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Abstract

Review of selected fundamental topics on the interaction between phase transformations, fracture,
and other structural changes in inelastic materials is presented. It mostly focuses on the concepts
developed in the author’s group over last three decades and numerous papers that affected us.
It includes a general thermodynamic and kinetic theories with sharp interfaces and within phase
field approach. Numerous analytical (even at large strains) and numerical solutions illustrate the
main features of the developed theories and their application to the real phenomena. Coherent,
semicoherent, and noncoherent interfaces, as well as interfaces with decohesion and with inter-
mediate liquid (disordered) phase are discussed. Importance of the surface- and scale-induced
phenomena on interaction between phase transformation with fracture and dislocations as well
as inheritance of dislocations and plastic strains is demonstrated. Some nontrivial phenomena,
like solid-solid phase transformations via intermediate (virtual) melt, virtual melting as a new
mechanism of plastic deformation and stress relaxation under high strain rate loading, and phase
transformations and chemical reactions induced by plastic shear under high pressure are discussed
and modeled.
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Notations
SCs Structural changes
PTs phase transitions
TRIP transformation-induced plasticity
CRs chemical reactions
RIP reaction-induced plasticity
SMA shape memory alloys
PFA phase field approach
DAC diamond anvil cell
RDAC rotational diamond anvil cell
G graphite
D diamond
FEM finite element method
IM intermediate melt(ing)
VM virtual melt(ing)
MD molecular dynamics
HPP high-pressure phase
A, M, and Mi austenite, martensite, and martensitic variant

Direct tensor notations are used throughout this paper. Vectors and tensors are denoted in
boldface type; AAA ···BBB = (Aij Bjk) and AAA :::BBB = Aij Bji are the contraction of tensors over one
and two nearest indices. Superscripts −1 and T denote inverse operation and transposition, re-
spectively, := means equals per definition, subscript s designates symmetrization of the tensors,
the indices 1 and 2 indicate the values before and after the SC. Subscripts e, t, and p designate
elastic, transformational, and plastic deformations or deformation gradients.

2



Contents

1 Introduction 6

2 Martensitic transformations in inelastic materials: some background informa-
tion 8

3 Some universal relationships for a coherent interface 12

4 Phase transformations in elastic materials 12

5 Athermal resistance to interface propagation 16

6 Theory of structural changes in inelastic materials with an unstable interme-
diate state 18
6.1 Definition of the structural changes without a stable intermediate state and local

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Thermodynamic driving forces for nucleation and interface propagation . . . . . . 20
6.3 Three types of kinetic descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Athermal kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 The postulate of realizability and extremum principle for determination of all un-

known parameters for a nucleus and interface . . . . . . . . . . . . . . . . . . . . 24
6.6 Global criterion for structural changes based on stability analyses . . . . . . . . . 25
6.7 Thermally-activated kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.8 ”Macroscale” thermally-activated kinetics for structural changes . . . . . . . . . . 29
6.9 Comparison with alternative approaches . . . . . . . . . . . . . . . . . . . . . . . 33

7 Finite strain formalism 36

8 Spherical elastic nucleus within an elastic - perfectly plastic sphere 40
8.1 Pressure variation and athermal kinetics . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Phase transformation from graphite to diamond . . . . . . . . . . . . . . . . . . . 42
8.3 Critical nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 Macroscale nucleation kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Stress- and strain-induced chemical reactions and phase transformations in a
thin layer: propagating interface, shear band, and TRIP and RIP phenomena 44
9.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2 Strain-induced chemical reactions in a shear band . . . . . . . . . . . . . . . . . 46
9.3 Mechanochemical feedbacks and the effect of TRIP/RIP on the strain-induced

structural changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10 Phase transition in ellipsoidal inclusion 49

11 Nucleation and growth of martensite with coherent, semicoherent, and inco-
herent interfaces, and interface with decohesion 50
11.1 Semicoherent interface and interface with a decohesion . . . . . . . . . . . . . . . 50

3



11.2 Propagation of a semicoherent interface . . . . . . . . . . . . . . . . . . . . . . . 52
11.3 Stress-induced PT in a spherical particle within a matrix and its interaction with

plasticity, semicoherence and adhesion . . . . . . . . . . . . . . . . . . . . . . . . 53
11.4 Semicoherent interface within a phase field approach . . . . . . . . . . . . . . . . 54
11.5 New approach to incoherent interface . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.6 Semicoherent interface within a phase field approach with discrete dislocations . . 56

12 Solid-solid phase transformations via intermediate (virtual) melt 58

13 Virtual melting as a new mechanism of plastic deformation and stress relax-
ation under high strain rate loading 62

14 Strain-induced nucleation at shear-band intersection. Application of the global
criterion for structural changes 64

15 Appearance and growth of a martensitic plate in elastoplastic material 67
15.1 Macroscale nucleation of a martensitic plate . . . . . . . . . . . . . . . . . . . . . 67
15.2 Growth of martensitic lath within the austenite: effect of inheritance of plastic

strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

16 Phase field approach to the interaction between plasticity and phase transfor-
mations 70
16.1 PFA to martensitic phase transformations . . . . . . . . . . . . . . . . . . . . . . 71
16.2 Multivariant martensitic phase transformations and transformations in multiphase

materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
16.3 PFA to dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.4 PFA to the interaction of phase transformation and dislocations . . . . . . . . . . 76
16.5 Complete system of the phase-field equations for the interaction between phase

transformation and discrete dislocations . . . . . . . . . . . . . . . . . . . . . . . 77

17 Phase transformations and chemical reactions induced by plastic shear under
high pressure 83
17.1 Main phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
17.2 Atomistic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
17.3 Nucleation and evolution of high-pressure phase at dislocation pileups . . . . . . . 85
17.4 Macroscale theory and FEM modeling of strain-induced transformations . . . . . 87

18 Scale transitions and phenomenological theories for interaction between phase
transformation and plasticity 88

19 Fracture and interaction between fracture and phase transformation in inelastic
materials 89
19.1 Crack propagation in elastoplastic material . . . . . . . . . . . . . . . . . . . . . 89
19.2 Interaction between fracture and phase transitions . . . . . . . . . . . . . . . . . . 92
19.3 Void nucleation in infinite elastoplastic sphere . . . . . . . . . . . . . . . . . . . . 94
19.4 Alternative approach to void nucleation . . . . . . . . . . . . . . . . . . . . . . . . 95

4



19.5 Phase field approach to fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
19.6 Phase field approach to interaction between phase transformation and fracture . . 97

20 Concluding remarks 98

5



1. Introduction

Solid-solid phase transformations (PTs) are broadly studied in physical, material, and me-
chanical experiments. They are utilized in modern technologies (e.g., thermal and thermome-
chanical treatments of metals, shape memory and elastocaloric applications, and high-pressure
technologies) and broadly spread in nature, e.g., in geophysical processes. In most cases, PTs
are accompanied by plastic deformations; in some cases, they are caused by plastic deformations
(plastic strain induced PTs). Googling ”phase transformation and plasticity” returns 13,600,000
results. It is clear that any attempt of review on this topic will miss many important aspects.
We will focus on topics and papers, which we worked on for several decades, and on works which
have affected us. There are multiple reviews related to the interaction between PT and plasticity
(e.g., [144, 317, 372] on material aspects, [65, 407] on shape memory alloys, on the continuum
mechanical aspects [110, 228, 246], transformation-induced plasticity (TRIP) [113, 348], PTs
and structural changes (SCs) under high-pressure torsion [28, 41, 42, 87–89, 252, 336, 417, 434–
436, 474, 476, 477], and mechanochemistry [203, 287]), and we will avoid overlapping.

One of the broad topics of this review is the development of general thermodynamic and
kinetic approaches to SCs in inelastic materials within a sharp interface approach. SCs under
consideration include various PTs (martensitic, reconstructive, melting, sublimation, and others),
twinning, chemical reactions (CRs), and fracture (crack and void nucleation and growth). A well-
known formalism was developed for the description of the evolution and interaction of various
defects or singularities in elastic materials [55, 56, 94–97, 389, 390]. They include phase interfaces,
grain and twin boundaries, crack tips and voids, and point and linear defects, participating in such
structural changes as PTs, grain evolution, damage, and plastic deformation. For each of these
defects, the rate of energy release or dissipation rate can be written as D = XXX ··· q̇qq ≥ 0 , where
q̇qq is the defect velocity relative to the material and XXX is the generalized material/driving force
acting on the defect [94, 95, 97]. The formula for XXX =

∫
Σ
QQQ ···nnn dΣ is derived, where QQQ is the

Eshelby energy-momentum tensor, Σ is an arbitrary surface with the unit normal nnn surrounding
the defect and separating it from other defects or the actual surface defect (e.g., phase interface
or grain boundary). This concept was extended for or rediscovered in various specific fields.
For example, in fracture mechanics, a driving force XXX was introduced as a path-independent
J -integral [389, 390] or Γ -integral [55, 56]; see also [129, 130, 193] for PTs and [334, 335] for
Eshelbian mechanics. Since, for elastic materials, dissipation occurs due to the motion of defects
only, adding to XXX the integral over the volume without evolving defects does not change the
dissipation rate and XXX –this explains the independence of XXX of the surface Σ (or integration
path).

For inelastic materials, the dissipation due to plastic deformation and change in internal
variables contributes to the total dissipation rate XXX ··· ẋxx in the volume v surrounded by surface
Σ and XXX depends on the choice of surface Σ . Even for the volume v tending to zero, i.e.,
when it includes the defect only, inelastic dissipation in the singular point or surface still takes
place (e.g., at the crack tip or moving interface). It is not easy to split the dissipation due to
the defect evolution itself and plastic deformation. That is why it was accepted in works on
fracture mechanics [11, 204, 205, 389] that the strict thermodynamic criterion for ductile fracture
is not developed and other approaches like energy flow in an infinitesimal or finite-sized process
zone [11, 56, 166, 389], total dissipation rate [205, 430], plastic work [210], critical plastic strain
[337, 389], critical crack tip opening displacements [150], J -integral (or Γ - integral) without
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separation of plastic dissipation [55, 56], and others are used. A similar situation took place in
PT theory, see Section 6.

For elastic materials, the conditions for both the appearance of a defect (”nucleation”) and
its equilibrium are described by the principle of the minimum of Gibbs free energy. That is why
they coincide. Thus, from a thermodynamic (but not a kinetic) viewpoint, it is not necessary to
treat a nucleation process separately; it is sufficient to insert a nucleus and study its equilibrium
using the local condition, e.g., for an interface or crack tip. However, for inelastic materials,
defect nucleation and equilibrium conditions are different. Thus, a defect nucleation problem
within inelastic materials has to be formulated and solved. Defect nucleation and evolution
in inelastic materials cannot be described by the principle of the minimum of Gibbs energy or
with the help of an energy-momentum tensor only. Thus, the new driving force and extremum
principle for the determination of all unknown parameters (e.g., position, shape, orientation, and
internal structure of the nucleus of a product phase) are required. In contrast to elastic materials,
since the constitutive behavior of inelastic materials is history dependent, analysis of the entire
transformation-deformation process in the transforming region is required.

Another broad topic of this review is the development of phase field approaches (PFAs) to
different SCs in inelastic materials, see e.g., [9, 146, 177, 182, 189, 195, 253, 271, 272, 306, 394, 413,
447, 449, 452]. PFA is based on the concept of the order parameters that describe instabilities of
the crystal lattice during PT, twinning, dislocation nucleation, and fracture, as well the evolution
of phase and dislocational structures in a continuous way by solving Ginzburg-Landau evolution
equations for the order parameters. Typical solutions for these equations are propagating finite-
width phase and twin interfaces, crack surfaces, and dislocation core regions that describe the
evolution of complex microstructures. Thermodynamic potential has as many minima in the space
of the order parameters as many phases and structural states system possesses. These minima
are separated by energy barriers. Besides, the thermodynamic potential depends on the gradients
of the order parameters, which are concentrated at the finite-width phase and twin interfaces,
crack surfaces, and dislocation cores; this reproduces the interface, surface, and dislocation core
energies.

The sharp-interface approach gives specific expressions for the thermodynamic driving forces
for the nucleation and evolution of defects. It is convenient for solving problems with relatively
simple geometries of interfaces and defects, and allows analytical solutions for some problems. The
PFA includes additional information about the stability and instability of phases and different
states. It allows for studying the evolution of arbitrary complex geometries of interfaces and
defects, without any computational cost on tracking interfaces. Thus, both approaches have their
advantages and disadvantages, and they supplement each other. Both will be reviewed in the
current paper.

This review is organized as follows. In Section 2, short background information on martensitic
PTs in inelastic materials is presented, including some examples of interactions between PTs
and plasticity. In Section 3, some universal kinematic and balance relationships for a coherent
interface in an arbitrary medium are presented. Thermodynamic and kinetic descriptions of
PTs in elastic materials are discussed in Section 4. Athermal resistance to interface propagation
and its relationship to the yield strength are introduced in Section 5. General sharp-interface
thermodynamic and kinetic theories for SCs in inelastic materials are presented in Section 6. They
include the driving forces and thermodynamic criteria for nucleation and interface propagation,
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and the extremum principle for determination of all unknown parameters that substitutes the
minimum Gibbs energy principle for elastic materials. Three types of kinetics are described:
athermal kinetics, thermally-activated kinetics, and ”macroscale” thermally-activated kinetics.
In addition, the global SC criterion based on stability analyses is introduced. Peculiarities of the
finite strain approaches are summarized in Section 7. All equations from last two Sections are
summarized in ten boxes. Sections 8, 9, and 10 present some analytical solutions based on the
developed theory, which illustrate the main points of the theory as well as their application to some
real problems. They include SC in a sphere (with application to PT from graphite to diamond),
PTs and CRs in a shear band (with application to transformation- and reaction-induced plasticity
(TRIP and RIP)), consideration of a propagating interphase, as well as PT in an ellipsoidal
inclusion. Various aspects of the nucleation and growth of a martensitic region with coherent,
semicoherent, and incoherent interfaces, as well as interfaces with decohesion are analyzed with
the finite element method (FEM) in Section 11. Both the sharp-interface theory and PFA are
utilized. Sections 12 and 13 are devoted to recently revealed nontraditional mechanisms of PTs in
solids via intermediate (virtual) melt and mechanism of plastic deformation and stress relaxation
under high strain rate loading via virtual melting, both much below the melting temperature,
when melting is not expected. Strain-induced martensite nucleation at the shear-band intersection
was studied with FEM in Section 14. The importance of the application of the global criterion for
SCs based on stability analysis was demonstrated. The appearance and growth of a martensitic
plate in an elastoplastic material for temperature-induced PT was analyzed with FEM in Section
15. The effect of the inheritance of plastic strain on a large change in the plate’s shape and on
the arrest of plate growth (i.e., morphological transition from the plate to lath martensite) is
demonstrated. Nanoscale and microscale PFAs to the interaction between dislocation plasticity
and PTs are described in Section 16. In Section 17, a multiscale theory of strain-induced SCs
under high pressure is presented for the interpretation of various phenomena during compression
and shear of materials in a rotational diamond anvil cell. Scale transitions and phenomenological
theories for the interaction between PT and plasticity are analyzed in Section 18. Fracture and
the interaction between fracture and PT in inelastic materials are described within both the
sharp-interface theory and PFA in Section 19. Concluding remarks are presented in Section 20.

2. Martensitic transformations in inelastic materials: some background information

We will focus on displacive PTs, which are dominated by the deformation of a unit crystal
cell of the parent phase into a unit cell of the product phase that is described by transformation
deformation gradient FFF t = RRRt ·UUU t, where RRRt is the orthogonal rotation tensor, UUU t = III + εεεt is the
transformational right stretch (Bain) tensor, and εεεt is the transformation strain tensor. Note
that UUU t produces mapping of the stress-free crystal lattice of the parent phase into that for the
product phase at a fixed temperature. Usually, the higher symmetry and higher temperature
phase is called the austenite, and the lower symmetry and lower temperature phase is called the
martensite.

Displacive PTs include martensitic PTs during which atoms do not change their neighbors
and reconstructive PTs in the opposite case. In addition to UUU t, displacive PT involves intra-cell
displacements or shuffles. The diffusion of species does not occur during martensitic PTs.

Due to the symmetry of crystal lattice, there is a finite number (e.g., 3 for the cubic to tetrag-
onal PT and 12 for the cubic to monoclinic PT) of crystallographically equivalent martensitic
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Figure 1: Schematics of the transformation between austenite and martensitic variants as well as between
martensitic variants.

variants Mi (Fig. 1). Lists of the transformational right stretch tensors for various PTs and for
all martensitic variants are presented, e.g., in [26, 382]. The transformation strain can be quite
large. For example, for cubic to tetragonal PT from Si I to Si II [464] and cubic to monoclinic
PT from rhombohedral graphite to hexagonal diamond [44] tensors εεεt are

εεεSi I−IItj =

(
0.243 0 0

0 0.243 0
0 0 −0.514

)
; εεεG−Dtj =

(
0.024 0 0.105

0 −0.034 0
0.105 0 −0.35

)
. (1)

The components of εεεt, {a, a, c}, for cubic to tetragonal PT from phase I to II in Ge and GaSb,
as well as for α → β PT in Sn, are in the range a = 0.254 − 1.281 and −c = 0.502 − 0.510
[327]. For the layer-puckering mechanism [43] for PT from cubic diamond and boron nitride to
rhombohedral graphite and BN, a = 0.98 and c = 1.596. Transformation strain is generally much
larger than the maximum elastic strain, which varies from 10−3 for steels to 10−2 for NiTi and
CuZnAl shape memory alloys.

Most of the martensitic variants are in twin relationship to each other. Twinning is a simple
shear of one part of the crystal lattice with respect to another up to a position in which it
represents a mirror reflection of the initial lattice (Fig. 2). Thus, twinning is described by
the transformation deformation gradient FFF t = III + γtmmmnnn, where γt is the twinning shear strain
that occurs in the direction mmm in the plane with the normal nnn, which is called the twinning
plane. Generally, twinning is a mechanism of plastic deformation in crystalline materials whereby
jump-like shear deformation of the crystal lattice occurs. It both competes with and supplements
dislocation plasticity. For the body-centered cubic (bcc) lattices (for example, in Mo, Na, and Cr)
and the face-centered cubic (fcc) metals (for example, in Al, Cu, and Co), the magnitude of the
transformation shear γ = 0.707 is very large. For the hexagonal close-packed (hcp) lattice in Mg
γt = 0.137 and in Zr γt = 0.225 . For the body-centered tetragonal lattice in NiAl γt = 0.150 .
Various aspects of twinning can be found in the books [26, 202, 382, 453]. An example of the
constitutive equations for twinning can be found in [339] and references herein. As a mechanism
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of plastic deformation, in which twinning competes with dislocations, twinning usually occurs at
a lower temperature, higher strain rates, and smaller grain size than the dislocation plasticity.
Such competition also takes place during PTs. Since a single martensitic variant is generally
not compatible with austenite and generates large internal stresses, these stresses relax either by
twinning (for example, in shape memory alloys and some steels) or by plastic slip (for example,
in steels), or both, producing an invariant plane strain variant with averaged transformation
deformation gradient FFF t = III +γinmmmnnn+ εinnnnnnn, where γin is the invariant plane shear strain along
the directionmmm in the invariant (or habit) plane with the normal nnn, and εin is the normal to habit
plane strain. Typical values of εin are around zero for NiTi and CuZnAl shape memory alloys,
0.02 to 0.05 for steels, and 0.2 for δ → α PT in plutonium; typical values of γin are 0.1-0.2 for
shape memory alloys, 0.2 for steels, and 0.27 for δ → α PT in plutonium.

                 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematics of the twinning.

Usually, three types of PTs are distinguished: temperature-induced, stress-induced, and strain-
induced. Temperature-induced PTs occur without external stresses, and nucleation starts at
pre-existing defects (e.g., dislocations, point defects, grain and subgrain boundaries, stacking
faults, and twins). Stress-induced (or assisted) PTs take place under external stresses below the
macroscopic yield strength σy by nucleation at the same pre-existing defects as temperature-
induced PTs. Strain-induced PTs occur during plastic deformation by nucleation at new defects
generated by plastic flow [367, 369, 370, 372].

Formally, we define any type of the SCs enumerated above (PT, CRs, twinning, and fracture)
as a thermomechanical deformation process of the growth of transformation strain εεεt from its
initial value εεεt1 in the parent phase to the final value εεεt2 in the product phase, which is accom-
panied by a change in all the thermomechanical properties (elastic moduli of an arbitrary rank,
thermal expansion tensor, specific heat, etc.).

Below we outline some examples of interaction between SCs and inelasticity, which are inter-
related.

1. PTs and other SCs, possessing a transformation strain, are processes of an inelastic de-
formation in materials. For some materials and applications, for which traditional (dislocation
or twinning) plasticity is not desirable, like shape memory alloys (SMA), strong ceramics, and
semiconductors (like Si and Ge), PT is the main mechanism of inelasticity. For all other cases,
transformation strain supplements dislocation plasticity and twinning.
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2. Microplastic straining, which occurs in SMA during cyclic loading, accumulates and leads
to defect generation, damage, and degradation of transformational properties (e.g., reduces re-
coverable strain and increases stress hysteresis and energy losses).

3. Slip and twinning in martensite (a combination of two martensitic variants) are mecha-
nisms for lattice-invariant shear. Along with the transformation (Bain) strain and crystal lattice
rotation, they produce an invariant plane strain variant [453] between austenite and martensite.
This process is driven by the reduction of the energy of internal stresses; it promotes nucleation
and growth.

4. Transformation strain in the transforming regions generates internal stresses, which in most
cases exceed the yield strength and produce accommodational plastic strains within and outside of
the transforming regions. Reduction of the internal stresses increases the thermodynamic driving
force for nucleation. However, stress redistribution caused by plastic deformation near the growing
product phase reduces the thermodynamic driving force for interface propagation. In elastic
materials, the martensitic region is arrested by a strong obstacle (e.g., grain, subgrain, or twin
boundaries, or another martensitic region), producing plate martensite morphology. Plasticity
stops the growth of martensitic units inside the grain before reaching an obstacle, leading to
a morphological transition to the lath martensite. Numerous analytical and numerical results
illustrating the above statements are presented in the following Sections.

5. Plastic deformation generates a group of defects (e.g., dislocation walls or pileups), and
corresponding stress concentrators produce nucleation sites for PT. At the same time, chaotic
defect structures like dislocation forests resist the interface propagation. Preliminary plastic
deformation generally suppresses martensitic PTs.

6. Plastic flow that occurs during PT causes strain-induced PT, which proceeds by nucleation
at defects generated during plastic flow, e.g., at a dislocation pileup or slip-band intersections.
While for stress-induced PTs, the PT stress grows linearly with the temperature increase, for
strain-induced PTs, the PT stress reduces with the temperature rise due to the reducing yield
strength but grows with increasing plastic strain due to strain hardening.

7. Internal stresses caused by transformation strain in superposition with external stresses,
which may be well below the yield strength, cause plastic flow. This phenomenon is called TRIP
for PTs [113, 348, 367, 374, 463] or RIP for CRs [278, 279]. They serve as a relaxation mechanism
for internal stresses and as an additional mechanism of inelastic deformation. For cyclic direct-
reverse PT under the external stress, below the yield strength, TRIP is accumulated in each cycle
and may exceed hundreds of percent.

8. The phase interface, similar to a twin interface, can be presented as an array of partial
dislocations [372]. In such a representation, PT consists of the nucleation and motion of these
dislocations, like dislocation plasticity.

9. Some PTs, in addition to transformation strain, involve shuffles (intracell atomic motion)
produced by the motion of partial dislocations, e.g., for bcc-fcc and fcc-hcp PTs [383].

10. The strong promoting effect of the plastic shear under high pressure on PTs and CRs will
be discussed in Section 17.

Knowledge of the influence of plastic strain and applied and local stress fields on SCs is
very important for the understanding, simulation, and improvement of the technical processes,
as well as for the development of new technologies and materials. Examples include heat and
thermomechanical treatment of materials; increasing toughness utilizing TRIP; severe plastic
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deformation technologies, including high pressure torsion and ball milling, friction, wear, surface
treatment (polishing and cutting); as well as the interpretation of earthquakes.

3. Some universal relationships for a coherent interface

Let the motion of the homogeneously deformed small vicinity of a material point be described
by the function rrr = rrr (rrr0, t), where rrr and rrr0 are the positions vectors in the actual Ω and

reference Ω0 configurations and t is time. The deformation gradient is FFF = ∂ rrr
∂ rrr0

. We will

not focus on the multivariant structure of martensite here, and will instead consider a two-phase
material.

For a coherent interface, when a jump in displacement across an interface is absent, but the
particle velocity vector vvv and the deformation gradient FFF have a jump, the Hadamard compati-
bility condition is valid in the reference configuration Ω0 [426]

[FFF ] = − [vvv] nnn0/vn , whence [vvv] = − [FFF ] ···nnn0 vn and [FFF ] = [FFF ] ···nnn0nnn0 , (2)

where nnn0 is the unit normal to the interface in Ω0, vn is the interface velocity, and [AAA] = AAA2−AAA2 is
the jump of parameters across the interface. The conservation of mass at the interface is expressed
as

[ρ0c] = 0, (3)

where ρ0 is the mass density. Neglecting inertia, the traction continuity condition at the interface
is

[PPP ] · nnn0 = 0, (4)

where PPP is the non-symmetric first Piola-Kirchhoff stress tensor.
A list of all universal equations for the moving interface, including energy balance, entropy

inequality, and inertia, can be found in [1, 206, 386]. Surface stresses are included in [116, 141–
143].

4. Phase transformations in elastic materials

As an initial step and for comparison, we will describe an approach to phase transformations
in elastic materials in the reference configuration. Let us consider a volume V0 of a two-phase
material with the prescribed traction ppp0 at the part of the boundary S0p and displacement uuu at
the rest of the boundary S0u ; S0 = S0p∪S0u. The dissipation at the interface Σ0 between phases
is neglected. The problem is to find a two-phase configuration in thermodynamic equilibrium.
For isothermal processes the total dissipation increment due to variation of the position of the
interface Σ0 is

Dδt =

∫

S0p

ppp0 · δuuudS0p − δ
∫

V0

ρ0ψ (FFF , θ) d V0 − δ
∫

Σ0

Γ0dΣ0 = 0, (5)

where θ is the temperature, ψ the Helmholtz free energy per unit mass, and Γ0 is the interface
energy per unit reference area. Note that if Γ0 = const, it does not produce surface stresses and
does not change the traction continuity condition (4) (in contrast to the case when the surface

12



energy per unit deformed area Γ = const or when Γ0 depends on strain). If ppp0 is fixed, then Eq.
(5) can be presented in the form

Dδt = −δG = 0; G := −
∫

S0p

ppp0 · uuudS0 +

∫

V0

ρ0ψ (FFF , θ) d V0 +

∫

Σ0

Γ0dΣ0, (6)

where G is the Gibbs energy of the system body+loading. Thus, phase equilibrium for an elastic
material, i.e., the geometry of the interface, is determined by the stationary value of the Gibbs
energy. If the Gibbs energy has a local minimum, phase equilibrium is stable; otherwise, it is
unstable. If a stable interface does not exist under the prescribed boundary conditions, then only
the single-phase solution is stable.

Let us consider each phase separately, without interfaces. The Gibbs energy can then be
introduced for the parent phase (subscript 1) and product phase (subscript 2):

Gi := −
∫

S0pi

ppp0 · uuudS0i +

∫

V0i

ρ0ψ0i (FFF , θ) d V0i =

∫

V0i

ρ0igi (PPP , θ) d V0i; (7)

ρ0igi (PPP , θ) = ρ0iψ (FFF , θ)−PPP T :::FFF . (8)

Here, gi is the local Gibbs energy per unit mass of each phase, expressed in terms of PPP with the
help of the elasticity rule; the divergence theorem was used to transform surface integral into a
volume integral, and the equilibrium equation has been utilized. Since analytical inversion of the
elasticity rule is in most cases impossible in practice, one can keep the argument FFF in gi, and FFF
should numerically correspond to the given PPP .

For a given traction ppp0 (or, for homogeneous stress, a given stress tensor PPP ) and temper-
ature, the phase with smaller Gibbs energy is called the stable phase, and the other is called
the metastable phase. The transition from a metastable to stable phase is accompanied by the
reduction in Gibbs energy and a positive dissipation increment (see Eq. (6)), i.e., it is thermo-
dynamically possible. However, it does not mean that this transition will occur because there is
usually an energy barrier between phases. When an energy barrier disappears due to change in
traction or temperature, the metastable phase becomes unstable and barrierless PT occurs. PT
from the phase with the lower Gibbs energy to the higher energy is thermodynamically impossi-
ble. Phases with equal Gibbs energy are considered to be in thermodynamic equilibrium. This
definition has a physical sense for hydrostatic media, liquids, and gases under prescribed pressure,
because (with neglected surface tension (stresses)) the pressure is the same in both phases. For
solids, phase equilibrium should be considered across an interface and not the entire stress ten-
sor; only traction remains the same across an interface (Eq. (6)). Of course, phase equilibrium
conditions are different for different interface orientations. Still, in high-pressure research, phase
equilibrium is defined by equality of the Gibbs energies of phases under prescribed pressure.

