∑

i=1

βl;i Ki











Yt . (3.24)

The notation here is similar but not the same as in Ref. [7] to be more in line with the

methods introduced earlier. Here L i is the number of exponentials used at stage i , Jil is

the upper bound on summation inside the l-th exponential at i-th stage, and, similarly, L

is the number of exponentials at the final stage and Il is the upper bound on summation

inside the l-th exponential at the final stage. By introducing more parameters one has

more room to satisfy the additional order conditions arising from non-commutativity

at the expense of introducing more exponentials at each stage. The new coefficients

αl;i j , βl;i are related to the coefficients of a classical RK method as [7]

L i
∑

l=1

αl;i j = ai j ,

L
∑

l=1

βl;i = bi . (3.25)

The Crouch-Grossman method, Eqs. (3.5)–(3.8) is a subclass of the Celledoni-

Marthinsen-Owren methods where αl;i j = ai jδl j (and automatically L i = i − 1

for explicit methods).

Ref. [7] proceeded in a way that minimizes the number of exponentials and

constructed schemes of third and fourth order that have the minimal number of expo-

nentials and also reuse the exponentials at next stages. Here for comparison we write

explicitly one of the solutions found in [7]:

Y1 = Yt , K1 = A(Y1), (3.26)

Y2 = exp(hα1;21 K1)Yt , K2 = A(Y2), (3.27)

Y3 = exp(h(α1;32 K2 + α1;31 K1))Yt , K3 = A(Y3), (3.28)

Yt+h = exp(h(β2;3 K3 + β2;2 K2 + β2;1 K1)) exp(hβ1;1 K1)Yt . (3.29)

Requiring that β1;1 = α1;21 allows one to reuse Y2 and calculate only one exponential

at the last stage. This requirement also fixes these two coefficients to be equal to 1/3

and the other coefficients then form a one-parameter family of solutions and their

explicit form is given in Ref. [7]. Another branch of solutions reuses Y3 and results in

a method with the same computational requirements: three right hand side evaluations,

three exponentiations and storage of Ki from all stages and Y2 or Y3.

As one can see, at third order the Munthe-Kaas and Celledoni-Marthinsen-Owren

methods have similar computational requirements, however, at fourth and higher order

the situation is different: while Munthe-Kaas method can be constructed with the

same number of exponentials as the number of stages in a classical RK method (with
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one exponential per stage), the Celledoni-Marthinsen-Owren methods require more

exponentials (e.g., at least, five at fourth order).

4 A new class of commutator-free Lie group integrators

4.1 Construction of the integrator

Here we construct a new class of Lie group integrators. It can be considered as a sub-

class of Celledoni-Marthinsen-Owren methods, however, the construction proceeds

differently and results in a family of solutions different from Ref. [7]. In particular this

new scheme has different properties in terms of storage and exponentials reuse. At the

same time, this new class can be considered as a subclass of the multirate infinitesimal

step (MIS) methods used as exponential integrators [31], however, again, the family

of solutions proposed here is different from the ones present in the literature.

Let us first construct a 3-stage third-order Lie group integrator and then comment on

generalization of this scheme. Let us take the structure introduced in Eq. (3.23)–(3.24)

and add the following requirements:

1. L i = i − 1 – as in the Crouch-Grossman method, stage i has exactly i − 1

exponentials.

2. Jil = l – the number of terms within each exponential is equal to the index of that

exponential in the sequence. With the time-ordering convention this means that

the rightmost exponential has one term, the one to the left of it – two terms, etc.

3. L = s – at the final stage there is the maximum number, s exponentials.

4. Il = l – the convention on the number of terms inside exponentials at the final

stage is the same as in the previous stages.

Explicitly, a 3-stage algorithm (its order is not yet determined) is

Y1 = Yt , K1 = A(Y1), (4.1)

Y2 = exp(hα1;21 K1)Yt , K2 = A(Y2), (4.2)

Y3 = exp(h(α2;32 K2 + α2;31 K1)) exp(hα1;31 K1)Yt , K3 = A(Y3), (4.3)

Yt+h = exp(h(β3;3 K3 + β3;2 K2 + β3;1 K1)) (4.4)

× exp(h(β2;2 K2 + β2;1 K1)) exp(hβ1;1 K1)Yt . (4.5)

This algorithm has six exponentials as the Crouch-Grossman method and also requires

evaluating linear combinations of Ki as in a classical RK method. There are 10 coef-

ficients αl;i j , βl;i that are related to the classical RK coefficients via (3.25) and are

subject to the four classical order conditions (2.5) and possibly other constraints arising

from noncommutativity.