It is also clear that the definition of the Gibbs energy and related definitions depend on the
chosen stress measure and boundary conditions, i.e., which components of stresses are fixed at
the boundary. Integrating Eq. (6) over the time ts for the appearance of a nucleus of phase 2 in
a finite volume Vn, we obtain

Xv =

ts∫

0

Ddt = −(G2 −G1) = −∆G = 0, (9)
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i.e., the total dissipation increment is equal to the negative difference between the Gibbs energy
of the final and initial states, and represents the global thermodynamic driving force for the PT.
Eq. (9) will be used as the main hint and limiting case for checking when we will develop SC
theory for inelastic materials.

Let us transform Eq. (5) for the neglected interface energy using the divergence theorem and
the rule of differentiation for the volume integral, both for a volume with moving surfaces with
discontinuous velocity or a deformation gradient:
∫

S0p

ppp0 · δuuudS0p =

∫

V0

PPP T :::δFFFdV0 −
∫

Σ0

[vvv]nnn0:::PPP
T δdΣ0 =

∫

V0

PPP T :::δFFFdV0 +

∫

Σ0

[FFF ] :::PPP TvndΣ0δt; (10)

δ

∫

V0

ρ0ψdV0 =

∫

V0

ρ0δψd V0 +

∫

Σ0

ρ0 [ψ] vndΣ0δt, (11)

where Eqs. (2) and (4) were used. Substituting Eqs. (10) and (11) into Eq. (5), we obtain

Dδt =

∫

V0

(
PPP T :::δFFF − ρ0δψ

)
d V0 +

∫

Σ0

(
PPP T ::: [FFF ]− ρ0 [ψ]

)
vndΣ0δt = 0. (12)

Due to the independence of both integrals and arbitrariness of V0 and Σ0, both integrands in Eq.
(12) are equal to zero. The first integrand results in the nonlinear elasticity rule for points of the
volume. The second results in the phase equilibrium condition at the interface

XΣ := PPP T ::: [FFF ]− ρ0 [ψ] = nnn0 ···PPP T ··· [FFF ] ···nnn0 − ρ0 [ψ] = nnn0 ··· [HHH0] ···nnn0 = 0; HHH0 := PPP T ···FFF − ρ0 ψIII,(13)

where XΣ is the thermodynamic driving force for the interface motion. Eq. (2) was utilized
in the derivations. The expression for XΣ in Eq. (13) is also called the Eshelby driving force
for the interface propagation per the celebrated work [93], where it was derived. The chemical
potential tensor in the reference configuration HHH0 was introduced in [129, 130], where various
aspects of phase equilibrium and different chemical potentials are discussed (see also [193, 206]
and references). For geometrically linear approximation, FFF = III + εεε + ωωω, where εεε and ωωω are the
small symmetric strain and antisymmetric spin tensors, respectively, PPP = σσσ is the symmetric
stress tensor and Eq. (13) simplifies

XΣ := σσσ::: [εεε]− ρ [ψ] = nnn ···σσσ ··· [εεε] ···nnn− ρ [ψ] = nnn ··· [HHH] ···nnn = 0; HHH := σσσ ···εεε− ρψ III. (14)

When isotropic surface energy is taken into account, Eq. (13) generalizes to

nnn0 ··· [HHH0] ···nnn0 = 2Γ0κav, (15)

where κav is the mean interface curvature.
The following static problem formulations are usual for PTs in elastic materials:
1. For the prescribed boundary conditions, find a two-phase solution within a body. Solutions

(possibly multiple) correspond to the stationary value of the Gibbs energy (Eq. (6)) or local
thermodynamic equilibrium condition Eq. (15) for each point of a phase interface.

2. For the neglected interface energy for the problem in item 1, one can find external tractions
and displacements at which the two-phase equilibrium becomes possible for the first time. This is
the initiation of the PT. Examples include the minimum pressure for PT from a low-pressure to
high-pressure phase or the maximum pressure for PT from a high-pressure to low-pressure phase.
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The critical conditions for PT initiation can be found from the solution for a small inclusion of
the product phase in item 1 when the characteristic size of the inclusion tends to be zero while
keeping a shape that minimizes the Gibbs energy. This zero size explains why surface energy
should be neglected.

3. When surface energy is included, an unstable stationary solution called the critical nucleus
plays an important role. It corresponds to the minimax of the Gibbs energy, the minimum with
respect to the shape (and all internal parameters, like a twinned structure, if included) and the
maximum with respect to the size or volume of the nucleus Vn (Fig. 3). The energy increment
for the critical nucleus, ∆Gn = Gn − Gpar is the difference between the energy of the critical
nucleus and the energy of the parent phase, which can be any phase the material is initially
in. The energy of the critical nucleus is higher than the energy of the parent phase and its ap-
pearance causes a negative dissipation increment. Since the appearance of the critical nucleus is
not thermodynamically favorable and requires fluctuations, it cannot be described by traditional
continuum thermodynamics based on two thermodynamics laws. While it was well-known in ma-
terial literature that the energy grows during the appearance of a critical nucleus (i.e., dissipation
increment is negative), this statement caused a psychological problem for the continuum mechan-
ics community, which required some tutorial explanations in [250]. Earlier, in the treatment of
nucleation in elastic materials in [319], it was specified that nucleation produces, rather than
dissipates, energy and that the subcritical nuclei cannot grow due to the restriction produced
by dissipation inequality. In [243, 244], after stating that the appearance of the critical nucleus
is accompanied by a negative dissipation increment, thereby requiring thermal fluctuations, the
concept of the thermodynamically admissible nucleus was suggested. In particular, the nucleus
of the radius rt in Fig. 3 corresponds to Xv = −∆G = 0, i.e., it is thermodynamically admissible.
However, such a treatment is not consistent with the existing textbook approaches on nucleation,
and it does not explicitly determine the activation energy. This concept appears naturally within
a phenomenological theory of the appearance of a finite region of a product phase without going
into detail about complex nucleation-growth processes. The approach in [243, 244] illustrates
that, in general, there is nothing unusual in the nucleation and that the second law is satisfied for
the event, averaged over the size r > rt or the corresponding time interval. The problem arises
because we are interested in the event that occurs during a shorter period of time, and it is not
surprising that the second law of thermodynamics is not applicable for such a scale.

Indeed, continuum thermodynamics operates with parameters that are averaged over some
time and volume, and any fluctuations are filtered out. As a result, the nucleation process is
generally described by statistical theories (as seen in [197]), which we will not discuss here.

General ideas of the thermally activated kinetics can be found in classical nucleation theory
[108, 383, 429]. The Arrhenius-type equation for the nucleation time in a sample with volume V
is

ts = t0 exp

(
− Q

k θ

)
. (16)

Based on the probability consideration, the pre-exponential factor t0 is usually considered to
be inversely proportional to the volume of the entire sample V . The activation energy Q for
thermally activated nucleation is equal to the energy of the critical nucleus ∆Gn. We write

Q = max
V0n

min
shape

min
structure

min
position

∆G. (17)
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Figure 3: Gibbs free energy of the nucleus vs. nucleus’ size r and definition of the size rc of the critical nucleus,
which corresponds to the maximum (generally, minimax) of the energy (and negative thermodynamic driving force
−Xv) and the size rt of the thermodynamically admissible nucleus, corresponding to the zero driving force Xv.

The first maximum in Eq. (17) belongs to the definition of the critical nucleus. All minima
are motivated as follows: the smaller the activation energy, the smaller the nucleation time.
Consequently, a nucleus with the smallest activation energy should appear first. That is why in
Eq. (17) activation energy is minimized with respect to all relevant parameters.

The traditional criterion for thermally activated nucleation is

Q = βkθ, β = 40− 80, (18)

which is determined from the condition that, for larger Q, the nucleation time exceeds any realistic
time of observation for any choice of pre-exponential parameters in the Arrhenius-type kinetic
equation [246, 247, 313, 383]. Here k = 1.380 · 10−23J/K is the Boltzmann constant. While
criterion (18) is from a material science textbook on PTs [383] and broadly used in the treatment
of PTs by material scientists [313, 383], its application was limited in the continuum mechanics
community [246, 247, 250, 255–257, 284]. Note that definition (17) includes an extremum principle
for the determination of all unknown parameters of the nucleus.

Since the critical nucleus cannot appear thermodynamically, it should be introduced ”by
hand” into the problem for continuum treatment. This allows the nucleus slightly larger than
the critical one (supercritical nucleus) to grow in a thermodynamically consistent way. The
nucleus slightly smaller than the critical one (subcritical nucleus) shrinks and disappears. In
the phase-field approach, nucleation is modeled by including a stochastic term in the Ginzburg-
Landau or Cahn-Hilliard equations, which satisfies the dissipation-fluctuation theorem (see, e.g.,
[9, 188, 315, 446]).

5. Athermal resistance to interface propagation

Athermal resistance for interface propagation is analogous to dry friction in classical me-
chanics: interface propagation occurs only if the driving force XΣ exceeds a rate-independent
threshold KΣ. The athermal resistance is responsible for deviation of the actual SC stress or/and
temperature from their thermodynamical equilibrium values, and consequently, for stress or/and
temperature hysteresis during forward-reverse SC, and for energy dissipation, when interface ve-
locity is small and viscous friction is negligible. It is observed for SCs both in elastic (e.g., in
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shape memory alloys) and elastoplastic materials. Inclusion of the athermal dissipation in the
description of PT in elastic materials significantly and conceptually complicates the description
of the transformation process, similar to the mechanics of the system with dry friction. Thus,
the entire behavior becomes loading-path dependent and should be treated incrementally. The
thermodynamic equilibrium does not correspond to the minimum of the Gibbs energy, and the
principle of stationary Gibbs energy cannot be applied for searching a two-phase equilibrium
microstructure. Such features are closer to those for PTs in elastoplastic materials. Extremum
principle substituting the principle of the stationary Gibbs energy for SCs in elastic materials with
athermal friction were obtained in [240] as a particular case of the corresponding principle for
PTs in elastoplastic materials. Mathematic treatment of the problem for SCs in elastic materials
with athermal interfacial resistance was initiated in [347].

There are several sources of athermal interfacial friction KΣ [125]:

1. Peierls barrier, which appears due to the discrete periodic structure of the crystal lattice,
similar to that for dislocations.

2. Interaction of a moving interface with a long-range stress field of various defects, e.g., point
defects (solute and impurity atoms, vacancies), dislocation forest, stacking faults, grain,
subgrain, and twin boundaries, and precipitates.

3. Emission of acoustic waves.

When SC is considered in a finite volume, an additional contribution to the athermal dissipation
and SC hysteresis is related to a nucleation barrier. An athermal threshold Kv is determined as
a minimum value of the driving force at which SC occurs, i.e.,

Xv = Kv =

∫

Vn

ρK dVn = K0mn. (19)

where K is a locally determined athermal threshold per unit mass mn and K0 is an athermal
threshold averaged over a nucleus per unit mass. If the volume is transformed by continuous
interface propagation, then XΣ = ρK.

By definition, the athermal threshold cannot be overcome by thermal fluctuations. While
the magnitude of K can be different for direct and reverse SC and based on a variety of the
mechanisms, K is expected to be dependent on the entire deformation-SC process and the evolving
material microstructure. However, a simple relationship

K = Lσy (θ, εεεp, ggg) εo (20)

was suggested in [238, 240] based on the comparison of some high-pressure experiments summa-
rized in [28] with the solution of the corresponding boundary-value problems. Here σy is the
yield strength, which is the function of the temperature θ, plastic strain εεεp, and set of internal
variables ggg, L is the proportionality factor, and εo is the volumetric transformation strain, which
can be included in L. The values L for some PTs are determined in [238, 240]. Physically, the
proportionality between σy and K is caused by the fact that σy and K characterize resistance
to the dislocation and interface motion, respectively, through the same material microstructure
consisting of various point, linear, planar, and bulk defects. For large plastic deformations, based
on the regularity revealed in [236], σy and consequently K reach their maximum and are indepen-
dent of plastic strain and strain-history. Since experiments in [28] were performed in 1980-1983,
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utilization of modern diagnostic, like x-ray diffraction with synchrotron radiation, may change
our understanding of the effect of plastic strain on the athermal threshold.

For SMAs, the stress hysteresis and dissipation are proportional to K . Since both the stress
hysteresis and σy linear depend on plastic strain, as seen in experiments in [157, 411, 412, 425],
this also supports Eq. (20). A slightly different but close relationship between K and the yield
strength of an austenite σAy for steel is suggested in [125, 126] and presented in Eq. (58).

6. Theory of structural changes in inelastic materials with an unstable intermediate
state

For the description of SC in an elastic solid, the explicit equation for the thermodynamic
driving force for the interface propagation and corresponding local thermodynamic equilibrium
condition (Eqs. (13) and (15)) for each point of a phase interface are known. They correspond to
the stationary value of the Gibbs energy (Eq. (6)). The activation energy for a critical nucleus Eq.
(17) is also determined in terms of the Gibbs energy. Furthermore, each solution of the elastic
problem (including cases where there are multiple solutions for given boundary conditions) is
independent of the process and depends on the final boundary conditions.

For inelastic materials, such results are lacking. All processes in plasticity are loading-history
dependent and accompanied by energy dissipation, even for infinitesimally slow processes. For this
reason, a change in the Gibbs energy alone does not define the driving force, and the stationarity
of the Gibbs energy does not determine the phase equilibrium or critical nucleus. A conceptually
different thermodynamic approach was required to determine the thermodynamic driving force for
nucleation and interface propagation, the definition of the critical nucleus, the expression for the
activation energy for the critical nucleus, and the extremum principle for the determination of all
unknown parameters of the nucleus. Eq. (9) will be utilized as the main hint for the formulation of
the driving force for SC in inelastic materials: it should have a sense of the dissipation increment
due to SC only for the appearance of a complete nucleus.

We will present our theory developed in [240, 243, 244] and [250, 257]. Initially [229, 232, 233,
238, 239], the nucleation condition was postulated in the form of the dissipation increment due to
PT only (excluding plastic and other types of dissipation) reaching its experimentally determined
value related to the athermal threshold. Later in [234, 235, 240, 243, 244], a local description of
PTs was developed for better justification, which we will use here.

6.1. Definition of the structural changes without a stable intermediate state and local equations

For simplicity and transparency of the main ideas, we will start with the geometrically linear
formulation. The main local equations describing SC are collected in Box 1.

Traditional additive kinematics (21) is utilized. It is convenient to introduce a scalar parameter
ξ describing SC: SC starts at ξ = 0 and completes at ξ = 1 . The parameter ξ is an internal
variable similar to a volume fraction of the product phase in the mixture theory or order parameter
in the PFA. The parameter ξ can be determined by Eq. (22) or a similar equation based on any
other material property of the phases, such as elastic moduli or entropy. For the Helmholtz
free energy, we assume Eq. (23), where ggg is a set of internal variables describing plasticity,
e.g., back stress or dislocation density. Traditional thermodynamic treatment results in the
constitutive equations (24) for stress and entropy, the yield condition (27), and the evolution
equations for plastic strain and internal variables (28). It is assumed that ξ-dependence of all
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material properties is known, e.g., based on linear interpolation between properties of two phases,
similar to the simplest mixture theory.

Note that in contrast to the PFA or mixture theory, we do not prescribe the local evolution
equation for ξ describing the SC. We assume that the SC process at each point of the transforming
volume cannot be stopped in an intermediate stage. Consequently, the material in each material
point can only be in either phase 1 or phase 2. Such SC is coined in [243, 244] as the SC without
a stable local intermediate state, and the following definition is used.

The SC will be considered as a process of variation of the transformation deformation gradient
and some or all thermomechanical properties in an infinitesimal or finite transforming volume
from the initial to the final value. This process cannot be stopped at an intermediate state in any
transforming point. Thermodynamic equilibrium for an intermediate value of the transformation
deformation gradient or material properties is impossible.

Such a definition excludes from consideration the Landau-Ginzburg model (see Section 16.1),
in which a smooth transition from phase 1 to phase 2 occurs due to a nonlocal term, and any
intermediate state can be stable inside a diffuse interface of finite thickness. We will focus on the
case with a sharp interface and local constitutive equations describing the deformation in each
material point.

Box 1. Local equations describing phase transitions and plasticity
[234, 235, 240, 243, 244]

1. Additive decomposition of strain into elastic εεεe, plastic εεεp, and transformational
εεεp parts

εεε := (∇∇∇uuu)s = εεεe + εεεp + εεεt . (21)

2. Internal time ξ

ξ :=
| εεεt − εεεt1 |
| εεεt2 − εεεt1 |

0 ≤ ξ ≤ 1. (22)

3. Local constitutive equations
3.1. Helmholtz free energy per unit mass ψ, elastic ψe and thermal ψθ energies

ψ = ψ (εεεe, θ, ggg, ξ) = ψe (εεεe, θ, εεεp, ggg, ξ) + ψθ (θ, εεεp, ggg, ξ) . (23)

3.2. Elasticity rule and entropy-temperature relationship

σσσ = ρ
∂ ψ (εεεe, θ, εεεp, ggg, ξ)

∂ εεεe
; s = − ∂ ψ (εεεe, θ, εεεp, ggg, ξ)

∂ θ
. (24)

3.3. Dissipation rate per unit mass due to plastic flow Dp and variation of the
internal variable Dg

Dp := XXXp : ε̇εεp; Dg := XXXg · ġggT . (25)

3.4. Dissipative forces for plastic flow XXXp and variation of the internal variable XXXg

XXXp :=
1

ρ
σσσ − ∂ ψ

∂ εεεp
; XXXg := − ∂ ψ

∂ gggT
. (26)
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3.5. Yield condition

f (XXXp , θ, εεεp, ggg, ξ) = 0 . (27)

3.6. Evolution equations for plastic strain and internal variables

ε̇εεp = fffp (XXX , θ, εεεp, ggg, ξ) if f = 0; and ḟ > 0; ε̇εεp = 0 otherwise.

ġgg = fff g (XXXg , θ, εεεp, ggg, ξ) . (28)

6.2. Thermodynamic driving forces for nucleation and interface propagation
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Figure 4: Schematics of the region V of a material undergoing SCs with a boundary S . The region Vn with the
boundary Σn represents a new nucleus. SC within a volume covered by a phase interface Σt propagating with
velocity vn during the time ∆t is shown as well.

Our goal here is to generalize the thermodynamic driving forces for nucleation and interface
propagation derived for elastic materials (Eqs.(9) and (13)) for those in inelastic materials.

Problem Formulation. Let us consider some region V of a material undergoing SCs under
the prescribed boundary conditions in tractions and displacements at a boundary S (Fig. 4).
Nucleation of phase 2 will be considered as the SC that starts and completes in some region
Vn with the boundary Σn during the nucleation time ts . In practice, we change the field
of the parameter ξ (rrr) from 0 to 1 in the nucleus, homogeneously or heterogeneously, which
introduces into the nucleus the transformation strain field εεεt (rrr , ξ) and variation of all material
properties from properties of phase 1 to properties of phase 2— all without changing the boundary
conditions. This process represents the prescribed deformation process, for which the inelastic
boundary value problem and heat conduction equation should be solved incrementally, producing
fields σσσ , εεεp , ggg, θ , and all other participating fields. Note that depending on the goal, we will
use a different definition of a nucleus. In addition to the traditional critical nucleus, we will also
consider the appearance of a macroscopic region that is formed during nucleation and growth
processes. Having this information, one must answer the following four questions:

1. What is the thermodynamic driving force for the nucleation and phase interface propaga-
tion?

2. Is SC possible for the chosen boundary and initial conditions, i.e., what is the SC criterion?
3. How do we determine all the unknown parameters of a nucleus and the transformation

process in it, i.e. the position, volume, shape, and orientation of a nucleus, its internal structure
(i.e., actual field εεεt (rrr , ξ) ? All unknown parameters will be collectively designated as bbb .

20



4. If time-dependent kinetics is considered, what is the nucleation time ts?
The traditional thermodynamic procedure based on two thermodynamic laws has been applied

to find the thermodynamic driving forces presented in Box 2. Similar to the local dissipation rates
due to plastic flow Dp and the change in the internal variable Dg (Eqs.(25) and (26)), a similar
local dissipation rate Dξ and dissipative force Xξ for structural changes Eq. (29) have been
derived. One of the main assumptions is that irreversible processes of plastic flow, a variation
of internal variables and SC are thermodynamically independent; they only interact through
stress fields. However, since we do not want to describe the kinetics of SC in terms of ξ̇, rather
complete SC in the point (such as for the point of an elastic nucleus), we introduce the local
thermodynamics driving force for a complete structural change X by integrating the dissipation
rate over the entire SC in the point, see Eq. (30). This expression can be transformed into Eq.
(31), which is physically clear: the local dissipation increment X due to SC alone is equal to the
total dissipation increment (the first three terms in Eq. (31)) minus the dissipation increment
due to all other dissipative processes except SC, namely plastic flow and evolution of the internal
variable, which are the two last terms in Eq. (31). At 0 < ξ < 1 a nonequilibrium process takes
place, which requires energy and stress fluctuations. It is necessary to average the thermodynamic
parameters, related to SC, over the SC duration ts in order to filter off these fluctuations, which
results in consideration of the dissipation increment.

Since we want to find the thermodynamic driving force for nucleation in a volume Vn, we
integrate X over the volume of a nucleus Vn and add a change in the surface energy, see Eq.
(32). If the initial surface energy is zero, then the change in the surface energy is just the surface
energy of a nucleus. Finally, the global dissipation rate for nucleation Eq. (34) is the dissipation
increment due to SC only, divided by nucleation time ts; thus, the generalized rate is χ̇ := 1 / ts .

It is easy to show that an integral in Eq.(32) can be evaluated over an arbitrary volume
v containing a single transforming region Vn with SC, see Eq.(33). Indeed, integration over
the region v − Vn without SC gives zero contribution to the driving force Xv , which is the
dissipation rate due to SC only. The change in surface energy should be evaluated over the nucleus
surface Σn . Thus, instead of a surface-independent Eshelby integral in the theory of defects and
path-independent J-integral in fracture mechanics, we introduced a region-independent integral for
arbitrary inelastic materials. In contrast to the Γ -integral in [55, 56] and a region-dependent
T -integral in [11], the region-independent integral (33) separates the dissipation increment due
to SC only from other dissipation contributions and is the thermodynamic driving force for SC.
It also includes the temperature variation in the process of SC.

It is shown in [240] that Eq. (32) for the thermodynamic driving force for nucleation in a
volume Vn reduces for SC in elastic materials to the negative increment of the Gibbs free energy
Eq. (9), i.e., our approach is noncontradictory.

Note that in [243, 244] a concept of SC without a stable intermediate state for 0 < ξ < 1
was introduced and used for justification that we should not prescribe an evolution equation for
ξ̇ = fξ (Xξ, ξ) , like for other internal variables. Since for any 0 < ξ < 1 one can chose Xξ to
enforce ξ̇ = 0 and arrest any 0 < ξ < 1 (which contradicts the definition that only states ξ = 0
and ξ = 1 should be in thermodynamic equilibrium), this led to the conclusion that an evolution
equation for ξ̇ should not be prescribed. However, thermodynamic equilibrium for 0 < ξ < 1
may be unstable (e.g., like in Landau theory, see Section 16.1), and contradiction is seeming. The
real reason for avoiding an evolution equation for ξ̇ is the desire to describe the complete SC in
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some region Vn and to generalize the approach, as developed for elastic materials in Eq. (9), for
an inelastic material.

Box 2. Dissipation rate due to SC and thermodynamic driving forces [243, 244, 263]

1. Local dissipation rate Dξ per unit mass and dissipative force Xξ for structural
changes

Dξ := Xξ ξ̇; Xξ =
1

ρ
σσσ :::

∂εεεt
∂ ξ
− ∂ ψ

∂ ξ
. (29)

2. Local thermodynamics driving force per unit mass for a complete structural
change X

X :=

ts∫

0

Dξdt =

ts∫

0

Xξ ξ̇dt =

1∫

0

Xξdξ (30)

or

ρX :=

εεε2∫

εεε1

σσσ ::: dεεε − ρ (ψ2 − ψ1)−
ts∫

0

ρ
(
s θ̇ + XXXp ::: ε̇εεp +XXXg ::: ġgg

)
d t . (31)

3. Global thermodynamic driving force Xv for nucleation in a volume Vn, i.e., the total
dissipation increment due to SC only during the complete SC in the transforming
region

Xv := X̄mn =

∫

Vn

ρXdVn −∆

∫

Σn

Γ dΣn . (32)

4. Global thermodynamic driving force for nucleation Xv in terms of a region-
independent integral

Xv := X̄mn =

∫

v

ρXd v −∆

∫

Σn

Γ dΣn . (33)

5. Global dissipation rate Dv for nucleation in a volume Vn

Dv = Xv χ̇ ≥ 0; χ̇ := 1 / ts . (34)

6. The thermodynamic driving force for a phase interface propagation

XΣ := σσσ ::: [εεε] − ρ [ψ] −
θ2∫

θ1

ρ s d θ −
t+∆ t∫

t

ρ (XXXp ::: ε̇εεp + XXXg ::: ġgg) d t . (35)

7. Local dissipation rate DΣ per unit area for a phase interface propagation

DΣ := XΣ vn ≥ 0. (36)

If ψ depends only on εεεe , θ , and ξ , and if the elastic properties of phases are the same
(i.e., ψe = ψe(εεεe , θ)), ψ

θ = ψθ (θ), surface energy is negligible for isothermal approximation and
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homogeneous θ in the nucleus, then Eqs. (31) and (32) result in the following very simplified
expression for the thermodynamic driving force for nucleation

X̄ = ϕ − ∆ψθ (θ) ϕ :=
1

mn

∫

Vn

∫ εεεt2
εεεt1

σσσ ::: dεεεt d Vn . (37)

It looks strange that Eq. (37) does not explicitly contain any plastic strain and looks similar to
that for an elastic material. However, stress variation within the nucleus during the SC depends
on the evolution of the plastic strain field, which essentially affects the transformation work ϕ
and X̄.

Let us consider SC within a volume covered by a phase interface Σt propagating with velocity
vn during the time ∆t (Fig. 4). After some transformations that include universal conditions (2)-
(4) for a coherent interface, one arrives at Eqs.(35) and (36) that determine the thermodynamic
driving force for a phase interface propagation and the corresponding dissipation rate. Note that
for evaluation of the integrals in Eq.(35) one has to perform the same procedure as for SC in a
nucleus Vn: produce Vn by infinitesimally advancing an interface, change ξ incrementally from 0
to 1 in an infinitesimal layer Vn, and solve the thermomechanical boundary-value problem for Vn.
For such a volume Vn, we obtain ρX̄ = XΣ. Examples for such analytical solutions can be found
in [238, 240, 243, 244] for small strain, in [242, 278, 279] for large strains (Section 9), and for FEM
solutions in [170, 172, 263, 266] for FEM solutions (Sections 11.2 and 15.2). The important point
is that for the isothermal process and neglected plastic dissipation, and dissipation due to internal
variable, Eq. (35) transforms into the Eshelby driving force (14) for interface propagation in an
elastic material.

6.3. Three types of kinetic descriptions

The following kinetic descriptions will be considered.

• Athermal or rate-independent kinetics, for which real time and rate are irrelevant. SC
occurs in the chosen region instantaneously when SC criterion is satisfied. To some extent,
this idealization is similar to the rate-independent plasticity.

• Thermally-activated kinetics of the appearance of the critical nucleus, similar to that in
classical homogeneous nucleation theory. Like a classical theory, for which the typical size
of a critical nucleus is a few to tens of nanometers, this theory is applicable at the nanoscale.

• ”Macroscale” thermally-activated kinetics, for which time for the appearance of a macroscale
region is postulated. The main assumptions here are quite different than in classical nucle-
ation theory.

All kinetic approaches should include some extremum principle to determine all unknown pa-
rameters of a nucleus, like its position, shape, internal structure, etc. They should substitute
the principle of the stationary Gibbs energy (6) and the extremum principle incorporated in the
definition of the activated energy (17).

6.4. Athermal kinetics

We consider the appearance of an arbitrary macroscopic region of phase 2 by some nucleation
and growth process. It is accepted in SC criterion (38) in Box 3 that SC in the chosen volume
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occurs when the thermodynamic driving force per unit mass X̄ is equal to the athermal threshold
K0 . Note that the same criterion is applied for SC in elastic materials.

SC condition (38) does not require fulfillment of any condition for each point of the nucleus,
i.e., it has nonlocal nature caused by surface energy. However, for large volumes, the effect of
surface energy is negligible, and an integral SC condition without surface energy was applied in
many papers, including [110, 194, 229, 232, 233, 238, 239, 393]. This, in particular, means that
for K = 0 the dissipation increment due to SC may be negative in some points, both in elastic
and inelastic materials.

Similar criteria (39) and (40) have to be satisfied for points of the interface, both at time t
and t+ ∆t, where the subscript ∆ denotes that a parameter is determined at time t+ ∆ t . Two
equations for the propagating interface are a consequence of the lack of a kinetic equation for
interface propagation and the fact that SC occurs in the infinitesimal volume covered by a moving
interface during the time interval [t; t+ ∆ t]. Similarly, for time-independent plasticity, the yield
condition should be satisfied at time t and t + ∆t, which results in the consistency condition in
addition to the yield condition.

However, the SC criterion (38) is just one scalar equation that is not sufficient for the determi-
nation of all unknown parameters bbb (e.g., position and shape of the nucleus, internal structure,
and transformation path in the nucleus or at the interface, etc.) among all possible parameters bbb∗.
To resolve this problem, the extremum principles (41) and (42) were derived for the nucleus and
propagating interface. This was done using the postulate of realizability, see below. For K = 0
and elastic materials, principle (41) reduces to the principle of the minimum of Gibbs energy.
The extremum principle (42) is considered for time t+ ∆ t only because for time t it was met at
the previous time step.

6.5. The postulate of realizability and extremum principle for determination of all unknown pa-
rameters for a nucleus and interface

In order to derive the extremum principle (41), the plausible assumption that we called the
postulate of realizability [230, 231, 240, 243, 244] was formulated. For time-independent kinetics,
it consists of two steps:

• It is evident, that if strict inequality (41)1 is valid for all variable parameters b∗, then SC
cannot occur, because the SC criterion (38) is not met.

• Let us vary boundary conditions and check the inequality (41) for all variable parameters
b∗ for each of them. The main assumption is that if the SC criterion is satisfied for the first
time for some parameter bbb and SC can occur, this SC will occur.

The postulate of realizability is quite a natural assumption expressing the stability concept.
If some dissipative process (PT, fracture, plastic flow, contact sliding, etc.) can occur from
an energetic point of view, it must occur, since various perturbations provoke the initiation of
a process. Recollecting Murphy’s law that ”anything that can go wrong will go wrong,” the
postulate of realizability can be considered its optimistic and thermodynamic version.

Numerous applications of the postulate of realizability to derive constitutive equations for
plastic flow and plastic spin for anisotropic plasticity, friction, nonlinear nonequilibrium thermo-
dynamics, PTs, twinning, CRs, fracture, as well as for stability analysis [171, 230, 231, 240, 241,
243, 244, 263–266, 278, 279, 286] lead to the impression that this postulate catches a general
essential property of dissipative systems. Mathematical treatment of the extremum principle for
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PT in elastic materials with athermal friction that follows from the postulate of realizability was
performed in [347]. This paper has initiated significant mathematical literature on the study
of the rate-independent and hysteretic systems, including PT in ferroelastic, ferromagnetic, fer-
roelectric, and multiferroic materials (e.g., SMA), elastoplasticity, damage, crack propagations,
friction, delamination, etc., which can be found from citations of the paper [347].

The formulation based on SC condition (38) and extremum principle (41) is consistent in the
limiting case of elastic materials and K = 0 with the classical description based on the principle
of the stationary or minimum of the Gibbs free energy (6).

When simplified expression (37) is used for the driving force for nucleation, extremum principle
(41) results in the maximum of transformation work ϕ . Even in this simplest case, the SC
criterion (38) includes the history of stress variation σσσ in the nucleus during SC, i.e., we cannot
define the SC condition using only the initial stresses before SC. We have to solve the elastoplastic
problem and determine the variation of stresses in the nucleus during SC in order to calculate
the transformation work ϕ in Eq. (37).

There is a major problem in the application of the time-independent kinetics for homogeneous
materials under prescribed stresses. The minimum of Gibbs free energy for elastic materials with
K = 0 and the maximum driving force for elastoplastic materials may be reached when the
entire volume transforms homogenously after meeting the SC criterion X̄ = K. Indeed, as a
corroborating argument, if the energy of the external surface does not change during PT, then
the negative surface term disappears from X̄. Also, the negative contribution to X̄ due to the
positive energy of internal stresses during nucleation disappears as well. Our statement can be
easily proved for the nucleation of a spherical product phase within a parent sphere.

However, homogenous PT in a large volume is unphysical (with some exceptions [12, 13, 258,
280], some which are discussed in Sections 13, 17.2) because of local barriers, which we filtered out
while integrating X over ξ from 0 to 1. That is why the nucleus of some not-strictly-justified size is
considered in analytical or numerical solutions, in many cases equal to a single finite element [263],
region [264, 266], band [170, 263, 454]. In some cases, plasticity arrests PTs [266], see also Section
15.2. For heterogeneous boundary conditions or fields in bulk, or prescribed displacements, which
control the amount or transformed phase via total transformation strain, the size of the nucleus
is determined via SC conditions and extremum principle.

Generally, only the kinetic treatment, due to its accounting for the activation barrier and
energy, results in the finite size of the nucleus. It will be described in Sections 6.7 and 6.8.

6.6. Global criterion for structural changes based on stability analyses

Time-independent problem formulation simplifies a solution, but nothing comes for free. In-
deed, it leads in some cases to the necessity of some additional principles. In particular, for
some problems under the given increment of boundary conditions the SC criterion and extremum
principle (41) allow several different solutions, e.g., nucleation in different places or propagation
of different interfaces. In most cases, at least two following solutions are possible: (a) the solution
without SC (since all equations of continuum mechanics can be satisfied without SC as well) and
(b) the solution with SC. That is, it is possible that SC will not occur even when the SC criterion
and extremum principle (41) are met. Such a problem was first revealed in [230, 231]. It was
proposed to use the stability consideration to choose the unique solution among all possible solu-
tions. Remarkably that the postulate of realizability was utilized again to formulate the stability
criterion and corresponding extremum principle. Since the general extremum principle [230, 231]
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is too bulky, we will utilize its simplified version (44) either for the prescribed displacements uuu
or traction vector ppp at the external boundary S .

It follows from the principles (44) or (45) that the stable solution minimizes the work of
external stresses for prescribed displacements and maximizes the work of external stresses at
given tractions. Thus, the fulfillment of the SC criterion and extremum principle (41) is not
sufficient for the occurrence of SC, and only the extremum principle (Eq. (44) or (45))— called
the global SC criterion—offers the final solution. Application of stability analysis to strain-
induced nucleation at a shear-band intersection can be found in [264] and in Section 14 and in
[172] and in Section 19.2 for competition between PT and fracture.

Box 3. Athermal kinetics of SCs [243, 244, 263]

1. Thermodynamic SC criterion for a nucleus

X̄ = K0 . (38)

2. Thermodynamic SC criterion for interface propagation
2a. At time t

XΣ = KΣ . (39)

2b. At time t+ ∆t

XΣ∆ = KΣ∆ . (40)

3. Extremum principle for determination of all unknown parameters bbb among all
possible bbb∗

3a. For a nucleus

X̄ (bbb∗)− K0 (bbb∗) < 0 = X̄ (bbb)− K0 (bbb) . (41)

3a. For an interface

XΣ∆ (bbb∗)− KΣ∆ (bbb∗) < 0 = XΣ∆ (bbb)− KΣ∆ (bbb) . (42)

4. Athermal threshold K0

K0 = Lσy (θ, εεεp, ggg) εo . (43)

5. Extremum principle for choosing the stable solution, i.e., the global SC criterion

∫

S

uuu2∫

uuu1

ppp ··· duuu dS ⇒ min (for prescribed uuu at the external surface S ) . (44)

∫

S

uuu2∫

uuu1

ppp ··· duuu dS ⇒ max (for prescribed ppp at the external surface S ) . (45)
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Let us summarize the main steps for the solution of the boundary-value problems for the ather-
mal kinetics based on equations in Boxes 1-3. The initial stages of the solution are the same as
described in the problem formulation in Section 6.2. We consider a body under prescribed bound-
ary conditions that do not change during the nucleation event (Fig. 4). We choose a potential
nucleation region Vn, changing the field of the parameter ξ (rrr) from 0 to 1 in it homogeneously
or heterogeneously, which introduces into a nucleus the transformation strain field εεεt (rrr , ξ) and
variation of all material properties from properties of the parent phase 1 to properties of the
product phase 2. For such a prescribed deformation process in Vn, the inelastic boundary value
problem and heat conduction equation should be solved incrementally, producing fields σσσ , εεεp ,
ggg, θ , and all other participating fields. Then we calculate the driving force X̄ (Eq.(32)) and
athermal resistance K0 (Eq.(43)). Next, we vary the possible SC region and way of variation of
the transformation strain and properties from initial to final values in it and find such a PT region
and way of varying transformation strain and properties, which maximizes the net driving force
X̄ − K0 . It is important for the athermal kinetics to begin solving for the boundary conditions
for which X̄ −K0 < 0 , i.e., the SC is impossible. Then we change boundary conditions incremen-
tally to increase the net driving force until we find boundary conditions for which X̄ − K0 = 0
for the first time for the ”optimized” nucleus. Then we compare the obtained solution with the
solution without the nucleus for the same load increment (or with other solutions with SCs, if
they exist) and find out using extremum principle (44), which solution is more stable. If with
the nucleus, we keep this nucleus in the transformed state with all corresponding fields and use
as the initial conditions for the next loading increment, for which we repeat the same procedure.
If without a nucleus, then we use the solution without the nucleus as the initial conditions for
the next loading increment, for which we repeat the same procedure. We do the same for all
following load increments. Interface propagation does not require special treatment. If under a
given load increment, the next transformed volume is in touch with the previous one, then the
interface propagation occurs; otherwise, this is the appearance of a new nucleus. For interface
propagation, KΣ should be used instead of K0, but in most cases, this difference is neglected.

6.7. Thermally-activated kinetics

In the equations presented in Box 4, we follow Eqs. (16)-(18) as much as possible for SC
in elastic materials. The main problem is that since the change in the Gibbs energy is not the
thermodynamic driving force for SC, it cannot be used for the definition of the activation energy.
Since according to Eqs. (32) and (41) (X̄ −K0)mn is the net thermodynamic driving force for
SC, it is utilized in the definition (47). Also, Eq. (47) includes additional minimization with
respect to the transformation path along which a critical nucleus appears. For example, one
can consider a homogeneous SC process in the entire critical nucleus of a fixed radius, or the
formation of a critical nucleus by the motion of a sharp interface from zero to the critical radius,
or a homogenous SC process in the region of the smallest size, which can be treated as a nucleus
within a continuum approach and then grows to the critical size by interface propagation, or
any general scenario involving heterogeneous fields [250, 257]. For SC in elastic materials, the
transformation path is irrelevant for the definition of Q because ∆Gn is path-independent. This
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is not the case for nucleation in an inelastic material, for which stress variation depends on the
entire transformation process, and so does X̄.

This fact has one more consequence. In elasticity, if a supercritical nucleus appears, it will
grow because the Gibbs potential reduces and the dissipation rate is positive during growth.
However, due to the path-dependence of plastic solutions, one cannot say whether the supercritical
nucleus will grow, disappear, or remain unchanged after nucleation. Thus, an additional condition
concerning growth after appearance should be checked.

Due to the path-dependence, the driving force for interface propagation for forward Xf
Σ and

reverse Xr
Σ PT can be different. The driving force for reverse SC is defined in the same way as

for forward SC, but when ξ varies from 1 to 0. The kinetic equation for the interface propagation
may be based on experiments, atomistic simulations, or some dislocation models [125, 126, 133,
134, 144, 372]. The following scenarios are presented in item 5 of Box 4.

The cases 5.1 and 5.2 are similar to PT in elastic materials, i.e., the supercritical nucleus
will grow, and the subcritical nucleus will shrink. Other cases do not have the counterparts for
PTs in elastic materials. For case 5.3, the evolution of the nucleus is determined by the sign of
the resultant interface velocity, where f f (Xf

Σ) and f r(Xr
Σ) are the kinetic equations for forward

and reverse PTs, respectively. Case 5.4 describes the nucleus that cannot evolve, i.e., it is stable
rather than the critical nucleus. Finally, in 5.5, a gaseous nucleus may grow independent of the
interfacial driving force due to loss of mechanical stability if the pressure in the gas exceeds the
resistance of the material −σn to plastic expansion and surface stress. For gaseous or any other
hydrostatic media, athermal resistance is zero.

The main steps for the solution of the boundary-value problems for the thermally activated
kinetics are similar to those for athermal kinetics with the following difference. The actual
nucleus is chosen by the minimization of activation energy instead of the net driving force, and
the nucleation time is defined. In addition, growth condition are checked to choose the next
transforming region. The growth conditions are based on parameters at time t + ∆t, i.e., again,
the next transformed volume is checked like for the athermal kinetics.

The examples of the application of equation in Box 4 for SC in an inelastic material are given in
[250, 257] for sublimation (and melting and chemical reaction), i.e. when a nucleus is a hydrostatic
medium, and in [246, 247] for nucleation of a high-pressure solid phase in a low-pressure solid
phase.

Note that the typical size of a critical nucleus determined by the nucleation criterion (48) is
in the range of a few to few tens of nanometers. The effect of surface energy is the leading one
for such sizes.

Box 4. Thermally-activated kinetics [250]

1. The Arrhenius-type kinetic equation for nucleation time

ts = t0 exp

(
− Q

k θ

)
. (46)

2. Activation energy for the appearance of a critical nucleus

Q = max
m0n

min
shape

min
position

min
path

min
structure

(−(X̄ −K0)mn). (47)

28



3. Criterion for thermally activated nucleation

Q = βkθ, β = 40− 80. (48)

4. Interface propagation kinetics

vfn = f f (Xf
Σ −Kf

Σ) for Xf
Σ > Kf

Σ;

vrn = f f (Xr
Σ −Kr

Σ) for Xr
Σ > Kr

Σ. (49)

5. Growth conditions for a critical nucleus

5.1. Xf
Σ∆ > Kf

Σ∆ and Xr
Σ∆ < Kr

Σ∆ ⇒ growth (supercritical nucleus) (50)

5.2. Xf
Σ∆ < Kf

Σ∆ and Xr
Σ∆ > Kr

Σ∆ ⇒ shrinking (subcritical nucleus) (51)

5.3. Xf
Σ∆ ≥ Kf

Σ∆ and Xr
Σ∆ ≥ Kr

Σ∆ ⇒ (52)

vres = f f (XΣf∆ −Kf
Σ∆)− f r(XΣr∆ −Kr

Σ∆) ⇒ competing kinetics

5.4. Xf
Σ∆ ≤ Kf

Σ∆ and Xr
Σ∆ ≤ Kr

Σ∆ ⇒ stable (rather than critical) nucleus (53)

5.5. pg > −σn + 2Γ2/R ⇒ growth of a gaseous nucleus by mechanical instability (54)

6.8. ”Macroscale” thermally-activated kinetics for structural changes

As it is shown in [243, 244] and Section 6.5, the time-independent model can lead to some
contradictions. That is why development of phenomenological time-dependent kinetics is neces-
sary. It is not related to the appearance of a critical nucleus, for which size and energy (i.e.,
activation energy) can be calculated. We consider plausible phenomenological kinetics for the
time of appearance of an arbitrary region of a product phase of volume Vn or mass mn, because in
irreversible thermodynamics, the kinetic equation between rate and force χ̇ = 1/ts = f (Xv , .........)
has to be formulated. We coin this region as a macroscale nucleus. Motivated by the approach
in Section 6.7, we consider in Box 5 a size-dependent Arrhenius-type kinetics, which includes
both thermal activation and an athermal threshold K0 , see Eq.(56). Here, Ea is the activation
energy per unit mass at X̄ − K0 = 0 , which is an experimentally-determined parameter (in
contrast to Eq.(47) for traditional thermal activation), N = 6.02 · 1023 is Avogadro’s number
(number of atoms in 1 mol), R = 8.314 J/ (K mol) is the gas constant, and n is the number of
atoms in the volume which undergoes thermal fluctuations during the entire macroscopic nucle-
ation process (an experimentally fitting parameter). The actual activation energy per unit mass
Ēa := Ea − X̄ + K0 ≥ 0, otherwise, there is no need for thermal fluctuations, and barrierless
nucleation occurs. The characteristic time t0 has a meaning of a nucleation time for Ēa = 0.
Since k = R/N , without n using the same arguments as for formulating Eq.(18), we obtain that
Ēamn ≤ (40− 80)kθ, i.e., the nucleus size would be similar to the size of the critical nucleus, i.e.,
few to tens of nanometers. The effective temperature θef takes into account that the temperature
may vary significantly during the SC, e.g., during CR [278, 279]. As the simplest assumption, we
define the effective temperature either as a temperature averaged over the transformation process
and transforming volume or use a similar definition in terms of inverse temperature. As a nucle-
ation criterion, we accept that the nucleation time is shorter or equal to the accepted observation

29



time tob. With the help of the postulate of realizability [230, 231, 243, 244], the principle of the
minimum of transformation time, Eq.(57), (or the maximum of transformation rate) is obtained.

We used a specific model for the interface velocity kinetics developed in [125, 126, 372] and
combined it with our continuum thermodynamic treatment in [266]. It is taken into account
that the athermal threshold K0 in Eq. (58) consists of two parts due to solute atoms Kµ and
dislocation forest hardening Kd = B[σAy (q̄)−σAy (0)], where B is the proportionality factor, q̄ is the
accumulated plastic strain averaged over the small volume covered by a moving interface during
time ∆t, σAy (q̄) is the plastic strain dependence of the yield strength of the austenite, and A is
a parameter in this dependence. Dependence of K0 on q̄ is consistent with the relationship (43)
and dependence of the yield strength on q for a specific steel in [125, 126]. In the kinetic equation
for the interface propagation (59) vn 0 is the characteristic velocity on the order of the shear-
wave velocity, Q0 is the activation energy, W0 is the height of the barrier above which thermal
fluctuations are not required, and p and b are constants. All material parameters estimated for
the alloy Fe - 22.31 Ni - 2.888 Mn are presented in [125, 126, 266], and the application of the
kinetics for the lath martensite growth is presented in [266] and Section 15.2.

Box 5. ”Macroscale” thermally-activated kinetics for SCs [243, 244, 266]

1. Thermodynamic SC criterion for a macroscale nucleus

X̄ ≥ K0 . (55)

2. Arrhenius-type kinetic equation and nucleation criterion

ts = t0 exp

(
−
(
X̄ − K0 − Ea

)
mn

Rθef

N

n

)
≤ tob at 0 ≤ X̄ − K0 ≤ Ea (56)

ts = ∞ at X̄ ≤ K0 .

3. Principle of the minimum of transformation time

ts = t0 exp −
(
X̄ (bbb∗) − K0 (bbb∗)− Ea (bbb∗)

)
mn (bbb∗)

Rθef (bbb∗)

N

n
−→ min . (57)

4. Interface propagation criterion

X̄ ≥ K0 = Kµ +Kd = Kµ +B[σAy (q̄)− σAy (0)] = Kµ + Aq̄0.5. (58)

5. Kinetic equation for an interface propagation

vn = vn 0 exp

[
− Q0

k θ

(
1−

(
X̄ −K0

W0

)p )b]
for 0 ≤ X̄ −K0 ≤ W0. (59)

A straightforward way to reduce the transformation time is to reduce the mass (i.e., size)
of the nucleus as much as possible. However, the increasing contribution of the surface energy
to X̄ will then lead to a violation of the SC criterion (55). In this case, the minimum nucleus
size will be determined by thermodynamic ”static” constraint X̄ (bbb∗) − K0 (bbb∗) = 0 , which
should be explicitly imposed. That is why we called this nucleus a thermodynamically admissible
nucleus. Corresponding equations are presented in Box 6. The expression for the transformation
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time (61) and for the principle of the minimum of the transformation time (62) are becoming
significantly simpler. For mutually independent Ea , mn and θef , the principle of the minimum
of the transformation time results in three principles, namely in the principle of the minimum
of transforming mass, the minimum of activation energy per unit mass, and the maximum of
effective temperature. Since Ea is a fitting constant independent of bbb∗, and if the temperature
variation is neglected, then the main principle is the principle of the minimum of transforming
mass.

Box 6. ”Macroscale” thermally-activated kinetics for SCs when the minimum in
principle (57) violates the thermodynamic criterion of SC (55), and it is included as

a constraint [243, 244]

1. Thermodynamic ”static” SC criterion for a macroscale nucleus

X̄ = K0 . (60)

2. Arrhenius-type kinetic equation and nucleation criterion for a thermodynamically
admissible nucleus satisfying criterion (60)

ts = t0 exp

(
Eamn

Rθef

N

n

)
≤ tob. (61)

3. Principle of the minimum of transformation time

ts = t0 exp
Ea (bbb∗)mn (bbb∗)

Rθef (bbb∗)

N

n
−→ min ⇒ Ea (bbb∗) mn (bbb∗)

θef (bbb∗)
→ min. (62)

4. For mutually independent Ea , mn and θef

Ea (bbb∗) → min ; mn (bbb∗) → min ; θef (bbb∗) → max . (63)

For homogenous fields within a macroscale nucleus, the formulated equations are further
elaborated in Box 7. Here, we consider a nucleus of arbitrary shape with a surface area Σn and

characteristic size r̄ =
Vn
Σn

. The thermodynamic SC criterion for a macroscale nucleus (64)

(which is equality, like for time-independent kinetics) allows us to introduce the new concept
of a thermodynamically admissible nucleus (see also Fig. 3), for which characteristic size is
determined by Eq.(65). The size of a thermodynamically admissible nucleus is larger than the
size of a critical nucleus, which has an equal probability of growing and disappearing. It may
be qualitatively related to the concept of the operational nucleus in [372], which reached the
size required for fast growth. However, as it is described in Box 4, due to the path-dependence
plastic flow theory and the driving forces for nucleation and growth, there is no guarantee that
our thermodynamically admissible nucleus will grow; this should be checked for each specific case.

Eq. (64) allows us to elaborate Eq.(66) for the time of SC. While applying the principle of
the minimum of transformation time (67), we, for simplicity, assume constant temperature, K0,
and Ea. This principle then results in the principle of minimum volume (or mass) of the nucleus.

Box 7. ”Macroscale” thermally-activated kinetics for SCs in Box 6 for a
thermodynamically admissible nucleus for homogeneous fields [243, 244]
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1. Thermodynamic ”static” SC criterion for a nucleus
(
X − K0

)
ρΣn r̄ = ∆Γ Σn ⇒

(
X − K0

)
ρ r̄ = ∆Γ . (64)

2. The characteristic size of a thermodynamically admissible nucleus

r̄ =
∆Γ

ρ (X − K0 )
. (65)

3. Arrhenius-type kinetic equation and nucleation criterion for a thermodynamically
admissible nucleus satisfying criterion (64)

ts = toexp

(
EaρΣnr̄

Rθef

N

n

)
= toexp

(
Ea∆ΓΣn

(X − K0 )Rθef

N

n

)
≤ tob. (66)

4. Principle of the minimum of transformation time

ts = toexp

(
EaρΣn (bbb∗) r̄ (bbb∗)

Rθef

N

n

)
= toexp

(
Ea∆ΓΣn (bbb∗)

(X (bbb∗) − K0 )Rθef

N

n

)
−→ min ⇒

Σn (bbb∗) r̄ (bbb∗) −→ min. (67)

When a change in surface energy ∆Γ is very small or even zero, according to Eq.(65), it
is possible that the transforming mass is becoming smaller than the mass of a single atom or
molecule or the mass of n atoms, which undergo thermal fluctuations. This should be avoided
by the constraint (68), which changes the equations in Box 5 to those in Box 8. It is taken into
account in Eqs. (70) and (71) where k = R

N
and the mass of the nucleus is fixed.

Box 8. ”Macroscale” thermally-activated kinetics for SCs in Box 5 when a mass of
a nucleus is smaller than mass of n atoms nma [243, 244]

1. The constraint for a mass of a nucleus

mn = nma. (68)

2. Thermodynamic SC criterion for a macroscale nucleus

X̄ ≥ K0 . (69)

3. Arrhenius-type kinetic equation

ts = t0 exp

(
−
(
X̄ − K0 − Ea

)
m a

k θef

)
at 0 ≤ X̄ − K0 ≤ Ea (70)

ts = ∞ at X̄ ≤ K0 .

4. Principle of the minimum of transformation time

ts = t0 exp −
(
X̄ (bbb∗) − K0 (bbb∗)− Ea (bbb∗)

)
ma

k θef (bbb∗)
−→ min . (71)

A general scheme for the application of SC criterion and the principle of the minimum of
transformation time for the macroscale nucleation kinetics is similar to that for thermally activated
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kinetics. For the interface propagation, a small shift of the interface is produced at each step and
the volume covered as an interface is considered as a new transformed region. After calculating
X and K0 and the maximization of X −K0 with respect to internal structure (if any), interface
velocity is calculated using Eq.(59).

6.9. Comparison with alternative approaches

Since we are not aware of any previous work on CRs in plastic materials within a framework
of the materials without an intermediate stable state but papers by [243, 244, 278, 279], we will
focus on the PTs only. However, as it is demonstrated in [243, 244, 278, 279], formal continuum
theory for PTs and CRs is practically the same.

6.9.1. ”Macroscale nucleation”

As it is usual in physical literature, instead of a general theory, analytical solutions for some
tractable model problems were found first. Melting of a small spherical particle in an elastoplastic
space was presented in the first publication [312] on the topic. The appearance of the spherical
nucleus in a finite-size sphere under external pressure was treated in [393]. The ellipsoidal nucleus
in an infinite space with the stress-free boundary was analyzed in [194]. The shape of an inclusion
corresponding to minimum energy losses during growth was found, much like the counterpart of a
”critical macroscopic nucleus,” while surface energy was not included in this and most of the other
works on PTs in elastoplastic materials. A Landau-type theory was applied in [17] to study the
emergence of spherical and plate-like regions of the product phase in an infinite elastoplastic space
without external stresses and neglecting surface energy. In these works, the deformation theory of
plasticity was utilized, which is thermodynamically equivalent to a nonlinear elasticity instead of
elastoplasticity. In these papers, the PT criterion and extremum principle for the determination
of some unknown parameters are the same as for PT in elastic materials, i.e., the total Gibbs
energy is minimized. As it is discussed above, this principle is not applicable for elastoplastic
materials. Still, due to specific simple problems, some results are either correct or give reasonable
hints on some new effects. Thus, it was found in [393] that (in contrast to elastic materials)
nucleation and interface propagation conditions in elastoplastic materials are not equivalent.

Only in [393], for the appearance of a spherical nucleus, was it hypothesized that the mechan-
ical work should be smaller than the change in thermal energy, which for some simplifications
coincides with the driving force in Eq. (37). Unfortunately, in the next paper [194] the princi-
ple of the minimum of free energy was implemented again. Numerous investigations of PT in
elastoplastic materials in [110, 331–333] were also based on the comparison of Gibbs free energy
before and after PT. A very different approach was developed in [369, 371, 372] based on the
dislocation representation of the martensitic interfaces and considering heterogeneous nucleation
at the dislocation wall and corresponding overall nucleation kinetics, as well as martensite growth
in an elastic and elastoplastic material. Various physical, material, and mechanical features of
the nucleation theory were critically reviewed in [373].

In [229, 232, 233, 238, 239] we formulated a nucleation condition in the form that the dissi-
pation increment due to PT only (excluding plastic and other types of dissipation) reaches its
experimentally determined value (see Eq.(38)). To justify this condition, a local description of
PTs, similar to the ones presented in Boxes 1-3, was developed in [234, 235, 240]. The pos-
tulate of realizability [230, 231, 238, 238, 240] was formulated and applied to the derivation of
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the extremum principle (32) for finding all unknown parameters of the nucleus, see [229, 232–
235, 238, 240] for athermal kinetics. The ”macroscale” thermally activated kinetics equations
presented in Boxes 5-8, were suggested in [243, 244] for small strains with application to some
analytical solutions and in [172, 266] for finite strains. An approach in line with the classical
nucleation theory but for elastoplastic material presented in Box 4 was developed in [246, 247]
for nucleation at a dislocation pileup, in [250, 254, 255, 257] for sublimation, melting, CR, and
sublimation via the virtual melting within elastoplastic material, and in [256] for void nucleation
due to fracture, sublimation, sublimation via the virtual melting, and melting and evaporation
within an elastoplastic space.