At first sight, there is nothing beneficial in this scheme as it requires more work

than any other Lie group method introduced previously and therefore we apply another

constraint:

5. The coefficients in the exponentials with the same number of terms are the same

at all stages.
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This means β1;1 = α1;31 = α1;21, β2;1 = α2;31 and β2;2 = α2;32. This requirement

allows one to reuse previous Yi at every stage and the scheme can be rewritten as

Y1 = Yt , K1 = A(Y1), (4.6)

Y2 = exp(hα1;21 K1)Y1, K2 = A(Y2), (4.7)

Y3 = exp(h(α2;32 K2 + α2;31 K1))Y2, K3 = A(Y3), (4.8)

Yt+h = exp(h(β3;3 K3 + β3;2 K2 + β3;1 K1))Y3. (4.9)

Now there are only three exponentials, the method reuses values of Yi from each pre-

vious stage and if the coefficients can be tuned that the scheme results in a third-order

method, it can be on par with the methods of Sect. 3. There are now six indepen-

dent coefficients, as in the classical 3-stage RK method and they are related to the

coefficients of the classical method in a simple way:

α1;21 = a21, α2;31 = a31 − a21, α2;32 = a32, (4.10)

β3;1 = b1 − a31, β3;2 = b2 − a32, β3;3 = b3. (4.11)

Note that although a 3-stage third-order method is considered here as an example,

the construction (4.6)–(4.9) is applicable in general. Eqs. (3.23)–(3.24) with the five

requirements listed above essentially mean that in this format for a s-stage method

each stage i has only one exponential that contains a sum of all Ki accumulated up to

that stage that multiplies Yi−1 from the previous stage, Y0 ≡ Yt :

Yi = exp



h

i−1
∑

j=1

αi−1;i j K j



 Yi−1, Ki = A(Yi ), i = 1, . . . , s, (4.12)

Yt+h = exp

(

h

s
∑

i=1

βs;i Ki

)

Ys . (4.13)

However, as will be shown immediately below, a more compact format may be pos-

sible.

4.2 Order conditions for the new three-stage third-order Lie groupmethod

By Taylor expanding the scheme (4.6)–(4.9) and comparing with the expansion of

the exact solution one finds that the additional order conditions for this scheme to be

globally of third order can be written as

b2c2
2 + b3c2

3 + (b2c2 + b3c3)(b1 + b2 + b3 + c3) + a32c2(c2 − b1 − b2 − b3) = 1,

(4.14)

(b2c2 + b3c3)(b1 + b2 + b3 − c3) + a32c2(b1 + b2 + b3 − c2) = 1

3
. (4.15)
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With the use of the classical order conditions (2.5) one finds that these two conditions

are not independent and result in a single condition:

a32c2(1 − c2) = 1

6
(3c3 − 1). (4.16)

We can now multiply both sides by b3 �= 0, use Eqs. (2.5) and (2.6), and rewrite (4.16)

as a relation between c2 and c3:

c2
3(1 − c2) + c3

(

c2
2 + 1

2
c2 − 1

)

+
(

1

3
− 1

2
c2

)

= 0. (4.17)

Eq. (4.17) is exactly the same (!) as the relation (2.10) for the 2N -storage scheme

discussed in Sect. 2.2.

Let us summarize what has been achieved so far. We proposed a new format for

a 3-stage commutator-free Lie group RK method (4.1)–(4.5) and, by requiring that

it is of third order global accuracy, found that the order conditions on the classical

RK coefficients of this method are the same as on the 3-stage third-order 2N -storage

scheme. Note, that the 2N -storage schemes [32] were not intended as Lie group inte-

grators and were designed as classical RK methods. The other way around, this means

that although it was not imposed in (4.6)–(4.9), the relations between the coefficients

are such that one does not need to store Ki from all stages and this scheme can be

rewritten in a 2N -storage format by analogy with (2.7)–(2.8) as3 (A1 = 0)

∆Yi = Ai∆Yi−1 + h A(Yi−1), Yi = exp(Bi∆Yi )Yi−1,

i = 1, . . . , s, (4.18)

Yt+h ≡ Ys, (4.19)

where the coefficients Ai , Bi are related to ai j , bi in Eq. (2.9).

4.3 Conjecture about higher order commutator-free Lie group integrators

The first main result of this paper derived in the previous section can be summarized

as follows: The family of classical 2N-storage 3-stage third-order RK schemes are

also automatically third-order commutator-free Lie group integrators.

In fact, the third-order scheme, presented without derivation in the Appendix of Ref.

[19] and used as a Lie group method for integration of SU (3) gradient flow, belongs

to the class of integrators proposed in Sect. 4.1 with a specific choice of coefficients

from the one-parameter family of Eq. (4.17). This is discussed in more detail in the

third numerical example in Sect. 5.3.

A natural question is: Are the 2N -storage schemes at third order with more than

three stages and at orders four and higher also commutator-free Lie group methods of

3 The clash of notation here is unfortunate, but it is customary in the literature on low-storage schemes to

use Ai for the coefficients, while it is customary in the literature on Lie group methods to use A(Y ) on the

right hand side of Eq. (3.1).
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the same order? While there is no analytic proof immediately available, the numerical

evidence that is examined in Sect. 5 suggests that the answer to this question may be

positive.