6.9.2. Interface propagation

In material science literature [125, 126, 133, 134, 144, 372], various contributions to the driving
force for interface propagation were discussed. The growth of a thin ellipsoidal martensitic region
in a viscoplastic material was approximately modeled in [144, 372]. Despite very approximate
stress-strain fields, some very important features were revealed. In particular, it was found that
plastic deformation near the tip of an inclusion stops its lengthening. The first FEM treatment of
the appearance and thickening of a martensitic plate with fixed ends was performed in [331, 332].
In [393], growth of a spherical region in a spherical elastoplastic matrix was solved. The defect
heredity for the same problem was treated for the first time in [192]. The driving force for PT was
not localized to an interface, but it represented the variation of the Gibbs free energy combined
with the plastically dissipated heat in the whole body. In the next paper by [194], an alternative
approach for the thermodynamic equilibrium for an elastoplastic ellipsoidal region in the elastic
matrix was utilized. This means that the correct approach to the interface propagation and final
equation were not known in physical literature. All the balance equations for the points of a
propagating phase interface in a viscoplastic material, including PT criterion, are obtained in
[206]. However, the PT is assumed to be much faster than the plastic relaxation, and the plastic
strain increment does not have a jump at the phase interface. In this case, the PT conditions are
the same as for elastic materials, which does not explain the strong influence of plastic strain on
PT. In this case, the plastic dissipation at the interface is absent, and our driving force (35) for
isothermal processes coincides with the Eshelby driving force [93], i.e., like for elastic materials.

The Eshelby thermodynamic driving force was suggested to be used for the interface prop-
agation condition in elastoplastic materials in [228] and independently in [110, 331, 332]. This
was similar to the condition for elastic materials with an athermal threshold, but different from
Eq. (35) even for the isothermal process. Note that the Eshelby driving force represents the total
dissipation increment at the moving interface, including plastic dissipation and dissipation due
to changes in internal variables not related to SCs.

An approach in which the thermodynamic driving force for nucleation and interface prop-
agation represent the dissipation increment due to PT only, i.e., excluding all other types of
dissipation—in particular, plastic dissipation has been developed in [229–233, 240]. The result
coincides with the isothermal version of Eq. (35). This expression was justified in [234, 235, 240],
utilizing a local description of PTs.

Thus, two different expressions for the driving force for interface propagation in plastic mate-
rials were used in literature: based on the Eshelby driving force in [59, 60, 114, 115] and based
on the dissipation increment due to PT only in [171, 240, 243, 244, 263, 266]. It was shown in
[245] that using the Eshelby driving force, along with its maximization, leads to a conceptual
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contradiction for plastic materials. In contrast, Eq. (35) does not exhibit this type of contradic-
tion. Recently, the correctness of Eq. (35) and phase equilibrium condition (39) was confirmed
utilizing the phase field approach to coupled PTs and discrete dislocations at the nanoscale in
[183, 184] and coupled PTs and slip bands at the microscale in [92, 259].

A combination of the strict equation for the driving force with physically-based expressions
for athermal and thermal parts of the interfacial friction from [125, 126, 372] was suggested in
[266], and it was applied to the martensite growth problem, see Section 15.2.

6.9.3. Extremum principle for PT in plastic materials

Maximizing the mechanical work in order to find the habit-plane (or invariant plane strain)
variant was suggested in [378]. When the invariant plane strain includes dislocation plastic
shear in addition to the transformation (Bain) strain and lattice rotation, this represents the
maximization of the Eshelby thermodynamic driving force for the interface propagation and
total dissipation increment for nucleation. However, when the lattice invariant shear includes
twinning only, this represents the maximization of the transformation work, since twinning in
martensite represents the appearance of two twin-related martensitic variants, which is a part of
the PT process. This case is equivalent to the maximization of the total dissipation increment for
nucleation and interface propagation. The Eshelby driving force was also maximized with respect
to the habit-plane variant in [59, 60, 110, 114, 331, 332].

The transformation work uses local stress in place of nucleation before the PT was maximized
in [121, 333]. This generalizes the extremum principle in [378] for the presence of internal stresses.
However, this contradicts for the limiting case of elastic materials with the principle of the min-
imum of Gibbs energy, because the variation of stresses in the course of the PT is not taken
into account. It leads to significant errors because stresses change drastically during the PT (i.e.,
growth of transformation strain) and even change a sign (see, e.g. [238, 243, 244, 393] and Section
10). In [110, 331–333], the difference in the Gibbs energies after and before the PT governed the
PT. In [454], an alternative potential was suggested to be maximized. The common point of the
above-mentioned works is that the PT conditions are not directly related to the second law of
thermodynamics and dissipation due to the PT. That is why they were not justified, and it is
problematic to comprehend the physical sense of the proposed criteria and extremum principles
and strictly compare them.

A plausible assumption called the postulate of the realizability was formulated in [230, 231,
238, 240], which results in the maximization of the net driving force X̄ −K , both for macroscale
nucleation and interface motion (Eq. (41) for athermal kinetics. It involves the justified ex-
pressions (31) and (32) for X̄ and (35) for XΣ, i.e., based on the dissipation increment due to
PT only. At constant K, this principle simplifies to the maximization of X̄ or XΣ, and, in
the simplest case, to the principle of maximum transformation work, which takes into account
the stress variation in the nucleus during the transformation process. Such transformation work
significantly differs from σσσ :::εεεt and for some problems can possess the opposite sign [263]. For
thermally activated kinetics, the principle of the minimum transformation time was derived in
[243, 244] using the postulate of realizability (see Eq. (57)). One benefit is that such a principle
was intuitively formulated and routinely used in material science [108, 372, 383, 429] for any
nucleation events as a part of a concept of a critical nucleus (see Eqs. (16) and (17)). Indeed,
the critical nucleus corresponds to the minimax of the energy, maximum with respect to the size
and minimum with respect to all other parameters (shape, position, etc.) From a practical point
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of view, our main conceptual result for thermally activated kinetics is the expression (47) for the
activation energy for inelastic materials, which subtracts all types of dissipations, but due to PT,
as well as athermal resistance. At the same time, arriving at an intuitively known principle of
the minimum of SC time using the postulate of realizability increases its plausibility for other
and more general systems. Furthermore, the postulate of realizability can be used to derive some
known and new extremum principles in various fields, like the plastic flow rule and the problem
of plastic spin in plasticity, nonlinear nonequilibrium thermodynamics, twinning, ductile fracture,
CRs, and stability analysis [171, 230, 231, 240, 241, 243, 244, 263–266, 278, 279, 286].

The idea that the solution without PT (even if PT criterion could be met) is one of the possible
solutions to be compared with the solution with PT was formulated in [230, 231, 240]. This led
to the formulation of the global SC criterion based on stability analysis and its specific expression
(44), derived again with the help of the postulate of realizability in [230, 231, 240]. The nontrivial
choice of the stable solution among several possible ones was demonstrated in [171, 230, 231, 264]
for PT and in [172] for fracture.

7. Finite strain formalism

As discussed in the Introduction, for various PTs the transformation strains are quite large.
High pressure can cause large elastic strains. For perfect crystal deviatoric strains are often
finite. For example, based on the first principle simulations, under uniaxial compression elastic
strain reaches 0.16 for Si I [464] and 0.38 for graphite [122] before lattice instability and initiation
transformation to Si II and diamond, respectively. For nanotechnology applications, large elastic
strains can be reached in defect-free volumes (e.g., nanofilms, nanotubes, and nanowires) and near
strong stress concentrators (like dislocation pileups) and lattice misfits, when plastic relaxation
is suppressed. TRIP strain can be very large, theoretically infinite, in a thin layer (see Eq. (116).
One of the great examples of large plastic deformations during thermally-induced lath martensite
nucleation in steel, for which invariant plane shear strain is 0.2 and volumetric transformation
strain is just 0.02, is presented in [266] (see Section 15.2). Also, for plastic strain-induced PTs,
applied plastic shear during high-pressure torsion can be 1−10 and larger [28, 29, 41, 42, 87, 302,
474, 476]. Additionally, lattice and material rotations can be finite even for small transformation
strains. The crystallographic theory of the martensite [16, 26, 453] includes finite transformation
strains and rotations, as well as lattice-invariant shears due to twinning (or slip) but neglects
elastic strain. Continuum thermodynamic theory of PTs in elastic materials that also includes
interfacial instabilities but does not discuss crystallography of the martensite is presented by
[130].

Thermodynamic theory for large elastic, transformational, and plastic deformations and ro-
tations was drafted in [235] and developed in [240], and is used for various analytical [240, 242,
245, 250, 254, 257, 278, 279] and numerical [171, 264, 266] solutions. A summary of this theory is
contained in Boxes 9 and 10. A few equations in Box 9 are similar to those in Box 11 in Section
16.5 for the PFA to PTs and discrete dislocations.

Multiplicative decomposition of the deformation gradient FFF (72) is justified in [271] as a
noncontradictory and most economical way to describe discrete dislocation plasticity in A and
Mi and inheritance of dislocation during cyclic direct-reverse PTs. Specific sequence of the terms
in Eq. (72) is important. The simplest way to justify the sequence in [240, 271] was that FFF e···UUU t

represents deformation of a crystal lattice and in some theories [18, 98, 99, 176, 315, 388, 396, 439]
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it is not decomposed into elastic and transformational parts. Thermoelastic deformation gradient
FFF e can be multiplicatively decomposed into elastic and thermal parts [236, 240]. Theory in
[240] includes additional terms in the multiplicative decomposition, namely, plastic deformation
gradients in A, Mi, and during the transformation process. However, they never were used for
the solution of a specific problem. As analyzed in [271], splitting plastic deformation gradients
into several components makes this theory unnecessararily sophisticated and introduces undesired
features. Some general approaches for justification of kinematic decomposition based on physical
principles are presented in [236, 240].

In addition to the reference stress-free configuration Ω0 corresponding with FFF = III and the
current deformed configuration Ω, additional stress-free configuration Ωt, obtained after elastic
unloading without reverse PT from the current configuration Ω, and the stress-free configuration
Ωp, obtained after elastic unloading with reverse PT from Ω are introduced (Fig. 5). Parameters
defined in these configurations will be marked with corresponding subscripts. Elastic and plastic
Lagrangian strain tensors used in the constitutive equations are introduced in Eq. (73). Eq. (74)
introduces Jacobian determinants describing ratios of elemental volumes (and mass densities) in
different configurations. Internal time ξ is introduced in Eq. (75) the same way as for small
strains, but in terms of the finite-strain measure of the transformation strain. Multiplicative
decomposition (72) of the deformation gradient leads to the additive decomposition of the defor-
mations rate Eq. (76). The Helmholtz free energy (77) consists of elastic and thermal parts. Note
the elasticity rule is determined experimentally or with atomistic simulations in configuration Ωt,
which is the reference state for FFF e. To transform it to the energy per unit mass, the multiplier
Jt/ρ0 is used: Jt transforms it in the energy per unit reference volume and 1ρ0 in the energy
per unit mass. Such a finite-strain correction was introduced in [288, 297] for large anisotropic
compositional expansion during lithiation-delithiation of silicon and then in [300] for PFA to PTs.
The simplest expression for elastic energy (76) is assumed, while higher-order terms can be added
[240, 272]. Application of thermodynamic laws results, in particular, to the expressions (79) and
(80) for the first Piola-Kirchhoff PPP and Cauchy σσσ stress tensor, which are presented in the general
form and for elastic energy (76). Expressions (25)-(84) for dissipation rate due to plastic flow Dp

and variation of the internal variable Dg, corresponding dissipative forces, the yield conditions
and evolution equations for plastic strain and internal variables appear similar to those at small
strain but using corresponding finite-strain measures. Specification for single crystals will be
presented in Box 11.

Box 9. Local equations describing phase transitions and plasticity
[171, 172, 234, 235, 240, 272]

1. Kinematics
1.1. Multiplicative decomposition of the deformation gradient FFF into thermoelastic FFF e, trans-

formation UUU t, and plastic FFF p parts

FFF = FFF e···UUU t···FFF p. (72)

1.2. Elastic and plastic Lagrangian strain tensors

EEEe = 0.5(FFF T
e ·FFF e − III); EEEp = 0.5(FFF T

p ·FFF p − III). (73)
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Figure 5: Multiplicative decomposition of the deformation gradient into elastic FFF e, transformational UUU t, and
plastic FFF t parts. Besides the reference stress-free configuration Ω0 corresponding with FFF = III and the deformed
configuration Ω, additional stress-free configuration Ωt, obtained after elastic unloading without reverse PT from
the current configuration Ω, and the stress-free configuration Ωp, obtained after elastic unloading with reverse PT
from Ω are introduced. Parameters defined in these configurations will be marked with corresponding subscripts.

1.2. Jacobian determinants

J :=
dV

dV0

=
ρ0

ρ
= detFFF ; Je :=

dV

dVt
=
ρt
ρ0

= detFFF e;

Jtp :=
dVt
dVp

=
ρp
ρt

= detUUU t detFFF p = detUUU t = Jt; Jp := detFFF p = 1; J = JeJt, (74)

where dV0 (ρ0), dVt (ρt), dVp (ρp), and dV (ρ) are the elemental volumes (mass densities) in
the reference Ω0, transformed Ωt, plastically deformed Ωp, and the actual (Ω) configurations,
respectively.

1.3. Internal time ξ

ξ :=
| εεεt − εεεt1 |
| εεεt2 − εεεt1 |

0 ≤ ξ ≤ 1 ⇒ UUU t = III + ξ(εεεt2 − εεεt1). (75)

1.4. Decomposition of the deformation rate ddd

ddd := (lll)s =
(
ḞFF ·FFF−1

)
s

=
(
ḞFF e ·FFF−1

e

)
s

+ dddt + dddp;

dddt =
(
FFF e · U̇UU t ·UUU−1

t ·FFF−1
e

)
s

=
(
FFF e · (εεεt2 − εεεt1) ·UUU−1

t ·FFF−1
e

)
s
ξ̇;

dddp =
(
FFF e···UUU t···ḞFF p ·FFF−1

p ·UUU−1
t ·FFF−1

e

)
s
. (76)

2. Helmholtz free energy per unit mass

ψ = ψ (EEEe, θ, EEEp, ggg, ξ) =
Jt
ρ0

ψe (EEEe, θ, EEEp, ggg, ξ) + ψθ (θ, EEEp, ggg, ξ) . (77)

3. Elastic energy per unit volume in Ωt

ψe =
1

2
EEEe:::CCC(ξ):::EEEe, (78)
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where CCC is the fourth-rank tensor of elastic moduli.
4. First Piola-Kirchhoff PPP and Cauchy σσσ stress tensor

PPP = JtFFF e···
∂ψe

∂EEEe

···UUU−1
t ···FFF T−1

p = JtFFF e···CCC:::EEEe···UUU−1
t ···FFF T−1

p ; (79)

σσσ =
1

Je
FFF e···

∂ψe

∂EEEe

···FFF T
e =

1

Je
FFF e···CCC:::EEEe···FFF T

e (80)

5. Dissipation rate per unit mass due to plastic flow Dp and variation of the internal
variable Dg

Dp := XXXp : dddp; Dg := XXXg · ġggT . (81)

6. Dissipative forces for plastic flow XXXp and variation of the internal variable XXXg

XXXp :=
1

ρ
σσσ − ∂ ψ

∂EEEp

; XXXg := − ∂ ψ

∂ gggT
. (82)

7. Yield condition

f (XXXp , θ, EEEp, ggg, ξ) = 0 . (83)

8. Evolution equations for plastic strain and internal variables

dddp = fffp (XXX , θ, EEEp, ggg, ξ) if f = 0; and ḟ > 0; dddp = 0 otherwise.

ġgg = fff g (XXXg , θ, EEEp, ggg, ξ) . (84)

Application of the same thermodynamic procedure as for small strains but within finite-
strain formalism allows us to generalize equations in Box 2 for the dissipation rate due to SC
and thermodynamic driving forces for finite strains, see Box 10. Note that in Eq. (90) the
transformation work (first term) can be substituted with the corresponding term in Eq. (13).

Box 10. Dissipation rate due to SC and thermodynamic driving forces at finite
strains [171, 172, 234, 235, 240, 272]

1. Local dissipation rate Dξ per unit mass and dissipative force Xξ for structural
changes

Dξ := Xξ ξ̇; Xξ =
1

ρ0

PPP T···FFF e:::
∂UUU t

∂ξ
···FFF p −

Jt
ρ0

UUU−1
t :::

∂UUU t

∂ξ
ψe − Jt

ρ0

∂ψe

∂ξ
− ∂ ψθ

∂ ξ
=

1

ρ
TTT :::

(
FFF e ·

∂UUU t

∂ξ
·UUU−1

t ·FFF−1
e

)

s

− Jt
ρ0

UUU−1
t :::

∂UUU t

∂ξ
ψe − Jt

ρ0

∂ψe

∂ξ
− ∂ ψθ

∂ ξ
. (85)

2. Local thermodynamics driving force per unit mass for complete structural change
X

X :=

ts∫

0

Dξdt =

ts∫

0

Xξ ξ̇dt =

1∫

0

Xξdξ (86)
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or

X :=

ts∫

0

1

ρ
σσσ :::ddddt − (ψ2 − ψ1)−

ts∫

0

(
s θ̇ + XXXp :::dddp +XXXg ::: ġgg

)
d t . (87)

3. Global Xv thermodynamic driving force for nucleation in a volume Vn, i.e., the total
dissipation increment due to SC only during the complete SC in the transforming
region

Xv := X̄mn =

∫

Vn

ρXdVn −∆

∫

Σn

Γ dΣn . (88)

4. Global dissipation rate Dv for nucleation in a volume Vn

Dv = Xv χ̇ ≥ 0; χ̇ := 1 / ts . (89)

5. The thermodynamic driving force for a phase interface propagation per unit
reference area

XΣ := PPP T ::: [FFF ] − ρ0 [ψ] −
θ2∫

θ1

ρ0 s d θ −
t+∆ t∫

t

ρ0 (XXXp :::dddp + XXXg ::: ġgg) d t . (90)

6. Local dissipation rate DΣ per unit area for a phase interface propagation

DΣ := XΣ vn ≥ 0. (91)

For a particular case when ψ depends on EEEe , θ , and ξ only and for equal elastic properties
of phases (i.e., ψe = ψe(EEEe , θ)), surface energy is negligible, for isothermal approximation and
homogeneous θ in the nucleus, Eqs. (87) and (88) result in the following very simplified expression
for the thermodynamic driving force for nucleation

X̄ = ϕ − [Jt]

ρ0

ψe −
[
ψθ (θ)

]
; ϕ :=

1

mn

∫

Vn

∫ ts

0

σσσ :::dddtdt d Vn . (92)

Note that in all applications, the term related to [Jt] was neglected. Algorithms for finite element
solutions at finite strains are presented in [171, 263]. Various numerical solutions can be found in
our papers [171, 172, 263, 264, 266].

8. Spherical elastic nucleus within an elastic - perfectly plastic sphere

We consider a spherical nucleus of the radius r of a product phase within an infinite elasto-
plastic sphere without strain hardening under action of the external pressure p . Such a problem
was considered from a thermodynamic point of view using different criteria in several papers,
see [110–112, 192, 239, 393]. To illustrate our thermodynamic approach presented in Box 3 in
the simplest way, we will follow [239], where this solution was, in particular, applied to PT from
graphite to diamond and to PT in steel. To present the simplest example of our kinetic approach,
summarized in Boxes 5-7 , we will sketch the solution from [243, 244].

8.1. Pressure variation and athermal kinetics

We assume (a) a spherical transformation strain εεεt = 1/3 εo III ξ with a volumetric transfor-
mation strain εo (negative if compressive) and (b) that isotropic elastic properties do not change
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during PT for simplicity. Then the pressure p̃ = −1/3(σ1 + σ2 + σ3) in a nucleus is determined
by equations from [393]:

inthe elastic regime p̃e = p+
εo ξ

3C
, ξ ≤ ξ′ , ξ′ :=

2σy C

|εo|
; (93)

inthe elastoplastic regime p̃p = p+
2

3
σy

(
ln
|εo| ξ
2σy C

+ 1

)
sing(εo) , ξ > ξ′ .(94)

Here, σi are the principle stresses, the elastic constant C =
3 (1− ν)

2E
is expressed in terms of

the Young’s modulus E and the Poisson’s ratio ν , σy is the yield strength of the parent phase,
and εo ξ

′ is the transformation strain corresponding to the onset of plastic deformation in the
parent phase. While the equations are valid for any sign of εo, to be specific, we will discuss SC
with compressive εo < 0 under action of compressive pressure p > 0. Then, based on Eqs. (93)
and (94), the pressure in the nucleus reduces with increasing ξ during the SC. In the elastic region,
pressure reduces linearly and can even change a sign. Plasticity retards the pressure reduction.
Let us evaluate the transformation work:

ρϕ =

εεεt 2∫

εεεt 1

σσσ ::: dεεεt = −
1∫

0

p̃ εo d ξ = −p εo −
ε2
o

6C
(95)

in the elastic region and

ρϕ = −
1∫

0

p̃ εo d ξ = −
ξ′∫

0

p̃e εo d ξ −
1∫

ξ′

p̃p εo dξ = −p εo − Am (96)

with Am :=
2

3
σ2
y C +

2

3
σy |εo| ln

|εo|
2σy C

(97)

in the elastoplastic region. Apparently, Eq.(96) reduces to Eq.(95) at σy =
|εo|
2C

(i.e. at ξ
′

= 1 ).

For simplicity, we will neglect surface energy in this Subsection, assuming a large-size ”macroscale
nucleus” (allowing surface energy in this problem to be trivial). Then, substituting ϕ in Eqs.
(37) and (38) and introducing the thermodynamically equilibrium pressure pe = − ρ∆ψ/ε0 , we
resolve for the PT pressure in the elastic and elastoplastic regimes, respectively:

p = pe −
εo

6C
− ρK0

εo
, (98)

p = pe −
2

3

σ2
y C

εo
− 2

3
σy ln

|εo|
2σy C

sign(εo) −
ρK0

εo
. (99)

Thus, the SC pressure may significantly exceed pe due to the work of internal stresses and
athermal threshold K0 . Plastic relaxation decreases the work of elastic internal stresses and,
consequently, the SC pressure. Note that Eqs. (98) and (99) at K0 = 0 are identical with
the solution in [393] but are different from solution in [110] because of different expressions for
the thermodynamic driving force. Adiabatic heating due to the SC latent heat and athermal
dissipation was considered in [243, 244]. Allowing for adiabatic heating for graphite-diamond
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(G-D) PT was presented in [246]. Large strain formulation, which also include surface stresses,
was applied for sublimation, melting, void nucleation due to fracture, sublimation, and melting
and evaporation in [250, 254–257], see Sections 19.3 and 19.4.

8.2. Phase transformation from graphite to diamond

The obtained solution for a spherical nucleus was applied for interpretation of nontrivial exper-
imental results on PT from graphite (G) to diamond (D) . The equilibrium pressure-temperature
line is obtained with the help of chemical thermodynamics [49, 216, 364] is approximated by the
following relationship:

peq(GPa) = 1.2575 + 0.0025 θ. (100)

In experiments, martensitic PT G-D occurs at significantly larger pressure [49], e.g., at 70 GPa
at room temperature. However, in the presence of some liquid metals (e.g., NiMn, Fe, Co, Ni
[364]), PT G-D can be observed very close to the equilibrium pressure.

There are numerous theories attempting to qualitatively explain these results by hypothesizing
some CRs, catalytic or solvent properties of liquid metals, etc. [216, 364]. It was shown in [239]
that our theory with athermal kinetics explains these experiments without involving additional
physical mechanisms or CRs.

Based on our theory and numerical estimates, there are three reasons causing the PT pressure
in the experiment to significantly exceed the phase equilibrium pressure: (a) the pressure reduction
during PT, which reduces the transformation work; (b) the athermal resistance PT K0; and (c)
the adiabatic temperature increase due to transformation heat released during the short time of
martensitic PT.

In the presence of a liquid metal, G dissolves in the metal and recrystallizes from an oversatu-
rated solution as a D when pressure slightly exceeds the G-D phase equilibrium pressure. D grows
in an atom-by-atom mechanism from the oversaturated melt. The effect of a liquid is three-fold.

• It changes martensitic PT into diffusive PT [49, 216, 364]. Furthermore, liquid, as a hydro-
static medium, does not contain defects and does not interact with the stress field of defects
in the growing diamond. All these reduce the athermal threshold K0 down to zero.

• Second, the pressure variation in the transforming particle within the liquid is negligible
because the volume of a liquid is much larger than the volume of a D.

• Third, the adiabatic process in a nucleus is replaced by an isothermal one due to slow
diffusional growth.

Thus, there is no cause for the actual PT pressure to exceed the phase equilibrium pressure.
Additional aspects of G-D PT can be found in [239, 246]. Modeling of the industrial process of
the D synthesis in a high-pressure apparatus is performed in [225, 262, 365].

One must mention that the above consideration of the G-D PT within the melt was based on
the athermal kinetics (as described in Box 3), neglected nucleation barrier, and actual thermally
activated nucleation. Due to the large surface energy of a diamond with any surroundings,
activation energy for nucleation is very high and the nucleation criterion (48) is not met for
experimental temperature. Some possible mechanisms are discussed in [364], but they do not
resolve the nucleation problem, either. Thus, the kinetics of diamond nucleation is currently still
a mystery.
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8.3. Critical nucleus

Let us consider the kinetics of the appearance of a thermally activated spherical nucleus using
Box 4. We have

(X̄ −K0)mn =
(
X − K0

) 4

3
ρ π r3 − Γ 4π r2 ; (101)

X = ϕ − ∆ψθ (θ) ; X − K0 > 0, (102)

where ϕ is defined by Eq.(96) and is independent of radius r. According to Eq.(47), maximization
of −(X̄ −K0)mn with respect to r leads to the critical radius

rc =
2 Γ

ρ(X −K0)
. (103)

Substituting rc into the expression for −(X̄ − K0)mn in Eq. (101), we obtain the activation
energy

Q =
16

3

π Γ3

(ρ(X −K0))2 . (104)

Then, Q can be substituted in Eq. (46) for nucleation time and in Eq. (48) for kinetic nucleation
criterion. If, for a given X the criterion (48) is met, then nucleation time in Eq. (46) is realistic.
Otherwise, it is much larger than any reasonable observation time. An increase in X reduces the
critical radius and mass (volume) of a nucleus and, consequently, activation energy and nucleation
time. Classical nucleation theory for elastic materials can be obtained by changing ρ(X −K0) in
Eqs. (103) and (104) with the difference in the bulk energy of the initial and final states.

8.4. Macroscale nucleation kinetics

We will start with an approach in Box 5. With Eqs. (101) and (102) for (X̄ − K0)mn, Eq.
(56) specifies to

ts = t0 exp

(
− (X − K0 − Ea ) 4

3
ρπ r3 − 4 Γπr2

Rθef

N

n

)
(105)

at 0 ≤
(
X − K0

) 4

3
ρπ r3 − 4 Γπ r2 ≤ Ea

4

3
ρπ r3. (106)

We must also impose

0 ≤ X − K0 ≤ Ea , (107)

otherwise, either SC is thermodynamically impossible or activation energy for a large enough
nucleus is negative. Application of the principle of minimum time ts (57) with respect to the
radius r under constraint (107) results in r → min , since nucleation time is a monotonously
decreasing function of r . Then, we need to switch to Box 6 or 7 and find the thermodynamically
admissible radius rt from the SC criterion X̄ = K0 , i.e.

(
X − K0

) 4

3
ρπ r3

t − Γ 4π r2
t = 0 or rt =

3 Γ

ρ (X − K0)
. (108)
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Substitution of (108) in Eq.(105) results in

ts = t0 exp

(
Ea
Rθef

N

n

4

3
ρπ r3

t

)
= t0 exp

(
36π

3ρ2

Ea
Rθef

N

n

(
Γ

(X − K0)

)3
)
. (109)

The radius of the thermodynamically admissible nucleus is 1.5 times larger than the critical
nucleus (see also Fig. 3). While the activation energy of a critical nucleus is fully determined in
terms of ρ (X − K0) and Γ, the activation energy of the thermodynamically admissible nucleus
has a fitting parameter Ea/n, which should be calibrated from a macroscale experiment. Also, the
activation energy of the thermodynamically admissible nucleus reduces stronger with the increase
in (X − K0) than that for the critical nucleus.

9. Stress- and strain-induced chemical reactions and phase transformations in a thin
layer: propagating interface, shear band, and TRIP and RIP phenomena

Problems on an SC in a thin layer in a half-space or space within rigid-plastic formulation
allows simple analytical solutions at small strains [238, 240, 243, 244] and large strains [242, 278,
279], in isothermal and adiabatic consideration, for athermal and thermally activated kinetics.
These solutions can be applied to analyses of a phase interface propagation, SCs in a shear band
and in surface layer caused by friction, and for deriving equations for TRIP and RIP.

9.1. Analytical solution

Consider an infinite rigid-plastic half-space or full-space with prescribed normal σn and shear
τ stresses on the entire horizontal surface (Fig. 6). Plane strain formulation is assumed both
for plastic and transformational strain. We consider an infinite thin layer in which localized SC
and plastic flow occur, while the material outside the layer is rigid. Displacements are continuous
across the interface, i.e., phase interfaces are coherent. All strain and stress fields are homogeneous
within a layer, which also means the total strain represents an invariant plane strain, i.e., shear
strain along the layer and normal strain along the normal to the layer. This layer can be obtained
by a plane phase interface moving along the normal and producing an SC within a layer, or by
localized plastic shear deformation (i.e., coinciding with a shear band) or can be a part of a shear
band. Additionally, stresses are assumed to be time-independent (or plastic strain-independent),
restricting solution to a perfectly plastic model. The Tresca yield condition is utilized.
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Phase transition in a plastic layer: finite strains analytical solution

Problem on phase transition (PT) in a thin layer in a rigid-plastic half-space is solved at large strains. Thermodyna-
mical theory of martensitic PT [1, 2] is applied. The nontrivial consequence of account for geometrical nonlinearities
(even at small strains) is a definite transformation path, i.e. sequences of volumetric and shear transformation
strain variation during the PT. Two mechanisms of experimentally observed positive effect of shear stresses on PT
are found. The first one is related to necessity of fulfillment of the yield condition for the transforming material. The
second mechanisms is connected with the transformation shear work. Greenwood–Jonson mechanism of transforma-
tion induced plasticity is modeled. The results obtained are in a qualitative agreement with known experiments.

1. Problem formulation

To simulate experimentally observed ef-
fect of shear stress and strain on PT let
us consider an infinite rigid-plastic half-
space with prescribed normal σn and
shear τ stresses on the whole surface
(Fig. 1) under plane strain condition. As-
sume that a coherent PT occurs in the
layer along the whole surface and the so-
lution does not depend on the x coordi-
nate. For coherent PT displacements are
continuous across the interface. Material
outside of the layer is rigid. In Fig. 1, a
transformed particle is shown after trans-
formation strain, but to satisfy displace-
ment continuity across the interface AB
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and independence of solution of x , additional plastic strain is needed (Fig. 1,b). We assume that total, transformation
and plastic deformation gradients are homogeneous in a layer and stress field is homogeneous and time independent.
At small strains the problem is solved in [3]. For simplicity we assume that at the beginning of the PT the yield
stress makes an instantaneous jump to the value in the new phase. Complete system of equations is as follows [1, 2].

Decomposition of deformation gradient FFF into plastic FFF p and transformational FFF t parts

FFF = FFF t ···FFF p . (1)

Decomposition of deformation rate

ddd :=
(
ḞFF ···FFF −1

)
s

=
(
ḞFF t ···FFF −1

t

)
s

+ dddp ; dddp :=
(
FFF t ··· ḞFF p ···FFF −1

p ···FFF −1
t

)
s
. (2)

Tresca yield condition for the transforming layer and associated flow rule

ϕ (TTT ) = 2 (SSS :::SSS) = (σn − σt)
2

+ 4 τ2 − σ2
y = 0 ; SSS := dev TTT ; (3)

dddp = dpn (nnnnnn − ttt ttt) + γ̂p (tttnnn)s = 2h SSS ; dpn = h (σn − σt) ; γ̂p = 4h τ . (4)

PT criterion and extremum principle

X :=

∫ FFF t2

iii

ρ1

ρ
TTT :::
(
dFFF t ···FFF −1

t

)
h1 − ρ1 ∆ψ (θ) h1 = ρ1 k h1 + 2E ; (5)

Figure 6: Schematic illustration of SCs in a shear band ABCD within underformed half space (below the line
AB): (a) initial state (dashed line) and state after applying transformation strain (solid line); (b) the final state
after adding TRIP or RIP. Reproduced with permission from [242].
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For simplicity, we consider a 2D spherical transformation strain with the volumetric strain εo ,
while allowing for an arbitrary transformation strain without plane strain assumption is performed
in [240]. Geometrically, in Fig. 6a, a transformed Particle, is presented after the transformation
strain (which also includes shear). To satisfy the invariant plane strain conditions, an additional
plastic strain (TRIP or RIP) further deforms a particle to the configuration shown Fig. 6,b.
Adiabatic heating is included in the solution.

Expressions for X , for the temperature θ during and θ2 after the end of the SC, and for the
effective temperature look as [242, 244, 279]

ρX = σn ε0 − 0.5 |ε0|
√
σ2
y − 4 τ 2 + 0.5 ρ∆ so (θ1 + θ2) − ρ∆Uo , (110)

θ = θ1 +
A

ν
ξ ; θ2 := θ (1) = θ1 +

A

ν
; θef = 0.5 (θ1 + θ2) ; (111)

A :=
1

ρ

(
σnε0 + |ε0|

2 τ 2

√
σ2
y − 4 τ 2

)
− ∆Uo . (112)

Here ∆Uo and ∆ s are the change in internal energy and entropy per unit mass, respectively,
A is the heat source due to the SC heat ∆Uo , part of transformation work σnε0, and TRIP or
RIP (see below).

We consider the macroscale kinetics from Boxes 5 and 6. Minimizing the SC time with respect
to the thickness of the layer h , we obtain

n

N
R θef ln

t0
ts

= ρ
(
X − K0 − Ea

)
hΣ − Γ 2 Σ → max

h
, (113)

where Σ is the interface area. Maximum in Eq. (113) results in h → min . Then thermody-
namically admissible h is determined from the thermodynamic SC criterion (60)

h =
2 Γ

ρ (X − K0)
. (114)

With this expression, the kinetic Eq. (61) is

ts = t0 exp

(
Ea
Rθef

N

n

2 ΓΣ

(X − K0)

)
≤ td, (115)

where td is the time of deformation in the shear band.
By integrating flow rule, we found the plastic shear γ , which is TRIP for PTs and RIP for

CRs, is determined by the equation

γ = | εo |
τ√

σ2
y − 4 τ 2

, (116)

Due to variation in transformation strain (which generates internal stresses and forces plastic
strain to restore displacement continuity conditions across an interface), plastic flow takes place
at arbitrary (even infinitesimal) shear stress, below the yield shear strength in shear 0.5σy. For
relatively small τ , the relationship between γ and τ is approximately linear, as shown in known
experimental or theoretical expressions for TRIP [110, 113, 348, 367, 374, 463]. For larger τ ,
plastic shear grows faster than linear. The most important property of this solution (which was
not present in any previous solutions) is that for τ → 0.5σy (e.g., in a shear band), plastic shear
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tends to infinity. In reality, it may reach extremely large values, especially for large εo [213, 276].
It follows from Eqs.(110)-(112) that for τ → 0.5σy the heat source due to TRIP/RIP tends to
infinity as well, and the temperature tends to infinity, or to melting temperature, above which the
solution does not have a sense. However, if the SC is relatively slow, then the adiabatic condition
is not met, and an increase in temperature is much lower. The increase in temperature suppresses
martensitic PTs and accelerates some PTs and CRs, which are promoted thermodynamically or
kinetically by temperature.

Note that an interesting consequence of a finite-strain formulation is a definite transformation
path, i.e., sequences of dilatational and shear transformation strain variation during the PT [242].

9.2. Strain-induced chemical reactions in a shear band

1. As a main geometrical characteristic of SC under

consideration we consider the transformation de-

formation gradient Ft, which relates the geome-

try of in®nitesimal material volume in the stress

free state and some reference temperature y0
before and after SC. For martensitic PT the

transformation deformation gradient Ft trans-

forms the crystal lattice of the parent phase into

the crystal lattice of the product phase. For twin-

ning there is also correspondence between the

crystal lattice before and after SC. For displa-

cive±di�usive, di�usive PT and chemical reac-

tions it is possible to determine for some

macroscopic volume the deformation gradient re-

lated to SC. Using the polar decomposition theo-

rem we obtain Ft � Rt �Ut, where Rt is the

orthogonal rotation tensor and Ut the symmetric

right stretch transformation tensor. The determi-

nant det Ft characterizes the volume change due

to SC. We will further assume that for chemical

reactions the transformation deformation gradi-

ent describes the change of volume only without

change of shape, i.e. it is a spherical tensor

Ft � aI.

2. For martensitic PT the transformation defor-

mation gradient cannot be arbitrary (as elastic or

Figure 4(a) and (b).

LEVITAS et al.: STRAIN-INDUCED STRUCTURAL CHANGESÐPART I5934

Figure 7: Initiation of CR within a dynamically formed shear band in Ti-Si and Nb-Si powder mixture. Repro-
duced with permission from [278].

Such exothermic CRs in Ti-Si and Nb-Si powder mixtures were studied in [361, 362], see
Fig. 7. The first theoretical modeling of continuum thermomechanical aspects of the problem
and interpretation of the possible mechanisms for the promotion of the CRs due to large plastic
shear is published in [243, 244, 278, 279]. In these papers, the RIP phenomenon, which is similar
to TRIP for PTs, was predicted and used as one of the main accelerators of the CRs. The
macroscopic similarity between RIP and TRIP allows one use of the existing knowledge in TRIP
[110, 113, 348, 367, 374, 463] for studying RIP. The concept of the effective temperature was
introduced as well. Paper [278, 279] has utilized a simplified kinetic equation. In papers [243, 244],
a kinetic approach for a macroscale nucleus presented on Boxes 5 and 6 was applied, which led
to significantly different results.

One problem of interest was that in [421], an averaged pressure to shock-initiate the CR in
Ti − Si mixture was surprisingly low, just several GPa. This was explained by the ”ease of
plastic deformation” that leads to improved mixing. However, both materials have quite a high
yield strength. The authors assumed the volume change during PTs in Ti and Si (that occur
at a pressure above 10 GPa) promotes the plastic deformation. While the averaged pressure to
initiate the CR is just several GPa, however, the authors assume that local pressure in contact
between particles may be sufficient for these PTs. As an alternative, it was stated in [278, 279]
that since the volume reduction for CR 5Ti + 3Si → Ti5Si3 is large, −0.278 [421], revealed
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RIP, as a new mechanism of plastic flow in solids, and Eq. (116) may offer more plausible way for
interpreting large plastic shear below the yield strength, and how it may reduce stress to initiate
CR.

Eq. (115) predicts the exponential influence of X and increase in θef due to RIP on the reduc-
tion of the transformation time. The RIP significantly increases the reaction finish temperature
θ2 , by more than 1500 K, i.e., increases θef by 750 K. According to Eqs.(110)-(112), X increases
due to shear stress and corresponding RIP by two macroscopic mechanisms: increase in θef by
750 K and effective ”reduction” of the yield strength

√
σ2
y − 4 τ 2 related to satisfaction of the

yield condition.

9.3. Mechanochemical feedbacks and the effect of TRIP/RIP on the strain-induced structural
changes

TRIP and RIP may cause positive thermomechanochemical feedback. Let a SC occurring
fluctuationally in a small part of a layer causing TRIP/RIP. Corresponding heating (if X grows
with the increasing temperature) accelerates PT and CR, which leads to the intensification of
TRIP and RIP and, consequently, of PT and CR, and so on. With such a process, SC can be a
cause of shear banding (especially, for the lower yield strength of the product phase) instead of
vice versa. This mechanism may be important for solid-gas CR in explosives, e.g., in HMX or
nanocomposite formulations [246].

When τ = 0.5σy (i.e., for plastic strain-induced SCs), it is difficult to separate traditional plas-
tic strain due to external loading and TRIP/RIP. This was approximately done, in particular, in
high-pressure experiments [275, 276] on PT from the hexagonal hBN to superhard wurtzitic wBN
under compression and torsion in a rotational diamond anvil cell. It was found by in-situ x-ray
diffraction measurements that the evolution equation for the plastic strain-induced concentration
of the turbostratic stacking faults (which is considered as a physical measure of the plastic strain)
has two terms. One is proportional to the applied twisting angle (i.e., traditional plastic strain),
and the second is proportional to the volume fraction of wBN. The second component was inter-
preted as the contribution due to TRIP, which was the first revealing of TRIP in high-pressure
experiments. It appears that due to the large ε0 = −0.39, TRIP is 20 times larger than traditional
plastic strain. TRIP also resolves some puzzles in these experiments, see [275, 276].

Based on recent works on plastic strain-induced SCs under high pressure [246, 247, 252], there
are additional reasons for the intensification of SCs due to plastic straining. For the CR, large
plastic deformation produces fragmentation and mixing of reactants similar to that in liquid
phase reaction [474]. Then plastic straining promotes both PTs and CRs by producing defects
with strong stress concentrations (like dislocation pileup or shear-band intersection), like for any
strain-induced SCs. This can reduce the PT pressure by one to two orders of magnitude both in
the experiment [28, 122, 186] and in the theory or simulations [183, 184, 246, 247, 252, 270]. As
a result, a microscale kinetic equation for the volume fraction of a high-pressure phase c of the
type of

dc

dq
= f(p, q, c) (117)

is derived, where q is the accumulated plastic strain (Odqvist parameter) defined as q̇ =
(2/3dddp :::dddp)

0.5 , and dddp is the plastic part of the deformation rate. An example of a specific kinetic
equation is given in Eq. (161). Such a kinetic equation can be used for the above problem on
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SC in a shear band to determine evolution of the volume fraction c with the increase of plastic
shear, instead of determination of transformation time for complete PT. However, it is directly
applicable when the plastic strain occurs prior to and during the SC, i.e., for τ = 0.5σy.

The fundamental question arises: should TRIP/RIP be included in the accumulated plastic
strain q that governs the kinetic equation for dc/dq? Based on experiments on PT in BN discussed
above [275, 276], TRIP (and, consequently RIP) is not distinguishable from a traditional plasticity
from the point of view of dislocation and twinning mechanisms, and the generation of strong stress
concentrators at the tip of defects. It is caused by internal stresses produced by the transformation
strain combined with the external stresses rather than by solely external stresses. This explains
why TRIP/RIP, similar to the traditional plasticity, generates new nucleating defects (along
with new turbostratic stacking faults in hBN) that promote the SC. Thus, TRIP/RIP should be
included in q participating in the kinetic equation for dc/dq. This, however, was not done in the
literature. Note that for temperature-induced PTs, an autocatalytic effect (i.e., formation of a
martensitic unit promotes the nucleation of other units via stress- and strain induced mechanism)
is an important part of the kinetic equation, see [372].

The entire process represents another positive mechanochemical feedback, which is called in
[275, 276] the cascade mechanism of structural changes during the twisting of an anvil. Thus, pre-
scribed plastic deformation produces both turbostratic stacking faults that suppress the marten-
sitic PT, and nucleating defects (e.g., dislocation pileups) that promote the PT. PT under shear
stress generates strong TRIP; TRIP, in a similar way as traditional plastic flow, produces the
additional turbostratic stacking fault and nucleating defects; the new nucleating defects again
promote the PT that induces TRIP, etc.

In [213], the shear transformation-deformation bands have been revealed in the fcc phase of
the C60 after compression and shear in an RDAC. The bands consisted of the shear-induced
nanocrystals of linearly-polymerized fullerene and polytypes, the triclinic, hcp, and monoclinic,
C60, and amorphous structures. Thus, plastic straining arrests five high-pressure phases under
normal pressure, which may be potentially important for their practical applications. Localized
shear deformation appears counterintuitive because high-pressure phases of C60 possess greater
strength than the parent low-pressure phase. However, this was explained by TRIP during local-
ized PTs, which occurs because of a combination of applied stresses (below the yield strength) and
internal stresses due to large volume reduction during PTs. Eq. (116) was used for qualitative
analyses. Localized PTs and plastic shear deformation promote each other, producing positive
mechanochemical feedback and cascading structural changes. Thus, our solution for a shear band
is instrumental for the interpretation of SCs in various systems.

PT of a thin inclined plastic layer. A problem on PT of a thin inclined plastic layer within
a rigid-plastic half-space under the action of uniform normal and shear stresses was solved in
[238]. The inclination angle was determined explicitly by maximization of the net thermodynamic
driving force with allowing for the anisotropy of the athermal threshold K. The final expression
for the PT criterion was derived. The yield condition for the parent phase was considered as a
constraint. The effect of the ratio of yield strengths of the parent and product phases on the PT
in the layer was analyzed, and nontrivial behavior was revealed.
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Figure 8: Shear stress variation in the ellipsoidal nucleus vs. transformation strain. Reproduced with permission
from [244].

10. Phase transition in ellipsoidal inclusion

Consider an infinite elastic space under the horizontal shear stress τe . It is instructive to solve
the simplest problem on the PT within a penny-shape ellipsoidal region Vn with the radius r and
semi thickness b , r � b , within the space, allowing for elastoplasticity within the transforming
region, see [244]. Assuming homogeneous fields in Vn and horizontal shear component of the
transformation strain 0.5 γt only, one can use the Eshelby solution [359] for the shear stress in
Vn (Fig. 8):

τ = τe −mγt
b

r
at γt < γty ; m :=

µπ (2− ν)

4 (1− ν)
;

τ = −τy at γty ≤ γt ≤ γt2 ; γty :=
τe + τy
m

r

b
. (118)

During the increase in γt , the shear stress reduces linearly, changing the sense, and at γt = γty
reaches the yield strength in shear τy in the direction opposite to the applied shear stress. Then,
the transformation work is∫ γt2

0

τ d γt = − τy γt2 + 0.5 (τe + τy)
2 r

mb
. (119)

Both stresses and transformation work are very different than in [378] and [121, 333], where the
transformation work was evaluated based on the global or local stress in the nucleus before the
PT, respectively, i.e., at τe for the current problem. We consider the macroscale kinetics from
Boxes 5 and 6. Minimizing the SC time with respect to r and b , we obtain

(
M + B

r

b

) 4

3
π r2 b − Γ 2π r2 → max

r,b
, M := A− Ea , (120)
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A := − τy γt2 − ∆ψ − K0 ; B := 0.5 (τe + τy)
2 /m , (121)

for determination of the actual r and b . For M +B
r

b
< 0 and A > 0 , the principle (120)

results in r → min , b → min . Applying these two principles under constraint of the
thermodynamic PT criterion (X −K0) Vn − ΓSn = 0 or

(
A + B

r

b

) 4

3
π r2 b − Γ 2π r2 = 0 → 2Ab = 3 Γ − 2B r , (122)

we obtain

r =
Γ

B
, b =

Γ

2A
, Vn =

2π

3

Γ3

AB2
. (123)

For A < 0 , the semithickness b in Eq.(123) is getting negative. Then the minimum b is equal
to the lattice parameter a in the b direction, i.e., b = a . The radius of the macroscale nucleus
r is determined from the thermodynamic PT condition

r =
3 Γ− 2Aa

2B
,

r

b
=

3 Γ− 2Aa

2B a
. (124)

Some other cases have been considered in [244]. With known expression for the transformation
work, it is easy to find a solution for the critical nucleus using equations from Box 4.

11. Nucleation and growth of martensite with coherent, semicoherent, and incoher-
ent interfaces, and interface with decohesion

11.1. Semicoherent interface and interface with a decohesion

Several types of interfaces will be considered [383]. For a coherent interface displacements,
uuu are continuous across the interface (i.e., uuu2 = uuu1, where subscripts designate phase 1 and 2),
which usually generates large internal stresses. Atomic positions in contacting lattices are con-
tinuous across an interface as well. For a semicoherent interface, displacements are discontinuous
across the interface, producing relaxation of internal stresses by sliding along the interface (i.e.,
dislocation generation, in particular, misfit dislocations) and cracks or decohesion (i.e., jump in
normal to the interface displacements). It is necessary to note the conceptual difference in defi-
nition of interface type for PTs in inelastic materials in continuum and atomistic approaches. At
the atomic level, plasticity means there is a presence of dislocations and implies semicoherence.
In continuum approaches, plasticity is described in a continuous way and both coherent (with
continuous displacements) and semicoherent (with discontinuous displacements) interfaces are
considered, see [170, 231, 239, 240, 263].

For a incoherent interface, there is no lattice correspondence across an interface from an
atomistic point of view and shear stresses are assumed to be zero in continuum theories. Typical
incoherent interfaces appear when one of the phases is molten or amorphous, or for precipitates
with a very different crystal structure than the matrix. Due to zero shear stresses at the incoherent
interface, incoherent inclusions are under hydrostatic stress states [220, 360, 383]. This is clear
for solid-liquid interfaces and is reasonable for solid-solid interfaces under stress-free conditions.
Indeed, if there is no correspondence of atomic planes across an interface, the product phase
can minimize the energy of internal deviatoric stresses by altering its atomic position within a
transforming region. For solid-solid incoherent interfaces under external loading, shear stresses
still can be supported by an interface and the assumption of zero shear stress is contradictory.
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Indeed, incoherent high-angle grain boundaries and interfaces between amorphous and crystalline
phases can support shear stresses. At the continuum level, one must use a theory similar to that
for the semicoherent interface discussed below with finite maximum shear stress at the incoherent
interface. However, stress relaxation for incoherent solid-solid interfaces is more pronounced.
It can be described by additional stress relaxation within transforming region rather than at
interface.

In material science books [66, 383], spacing between misfit dislocations at the semicoherent
interface is introduced from the geometric conditions to completely eliminate the misfit between
lattices in the averaged sense. Such spacing is also confirmed within PFA [268, 269] with the
stationary solution of the evolving interfacial dislocations. In analytical approaches (see [30,
66, 383, 392]), the initiation of semicoherence in elastic materials was determined by equaling
the energy of coherent and semicoherent nuclei with allowing for the energy of dislocations. A
semicoherent interface was energetically favorable above some critical nucleus size. The detailed
dislocation model of a semicoherent nucleus was suggested in [371, 372]. Continuum derivations
of the conditions at an incoherent interface (i.e., assuming zero shear stresses at the interface)
were performed in [130, 160, 181, 217, 223, 224, 359] using the energy minimum principle. A
sophisticated kinematic approach to semicoherent interfaces was suggested in [50].

It is clear for a semicoherent interface that the glide along the interface is a dissipative process.
The dissipation-based approach in the theory of semicoherent PTs within inelastic materials
assuming small sliding and in the reference configuration was developed in [231, 239, 263], which
was generalized for arbitrary sliding and in the actual configuration in [240]. Since discontinuities
at the interface were treated in these works as the contact problem at the moving interface,
solutions in the actual configuration were much simpler. It is assumed that SC, interfacial sliding,
and decohesion are thermodynamically independent processes which interact through the stress
fields only. While in the general theory [231, 239, 240] the change in the free energy due to
interfacial sliding was included, it was neglected in all applications. The conditions at the interface
are then described by the following equations:

coherent interface: | σn |< σc and fs(τττ) < 0 ⇒ u̇uu2 = u̇uu1; (125)

semicoherent or incoherent interface: fs(τττ) = 0 ⇒ u̇uu2
s − u̇uu1

s = qqq(τττ) ; (126)

interface with decohesion : | σn |= σc ⇒ u̇uu2 6= u̇uu1 , σn = τττ = 0 . (127)

Here τττ and σn are the shear stress vector and normal stress at the interface; σc is the critical
normal stress for decohesion; and uuus is the tangential to an interface displacements. Function
f = 0 describes the limit curve in the plane of the shear stress τττ , which characterizes athermal
resistance to slip, within which relative sliding is prohibited, and q is the function that determines
the kinetics of sliding. These functions, in general, incorporate crystallographic anisotropy, the
magnitude of sliding rate, and σn , as well as other features from the theory of crystal slip
or discrete or continuously distributed dislocations [10, 39, 155]. The relative sliding uuu2

s − uuu1
s

can characterize continuously distributed dislocations [39, 155] within an interface and number
dislocations is equal to |uuu2

s − uuu1
s| divided by the magnitude of the Burgers vector |bbb|. The

description of the interfacial sliding is formally similar to the flow theory in plasticity, where f is
for the yield surface and qqq is for the flow rule. In particular, in [231, 240] an associated sliding
rule was derived using the extremum principle similar to that in plasticity, that was derived using
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the postulate of realizability.
Remark. Note that such a continuum description of the incoherence does not completely reflect

real dislocation processes, because the Burgers vector of dislocations and their sliding are limited
to the interface only, which is typical for misfit dislocations. In general, the Burgers vector and
sliding can be inclined to the interface and dislocations may slide together with the propagating
interface (glissile interface), thus producing much less resistance to the interface motion than the
misfit dislocations.

For isotropic functions f and q Eqs. (125)-(126) simplify to

coherent interface: | σn |< σc and | τττ |< τs ⇒ u̇uu2 = u̇uu1; (128)

semicoherent or incoherent interface: | τττ |= τs ⇒ u̇uu2
s − u̇uu1

s = kτττ , (129)

where τs is critical shear stress (or athermal threshold) for sliding and k > 0 is a scalar, which
is determined from the condition |τ | = τc. Note that the last condition corresponds to the main
equilibrium equation for continuously distributed dislocations [39, 155].

If during the increase in εεεt and changing thermomechanical properties in a nucleus, a chosen
decohesion condition is satisfied in some point of the interface, the crack appears or grows. If
during the same process the sliding criterion is met, we admit glide in this point up to a value,
at which the criterion is violated. After finishing the SC, we use the SC criterion to determine if
SC is a thermodynamically admissible process.

11.2. Propagation of a semicoherent interface

Propagation of coherent and semicoherent interfaces in elastic and elastoplastic cylinders under
an axial stress of 100 MPa is investigated in [170, 172, 263], see Fig. 9 for a semicoherent interface.
Interface propagation is simulated by layer-by-layer transformation. For a coherent interface in
an elastic material at K = const , the transformation work ϕ grows for each next layer, i.e.,
after PT in the first layer propagation should occur with increasing velocity. Phase equilibrium
could be achieved if K grows sufficiently with the growing volume fraction c of the product
phase or if it is distributed heterogeneously. For a semicoherent interface, it is assumed that
the sliding displacements (dislocations) at the layer’s interface do not vary after finishing PT in
the layer, so they represent a memory about semicoherent PT. Discontinuity in displacements
causes discontinuity in pressure (Fig. 9) and all stresses except normal and shear stresses at the
interface. We did not consider further sliding within the product phase, assuming that the yield
strength in shear is much larger for inherited dislocations, because in most cases dislocations do
not belong to the main slip systems of the product phase. Sliding of dislocations inherited by
propagating interface is taken into account within PFA to the interaction between the PT and
dislocations in [182, 269, 271].

Stress relaxation due to semicoherence increases ϕ and consequently the driving force for PT
in the first layer; i.e., PT can start at a higher temperature than for the coherent interface. The
transformation work ϕ slightly grows for PT in the second layer, i.e., the interface will propagate
at a fixed applied stress and temperature. However, the driving force for the PT in the third
layer is smaller than for the first layer, and it continues decreasing for the fourth and fifth layers.
Thus, there is a tendency for interface arrest because of stress relaxation due to semicoherence.

Next, after PT in the first layer, the second and third layers were compared as the next
transforming region [263], based on the extremum principle (41). For a coherent interface, con-
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Fig. 3.16. Isobands of radial displacement distribution (cm) for semicoherent 
interface for different values of transformation strain in course of PT within the 
first layer (a-e) and after the interface reached the middle of a sample (f). 

Figure 9: Isobands of distribution of radial displacements (a) and mean stress (b) after the semicoherent interface,
propagating layer-by-layer from the bottom until reaching the middle of a sample (a). Reproduced with permission
from [263].

tinuous interface propagation through the sample was obtained. For a semicoherent interface,
the transformation work was larger for PT in the third layer (for relatively small τs), which leads
to formation of discrete martensitic microstructure. Thus, a semicoherent interface has lower
mobility than a coherent one and can be arrested more easily, in accordance with experiments.

Plastic deformation in the parent phase in this problem was considered in [170, 172, 263]. For
a semicoherent interface, plastic deformation is quite small and weakly affects PT because τs is
much smaller than the yield strength in shear. For a coherent interface, plasticity, as the stress
relaxation mechanism, produces effects similar to those for sliding along the interface. Thus,
plasticity increases the transformation work for PT in the first layer (in comparison with elastic
parent phase) but then leads to PT in the third and fifth layers, leading to a discrete martensitic
microstructure and possible arrest of the interfaces.

The effect of strain hardening, leading, according to Eq. (43), to the increase in the athermal
threshold K , was analyzed in [170, 172]. Since plastic deformation and increased K are localized
more near an interface, it promotes the formation of a discrete microstructure. Note that different
scenarios of interface propagation strongly depend on the chosen material parameters (K , τs, σy,
ε0, etc.) and applied stresses.