The second main result of this paper is the following conjecture: 2N-storage s-stage

classical RK schemes of order p are also automatically commutator-free Lie group

methods of the format proposed in Eqs. (4.18)–(4.19) of order p for orders p = 3, 4, 5

and possibly higher.

5 Numerical experiments

We now consider a few 2N -storage classical RK schemes and apply them in several

examples to provide support for the conjecture stated in Sect. 4.3.

First, we consider a 3-stage third-order family of 2N -storage schemes for which it

is proven in Sect. 4.2 that they are Lie group integrators of order p = 3. We would like

to choose a set of coefficients for which the truncation error is minimal in the sense of

Ref. [28]. We need to emphasize the difference with the classical RK case. The 3-stage

third-order classical RK scheme that has minimal truncation error found by Ralston

[28] is not a 2N -storage scheme and is not of third order if used as a Lie group integrator

as defined in (4.6)–(4.9). However, one can follow the error minimization criteria of

[28] with the additional constraint between c2 and c3, Eq. (4.17). The resulting set

of classical RK coefficients was found by Williamson [32] and they turn out to be

not rational. Unfortunately, Ref. [32] provided the coefficients with only five digits of

accuracy which is not sufficient for the tests in this section. Therefore we improve on

this by following the minimization procedure of [28] with the constraint (4.17) and

the resulting set of coefficients is

a21 = 0.45737999756938819, a31 = −0.13267640849031470, (5.1)

a32 = 0.92529641092092174, b1 = 0.19546562910003523, (5.2)

b2 = 0.41072077622489378, b3 = 0.39381359467507099. (5.3)

By using (2.9) they are transformed into the 2N -storage format and used in the

commutator-free Lie group method, Eqs. (4.18)–(4.19). We use this scheme, called

BWRRK33, in the examples below, and we also tested it with the nine sets of rational

coefficients shown in Fig. 1, six of which were found in [32].

Next, we also consider thirteen 2N -storage schemes available in the literature. The

nomenclature used here is the following. Letters “RK” in the middle indicate that this

is a classical RK method, the letters in front abbreviate the names of the authors or

the name given to the scheme in the original article, the last digit is the order of the

method, the digits in front of it represent the number of stages and the additional letters

after “RK” possible notation from the original article to distinguish integrators with

different properties. The list of all fourteen 2N -storage schemes tested in the examples

is given in Table 1.
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Fig. 1 The two branches of solutions [32] of Eq. (2.10) shown as blue and green lines. The red circles show

the solutions with rational coefficients found in [32] and the blue squares the solutions (c2 = 7/12, c3 =
2/15), (c2 = 7/12, c3 = 3/4) and (c2 = 13/15, c3 = 5/12) that were missed in [32]. The orange square

corresponds to the solution with minimal truncation error as defined in [28] which is used later as a basis

of the BWRRK33 commutator-free Lie group method, see Sect. 5

Table 1 Method 1, BWRRK33 is proven to be a third-order commutator-free Lie group method in Sect. 4.2.

Methods 2–14 are classical 2N -storage RK methods available in the literature used to test the conjecture

formulated in Sect. 4.3. We note that for the BWRRK33 method we also ran numerical tests with the rational

coefficients shown in Fig. 1 and for the CKRK54 method we ran tests with all four sets of coefficients found

in Ref. [6]. For presenting results we, however, chose only one, recommended set of coefficients from [6].

Similarly, there are four sets of coefficients for the BPRKO73 method in Ref. [4] which we tested, but for

presenting the results we chose the set called ORK37-6 in Ref. [4]. Note also that BBBRKNL64 is called

RK46-NL in Ref. [3]

Name Stages Order Reference

1 BWRRK33 3 3 Here, [32], [28]

2 BPRKO73 7 3 [4]

3 TSRKC73 7 3 [30]

4 CKRK54 5 4 [6]

5 SHRK64 6 4 [29]

6 BBBRKNL64 6 4 [3]

7 HALERK64 6 4 [1]

8 HALERK74 7 4 [1]

9 TSRKC84 8 4 [30]

10 TSRKF84 8 4 [30]

11 NDBRK124 12 4 [25]

12 NDBRK134 13 4 [25]

13 NDBRK144 14 4 [25]

14 YRK135 13 5 [33]

It is important to stress that while we proved that the BWRRK33 scheme4 is a

commutator-free Lie group integrator with global accuracy of order p = 3, Sect. 4.2,

4 and all 3-stage third-order explicit RK schemes satisfying the constraint (4.17)
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none of the other schemes in Table 1 were originally designed as Lie group integrators.

They are 2N -storage classical RK methods which were designed to have specific

properties such as increased stability regions, low dissipation, etc. If one attempts

to use an order p arbitrary classical RK scheme whose coefficients satisfy only the

classical RK constraints as a Lie group integrator, the order of accuracy is less than p,

and as numerical experiments show, typically second order at best. Thus, the thirteen

2N -storage schemes (in addition to BWRRK33) collected in Table 1 are a perfect test

of the conjecture in Sect. 4.3 if they maintain the same order of accuracy when used

as commutator-free Lie group methods in the sense of Eqs. (4.18)–(4.19).