11.3. Stress-induced PT in a spherical particle within a matrix and its interaction with plasticity,
semicoherence and adhesion
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Figure 10: Isobands of vertical displacement distributions (mm) at volumetric transformation strain εo2 =
−0.005 and compressive axial stress P = 150MPa for a semicoherent interface (critical shear stress τs =
40MPa) (a) and with the decohesion at the interface for the critical normal stress σc = 50MPa (b). AB is the
sliding zone in (a) and decohesion zone in (b). Reproduced with permission from [263].

Following [263], we will present results for PT with volumetric transformation strain ε0 =
−0.005 within a spherical particle embedded in a nontransforming cylindrical matrix (Figs. 10
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and 11) at a fixed temperature and compressive axial stress P = 150MPa. Solutions are found for
coherent and semicoherent interfaces and an interface with decohesion, with different magnitudes
of τc and σc. Examples of discontinuity of displacements for a semicoherent interface and an
interface with decohesion are shown in Fig. 10. The averaged mean stress σ̄o and transformation
work ϕ as functions of transformation strain |εo| for different interface conditions are presented
in Fig. 11. The mean initial compressive stress in a sphere of 50MPa reduces in magnitude
and changes the sign during PT (increase in |εo| ) due to internal stresses, which reduces the
transformation work and makes it negative for a coherent interface and semicoherent interface
with τc = 100MPa. Interfacial sliding and decohesion relax internal stresses and increase the
transformation work. Remarkably, initiation of decohesion leads to a large drop in tensile mean
stress in a particle and a corresponding sharp change in slope of the plot for ϕ . Thus, the
minimal ϕ and consequently the driving force for SC is for the coherent interface, the maximum
ϕ is for τc = 0. However, even for τc = 0 the stress state in a spherical particle is nonuniform and
nonhydrostatic, so it can hardly be called an incoherent inclusion. The interface with decohesion
shows the second largest transformation work.

Let us assume that the external stress is small enough (in particular, zero) to cause plasticity,
semicoherence, and decohesion without PT. We can choose a temperature at which PT criterion
(37) is not met without plasticity, semicoherence, and decohesion, because the transformation
work is too small without stress relaxation. Thus, none of the inelastic processes can occur sepa-
rately under the chosen conditions. At the same time, when at least two inelastic stress relaxation
mechanisms proceed simultaneously, they assist each other via the field of internal stresses, relax
internal stresses, and can all occur thermodynamically and based on sliding, decohesion, and/or
yield criteria.
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Figure 11: Relationships between the mean stress σ̄o , averaged over the nucleus (a) and the transformation
work ϕ (b) vs. the magnitude of the transformation volumetric strain |εo| at axial stress P = 150MPa. 1-
coherent interface, 2, 3, and 4 - semicoherent interfaces with the critical shear stresses τs = 100, 40, and 0MPa,
respectively; 5 - interface with decohesion for the critical normal stress σc = 50MPa. Reproduced with permission
from [263].

11.4. Semicoherent interface within a phase field approach

The first work on introducing incoherence in the diffuse interface within PFA was presented
by [6]. Because of the finite-width interface, localized sliding was substituted with additional
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eigen strain fields within an interface that relaxes interfacial shear stresses. An additional order
parameter ηin for the description of incoherence is introduced, which is equal to zero and one
for the coherent and incoherent interfaces, respectively. The evolution equation for the order
parameter is derived thermodynamically, and the driving force for the evolution of incoherence is
the shear stress along the interface minus the change in the interfacial energy γ due to change in
the order parameter γ(ηin), which was approximated by some function. From a thermodynamic
point of view, the theory in [6] is the finite-width counterpart of the theory for sharp interfaces
in [231, 240]. At the same time, change in the interfacial energy with incoherence was taken
into account in the solution of all problems, which eliminated complete relaxation of the shear
stresses. However, function γ(ηin) was not included in the expression for the interfacial energy
that governs the evolution of the main order parameter η describing evolution of the two-phase
system. This did not affect correctness of the results of the solution of various problems for
different geometries of the interfaces in [6] because they were presented for fixed interfaces only.
Also, results were presented for the stress-free external surfaces, i.e., the problem of the finite
strength for the incoherent interfaces was not discussed.

11.5. New approach to incoherent interface

A method to relax stresses within the moving finite-width solid-melt interface within PFA was
suggested in [283]. While displacement continuity was assumed, due to the zero shear moduli
of the melt, deviatoric stresses in the melt are zero. The problem was that stresses within the
finite-width interface, within which shear modulus varies from that for a solid to zero, due to
the traditional pure spherical transformation strain for solid-melt PT, ε0t, were unreasonably
high. This did not allow for reproduction of the experimental size dependence of the melting
temperature of the Al nanoparticle and temperature-dependent thickness of the surface molten
layer. To reduce interfacial stresses, the deviatoric part of the transformation strain, et was
introduced, which evolved according to thermodynamically consistent evolution equation during
the PT

ė̇ėet = Λ|ε0tφ̇(η)|S, (130)

where Λ ≥ 0 is the kinetic parameter and φ(η) is an interpolation function of the order parameter
η for the volumetric transformation, φ(0) = 0, φ(1) = 1. This led to significant reduction of the
interfacial stresses, controlled by a kinetic parameter Λ, and the quantitative description of the
above experimental data for Al.

A similar approach was developed in a thermodynamic theory in [288, 297] to relax internal
stresses during a diffusion-driven compositional expansion/contraction in an amorphous material,
in particular, during the lithiation-delitiation of silicon. Instead of the isotropic compositional
expansion typical for an isotropic amorphous material, anisotropic deviatoric-stress-dependent
compositional expansion was introduced and described by the following equation

dddSc = Λ(x)SSS
dJc
dx
|ẋ|. (131)

Here, dddSc is the deviatoric part of compositional deformations rate, Jc(x) is the third invariant
of the compositional part of the deformation gradient (which describes volumetric compositional
expansion) as a function of concentration of saturating atoms, x. This led to obtaining very good
correspondence with experimental and atomistic results on the biaxial stress relaxation in LixSi
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on a rigid substrate in the course of lithiation-delithiation, utilizing just a single fitting kinetic
parameter Λ.

The results obtained allow us to conceptually reconsider the definition and way of descrip-
tion of the incoherent interfaces in solids, in order to include finite shear strength at least after
transformation with strong stress relaxation during PT or chemical reaction. Since there is no
atomic correspondence across an incoherent interface, it is unphysical to describe this process
through dislocation generation or sliding along the interface. We postulate that the lack of
atomic correspondence across an incoherent interface is due to the reconstructive atomic motion
in the transforming volume covered by a moving interface. Then we keep displacement continuity
across an interface but add a mechanism of stress relaxation within the transformed phase by
introducing a deviatoric-stress-dependent deviatoric part of the transformation strain rate, de-
scribed by equations of the type of Eqs. (130) or (131), for the PFA, or description in terms of
volume fraction of phases or concentrations of the diffusing species, or the sharp interface ap-
proach. Then the internal deviatoric stresses significantly (or almost completely) relax during PT
or reaction, but after stopping transformation, the two-phase material and incoherent interface
can carry deviatoric stresses, which are determined by plasticity/strength of bulk phases and
interfaces.

11.6. Semicoherent interface within a phase field approach with discrete dislocations

While PFA to coupled PTs and discrete dislocations will be described in more detail in Section
16.5, here we will focus on semicoherent interfaces [268, 269]. Initially, a stationary solution for
the coherent finite-width austenite-martensite interface was obtained (Fig. 12a) with a misfit
strain along the interface εm = 0.1. The coherent interface could be kept stationary at some
temperature close to the phase equilibrium temperature (and corresponding normalized thermal
driving force X) for a stress-free material, see the red line in Fig. 12b designated as X0

c . This small
deviation is caused by nonsymmetric sample geometry due to dislocations and energy of internal
stresses, which, due to small sample size, slightly depends on the interface position. At any other
temperature, the interface propagates until completion of direct or reverse PT, depending on the
temperature, which was not a surprise. It is known (see [273, 274]) that PFA for PTs does not
include an athermal threshold to the interface propagation, and one needs to develop some special
ways (e.g., oscillating distribution of internal stresses or some heterogeneities) to introduce it into
PFA.

Internal stresses due to a misfit strain led to nucleation of the misfit dislocations at the inter-
section of the interface with a sample free surface, which propagated along the interface producing
the stationary distribution of dislocations. Equilibrium spacing between misfit dislocations, s, was
found to be in perfect agreement with an analytical expression s = |bbb|/εm.

For a semicoherent interface, temperature and normalized thermal driving force X can be var-
ied in some range, limited by the critical valuesXM

cd for martensitic PT andXA
cd for martensite→austenite

PT (Fig. 12b), without interface motion. These critical values of X represent an athermal thresh-
old (or interfacial friction) for the interface propagation due to misfit dislocations. After exceeding
these thresholds, the entire sample transforms into a single phase–austenite or martensite–for dif-
ferent signs of X. What is very surprising is that the athermal thresholds strongly depend on the
ratio of two nanosize parameters ∆̄η = ∆η/H, where ∆η is the interface width and H = 2|b|
is the dislocation height, see Fig. 12b. Indeed, the athermal interfacial friction is a macroscale
characteristic which can be measured in a macroscale test on a single or multiple interface prop-
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agation, and for macroscale treatment all nanoscale parameters are usually neglected. However,
the dimensionless ratio of two nanosize parameters is a finite number and, according to Fig. 12b,
should be taken into account even in the macroscale treatment. Also, (almost) zero athermal
friction for very small ∆̄η and for ∆̄η > 7 is a very nontrivial result. The obtained result that
the athermal hysteresis for a broad enough interface is zero is intuitively acceptable, because
the resultant driving force X from the interaction of all infinitesimal layers, producing the broad
interface, with ”thin” misfit dislocations disappears due to mutual compensation. Since the dis-
location height is approximately equal to the crystal lattice parameter, this result also implies
that for broad enough interface the Peierls barrier due to discreteness of the crystal lattice tends
to be zero as well.

However, the case for an (almost) sharp interface looks contradictory and requires further
study. Indeed, for 1D plane interface propagation through the oscillating stress field, which was
used in [273, 274] in order to introduce an athermal barrier in PFA, the hysteresis was finite
and was determined by extreme (positive and negative) values of the oscillating stresses. Since
dislocations also produce the oscillating stress field, the same is expected for the interactions of
very thin interfaces with dislocations. One of the possible reasons of this discrepancy is that in
[268, 269] the interface does not move as a plane. Instead, the thin interface penetrates between
dislocations, pushes them away, increasing spacing between dislocations, and finally loses its
stability and propagates laterally through the entire sample (Fig. 12a). The finite size of the
sample may contribute to this phenomenon, so larger scale simulations are required.

Note that many other examples within PFA were found for which the ratio of two nanoscale
parameters (e.g., the width of two different interfaces or width of the interface and the external or
internal surfaces) drastically affects PT nanoscale and macroscale behavior, see review by [251].
This ratio produces new phenomena, changes PT parameters and mechanisms, and should be
considered as a new dimension in a ”phase diagram.” Additional examples include PT between
two solids via an intermediate phase (melt) and surface-induced melting of nanoparticles and
martensitic PTs.

While the results above were limited to misfit dislocations that nucleate and evolve along the
interface only, a more general situation was treated in [183, 184, 270], where dislocations move
along the natural slip system of evolving phases. In those examples, one of the initially coherent
phase interfaces adjusted itself to the stress field of a dislocation pileup, and a high-pressure phase
was arrested at the dislocation side with an extra atomic plane because it could not propagate to
the side with missing atomic planes and tensile pressures (Fig. 22). The results for this interface
are quite similar to those for the interface with misfit dislocations.

An alternative approach to the coherency loss of the stationary spherical precipitate with
volumetric transformation strain using PFA to discrete dislocations was suggested by [124]. Their
PFA is developed in terms of shear strain along the specific glide planes {100} and directions
< 100 > as order parameters. Periodic dependence of the energy on this shear strain is accepted,
which allows to reproduce punching of prismatic dislocations with edge and screw components
from the precipitate. While small strains are assumed, it is written that generalization for finite
strains is not a problem.
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Figure 12: (a) PFA solution for the coupled austenite (blue) - martensite (red) interface and misfit interfacial
dislocation evolution. The thin band above the specimen demonstrates evolving dislocations along the initial
austenite-martensite interface, in order to exclude overlapping with the phase interface. (b) Dependence of the
critical dimensional thermal driving force Xc for starting the interface propagation leading to complete PT in
a sample vs. relative interface width ∆̄η. The upper and lower lines for semicoherent interface correspond to
initiation of the PT to martensite and austenite, correspondingly. The interface is arrested for the driving forces
between these lines, thus, producing scale-dependent athermal hysteresis region. Hysteresis and athermal interface
friction is absent for the coherent interface (middle red line). Reproduced with permission from [268, 269].

12. Solid-solid phase transformations via intermediate (virtual) melt

When traditional mechanisms of plastic relaxation of elastic stresses through dislocation mo-
tion and twinning are inhibited, nature finds alternative ways to relax internal stresses. Thus,
solid-solid PTs through a nanometer-size liquid layer, hundreds of Kelvins below the bulk melt-
ing temperature, was predicted by continuum thermodynamic estimates and confirmed directly
or indirectly in experiments for various material systems, see [38, 249, 260, 261, 281]. Instead
of traditional propagating solid 1- solid 2 (S1 − S2) interface, solid 1-intermediate melt-solid 2
(S1 − IM − S2) interface propagates through material with a thin layer of melt (Fig. 13a). This
means that the solid S1 partially or completely melts and recrystallizes into S2. Complete (or
partial) melt within PFA for melting means that the order parameter ηm describing melting and
varying between 0 for bulk melt and 1 for solid, is equal to 0 (or is between 0 and 1). Complete
melt fully relaxes deviatoric stresses, which appear at S1 − S2 interface due to transformation
strain. This reduction in elastic energy due to melting increases the thermodynamic driving force
for melting and leads to melting below the bulk melting temperature. IM transforms a coherent
stressed interface in a stress-free noncoherent interface. Since melt does not interact with the
stress field of defects and does not possess a Peierls barrier, the athermal friction K = 0. Elimi-
nation of elastic energy and athermal friction may lead to PT with zero transformation hysteresis
and energy dissipation, which are ideal property for shape memory alloys for actuation or medical
applications [62, 77, 408] or caloric materials [158, 408, 420].

Another reason for melting significantly below the bulk melting temperature is the reduction
in the total interface energy, i.e. when the energy of two solid-melt interfaces is smaller than
the energy of a coherent solid-solid interface. There is the following difference between the IM
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and virtual melt (VM). The IM is thermodynamically stabilized by a reduction in surface and
elastic energies and can exist for a resting interface. The VM is an unstable transitional phase
along the transformation path between two solid phases. It disappears in a material point quickly
after it appears, and does not exist in the stationary interface but can exist within a propagating
interface. Short review of the virtual melting phenomena is given in [287]; see also [251].

Figure 13: Phase field solutions for a propagating solid 1-intermediate melt-solid 2 (S1 − IM − S2) interface (a)
and for the critical nucleus of the IM within S1S2 interface (b). Reproduced with permission from [354].

Below are some examples of solid-solid PTs via virtual or intermediate melt.
(a) The concept of the virtual melt was first introduced for the description of numerous coun-

terintuitive experimental results for reconstructive β ↔ δ PTs in the organic energetic crystals
HMX [260, 261], which were considered major puzzles for decades. In total, sixteen theoreti-
cal predictions based on VM are in qualitative and quantitative agreement with experiments
[260, 261, 304]. In particular:

- melting could indeed occur 120 K below the melting temperature. The energy of internal
stresses due to volumetric transformation strain ε0 = 0.08 is sufficient to reduce the melting
temperature from 551 K to 430 K for the δ phase during the β → δ PT studied at 430 K and
from 520 K to 400 K for the β phase during the reverse δ → β PT. Change in surface energy was
neglected.

- Zero energy of elastic internal stresses and athermal friction for both β ↔ δ PTs explain the
experimentally observed lack of the temperature hysteresis, which usually exists for all known
solid-solid PT.

- Activation energies for direct and reverse PTs are equal to the corresponding melting energy.
Temperature dependence of the rate constant is determined by the heat of fusion, both like in
the experiment.

- Kinetics of phase interface propagation and a physically-based kinetic model in terms of
volume fraction of the δ phase are in good correspondence with experiments (Fig. 14).

- Nanovoids in the transformed material that accompany the PT do not affect the PT ther-
modynamics and kinetics for the cyclic β ↔ δ PTs, like in experiments.

Kinetics of γ-δ PT in HMX was also explained by VM , but a reduction in interfacial energy
during PT was involved as well [38].

(b) Virtual melting was suggested as the mechanism for crystal-crystal and crystal-amorphous
PTs in materials with melting temperature decreasing with pressure, e.g., in Si, Ge, ice, geolog-
ical material (e.g., quartz and coesite), and superhard materials (hexagonal BN and graphite)
[249]. When pressure-induced PT of phase 1 to phase 2 is suppressed due to large transforma-
tion strain and athermal friction, with increasing pressure, the melting line extrapolated to lower
temperatures can be crossed before the line for PT 1 → 2. After phase 1 melts, the melt finds
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Figure 2. A comparison between theoretical prediction and experimental data for kinetics for 

β → δ transformation in the HMX energetic crystal under isothermal conditions [17,18]. (a) The β-

δ phase interface velocity vs. temperature. Almost all symbols representing experimental data  

obtained at LANL and LLNL using three different methods are within a band obtained using 

theoretical prediction based on the virtual melting mechanism. (b) A comparison between 

theoretical prediction (solid curves) and experimental data for concentration of the δ phase. 

c

Figure 14: A comparison between theoretical prediction and experimental data for kinetics of the isothermal β ↔ δ
transformation in the HMX energetic crystal [260, 261]. (a) The β − δ phase interface velocity vs. temperature.
Symbols represent experimental data obtained at LANL and LLNL using three different methods. The three lines
are theoretical predictions with three slightly different pre-exponential factors based on the VM mechanism. (b)
Theoretical prediction (solid curves) in comparison with experimental data for volume fraction of the δ phase.
Reproduced with permission from [261].

itself in the region of the phase-temperature diagram, much below the melting temperature of
phase 2. Therefore, material solidifies in a stable phase 2. Below the glass formation tempera-
ture, solidification occurs into the amorphous phase, and above the glass formation temperature,
crystalline phase 2 appears. An alternative scenario consists of the nucleation of phase 2, which
causes large internal stresses, which relax via VM followed by solidification into amorphous phase
2 (amorphization via internal stress induced VM). This model was applied to the explanation
of melting, crystal-crystal, and crystal-amorphous PT mechanisms in ice Ih. Note that the VM
occurs in Si and Ge at a temperature of more than 1000 K below the thermodynamic melting
temperature!

(c) A new mechanism for crystal-crystal PTs via surface-induced VM is justified thermody-
namically and confirmed experimentally for the PT in PbT iO3 nanofibers [281]. For nanofibers,
surface melting starts at a temperature much below the bulk melting temperature. When the
thickness of the surface melt exceeds the size of the critical nucleus of the product-phase, nu-
cleation, and growth of the product phase takes place. For nanofibers, surface melting starts
near the smallest size, and hydrodynamic flow caused by a reduction of the external surface and,
consequently, its energy leads to a large shape change towards a cube and additional promotion
of crystal-crystal PT. In the course of the product crystal growth, VM is experimentally observed
within the crystal-crystal interface using transmission electron microscopy.

Two different PFAs to the IM were developed using two order parameters: one describing
solid-solid PT and another one for melting, see Fig. 20(c) for approach in [277, 351, 353, 354]
and Fig. 20(f) for approach in [282], as well as Sections 16.2.3 and 16.2.5 for details. Also, papers
[277, 352, 353] include coupling with elasticity and [354] include interfacial stresses. Internal
elastic stresses promote the existence and persistence of the IM . In particular, in [352], the
internal stresses decreased the activation energy of IM critical nucleus (Fig. 13b) by a factor of
16 for the HMX, making thermally activated nucleation of the IM possible.

PFA solutions and obtained nanostructures, in addition to expected parameters, like the ratio
of energies of solid-solid to solid-melt interfaces and initial state, were found to strongly and
nontrivially depend on the ratio of widths of solid-solid to solid-melt interfaces, kδ. Depending
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on kδ (and other parameters), several types of IM behavior are found:
(a) for small kδ, jump-like (first-order PT) nucleation of the interfacial disordering and then

continuous (second-order PT) and reversible increase in disordering with temperature;
(b) for larger kδ, coexistence of S1 − S2 and S1 − IM − S2 nanostructures and jump-like PTs

between them for increasing and decreasing temperature;
(c) retaining of IM as a metastable interfacial phase significantly below the bulk melting

temperature, even when the energy of solid-solid interface is smaller than the energy of two
solid-melt interfaces, and

(d) unstable IM , which is a critical nucleus between S1S2 and S1MS2 nanostructures (Fig.
13b). Increase in kδ suppresses barrierless IM nucleation but promotes retaining of IM at much
lower temperatures.

There are various follow-up works on virtual melting. Amorphization via virtual melting
in Avandia (an important antidiabetic pharmaceutical) was proved experimentally using mi-
crocalorimetry [384]. Chemical reaction transforming Si into SiC via intermediate state, consisting
of dilatational dipoles in Si, was independently studied in [212], including developing PFA.

Convincing direct experimental proof that some reconstructive crystal-crystal PTs (namely,
the transition between square � and triangular 4 lattices of colloidal films of microspherical
particles) can occur through nucleation via an intermediate liquid nucleus and grow via an inter-
mediate liquid layer that was presented in [379]. While it is stated in [379] that crystal-crystal
PT occurs below the bulk melting temperature Tm, the bulk thermodynamic force for melting is
considered to be positive. This is possible only if the temperature is above the Tm of the � phase
and below that for the 4 phase. In this case, it is not surprising that when both melting and
crystal-crystal PT are thermodynamically possible, the nucleus with smaller activation energy
(and, consequently, interface energy) appears first and then transforms to a more stable phase.

Also, this work was not be properly placed within the existing literature. Opposite to the
statement in [379], PTs between crystalline phases via intermediate and virtual melting were
discussed for a decade and under much more surprising conditions, namely, significantly below the
Tm, see the references in this Section. Processes observed in [379] and thermodynamic treatment
are identical to particular cases of those discussed in [249, 281]. PFAs to the IM discussed above
are, of course, much more powerful and informative than sharp interface approaches. Additionally,
it is stated in [379] that the effect of anisotropic stresses on intermediate melt is worthy of study.
This topic was addressed in [280], where VM in Al and Cu 4000K below the Tm under very
high-strain-rate uniaxial compression was predicted thermodynamically and confirmed by MD
simulations, see Section 13.

Despite these drawbacks, the results in [379] make valuable contribution by direct confirmation
and visualization of the crystal-crystal PT via IM for �−4 reconstructive PT in colloidal films.
They in-situ confirm, specify, and quantify main statements in [249, 260, 261, 277, 281, 351],
including fast growth kinetics for S1MS2 interface (consistent with the absence of the athermal
friction) while a coherent crystal-crystal interface is arrested due to the athermal threshold.

Void nucleation due to sublimation within elastoplastic material via VM is considered ther-
modynamically and kinetically in [255] and is compared with other scenarios (due to fracture,
sublimation, and melting, and evaporation) in [256].

Some other processes that may occur via VM and virtual amorphization, namely crystal
reorientation during the nanofriction via the VM [148], plastic deformation at a high-strain-rate
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tension of metallic nanowires via the virtual amorphization [173], fracture [320, 366], and grain
boundary sliding and migration [356, 399, 455] are discussed in [287].

13. Virtual melting as a new mechanism of plastic deformation and stress relaxation
under high strain rate loading

Generation and motion of dislocations, twinning, and crystal-crystal PTs are the main mech-
anisms of plastic deformation and relaxation of non-hydrostatic stresses that are reflected in the
deformation-mechanism maps [120, 340].

Several large-scale non-equilibrium MD simulations for metallic fcc single crystals found unex-
pected result that for propagation of a shock wave along the <110> and <111> directions, melting
occurs at temperatures below the equilibrium melt temperature Tm(p) at the shock pressure p;
for example, for Cu by 20% in [387] and by 7-8% (±4%) in [5]. Usually, traditional superheating
is observed. This suppression in Tm(p) was interpreted in terms of solid-state disordering due to
high defect-densities, but significant dissatisfaction was remained. The decrease in the melting
temperature caused by deviatoric stresses was estimated by traditional approaches [130, 400] to
be just 1 K. That is why it was not considered for interpretation of results in [5, 387].
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Figure 15: (A) Stress-uniaxial strain curve for copper single crystal until melting (σ1), and equations of state of
liquid (pm) and crystal (pc) under hydrostatic pressure. Melting initiates at strain ε = ε∗ and completes at strain
ε = εm. Area between curves {Oabcd} and {Od} is the additional driving force for melting due to non-hydrostatic
loading. (B) Evolution of normal Cauchy stresses σi, temperature, and prescribed strain rate vs. uniaxial strain
from MD simulations for <110> shock loading of Cu. Reproduced with permission from [280].

We proposed in [280, 303] the VM as a new plastic deformation and deviatoric stress relaxation
mechanism at temperatures thousands Kelvin below Tm(p). Thermodynamics of melting under
homogenous uniaxial deformation ε = U−1 (equal to volumetric strain; in a planar shock, lateral
strains are absent) was developed as a generalization of the approach in [240, 243] for melting, see
Boxes 1 and 2. Stress-strain curves required for evaluation of the thermodynamic driving force
X̄ for complete melting were obtained from quasi-isentropic MD simulations (Fig. 15). Surface
energy and dissipation were excluded. Temperature increase after initiation of melting (Fig. 15B)
was neglected, underestimating X̄. The condition X̄ = 0 after some transformations leads to the
following expression for the equilibrium melt temperature under uniaxial straining T nhm :

T nhm = Tm(σ1)−
(∫ εm

0

σ1dε−
∫ ε̄

0

pcdε+ σ1(ε̄− εm)

)
/∆s, (132)

where all parameters and geometric interpretation are given in Fig. 15A. The magnitude of
the negative mechanical part of the thermodynamic driving force for melting under hydrostatic
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pressure is equal to the area {Oε0cd} between the equation of state for melt pm(ε) and crystal
pc(ε). This area characterizes the increase in the melting temperature for Cu under hydrostatic
loading from Tm(0) = 1357K to Tm(179.1) = 5087K. The difference between the areas under
the stress-strain curve σ1(ε) {Oabcd} and the equation of state of the crystal pc(ε) {Od} provides
an additional driving force for melting due to non-hydrostatic loading (the term in parentheses
in Eq.(132)). This area is about three times of the area {Oε0cd} and produces about three-fold
reduction in Tm(p) in comparison with the raise due to the hydrostatic pressure.
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Figure 16: Calculated equilibrium melting temperature under hydrostatic Tm(p) and non-hydrostatic Tnhm (σ1)
conditions for <110> shock loading of Cu (A) and Al (B). Reproduced with permission from [280].

The reduction in the thermodynamic melt temperature based on Eq.(132) is presented in Fig.
16, and it is enormous at high stresses, like 104K.

The above derivations are applicable for perfect crystal when dislocations and twins do not
have time to nucleate, or for crystal with some defects, which produce stress relaxation slower
than melting, i.e., at high strain rate of 109-1012 s−1 and higher. At lower strain rates, tradi-
tional dislocation or/and twinning plasticity takes place. Since melting occurs on the ps time
scale, significant overheating is required. Melting starts when crystal lattice loses its stability,
with assistance of thermal fluctuations. Numerous MD simulations in [280, 303] have confirmed
the VM at least at 0.2Tm(p), i.e., 4000 K below Tm(p) for Cu for <110> loading and even at
T ' 0.055Tm(p) (i.e., at 300 K) for isothermal <111> loading of defective Cu. After melting,
deviatoric stresses relax and hydrostatically loaded melt is deeply in the region of stability of a
solid phase. Melt recrystallizes at ps time scale. Since VM competes with traditional defect-
based mechanisms, it should be incorporated in the deformation-mechanism maps [120, 340] for
strain rates of ε̇ ∼ 109 − 1012 s−1 in metals, and high shear stresses. For materials with inhibited
plasticity (covalent crystal Si, Ge, SiC, high-strength materials and alloys, or complex organic
molecules like HMX), VM may be observed at lower strain rates and stresses.

The VM phenomenon in a shock wave was confirmed and further elaborated in MD simulations
for single crystal Cu, Al, Ta, Pb in [46, 151, 441, 443] and for polycrystalline Be in [84].