Also, while it is not yet proven (or refuted) that any 2N -storage method of order p

is also a commutator-free Lie group integrator of order p, for a given set of numerical

values of the coefficients the order conditions can be algorithmically checked by using

B-series [17]. All the methods of Table 1 were independently checked by Knoth with

the software available at [17] and they indeed fulfill the order conditions corresponding

to the order shown in the table when used as Lie group integrators.

For numerical experiments in our code we also implemented integrators of other

types, namely, Crouch-Grossman method of order p = 3 [10], Munthe-Kaas methods

of order p = 3, 4, 5, 8 [23], Celledoni-Marthinsen-Owren methods [7] of order p = 3

and 4. In the tests below as a reference we use the following Lie group integrators

of Munthe-Kaas (RKMK) type: 3-stage third-order with Ralston coefficients, 4-stage

fourth-order with Ralston coefficients, 6-stage fifth-order with Butcher coefficients.

5.1 Example 1: Free rigid body rotation

As a first numerical example we consider rotation of a free rigid body with the center

of mass fixed at the origin. This example was used in Ref. [7,11]. In this case, Y is a

three-dimensional vector of angular momentum and the Euler equation is

dY

dt
= Y × I −1Y , (5.4)

where I is the inertia tensor. By using the hat map ˆ : R3 → so(3) defined as

V =





v1

v2

v3



 → V̂ =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (5.5)

the Euler equation can be rewritten in the form (3.1)

dY

dt
= − Î −1Y Y (5.6)

with A(Y ) ≡ − Î −1Y . For the tensor of inertia we take the same value I =
diag(7/8, 5/8, 1/4) as in [7] but choose a different initial condition Y (0) =
(−

√
8/3, 0, 1/3). Such an initial condition matches the simplifying assumptions of

[20] where the exact solution is given in terms of Jacobi’s elliptic functions. First, to
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Fig. 2 Comparison of the exact solution for the three components of the angular momentum (see text),

shown as the gray lines, with the results produced by the fourteen integrators listed in Table 1. If plotted as

lines, all results are indistinguishable from the exact solution. Therefore we plot the results from different

integrators as symbols of different shape and color skipping 140 steps in the sequence and starting to plot

the first integrator at a shift of 0 steps, second at a shift of 10 steps and so on
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Fig. 3 Distance from the reference (exact) solution d(h) for various integrators as function of step size h

shown in a log-log plot for the rigid body problem, Eq. (5.6). The red lines represent the three integrators

of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three integrators of order

p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange line one integrator

of order p = 5 from the same table. For the p = 4 integrators the minimum step size shown is 1/256 and

for p = 5 1/64 since when d(h) becomes comparable to 10−13 the roundoff errors prevent correct scaling

behavior. The black dashed lines are shown to guide the eye and represent from top to bottom h3, h4 and

h5, respectively

check the implementation of the integrators in our code, we compare the trajectory

integrated from t = 0 to t = 20 with the time step h = 0.025 with all fourteen

integrators of Table 1 with the exact solution. The result is shown in Fig. 2.

Next, to study the order of the methods we integrate the equation of motion from

t = 0 to t = 3 by using the step size h = 1/2n where n = 3, . . . , 11. Let Y (t = 3, h)

be the solution evaluated at a particular step size h and Yre f (t = 3) the exact solution
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Fig. 4 Distance from the

reference solution d(h) at

h = 1/16 for all fourth-order

integrators from Table 1 for the

rigid body problem, Eq. (5.6).

The symbols and colors are the

same as in Fig. 2 and the

numbers on the horizontal axis

correspond to the numbering in

Table 1

1x10
-7

1x10
-6

 4  5  6  7  8  9  10  11  12  13

[20]. We define a distance metric as

d(h) = |Y (t = 3, h) − Yre f (t = 3)|, (5.7)

where | . . . | is the usual Euclidean vector norm. If an integrator has the global order

of accuracy p then one expects d(h) ∼ h p. The results for d(h) for the fourteen

integrators of Table 1 and the three reference integrators are shown in Fig. 3. We note

that the BPRKO73, SHRK64 and BBBRKNL64 integrators are somewhat problematic

since their coefficients are given with less than full double precision accuracy. Their

scaling breaks down when d(h) reaches about 10−8, 10−7 and 10−11, respectively.

Therefore we plot d(h) approximately down to those limits for those integrators.

As one can observe from Fig. 3, the 2N -storage classical RK schemes provide the

same global order of accuracy when used as manifold integrators of a the new format

defined in Eqs. (4.18)–(4.19), supporting the conjecture stated in Sect. 4.3.

Some of the RK methods of fourth order shown in Fig. 3 as green lines have com-

parable global errors and their lines are hard to distinguish on the scale of the plot. In

Fig. 4 we show the distance from the exact solution d(h) at h = 1/16 for each method

of order 4 from Table 1. For instance, methods 4 and 7, 5 and 8, 9 and 11, and 6, 10,

12 and 13 produce similar d(h) in this example. Similar features are observed in the

other examples considered below but which particular methods produce close results

depends on the differential equation.