In [303] virtual amorphization was suggest as the first stage of VM . Difference between
amorphous and liquid phases from mechanical point of view is that amorphous phase has finite
shear modulus and yield strength, which are both zero for liquid. After crystal lattice instability
and initiation of disordering at strain ε∗ (Fig. 15), material still keeps the yield strength (difference
between σ1 and two other stresses) and crystal anisotropy (difference between σ2 and σ3). For
strain exceeding strain, for which σ2 = σ3, material is completely disordered and isotropic but
keeps the yield strength, i.e., it is amorphous solid. It is unstable and transforms with further
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loading continuously (i.e., via second-order transition) to VM, when all three stresses are getting
equal.

For different materials (e.g., organic α-HMX crystal, Si, SiC, and SmCo5) plastic deformation
in shock or dynamic loading occurs by generation and motion of dislocations or twin boundaries
up to some pressure or strain rate and via formation of amorphous shear nanobands at higher
pressure or strain rate [145, 180, 318, 469–472]. This amorphization may occur via VM, like
pressure-induced amorphization in [249]. Since free energy of melt is usually considered equal to
the free energy of amorphous phase, thermodynamic theory developed in [280] can be applied for
uniaxial loading or modified for other loadings.

14. Strain-induced nucleation at shear-band intersection. Application of the global
criterion for structural changes

The main experimental results on strain-induced PTs in TRIP steels [367, 369, 370] can be
summarized as follows:

1. Intersections of the shear bands serve as the main nucleation sites;

2. PT takes place during the shear-band intersection process;

3. Subsequent growth of the martensite beyond the shear-band intersections is quite restricted;

4. Not every shear-band intersection causes martensite nucleation.
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Figure 18. Cross section of a sample with 
martensitic particle (1 or 2) at two shear-

band  (I and II) intersection. 

Figure 17: Schematics of a sample with martensitic nucleus 1 at two shear-band (I and II) intersection.

Problem of PT at shear-band intersections with athermal kinetics presented in Boxes 2 and 3
was formulated and solved at finite strains in [264]. The schematics of the sample with prescribed

64



vertical displacement u∗ as the boundary condition is shown in Fig. 17. Two orthogonal shear
bands are introduced as the regions where material deforms plastically, while deformation is
elastic in the rest of the sample. The yield strengths of the austenite and martensite, as well as
transformation shear and normal strains in an invariant-plane strain are:

σAy = 250MPa; σMy = 800MPa; γt = 0.2; εn = 0.026 (133)

Normal and shear directions of an invariant-plane strain were directed along the shear bands,
because this corresponds to the maximum of the transformation work. Transformation strain is
introduced in the nucleus proportionally to the increasing displacement u∗ , for several maximum
displacements u∗max . By dividing u∗ by the initial length of the sample l0, we can characterize
prescribed displacement in terms of averaged vertical strain ε.
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Figure 19. Relationships between macroscopic axial stress σ and strain ε (at 

different values ε  after finishing PT) during appearance of martensite at 
shear band intersection (region 1).   

    1 -  work integral ϕ = 75.8 MPa, 2 - ϕ = 22.26 MPa, 3 - ϕ = -28.3 MPa,  
 4 - ϕ = -58.7 MPa, 5 - without PT. 

Figure 18: Averaged axial stress σ versus strain ε (for various values of the final strain at finishing PT) for the
process of appearance of martensitic nucleus at shear-band intersection. Values of transformation work ϕ in MPa
are shown near curves. Curve 5 corresponds to the straining without PT. Reproduced with permission from [264].

Dependence between averaged axial stresses P and vertical strain ε, for different εmax during
which complete PT in a nucleus occurs, is presented in Fig. 18. The values of the calculated
transformation work ϕ are shown near each curve. Stress-strain curve 5 corresponds to the
deformation without PT, and we will call the corresponding stress a macroscopic yield strength of
an austenitic sample. For known temperature and K0, one determines the required transformation
work ϕ from the PT criterion (37)-(38) and finds with the help of Fig. 18 at which ε PT may
occur. However, as we discussed in Section 6.6, the solution without PT is also acceptable, since all
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equations of continuum thermomechanics are met. Based on the global stability criterion (44), we
conclude that if P−ε curve for the solution with PT is higher than the P−ε the macroscopic yield
strength without transformation 5 (like the curve 1 in Fig. 18), the transformation is impossible,
despite the potential fulfilment of the thermodynamic PT criterion. Thus, deformation will occur
along the curve 5. In the opposite case (for curves 2 - 4 in Fig. 18), the deformation-transformation
process with PT will be realized. This problem represents one of the nontrivial applications of
the global SC criterion based on the stability analysis.

It was found that the transformation work is much lower (a) when nucleation occurs at any
other place but shear-band intersection; (b) nucleus grows beyond the shear-band intersection,
and (c) if nucleation occurs after shear-band intersection without PT at fixed P or ε. These
findings explain the experimental results in items 1 to 3 above.

Next, the same loading and processes were considered for the sample, consisting of four samples
shown in Fig. 17 connected consecutively in the vertical direction. While all four shear-band
intersections are fully equivalent, we consider four cases with one to four nuclei that appear during
the same prescribed ε. The transformation work reduces with the increasing number of nuclei
at shear-band intersections. However, for a single nucleus, which can appear for the prescribed
ε at the highest temperature, stress-strain curve exceeds that for the deformation without PT.
That means that such a PT is impossible due to the global SC criterion (44). However, for
multiple elements, such a PT is also impossible because plastic flow in the untransformed shear-
band intersections does not allow stresses above the macroscopic yield strength of an austenitic
sample. Thus, the treatment of the sample with the multiple samples shown in Fig. 17 connected
in series gives us the corroborating arguments for the validity of the stability analysis and the
global SC criterion based on the extremum principle (44).

Since the transformation work reduces with the increasing number of nuclei at shear-band
intersections that appear during prescribed ε, this results in appearance of one nucleus during
part ε� of the prescribed ε, for which the thermodynamic PT criterion is met, and stress does not
exceeds the macroscopic yield strength for the austenite. Within next strain increment ε�, the
stress increases and reaches the macroscopic yield strength for the austenite, and then nucleus
appears at other shear-band intersection, and so on. The maximum temperature for the strain-
induced PT, Md, corresponds to the process, for which nucleation of a single nucleus occurs
during ε� that gives the stress-strain curve slightly lower than the macroscopic yield strength
of the austenite. That means that Md is determined not by thermodynamics (since the larger
transformation work can be obtained), but by the impossibility of PT due the global PT criterion
based on stability analysis.

Thus, experimental phenomena 1 to 4 enumerated at the beginning of this Section are at least
qualitatively described by our theory presented in Boxes 2 and 3 without involving additional
physical mechanisms. More quantitative description should include discrete dislocations or twin
bands or ε-martensite bands, leading to high stress concentration due to difficulty to transmit
shear band through the intersecting band.

It was also found in [264] that the transformation work is a function of the ratio
∆ c

∆ εp
' d c

d εp
,

where ∆ c is an increment of the volume fraction of strain-induced martensite. For macroscop-
ically uniaxial strain, εp is the accumulated plastic strain q . This finding led to the thermo-
dynamic derivation in [246, 247] of the microscale kinetic equation for the volume fraction of a
plastic strain-induced high-pressure phase c of the type of Eq. (117), see example in Eq. (161).
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Simulations show a significant difference between transformation conditions for displacement-
and stress-controlled loadings. For prescribed stresses, the more martensite is, the larger the
overall transformation strain and work are. The principle of the maximum transformation work
results in the complete transformation in the entire band, without plasticity. Thus, stress-induced
PT produces a plate-like nucleus, in contrast to strain-induced PT, which corresponds to known
experiments. The adiabatic heating and its effect on PT at the shear-band intersection was
analyzed in [172].

Stability analysis should be applied for any problem with boundary conditions in displace-
ment, when PTs competes with plasticity. For example, similar treatment was performed for
PT in a spherical particle imbedded in a cylindrical sample [172]. The extremum principle for
determination of the stable deformation process is applicable for the analysis of the competition
between other inelastic mechanisms, e.g., twinning, damage, and others. For the softening be-
haviour during PT, the stability analysis plays significant role for the PT in elastic materials as
well, see [230, 231].

15. Appearance and growth of a martensitic plate in elastoplastic material

15.1. Macroscale nucleation of a martensitic plate

Appearance of a small rectangular (in the reference state) temperature-induced martensitic
plate of the length l and height h within a much larger rectangular austenitic sample was studied
in [171, 172] for finite elastoplastic and transformation strains. Plane-strain formulation and
the invariant plane transformation strain with shear along the length l were considered. The
transformation strain and the yield strengths are given in Eq. (133). Incrementally increasing
the transformation strain components and solving the corresponding elastoplastic problem, the
transformation work ϕ was evaluated and approximated as

ϕ = Ā+Bx+ Cx2, Ā = −72.11MPa, B = 6.40MPa, C = −0.29MPa; x = l/h.(134)

The martensitic plate deforms elastically except of narrow regions near short sides. In the
austenite the plastic strains are localized around the transformed plate (Fig. 19(a)). The
”macroscale” thermally activated kinetics presented in Boxes 5 and 6 was applied. The prin-
ciple of the minimum of transformation time

(
A1 + B x + C x2

)
l h − 2 Γ (l + h) → max

x , l
, (135)

where A1 := Ā−K0 − ∆ψ − Ea , lead to two equations

A1 + 2B x + 3C x2 =
2 Γ

h
; A1 x − C x3 =

2 Γ

h
, (136)

which combination results into a cubic equation for x . The thermodynamically admissible solu-
tion to this equation exists for large A1 only, i.e., for large net thermodynamic force and small
activation energy. Otherwise, the principle of minimum of transforming volume (mass) along with
the thermodynamic SC criterion

(
A + B x + C x2

)
l = 2 Γ (1 + x) ; A := Ā−K0 − ∆ψ, (137)

results in

Vn = l h =
l2

x
= 4 Γ2 (1 + x)2

x (A + B x + C x2)2 → min
x

. (138)
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Principle (138) leads to the explicit equation for x and then Eq. (137) gives the length l. For
x � 1 obtained equations simplify to

x = − B +
√
B2 + 12AC

6C
, l =

2 Γ (1 + x)

(A + B x + C x2)
. (139)

The higher the net thermodynamic driving force −∆ψ −K0 (i.e., A) is, the smaller the nucleus
size, the aspect ratio x, and consequently, the transformation time are. For example, for A =
−30 we evaluate x = 10.61 , l = 4.40 Γ but for A = 0 we obtain x = 7.36 , l = 0.533 Γ .

15.2. Growth of martensitic lath within the austenite: effect of inheritance of plastic strain

Plate martensite increases its length r until it is stopped by some inhomogeneity, like a grain or
twin boundaries, stacking fault, or other martensite plate. This process is related to the increase
in the transformation work (119) with increasing aspect ratio r/b of the plate. In contrast, the
growth of the lath martensite stops inside the grain and is not related to such obstacles. It
was suggested in [144, 372] that plastic accommodation of the transformation strain (see also
[79, 127]) causes arrest of the lengthening and plate to lath morphological transition in steels,
which is important for optimization of steels mechanical properties and steel design. This was
done, however, utilizing relatively simple model.

The problem on the growth of a temperature-induced rectangular martensitic unit in an
austenitic sample based on formulation in Box 5 (in particular, interface propagation Eqs. (58)
and (59)) was presented in [172, 266]. This was a natural continuation of the ”macroscale”
nucleation of the plate presented in Section 15.1, based on the same finite-strain constitutive
theory and FEM simulations. Both growth in the bulk and close to the free surface of a sample
were studied.

Interface velocity during lengthening as a function of the temperature and the interface loca-
tion has been determined. The following conclusions were drawn in [266].

1. One of the key parts of the solution was a complete inheritance of the plastic strain of the
austenite during its transformation to martensite. Thus, plastic strain tensor in the austenite was
taken as an initial condition while integrating the flow rule in the transforming material. This led
to the very heterogeneous and unexpected strain fields in the austenite and martensite and their
nonmonotonous change during the PT process, see Fig. 19. The transformation deformation
gradient was quite modest and the yield strength of the martensite was more than 3 times larger
than that of the austenite (see Eq. (133)). Still, the plastic shear strain at some points of
the martensite reaches 0.6 in the direction of the transformation shear and, after an elastic
stage, changes the sign and increases by 0.4 in the opposite direction. The edge geometry of
the propagating interface evolves counterintuitively (Fig. 19): the expected transformation shear
strain profile changes to a wave-like contour with reverse shears near the corners, and then to
almost straight vertical line. The plastic shear jumps by 0.9 across a phase interface.

2. These results shed a light on why the plastic deformation is localized in the much stronger
martensite rather than in the weaker austenite. After nucleation, large plastic deformations are
caused by the transformation strain near the interface mostly in the austenite. This plastic
strain field is inherited by the growing martensite, causing, along with the transformation strain,
significant internal stresses, which are relaxed via additional plastic flow (TRIP) in the martensite.
After some growth increment, plastic deformations in the austenite are much smaller (see Fig.
19 (c)) because of small resultant shape change of the martensitic edge (see Fig. 19 (c)). Such
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Figure 19: Distributions of the accumulated plastic strain q in austenitic matrix near growing martensitic plate
(white region in the left part of the figure) and in the right part of the martensitic plate (right part of the figure)
after nucleation (a) and two different stages of growth (b) and (c)). Reproduced with permission from [266], Taylor
& Francis Ltd., www.tandfonline.com.
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a complex strain variation in martensite changes significantly the driving force for the interface
propagation XΣ and athermal resistance K0.

3. After martensite nucleation and during increase in the lath length by 10 %, the transforma-
tion work decreases from −50.35 MPa down to −100.79 MPa and the contribution to K0 due to
the dislocation forest hardening Kd grows from zero to 30.22 MPa (compare to Kµ = 2.35MPa
for the interfacial friction due to solute hardening). As a result, the net thermodynamic driv-
ing force for the interface propagation is getting negative, interface stops, and lath martensite
is formed rather than the plate. It is also found that quite high internal shear stresses in the
surrounding austenite may cause autocatalytic nucleation of new martensitic laths with the same
or opposite transformation shear, which may coalesce, forming fine multi-lath structure.

The reduction of the yield strength of the austenite increases the plastic deformation and the
propensity to formation of the lath. In particular, this happens for steels with high martensitic
temperature, which leads to the reduction in the yield strength. Thus, the microstructure and
mechanical properties of steels can be tailored by controlling the yield strength of austenite by
alloying or preliminary plastic deformation.

4. A free surface does not essentially change the thermodynamic driving force for the PT
until distance between the phase interface and surface is getting smaller than 0.75h. After
this, the transformation work grows and the Odqvist parameter q and corresponding Kd reduce
abruptly. If not stopped before this position, the phase interface accelerates and reaches the
surface. The edge interface contour passes via a wave-like shape, but ends with a shape produced
by a transformation shear slightly modified by plastic accommodation, producing an asymmetric
’tent-shaped’ profile.

5. Obtained results allow one to understand the relationship between thermally activated
kinetics for a single interface and athermal kinetics for a sample. For athermal nucleation postu-
lated for martensite (see [369, 371–373]), this transition is related to the interface arrest due to
reduction in XΣ and increase in Kd independent of the interface kinetics for nonzero velocity.

Recent developments of modeling of dislocated lath martensite in steel can be found in [380].

16. Phase field approach to the interaction between plasticity and phase transforma-
tions

Thanks to the recent progress in nanotechnology and nanoscience, PT and plastic deformations
are investigated in various nanoobjects: wires, fibers, films, multilayered systems, and particles.
This encourages research on the coupled PT and discrete dislocation plasticity at the nanoscale.
Thus, phase nucleation takes place at different dislocation configurations. Generally, nucleation
always occurs in nanoscale volumes, even for bulk specimens. Loss of coherency of phase interface
occurs via the dislocation nucleation and motion. Dislocations also produce athermal resistance
to the interface motion. PFA is an ideal continuum method to address all of these problems.

PFA utilizes the concept of the order parameters, which describe the crystal lattice instabili-
ties: ηi for PT between the A and martensitic variants Mi and ξα, which describes variation of the
magnitude of the Burgers vector in the α slip system from zero for perfect crystal to an integer
number of dislocations.

The free energy has the number of the minima in the space of the order parameters ηi and ξα
(separated by energy barriers) equal to the number of phases and variants, as well as the number
of complete dislocations in the system. Besides, the free energy depends on the gradients of the
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order parameters that are localized in the finite-width interface and dislocation core regions. The
gradient energy, together with local energy barriers between phases and dislocations, penalizes
the interface and dislocation core energies. The solution of the thermodynamically consistent
Ginzburg-Landau evolution equations for the order parameters describes in a continuous way
the evolution of multiphase and dislocation microstructures. There is no need to satisfy jump
conditions at the interfaces and to track motion of interfaces and dislocations. Characteristic
solutions for the Ginzburg-Landau equations are evolving phase interfaces that have a finite
width and divide multiple phases, and dislocation cores with a sharp but continuous variation of
the Burgers vector, which separate sheared and non-sheared parts of a crystals.

In the previous PFAs on PTs and dislocation evolution [9, 161, 188, 208, 214, 315, 446, 448,
449, 449], these were the only constraints for choosing the free energy. Several other important
conditions have been formulated in [290, 291] and then in [299] for PTs and in [268, 272, 292] for
dislocations.

16.1. PFA to martensitic phase transformations

PFA is widely used for modeling martensitic PTs and evolution of corresponding microstruc-
ture, see [9, 188, 273, 315, 446] and the reviews [54, 328, 447]. We will concentrate on the approach
with the order parameters ηi representing internal variables that are related to the transformation
strain or any other material properties [9, 54, 63, 188, 273, 401, 402, 446] because for the total
strain-related order parameters [18, 98, 99, 176, 315, 388, 396, 439] we are unable to meet all the
desired conditions. It is convenient to accept that ηi = 0 in A and ηi = 1 in Mi. The main re-
quirements were introduced in [290, 291] for the description of the typical features of stress-strain
curves, which are conceptually consistent with experimental results for shape memory alloys,
steels, and some ceramics, and for the possibility to incorporate all thermomechanical properties
of all involved phases. They were further developed in [282] for the temperature-induced PTs.
These are the requirements:

(a) All material properties M (transformation strain tensor, elastic moduli of any rank, ther-
mal expansion tensor, etc.) that follow from the thermodynamic equilibrium conditions for ho-
mogeneous phases should be equal to the corresponding values for A and Mi. Stress hysteresis
should be controllable—in particular, constant or weakly temperature-dependent.

Any material property M can be interpolated between phases P0 and P1 in the form

M(η) = M0 + (M1 −M0)ϕm(η), (140)

where M0 and M1 are the property M of P0 and P1, respectively, and ϕm(η) is the interpolation
function to be found. Requirement (a) leads to the following conditions for ϕm(η):

ϕm(0) = 0, ϕm(1) = 1;
dϕm(0)

dη
=
dϕm(1)

dη
= 0. (141)

If Eq.(141) is not satisfied, then the thermodynamic equilibrium values of the order paramter ηeq
will depend on the temperature and stress tensor. Substituting ηeq(θ,σσσ) in Eq.(140) will lead to
the artificial temperature- and stress-dependence of the property M , and one could not restore
the properties M0 and M1 for bulk phases P0 and P1.

(b) The PT criteria that are derived from the formulated crystal lattice instability conditions
for the homogeneous and defect-free phases should have a desired form in terms of the stress tensor.
This requirement was significantly elaborated in [12, 299] for satisfaction of the lattice instability
conditions under general stress tensor obtained from the atomistic simulations [298, 464].
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(c) All properties of A and Mi could be included in the thermodynamic potential and trans-
formation strain.

While these requirements look quite natural, they were not satisfied in any theory for marten-
sitic PTs prior to works by [290–292], where the PFA that meets these requirements was developed.

The large strain theory that meets these conditions was developed in [12, 253, 289, 293, 299,
300]. The theories that satisfy the above conditions were applied for FEM solutions of various
static [273, 274] and dynamic [64, 168] problems at small strains, as well as at large strains in
[12, 14, 226, 289].

16.2. Multivariant martensitic phase transformations and transformations in multiphase materi-
als

16.2.1. Twinning and transformations between martensitic variants

Multivariant martensitic PTs are treated in most of the works within elasticity theory, see
[9, 12, 54, 188, 226, 273, 274, 289, 299, 315, 328, 401, 402, 446, 447]. In particular, these approaches
are applicable to the SMA. Since for most martensite lattices, some martensitic variants are in
twin relationships to each other, transformation between them can be considered as twinning.
However, twinning is also a mechanism of plastic deformation in general and represents a lattice-
invariant shear producing invariant plane strain in martensite, in particular. That is why we
shortly review the description of twinning and variant-variant transformations.

PFA for twinning that satisfies the above conditions (a)-(c) was developed in [290–292] for
small strains and in [69, 70, 253, 293] for large strains. However, the main problem is in the
description of variant-variant transformations. Since this problem is a particular case of a more
general problem of multiphase PFA [31, 123, 201, 349, 350, 363, 415, 416, 422–424], which in
most cases does not include mechanics and is devoted to grain structure evolution, we will include
multiphase PFA in the discussion as well. A critical analysis of the multiphase PFA to PTs was
presented, with further developments, in [21, 282, 301, 424].

16.2.2. Phase field models with Cartesian order parameters

In the first and most popular PFA presented in [9, 54, 188, 401, 402, 446], N order parameters
ηi for N martensitic variants were introduced, and each A ↔ Mi PT was described by a single
order parameter ηi (Fig. 20(b)). Then the analytical solution for an A-Mi interface allows one
to perform a calibration of the width, energy, and mobility of an A-Mi interface. However,
Mi ↔ Mj transformations occur along some curvilinear line in the ηi-ηj plane described by two
order parameters (Fig. 20(b)) that depends in some uncontrolled way on the temperature and
stress tensor. An analytical solution for an Mi-Mj interface cannot be found. The numerically
determined energy, width, and mobility of Mi-Mj interfaces depend on the temperature and stress
tensor in some uncontrollable way and cannot be calibrated by experiment. Since these theories
also do not meet the requirements (a)-(c), even for Mi the equilibrium order parameter is not
ηi = 1 but depends on the temperature and stress tensor. Because of this, it is difficult to obtain
the thermodynamic Mi-Mj transformation criteria from the lattice instability conditions, and it
is impossible to make them look like the criteria for twinning.

Theories that satisfy conditions (a)-(c) do not have problems with ηi = 1 for Mi and the
thermodynamic Mi-Mj transformation criteria, but still Mi ↔ Mj transformations occur along
some curvilinear line in the ηi-ηj plane, an analytical solution for Mi-Mj interface cannot be found,
and the energy, width, and mobility of Mi-Mj interfaces cannot be calibrated by experiment.
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Figure 20: Sketches of the order parameter space and transformation paths for different PFAs. (a) PFAs utilized
in [31, 123, 201, 349, 350, 363, 415, 416, 422–424] where the transformation paths belong to the ηi + ηj + ηk = 1
plane. (b) PFAs in [9, 54, 188, 253, 273, 290, 291, 401, 402, 446], for which variant↔variant transformation
paths are described by two order parameters in an uncontrolled way. (c) & (d) PFAs with the polar (c) and
the hyperspherical (d) order parameters [292, 294]. (e) Model developed in [282, 301], for which transformation
paths between different martensitic variants are governed by additional penalizing energy terms. (f) & (g) PFA
developed in [21] with two and three variants, respectively. Reproduced with permission from [21].

16.2.3. Phase field theory with hyperspherical and polar order parameters

This problem was already recognized in [292], where an alternative PFA based on hyperspher-
ical order parameters was developed (see Figs. 20(d)). In this and more advanced theory in
[294] the radial order parameter Υ describes A↔ M PTs and N angles πϑi/2 characterizing the
direction of the radius-vector Υ describe Mi ↔ Mj PTs along the hypersphere Υ = 1. The angles
ϑi meet a nonlinear constraint

∑N
i=1 cos2(πϑi/2) = 1. Each Mi ↔ Mj transformation represents

a quarter of a circle and is described by a single angular order parameter. Then the analytical
solutions for all Mi ↔ Mj exist, and all interface widths, energies, and mobilities can be cal-
ibrated. While the desired crystal lattice instability conditions in terms of the hyperspherical
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order parameters were proved in [292], a flaw in this proof was found in [294], where also the
nonlinear constraint was substituted by a linear constraint. This, however, also does not resolve
the problem, see [282, 301]. No issues have remained only for two variants or three phases, the
polar coordinates with a radial and single angular order parameters (Figs. 20(c)), without a
constraint. In [277, 351, 353], such a model was developed and applied to PTs between two solid
phases and melt, in particular, for solid-solid PT via intermediate (virtual) melt (see also Section
12).

16.2.4. Multiphase phase field approach utilizing linear constraint

In this approach the order parameters ηi may be interpreted as the volume fraction of phases
because they satisfy a constraint

∑N
i=1 ηi = 1, see Fig. 20(a) and [31, 123, 201, 349, 350, 363,

415, 416, 422–424]. These approaches were mostly applied to solidification/melting and grain
growth without coupling to mechanics; some applications involving stresses are presented in
[398, 414]. The imposed constraint does not guarantee that each of the PTs occurs along straight
lines connecting Mi and Mj variants (phases), which is necessary for avoiding a third (if spurious)
phase between two others and description of a PT with a single order parameter. For three phases,
this was accomplished in [117, 118] with some restriction on the kinetic coefficients. It was not
evident how to extend the model for more phases. Also, since the appearance of a third phase is
observed in some experiments (see [249, 260, 261, 281] and Section 12), an advanced model should
be able to control this process. Subsequent analysis and improvement of the multiphase models
was performed in Ref. [21, 31, 282, 424]. However, none of the PFAs with the above constraint
properly described the lattice instability criteria.

16.2.5. Multiphase phase field approaches with penalizing functions

The models in [282, 301] deal with the Cartesian order parameters ηi, without constraint but
with the energy penalizing term that controls deviation from the straight lines connecting each Mi

and Mj variant or two phases (see Fig. 20(e)). With the large (theoretically infinite) penalizing
term, the path between two phases is the straight line that can be described by a single order
parameter, an analytical solution for the propagating interface exists, and the interface energy,
width, and mobility can be calibrated. No third phase is involved for the given case. At the same
time, with the relatively small penalizing term, the third phase may exist within an interface,
and the transformation path is curved (Fig. 20(e)). While this model is more advanced, flexible,
and consistent than the previous, some problems have been found and were overcome in [21].
The main difference in [21] is that the A ↔ M PTs are described by a separate order parameter
and other N order parameters ηi describe the martensitic variants within the plane

∑N
i ηi = 1

(Fig. 20(f) and (g)). The transformation path within this plane is controlled with the penalizing
term similar to that in [282, 301]. In addition, all multiphase junctions are penalized. Using
separate order parameters for the A↔ M and variant-variant PTs makes this theory much more
flexible and removes contradictions found in [282, 301]. It was also developed for large strains
and included interfacial stresses. Numerical algorithms and FEM solutions for this model were
presented in [23].

A reaction pathway approach for reconstructive PTs was developed in [80, 81, 437]. Compo-
nents of the transformation deformation gradient UUU t are used as order parameters instead of ηi.
Reverse PT may occur not only back to the initial A lattice, but to crystallographically equivalent
variants A’ of the parent phase, obtained by rotation matrices in the point group of the A lattice.
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Each variant A’ can be transformed to multiple crystallographically equivalent variants of M’,
and so on. Thus, a much larger number of variants (more than a hundred) is considered than
in traditional theories for martensitic PTs described above. Gradient energy is dropped, making
the theory and interface energy dependent on the mesh. This is justifiable for microscale theories
(see Section 16.2.6), but questionable for nanoscale theories.

16.2.6. Microscale phase field models

The volume fraction of different phases as order parameters were utilized for martensitic PTs,
e.g. in [91, 92, 167, 222, 259, 267, 355, 398, 414, 427, 428]. The simple mixture rule was used,
all the interpolation functions are linear in volume fractions of phases, ck, and an energy barrier
for PTs between phases i and j is cicj. Such models are applicable for microscale simulations,
when the interface width is either artificially increased from its actual size of a few nanometers
by several orders of magnitude or processes in the interfaces are not important. In contrast to
the nanoscale, the requirements for the first derivative of the interpolation functions in Eq. (141)
are not mandatory and not satisfied.

This model is combined with a contact problem formulation to include dislocation pileups and
shear bands, see [92, 259] and Fig. 23 for a scale-free modeling of nucleation and evolution of the
HPP and discrete dislocations.