A simple Matlab script illustrating the usage of BWRRK33, TSRKF84 and

YRK135 as Lie group integrators for this example is given in Appendix A.

5.2 Example 2: SO(5) from Ref. [23]

Our second numerical example is the one5 used in [23], where Y is an SO(5) matrix

and the skew-symmetric matrix A(Y ) on the right hand side in Matlab notation is

A(Y ) = diag(diag(Y ,+1),+1) − diag(diag(Y ,+1),−1). (5.8)

5 up to the dimension: we use 5 × 5 orthogonal matrices and Ref. [23] used 4 × 4
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Fig. 5 Distance from the reference solution d(h) for various integrators as function of step size h shown

in a log-log plot for the SO(5) manifold in example 2, Eq. (5.8). As in Fig. 3, the red lines represent the

three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three

integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange

line one integrator of order p = 5 from the same table. For the p = 4 integrators the minimum step size

shown is 1/128 and for p = 5 1/32 since when d(h) becomes comparable to 10−13 the roundoff errors

prevent correct scaling behavior. The black dashed lines are shown to guide the eye and represent from top

to bottom h3, h4 and h5, respectively

The inital condition Y (0) = Y0 is produced randomly with

rand(‘seed’, 0); [Y0, R] = qr(rand(5, 5)). (5.9)

We integrate the equation of motion from t = 0 to t = 5 using the step size h = 1/2n ,

n = 1, . . . , 10. As the reference solution at time t = 5 Yre f (t = 5) we use the

solution produced by the package DiffMan [12] with the RKMK method of order

p = 6 butcher6 with the step size h = 1/512. As in the previous example we

define the distance from the reference solution

d(h) = |Y (t = 5, h) − Yre f (t = 5)|, (5.10)

where | . . . | is the matrix 2-norm, evaluated in Matlab asnorm. The results for d(h) are

shown in Fig. 5. The integrators again show expected scaling supporting the conjecture

stated in Sect. 4.3.

5.3 Example 3: SU(3) gradient flow

As a third example we consider an application that is relevant for a non-perturbative

approach to quantum field theory called lattice gauge theory. In this case the degrees

of freedom are SU (3) group elements that reside on links of a four-dimensional space-

time grid and the interactions in the system are encoded in traces of products of the

SU (3) matrices taken along closed paths on the grid. Lüscher in Ref. [19] introduced a

diffusion-like procedure that suppresses short-wavelength fluctuations in the system.
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Fig. 6 Comparison of the reference solution (see text) for the real and imaginary parts of the SU (3) matrix

elements Y11(t), Y12(t), shown as the four gray lines, with the results produced by the fourteen integrators

listed in Table 1. If plotted as lines, all results are indistinguishable from the exact solution. Therefore we

plot the results from different integrators as symbols of different shape and color skipping 140 steps in the

sequence and starting to plot the first integrator at a shift of 0 steps, second at a shift of 10 steps and so on

This procedure leads to the following equation on the SU (3) manifold:

dY

dt
= −P {HY } Y , (5.11)

where Y ∈ SU (3) and H ∈ GL(3, C) encodes the interactions with the neighboring

degrees of freedom on the grid. Here for numerical experiments we consider a single

degree of freedom Y in the presence of a fixed background H . The projection

P {M} = 1

2

(

M − M†
)

− 1

6
Tr

(

M − M†
)

(5.12)

produces an element of the algebra su(3) and the right hand side of Eq. (3.1) in this case

is A(Y ) = −P {HY }, where H is constant. We choose H as a random 3×3 complex

matrix and take a diagonal initial condition Y (t = 0) = diag(ei , ei , e−2i ). Here again,

to test the implementation of the integrators, we compare the trajectory integrated with

the fourteen methods of Table 1 with the solution obtained with DiffMan with the

RKMK integrator butcher6 at step size h = 1/512. The results for the real and

imaginary parts of the matrix elements Y11(t) and Y12(t) are shown in Fig. 6.

For the scaling study we use the same random matrix H and the same initial

condition. The trajectory is integrated from t = 0 to t = 10 with h = 1/2n , n =
1, . . . , 10 and as before we use the 2-norm as a measure of deviation from the reference

solution

d(h) = |Y (t = 10, h) − Yre f (t = 10)|. (5.13)

The results for d(h) are shown in Fig. 7.
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Fig. 7 Distance from the reference solution d(h) for various integrators as function of step size h shown

in a log-log plot for the SU (3) manifold in example 3, Eq. (5.11). As in Fig. 3, the red lines represent the

three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three

integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the orange

line one integrator of order p = 5 from the same table. For the p = 4 integrators the minimum step size

shown is 1/128 and for p = 5 1/64 since when d(h) becomes comparable to 10−13 the roundoff errors

prevent correct scaling behavior. The black dashed lines are shown to guide the eye and represent from top

to bottom h3, h4 and h5, respectively

The integrator suggested by Lüscher in the Appendix of Ref. [19] for integrating

this system, Eq. (5.11) is, in fact, a 3-stage third-order 2N -storage integrator of the

family (4.17) for which we have proven in Sect. 4.2 that all integrators of this family

are third-order Lie group methods. The choice of the classical coefficients equivalent

to the scheme in [19] is

a21 = 1

4
, a31 = −2

9
, a32 = 8

9
, (5.14)

b1 = 1

4
, b2 = 0, b3 = 3

4
. (5.15)

Although the integrator in Ref. [19] was not written in the 2N -storage format, it was

realized there that this scheme can be used as a low-storage scheme6, independently of

the earlier work [32]. Applications to lattice gauge theory is a case where low-storage

schemes are especially attractive, since realistic systems include grids of the size up

to 963 × 192 [2] which translates to about 1.2 × 1010 double precision numbers to be

stored on a (super)computer just to represent the system. While using a 2N -storage

scheme requires twice that amount, an equivalent 3-stage third-order RKMK method

requires four times this amount, with further increasing requirements for higher order

schemes. Since the conjecture about higher than order p = 3 2N -storage classical

RK methods holds true numerically for the SU (3) case, as illustrated in Fig. 7, this

opens a possibility of constructing higher order Lie group 2N -storage methods for

applications in lattice gauge theory.

6 The simplification that allows for this observation can be traced to the fact that b2 = 0.
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Fig. 8 The dependence of the

coordinate x(t) (blue) and the

velocity ẋ(t) (red) on time for

the van der Pol system,

Eq. (5.16). This solution is

produced with the BWRRK33

integrator with step size

h = 0.001. The other integrators

produce results indistinguishable

on the scale of the figure and are

not shown. The inset magnifies

the horizontal scale in the

vicinity of the “needle”
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5.4 Example 4: Van der Pol oscillator

The van der Pol equation

d2x

dt2
− µ(1 − x2)

dx

dt
+ x = 0 (5.16)

has also been used as a test case in the literature on Lie group methods [11]. In this

case, a Lie group method is used as an exponential integrator that may handle stiff

systems better than classical RK schemes. Eq. (5.16) can be rewritten in a vector form

d

dt

(

x

ẋ

)

=
(

0 1

−1 µ(1 − x2)

) (

x

ẋ

)

(5.17)

where we can identify Y as a two-dimensional vector and A(Y ) ∈ GL(2, R). As in

Ref. [11] we choose µ = 60 and the initial condition

Y (0) =
(

1

1

)

. (5.18)

At such a large value of µ the system is stiff as shown in Fig. 8 and the “needle” occurs

approximately at t = 1.53.

We integrate the system from t = 0 to t = 2, i.e. past the “needle”, with step

size h = 1/2n , n = 7, . . . , 12. As a reference solution Yre f (t = 2) we use the

result from the DiffMan package with the RKMK integrator butcher6 at step size

h = 1/4096 and define the distance from the reference solution d(h) the same way as

in the Example 1 in Sect. 5.1. The results for d(h) for various 2N -storage schemes of

Table 1 are shown in Fig. 9.

Notice that given the stiffness of the system, we use, in general, a range of smaller

step sizes than in the other examples, but all the integrators do show the scaling

expected from the conjecture in Sect. 4.3.
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Fig. 9 Distance from the reference solution d(h) for various integrators as function of step size h shown

in a log-log plot for the van der Pol oscillator in example 4, Eq. (5.16). As in Fig. 3, the red lines represent

the three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines represent the three

integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order p = 4 and the

orange line one integrator of order p = 5 from the same table. For the p = 5 integrators the minimum step

size shown is 1/2048 since when d(h) becomes comparable to 10−13 the roundoff errors prevent correct

scaling behavior. The black dashed lines are shown to guide the eye and represent from top to bottom h3,

h4 and h5, respectively

5.5 Example 5: Non-autonomous problem in SO(3)

As the final example we consider a non-autonomous problem which is included as

one of the examples in DiffMan [12]: Y ∈ SO(3) and

A(t, Y ) =





0 t 1

−t 0 −t2

−1 t2 0



 ∈ so(3). (5.19)

This test is different from the previous ones since the coefficients ci , Eq. (2.4), now

enter the game and we investigate if that may lead to a breakdown of the conjecture of

Sect. 4.3. We choose a unit matrix as the initial condition, as inDiffMan, and integrate

the trajectory from t = 0 to t = 1 with step sizes h = 1/2n , n = 1, . . . , 10. As the

reference solution we take the result from DiffMan integrated with butcher6with

h = 1/1024. The distance from the reference solution d(h) is defined the same way

as in examples 2, Sect. 5.2 and 3, Sect. 5.3. The results for d(h) for the methods of

Table 1 is shown in Fig. 10. As can be observed from the figure, the integrators again

show the expected scaling.

6 Conclusions

We have shown in Sect. 4.2 that 3-stage third-order classical 2N -storage Runge-Kutta

methods of Ref. [32] are also third-order commutator-free Lie group methods, since

the coefficients satisfy the same order conditions in both cases: four classical ones and
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Fig. 10 Distance from the reference solution d(h) for various integrators as function of step size h shown in

a log-log plot for the SO(3) matrix Y in example 5 (non-autonomous problem), Eq. (5.19). As in Fig. 3, the

red lines represent the three integrators of Munthe-Kaas type of order p = 3, 4 and 5. The three blue lines

represent the three integrators of order p = 3 from Table 1, the ten green lines the ten integrators of order

p = 4 and the orange line one integrator of order p = 5 from the same table. For the p = 4 integrators the

minimum step size shown is 1/256 and for p = 5 1/64 since when d(h) becomes comparable to 10−13

the roundoff errors prevent correct scaling behavior. The black dashed lines are shown to guide the eye and

represent from top to bottom h3, h4 and h5, respectively

an additional one arising either from writing the scheme in 2N -storage format [32] or

constructing a commutator-free Lie group integrator in a specific format proposed in

Eqs. (4.1)–(4.5) that automatically leads to Eqs. (4.6)–(4.9).

Given this similarity, we conjectured in Sect. 4.3 that this observation holds also

for third-order 2N -storage classical RK methods with more than three stages and

for methods of order four and five. In Sect. 5 we considered five different numerical

examples and studied how the global error of the 2N -storage classical RK methods

available in the literature [1,3,4,6,25,29,30,33] scales with the step size when the

schemes are used as commutator-free Lie group methods of the 2N -storage format

proposed in Eqs. (4.18)–(4.19). We found that in all test cases numerical evidence

supports the conjecture.

As a next step, it is obviously desirable to find an analytic proof of the conjecture

of Sect. 4.3. In the meantime, one can check the order conditions for a Lie group

integrator based on a given 2N -storage coefficients scheme with the methods of Ref.

[17] or determine what order is achieved numerically as in the examples presented in

Sect. 5.

If the conjecture is proven to be correct, there are two possible benefits of the

proposed low-storage commutator-free Lie group integrators. First, in large-scale cal-

culations one can significantly reduce memory requirements compared to the available

Lie group methods (both, commutator-free and with commutators) and also reuse the

exponentials at every step of the calculation which leads to the requirement of evaluat-

ing exactly s exponentials for a s-stage method. Second, it may be easier to develop new

schemes of this type for differential equations on manifolds in a way it has been done

for the classical 2N -storage methods. Once the scheme is written in a 2N -storage for-

mat, Eqs. (4.18)–(4.19), one needs to find the coefficients of the 2N -storage scheme
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from satisfying only classical Runge-Kutta order conditions. The property that the

scheme is a 2N -storage scheme will automatically (again, if the conjecture is true)

satisfy all the additional constraints arising from non-commutativity.
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A Matlab code

To illustrate the usage of the 2N -storage schemes as commutator-free Lie group inte-

grators we present below a Matlab script that generates a scaling plot similar to Fig. 3

using the integrators BWRRK33, TSRKF84 and YRK135 from Table 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% main function in the script:

% get scaling with step size

% by comparing to exact solution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function lie_integrate

format long;

global I;

% initial condition

% second component is 0 to match

% simplifying assumptions of exact solution

% in Marsden, Ratiu, Introduction to Mechanics and Symmetry

y0 = [ -sqrt(8)/3; 0; 1/3 ];

% moment of intertia, same as in

% Celledoni, Marthinsen, Owren

% Future Generation Computer Systems, 19 (2003) 341-352

I1 = 7/8; I2 = 5/8; I3 = 1/4; I = diag( [ I1 I2 I3 ] );

% integration parameters

T0 = 0; T = 3;

% set array with time steps

array_dt = ...

[ 1/2048 1/1024 1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 ];

Ndt = length( array_dt );

% number of integrators

Nint = 3;

% storage

error_dt = zeros( Ndt, Nint );

sol = zeros( 3, Ndt, Nint);

% coefficients for low-storage integrators
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% 3-stage third-order BWRRK33

Nstages_3 = 3;

A_3 = [ 0 -0.637694471842202 -1.306647717737108 ];

B_3 = [ 0.457379997569388 0.925296410920922 0.393813594675071 ];

C_3 = [ 0 0.457379997569388 0.792620002430607 ];

% 8-stage fourth-order TSRKF84 of

% Toulorge, Desmet, J. Comp. Phys. 231 (2012) 2067-2091

Nstages_4 = 8;

A_4 = [ 0 -0.5534431294501569 0.01065987570203490 ...

-0.5515812888932000 -1.885790377558741 -5.701295742793264 ...

2.113903965664793 -0.5339578826675280 ];

B_4 = [ 0.08037936882736950 0.5388497458569843 0.01974974409031960 ...

0.09911841297339970 0.7466920411064123 1.679584245618894 ...

0.2433728067008188 0.1422730459001373 ];

C_4 = [ 0 0.08037936882736950 0.3210064250338430 ...

0.3408501826604660 0.3850364824285470 0.5040052477534100 ...

0.6578977561168540 0.9484087623348481 ];

% 13-stage fifth-order YRK135 of

% Yan, Chin. J. Chem. Phys 30 (2017) 277-286

Nstages_5 = 13;

A_5 = [ 0 -0.33672143119427413 -1.2018205782908164 ...

-2.6261919625495068 -1.5418507843260567 -0.2845614242371758 ...

-0.1700096844304301 -1.0839412680446804 -11.61787957751822 ...

-4.5205208057464192 -35.86177355832474 -0.000021340899996007288 ...

-0.066311516687861348 ];

B_5 = [ 0.069632640247059393 0.088918462778092020 1.0461490123426779 ...

0.42761794305080487 0.20975844551667144 -0.11457151862012136 ...

-0.01392019988507068 4.0330655626956709 0.35106846752457162 ...

-0.16066651367556576 -0.0058633163225038929 0.077296133865151863 ...

0.054301254676908338 ];

C_5 = [ 0 0.069632640247059393 0.12861035097891748 ...

0.34083022189561149 0.54063706308495402 0.59927749518613931 ...

0.49382042519248519 0.48207852767699775 0.82762865209834452 ...

0.82923953914857933 0.67190565554748019 0.87194975193167848 ...

0.94930216564503562 ];

% parameters for exact solution

I1y0 = (Iˆ-1) * y0; h = 1/2 * ( y0.’*I1y0 );

y02 = y0.’*y0; a = y02 / (2*h); b = 2*h / sqrt(y02);

alpha = sqrt( a*I2*(a-I3)/(I2-I3) ) * b;

beta = sqrt( a*I2*(I1-a)/(I1-I2) ) * b;

mu = sqrt( a*(I1-a)*(I2-I3)/(I1*I2*I3) ) * b;

k = sqrt( (I1-I2)*(a-I3)/(I1-a)/(I2-I3) );

delta = sqrt( I3*(I1-a)*a/(I1-I3) ) * b;

gamma = sqrt( I1*(a-I3)*a/(I1-I3) ) * b;

% exact solution at T

snmt = jacobiSN( mu*T, kˆ2 );

cnmt = jacobiCN( mu*T, kˆ2 );

dnmt = jacobiDN( mu*T, kˆ2 );

y_exact = [ -gamma * cnmt; alpha * snmt; delta * dnmt ];

% loop over step sizes

for idt = 1:Ndt

% integrate with current step size
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for iint=1:Nint

dt = array_dt(idt);

if iint==1

sol( :, idt, iint ) = ...

integrate( T0, T, dt, y0, @rhs_f, Nstages_3, A_3, B_3, C_3 );

elseif iint==2

sol( :, idt, iint ) = ...

integrate( T0, T, dt, y0, @rhs_f, Nstages_4, A_4, B_4, C_4 );

elseif iint==3

sol( :, idt, iint ) = ...

integrate( T0, T, dt, y0, @rhs_f, Nstages_5, A_5, B_5, C_5 );

end

% get error

error_dt( idt, iint ) = norm( sol( :, idt, iint ) - y_exact );

end

end

% plot

for iint=1:Nint

if iint==1

cc = [1 0 0]; xaxis = array_dt; yaxis = error_dt( :, iint );

elseif iint==2

cc = [0 0.7 0]; xaxis = array_dt( 3:Ndt ); yaxis = error_dt( 3:Ndt, iint );

elseif iint==3

cc = [0 0 1]; xaxis = array_dt( 5:Ndt ); yaxis = error_dt( 5:Ndt, iint );

end

loglog( xaxis, yaxis, ’Color’, cc, ’LineWidth’, 3 );

if iint==1

hold on

end

end

hold off

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% right hand side function

% t - current time

% y - current function value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = rhs_f( t, y )

global I;

I1y = (Iˆ-1) * y; r = zeros(3,3);

r(1,2) = I1y(3); r(2,1) = -I1y(3); r(1,3) = -I1y(2);

r(3,1) = I1y(2); r(2,3) = I1y(1); r(3,2) = -I1y(1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% low-storage commutator-free Lie group integrator

% T0 - initial time

% T - final time

% dt - step size

% Y0 - initial function value

% rhs - function to evaluate right hand side

% Ns - number of stages of the integrator
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% A, B, C - coefficients in 2N-storage format

% Note: A(1)=0 is required

% result - function value at time T Y(t=T)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function result = integrate( T0, T, dt, Y0, rhs, Ns, A, B, C )

% current time

Tcur = T0;

% initial function value

Y = Y0;

dY = 0;

while Tcur < T

if dt > T-Tcur

dt = T - Tcur;

end

for k=1:Ns

dY = A(k)*dY + dt*rhs( Tcur + C(k)*dt, Y );

Y = expm( B(k)*dY )*Y;

end

% set values for next iteration

Tcur = Tcur + dt;

end

result = Y;

end
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