16.3. PFA to dislocations

PFA to dislocations has many points borrowed from the PFA to martensitic PT in [188, 446];
it is widely utilized for simulation of plastic deformations in materials [27, 161–165, 189, 208, 214,
221, 448, 449, 452]. Plastic strain is used instead of transformation strain, which has a similar
expression to crystal plasticity: summation of simple shears along all slip systems, with each shear
represented by the dyadic product of the Burgers vector and normal to the slip planes. The order
parameters ξα for each slip system α describe the magnitude of the Burgers vector. Small strain
approximation along with Hooke’s law are utilized. Spectral methods have been applied for the
numerical solution of Ginzburg-Landau equations for the order parameters and for the elasticity
theory (the Khachaturyan microelasticity theory, see [161, 162, 391, 448–450]).

At the same time, these approaches inherited the drawbacks of the PFA for martensitic PTs,
as well as some additional drawbacks. Some of them were resolved in [268, 272, 292]. In particular,
thermodynamic equilibrium and crystal lattice instability conditions for homogeneous stress-strain
states have been formulated and the thermodynamic potential and the interpolation function for
the Burgers vector were designed to meet these constrains. This allowed us to ensure that the
magnitude of the thermodynamically equilibrium Burgers vector is stress-independent and the
artificial dissipation does not take place in the course of elastic straining; the desired crystal lattice
instability conditions and a resolved shear stress - order parameter dependence are reproduced,
all in contrast to previous theories. Besides, PFA in [272] is developed for large strain using the
multiplicative decomposition of the deformation gradient into elastic and plastic contributions.
Instead of interpolating the plastic strain tensor versus order parameters in the small-strain
approaches, the relation for the plastic contribution to the velocity gradient versus the rate of
the order parameters is postulated in the spirit of crystal plasticity. The height of a dislocation
in [268, 272] has been defined by constitutive equations rather than by computational mesh in
the published theories. Some simplified equations are presented in Box 11. A comparison with
previous approaches is presented in [272].
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One of the main ingredients of any phase field approach to dislocations is periodic crystalline
energy ψcxi, which is also called the generalized stacking fault energy or gamma-surface. It rep-
resents an excess energy per unit area for any relative displacement of one part of a crystal with
respect to another along the slip plane and direction. This energy has multiple zero-value min-
ima corresponding to displacing a periodic lattice into a geometrically equivalent state, which
determines the Burgers vectors of complete dislocations. We chose the simplest expression for
ψcxi that satisfies this condition. Partial dislocations and dislocation reactions are included in
[47, 164, 341, 403, 452, 457]. Their consideration is based on the approximation of the more
complex 2D energy landscape ψcxi with additional intermediate minima, which is obtained using
molecular static or first principle simulations. An alternative approach to dislocations based on
the energy landscape in the total strain space is presented in [8, 15, 124].

Conditions on the interpolation functions imposed in [272] were not applied in the above
papers, which should lead to stress-dependent equilibrium Burgers vectors and some undesirable
features in the stress-strain curves.

16.4. PFA to the interaction of phase transformation and dislocations

Nucleation of M on dislocations using PFA to PT was studied analytically by [33, 207] and
numerically by [13, 196, 325, 326, 388, 447, 466, 467]. Stationary dislocations were introduced
using their analytical stress field or transformation shear. In [442, 458, 459], dislocations are
introduced by preliminary plastic deformation, which did not evolve during PTs. Precipitates as
nucleation cites were also included, and results showed low-hysteresis behavior of some SMAs,
which was observed in experiments in [158].

In [214] dislocations are located at and move together with a phase interface and do not need
separate phase-field equations. In reality, dislocations may move away from the phase interface
into any of the phases, and they become inherited by growing phases, see, e.g., [183, 184, 270].

A continuum dislocation theory is coupled with the PFA for martensitic PT in [131, 132, 215].
In [215] the plastic sliding was allowed in A only and dislocations inherited by martensite retained
the same eigen strain. Finite-strain crystal plasticity is combined with the PFA for martensitic
PTs in [377], allowing slip in A only. It is applied to SMA. In [314], a similar approach is applied
to twinning rather than to PTs.

In [67, 68, 74, 76, 140, 324, 460–462] the PFA to martensitic PTs is combined with the classical
isotropic plasticity and applied to the growth of martensite. All the above approaches to the
interaction between PTs and plasticity were for small strains. A reaction pathway approach for
reconstructive PTs developed in [80, 81, 437] for large strain was supplemented by the elasoplastic
or viscoplastic models in [81, 438] and applied for studying PTs and plastic flow in iron under
static and shock loading.

Description of martensitic PTs in [19] is based on the combination of quasi-convexification
of the nonconvex energy and classical von Mises-type plasticity. Micromechanical multiscale
formulation and FEM solutions of some problems on interaction between PT and plasticity are
described in [209, 432]. The nucleation and expansion of an elliptic martensitic inclusions with
the prescribed aspect ratio combined with discrete dislocation evolution were analyzed in [404].

It should be noted that a conceptual problem exists in combining PFA to PTs with the theory
of continuously distributed dislocations and especially with phenomenological plasticity. Indeed,
the spatial scale of the problem on PT is determined by the interface width, which is on the order
of 1 nm. The width of a martensitic variant is a few to 10 nm. The averaged distance between

76



dislocations ld = ρ−0.5
d with ρd as the dislocation density. For annealed materials ρd = 1010m−2,

i.e., ld = 10−5m. For severe plastically deformed materials ρd = 1015m−2, i.e., ld = 32nm.
Continuum formulation requires at least several dislocations in each direction in the representative
volume, i.e., it is applicable at the scale from two to five orders of magnitude greater than the
phase interface width. That means that a nanoscale PFA to PT is consistent with discrete
dislocation theories only. It is clear that any way to include plasticity and corresponding stress
relaxation is more realistic than elastic formulation; but it should not be treated as a consistent
theory.

At the same time, continuum plasticity can be coupled to the microscale PFA, where interface
width is much broader or is not considered as a physical parameter, see e.g., [90, 92, 169, 259, 267].
An important point in these works is that martensitic variants are not spatially resolved and are
described in terms of their volume fractions as internal variables. Another important feature in
Ref. [92, 259] is that it includes a continuum description of dislocations along discrete slip planes,
which allows reproduction of strong stress concentrators at the tip of the dislocation pileups that
leads to the martensite nucleation, similar to the nanoscale approaches with discrete dislocations
in [183, 184, 270]

It is important to note that in [131, 132] significant dislocation density was found within in-
terfaces between martensitic variants. This is contradictory, because the variant-variant interface
is an invariant-plane interface, which should not generate elastic stresses. It is found in [21, 22]
that despite how the sharp variant-variant interface does not generate stresses, its finite-width
counterpart within PFA does possess significant elastic stresses, which may lead to dislocations
within an interface.

In [268], a simplified version of PFA for the interactions between martensitic PT and dis-
crete dislocations (without presenting detailed equations) was applied to the solution of problems
on nucleation and propagation of misfit dislocations along the interface and their effect on the
athermal interface friction (see Section 11.6). For the stationary solution, both martensite and
dislocations disappeared, illustrating reversible plasticity.

A simplified system of equations for the coupled evolution of dislocation and a single marten-
sitic variant was suggested in [269, 270], however, without strict derivations. It was applied to
various FEM solutions including revealing scale-dependent athermal semicoherent interface fric-
tion for direct and reverse PTs (see Section 11.6 and Fig. 12), reduction in PT pressure by up
to an order of magnitude due to the dislocation pileup generated by shear strain (see Fig. 22),
inheriting dislocations by a propagating phase interface, and the nucleation of dislocations by a
growing martensitic plate, which leads to the plate arrest.

16.5. Complete system of the phase-field equations for the interaction between phase transforma-
tion and discrete dislocations

Box 11. Phase-field equations for coupled phase transformation and
discrete dislocations [182, 271]

1. Kinematics
I. Finite strains
1.1. Multiplicative decomposition of the deformation gradient FFF

FFF = FFF e···UUU t···FFF p. (142)
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1.2. Jacobian determinants

J :=
dV

dV0

=
ρ0

ρ
= detFFF ; Je :=

dV

dVt
=
ρt
ρ0

= detFFF e;

Jtp :=
dVt
dVp

=
ρp
ρt

= detUUU t detFFF p = detUUU t = Jt; Jp := detFFF p = 1; J = JeJt, (143)

where dV0 (ρ0), dVt (ρt), dVp (ρp), and dV (ρ) are the elemental volumes (mass densities) in
the reference Ω0, transformed Ωt, plastically deformed Ωp, and the actual (Ω) configurations,
respectively.

1.3. Symmetric transformation deformation gradient

UUU t = III + ε̄εεtϕ(a, η); ϕ(a, η) = aη2
k(1− η)2 + (4η3 − 3η4); 0 < a < 6, (144)

where ε̄εεt is the transformation strain of a complete M variant and η is the order parameter that
describes PT from A (η = 0) to M (η = 1).

1.4. Plastic part of the velocity gradient in the reference configuration

lllp :=

p∑

α=1

1

Hα
bbbα ⊗ nnnαΦ̇(ξα) =

p∑

α=1

γαmmm
α ⊗ nnnαΦ̇(ξα), (145)

Φ(ξα) = φ(ξ̄α) + Int(ξα); φ(ξ̄α) = ξ̄2
α(3− 2ξ̄α),

where bbbα is the Burgers vector of a dislocation in the αth slip system, nnnα is the unit normal to
the slip plane; γα = |bbbα|/Hα is the plastic shear produced by a single dislocation in a dislocation
band with the height Hα, mmmα = bbbα/|bbbα|; ξα is the order parameter for a dislocation in the αth slip
system; and Int(ξα) and ξ̄α := ξα − Int(ξα) is the integer part (defining number of dislocations
in a dislocation band) and fractional part of ξα.

II. Small strains

εεε = (∇∇∇uuu)s = εεεe + εεεt + εεεp; εεεt = ε̄εεtϕ(a, ηk);

ωωω = ωωωe +ωωωt +ωωωp; εεεp +ωωωp =

p∑

α=1

1

Hα
bbbα ⊗ nnnαΦ(ξα), (146)

where uuu is the displacement; ∇∇∇ designates the gradient in the Ω0; subscript s designates sym-
metrization; εεε and ωωω are the small strain and rotations, respectively; and subscripts e, t, and p
are for elastic, transformational, and plastic parts, respectively.
2. Helmholtz free energy per unit mass

ψ = Jtψ
e + ψθη + ψcξ + ψintξ + ψ∇η + ψ∇ξ . (147)

2.1. Elastic energy

ρ0ψ
e =

1

2
EEEe:::CCC:::EEEe, (148)

whereEEEe = 0.5(FFF T
e ·FFF e−III) is the elastic Lagrangian strain tensor and CCC is the fourth-rank tensor

of elastic moduli, which are assumed here as the same for both phases. Note that the definition
of ψe in Eqs. (147) and (148) differs from that in Box 9.
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2.2. Thermal energy

ψθη = Aη2(1− η)2 + ∆Gθ(4η3 − 3η4);

∆Gθ = −∆s (θ − θe) , A = A0 (θ − θc) , A0 > 0, (149)

where ∆Gθ and ∆s are the differences between the thermal part of the free energy and entropy
for M and A, respectively; A is the magnitude of the double-well barrier between A and M at
phase equilibirum; θe is the thermodynamic equilibrium temperature for stress-free A and M; A0

is a parameter; and θc is the critical temperature at which stress-free A loses its thermodynamic
stability.

2.3. Periodic in space crystalline energy

ψcξ =

p∑

α=1

Aα(η, ȳα)(ξ̄α)2(1− ξ̄α)2; Āα(η, ȳα) = AAα + (AMα − AAα )η2(3− 2η);

AA,Mα (yα) =

{
ĀA,Mα ȳα ≤ Hα;
kĀA,Mα ȳα > Hα.

ȳα = yα − Int( yα

Hα + wα
)(Hα + wα), (150)

where AAα and AMα are the magnitudes of the multi-well crystalline energy in A and M, respectively,
that define the critical shear stress for barrierless nucleation of a dislocation (i.e., the theoretical
shear strength); yα is the coordinate normal to the αth slip plane; and wα is the width of the thin
layer between dislocation bands.

2.4. Energy of interaction of dislocation cores belonging to different slip systems

ψintξ =

p∑

α,k=1

Aαk(η)(ξ̄α)2(1− ξ̄α)2(ξ̄k)
2(1− ξ̄k)2; Aαα = 0;

Aαk(η) = AAαk + (AMαk − AAαk)η2(3− 2η), (151)

where AAαk and AMαk are the corresponding magnitudes for A and M, respectively.
2.5. Gradient energies for PTs and dislocations

ψ∇η =
βη

2
|∇∇∇η|2; ψ∇ξ = 0.5βξ(η)

p∑

α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
; (152)

βξ(η) = βAξ + (βMξ − βAξ )η2(3− 2η); ∇mξα :=∇∇∇ξα ·mmmα; ∇nξα :=∇∇∇ξα · nnnα, (153)

where βη is the coefficient of the gradient energy for PT; βAξ and βMξ are the coefficient of the
gradient energy for dislocations in A and M, respectively; Z is the ratio of the coefficients for
the gradient energy normal to and along the slip plane; and superscripts m and n stand for the
directions along and the normal to the slip plane, respectively.
3. First Piola-Kirchhoff PPP and Cauchy σσσ stress tensor

I. Finite strains

PPP = ρ0JtFFF e···
∂ψe

∂EEEe

···UUU−1
t ···FFF T−1

p = JtFFF e···CCC:::EEEe···UUU−1
t ···FFF T−1

p ; (154)

σσσ = ρJtFFF e···
∂ψe

∂EEEe

···FFF T
e =

1

Je
FFF e···CCC:::EEEe···FFF T

e (155)
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II. Small strains and linear elasticity

σσσ = ρ
∂ψ

∂εεεe
= CCC:::εεεe. (156)

4. Ginzburg–Landau equations
4.1. Compact form in the Ω0 at finite strains

η̇ = LηXη = Lη
(

1

ρ0

PPP T···FFF e:::
∂UUU t

∂η
···FFF p +∇∇∇ ·

(
∂ψ

∂∇∇∇η

)
− ∂ψ

∂η

)
;

ξ̇α = Lα(η)Xξ
α = Lα(η)

(
1

ρ0

ταγα
∂Φ

∂ξα
+∇∇∇ ·

(
∂ψ

∂∇∇∇ξα

)
− ∂ψ

∂ξα

)
;

Lα(η) = LAα + (LMα − LAα )η2(3− 2η); τα := nnnα···FFF p···PPP T···FFF e···UUU t···mmmα, (157)

where Lη, LAα and LMα are the kinetic coefficients for PT and dislocations in A and M, respectively;
Xη and Xξ are the thermodynamic dissipative forces work-conjugate to η̇ and ξ̇α, respectively;
and τα is the resolved shear stress for a dislocation.

4.2. Detailed form at finite strains

η̇ = Lη{( 1

ρ0

PPP T···FFF e:::
∂UUU t

∂η
···FFF p − JtUUU−1

t :::
∂UUU t

∂η
ψe(EEEe, η)− Jt

∂ψe(EEEe, η)

∂η
+

−[2Aη(1− η)(1− 2η) + 12∆Gθη2(1− η)]−
p∑

α=1

∂Aα(η, ȳα)

∂η
(ξ̄α)2(1− ξ̄α)2 −

p∑

α,k=1

∂Aαk(η)

∂η
(ξ̄α)2(1− ξ̄α)2(ξ̄k)

2(1− ξ̄k)2

−0.5
∂βξ(η)

∂η

p∑

α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
+ βη∇2η}. (158)

ξ̇α = Lα(η){ 6

ρ0

ταγαξ̄α(1− ξ̄α) +
1

2
∇∇∇βξ(η)···∇∇∇ξ̄α +

1

2
[Z(1− ξ̄α)2 − 1](∇∇∇ξ̄α···nnnα)(∇∇∇βξ(η)···nnnα)

+
1

2
βξ(η)[∇2ξ̄α + (Z(1− ξ̄α)2 − 1)(∇∇∇···nnnα)(∇∇∇ξ̄α···nnnα)]

−2Z(1− ξ̄α)(∇∇∇ξ̄α···nnnα)2 + [Z(1− ξ̄α)2 − 1]∇∇∇(∇∇∇ξ̄α···nnnα)·nnnα − 2Aα(η, ȳα)ξ̄α(1− ξ̄α)(1− 2ξ̄α)

−2Aαk(η)ξ̄α(1− ξ̄α)(1− 2ξ̄α)(ξ̄k)
2(1− ξ̄k)2 + βξ(η)Z(1− ξ̄α)(∇nξα)2}. (159)

4.3. Small strains, linear elasticity

η̇ = Lη{(
1

ρ0

σσσ:::
∂εεεεεεεεεt
∂η
− Jt

2ρ0

(III:::
∂εεεεεεεεεt
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)εεεεεεεεεe:::CCC:::εεεεεεεεεe
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∂η
(ξ̄α)2(1− ξ̄α)2 −

p∑

α,k=1

∂Aαk(η)

∂η
(ξ̄α)2(1− ξ̄α)2(ξ̄k)

2(1− ξ̄k)2

−0.5
∂βξ(η)

∂η

p∑

α=1

(
(∇mξα)2 + Z(1− ξ̄α)2(∇nξα)2

)
+ βη∇2η}. (160)
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The Ginzburg-Landau equation for dislocations for small distortions looks like Eq.(159) with the
simplified expression for τα := nnnα···σσσ···mmmα.

In [271] a large-strain and thermodynamically consistent PFA for combined discrete disloca-
tions and multivariant martensitic PTs is suggested. It synergistically combined and extended the
most mechanically advanced PFA to martensitic PT in terms of the order parameters ηi [253] and
dislocations in terms of the order parameters ξi [268, 272]. Details for PFA to PT and dislocations
separately can be found in these papers. For compactness and simplicity, we present in Box 9 the
particular case of a complete system of equations from [182] with the following simplifications in
comparison with the general theory in [271].

(a) Slip systems of A and M, transformed back to A, coincide, i.e., all slip systems are inherited
during the direct and reverse PTs. This is the case, e.g., for PTs between b.c.c. and body centric
tetragonal (b.c.t.) crystal lattices as well as for PTs between f.c.c and f.c.t. lattices.

(b) We consider a single M variant.
(c) Surface energy is independent of phase and dislocations, which results in the simplest

zero-flux boundary conditions for ηi and ξi.
Box 11 also contains simplified equations for infinitesimal strains. The key problem was to

justify the best kinematic decomposition. Several quite natural and logical options of multiplica-
tive decomposition of the deformation gradient FFF , e.g., FFF = FFF e···FFFM

p ···UUU t···FFFA
p , with FFFA

p and FFFM
p

for the plastic deformation gradient in A and M, were rejected due to some undesired features.
The thought experiments considered cyclic A-M PTs and plastic deformation of A and M after
PTs, with focus on the inheritance and evolution of dislocations during and after PTs, along the
inherited slip systems that do not belong to the traditional ones for the product crystal lattice.

The multiplicative decomposition (142) of the deformation gradient into elastic, transforma-
tional, and plastic contributions (exactly in this order) is justified (Fig. 5). Eq. (143) defines the
corresponding Jacobian determinant describing ratios of elemental volumes in different configu-
rations. A symmetric transformation deformation gradient is interpolated in terms of the order
parameter η describing PT by Eq. (144), while more advanced expressions justified in [21, 299]
are currently available.

Generally, the plastic part lllp of the velocity gradient lll = ḞFF · FFF−1 includes four different
mechanisms: (a) dislocation evolution in M along the natural slip systems of M and (b) slip
systems of A inherited during PT; (c) dislocation evolution in A along the natural slip systems
of A and (d) slip systems of M inherited during reverse PT. Equations for transformation of the
parameters of the slip systems inherited by the crystal lattices during PT are presented in Fig.
21 and caption.

It is proved that the definition of lllp (a) in M expressed as a combination of plastic shear rates
along the slip system of M and (b) in M transformed back to A expressed as a combination of
plastic shear rates along the slip system of M back-transformed to A are equivalent. This result
leads to the description of lllp of M in the crystal lattice of A with the same expression as in
the crystal lattice of M, however, with transformed-back crystallographic parameters of the slip
systems of M to the A. This also led to the additive combination of lllp for all four mechanisms using
crystal lattice of the A. The lllp for all four mechanisms is expressed in the crystal lattice of the A
using slip systems of A and transformed-back slip systems of M, and just two corresponding types
of the order parameters. This is a noncontradictory and economic decomposition, in contrast to,
e.g., a multiplicative decomposition of FFF p into FFF p in the M and A. When the slip systems of A
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Figure 21: Sketches for Burgers vectors bbbω and normals nnnω to the slip planes in A and M in different configurations.
(a) Two-dimensional f.c.c. crystal lattice of A with two slip systems (designated by bbbαA and nnnαA) along the faces in
the undeformed reference configuration Ω0. (b) Two-dimensional b.c.c. crystal lattice of M with two slip systems
(designated by bbbωM , nnnωM ) along the diagonals in the transformed configuration Ωt. The slip systems of A inherited

by M after the PT and defined as bbbαAM = UUU t · bbbαA and nnnαAM = nnnαA ·UUU−1t /|nnnαA ·UUU−1t | are shown as well. (c) The slip

systems of M inherited by A after the reverse PT and defined as bbbωMA = UUU−1t · bbbωM and nnnωMA = nnnωM ·UUU t/|nnnωM ·UUU t|
are shown in the Ω0 along with the slip systems of A.
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and transformed-back slip systems of M coincide, Eq. (145) for lllp utilizes just one type of the
order parameters, like in the PFA for dislocation without PT by [272].

The Helmholtz free energy per unit mass consists of elastic, thermal, and periodic in space
crystalline energies, the energy of interaction of dislocation cores belonging to different slip sys-
tems, and gradient energies for PT and dislocations, see Eqs. (147)-(152). Utilization of the
thermodynamic laws results in the elasticity rule (Eqs. (154)-(156)) and expressions for the driv-
ing forces for PT Xη and dislocation evolution Xξ

α (157). The Ginzburg-Landau equations are
obtained as the linear relationships between the thermodynamic driving forces and work-conjugate
rates and are expressed in a compact and detailed form in Eqs. (157)-(160).

Various types of coupling between PT and dislocations are included in the theory. The non-
linear kinematic decomposition (142) already contains such a coupling resulting in the presence
of FFF p in the transformation work and UUU t in the definition of the resolved shear stresses τα. For
infinitesimal strains this type of coupling disappears. All material parameters for dislocations
depend on ηi since they have different values in A and M. Due to such a dependence, additional
terms in the Ginzburg-Landau equations for PTs appear due to the change in dislocation structure
and properties. Also, dislocations are inherited during PT and they may further evolve along the
nontraditional slip systems if corresponding critical shear strength is reached. In addition, one of
the strongest interactions between PT and dislocations occurs through their eigen-stress fields,
which is determined by a solution of the continuum mechanical boundary-value problem. Appli-
cation of the developed theory to the solution of some important material problems is presented
in [182–184].

17. Phase transformations and chemical reactions induced by plastic shear under
high pressure

The main experimental phenomena related to the PTs and CRs under pressure and shear are
reviewed in [28, 41, 42, 87, 246, 252, 474, 475]. Theoretical treatment was initiated in [246, 247].
The current four-scale theory (from atomistic to macroscale behavior of a sample) is recently
reviewed in [252]. To minimize repetitions, this Section will be short.

17.1. Main phenomena

One of the most impressive effects of plastic deformation on the PTs and CRs is observed
in experiments on high-pressure torsion under constant applied force. Initially, this work was
performed in metallic or ceramic rotational Bridgman anvils (see [41, 42] for PTs and [61, 88,
89, 474, 475] for CR), which are currently used for grain refinement and producing nanograined
materials [87, 434–436, 477]. Currently, much more precise in-situ experiments are performed with
the rotational diamond anvil cell (RDAC) [28, 122, 186], see inset in Fig. 24. Among numerous
phenomena that are observed in these experiments (see [28, 41, 42, 246, 247, 252]), we enumerate
just three the most important ones. Thus, plastic shear under high pressure:

(a) leads to the formation of new phases and reaction products that were not be produced
without shear [28, 29, 41, 42, 87, 246, 252, 302, 474, 476];

(b) reduces the transformation pressure by a factor of 3 to 10 for some PTs [28, 41, 42, 87,
186, 285] and chemical reactions [474, 476], and even by a factor of 100 for the PT from graphite
to diamond [122], and

(c) substitutes a reversible PTs with irreversible PTs [28, 276, 285].
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We will discuss the most advanced results on characterization and general properties of strain-
induced PTs in RDAC. The in situ quantitative synchrotron X-ray diffraction investigation of
plastic strain-induced α − ω PT in Zr was performed in [375]. The most consistent results were
obtained for strongly plastically predeformed Zr, when strain hardening saturates and material
hardness and yield strength and microstructure do not evolve with further plastic deformation
[87, 236, 305, 435]. Polycrystalline materials for this case behave like perfectly plastic and isotropic
with plastic strain history independent surface of perfect plasticity [236]. We assumed that since
the plasticity theory for such large strains is significantly simplified, the kinetics of strain-induced
PTs will be more tractable as well, and this is the best and repeatable initial state to start with.
This was the case in experiments. Working part of sample looks like a coin, with diameter of
500µm (diamond cullet) and thickness reducing from 200µm down to 10µm and less, depending
on the applied force and the rotation angle of an anvil. Distributions of pressure in each phase
and in the mixture, and volume fraction of ω-Zr along the radius, all averaged over the sample
thickness, as well as thickness profile were measured using synchrotron X-ray diffraction and X-ray
absorption. The simplified version of the strain-controlled kinetic equation derived in [246, 247]
(which is a particular case of Eq. (117)) is

dc

dq
= a (1− c) σ

w
y2

σa

p− pdε
pdh − pdε

H(p− pdε)− b c
σwy1

σa

prε − p
prε − prh

H(prε − p); σa = cσwy1 + (1− c)σwy2.(161)

Here, σyi is the yield strength of i-th phase; pdε and prε are the minimum pressure at which the
direct strain-induced PT may occur and maximum pressure at which the reverse strain-induced
PT proceeds, respectively, H is the Heaviside step function used to impose criteria for the direct
(p > pdε) and reverse (p < prε) strain-induced PTs; pdh and prh are the pressures for the direct and
reverse PTs under hydrostatic loading; all remaining symbols are material parameters. Eq.(161)
includes the possibility of direct and reverse PTs and the different plastic strain in each phase
due to different σyi. For ω-Zr, the reversed strain-induced PT was not observed in [375], i.e.,
the second term in Eq.(161) disappears. Eq.(161) was confirmed experimentally and all material
parameters were identified. In particular, the minimum pressure for the strain-induced α − ω
PT, pdε=1.2 GPa, is 4.5 times lower than under hydrostatic conditions and 3 times lower than the
phase equilibrium pressure. The pdε is found to be independent of the compression-shear straining
path. This means that the strain-induced PTs under compression in DAC and torsion in RDAC
do not fundamentally differ for Zr.

Note that recent experimental advancements include possibility of measurements of the fields
of all components of the stress tensor in the diamond in DAC at the contact surface with the
sample [159] and particle displacements at the contact surface of the sample in DAC and RDAC
[376].

17.2. Atomistic studies

Molecular dynamics [258, 298] and first principle simulations [464] were performed for an ideal
lattice. Under guidance of the analytical treatment of the martensitic PTs within PFA [253], they
led to an explicit expression for the PT (i.e., lattice instability) condition for cubic - tetragonal
Si I↔Si II transformations under action of all six components of the stress tensor. The strong
effect of nonhydrostatic stresses was exhibited, in particular, in the following result: the pressure
for Si I↔Si II PT under uniaxial compression was reduced by a factor of 20 in comparison with
hydrostatic loading [464]. Stress-strain curves for different loadings were determined as well. A
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new phenomenon was predicted [258]: unique homogeneous and hysteresis-free first-order phase
transformations for which each intermediate crystal lattice along the transformation path is in
indifferent thermodynamic equilibrium and can be arrested. Elastic energy for Si I was analytically
presented in terms of the fifth-degree polynomial of the Lagrangian strain in [51], for finite strains
including lattice instability points.

Because of different effects of the stress tensor on the PT conditions for the direct and reverse
PTs, these atomistic results led to essential generalization of the PFA in [12, 299]. This advanced
theory was applied to the nucleation and growth of Si II at a single dislocation in [13], and the
importance of the generalized PT criterion is demonstrated.

Generally, large-scale MD simulations are broadly used to study interaction of PTs and plas-
ticity, especially in a shock wave, see examples for α− ε PT in iron in [137–139, 190, 191, 445].

17.3. Nucleation and evolution of high-pressure phase at dislocation pileups

As the main nanoscale mechanism of drastic reduction in PT pressure in experiment due to
plastic deformations, a strong concentrator of the all components of the stress tensor at the tip of
dislocation pileup was suggested in [246, 247] and treated analytically. Much more precise results

 

Figure 22: Evolution of the HPP (red) and dislocations obtained with the PFA for coupled dislocations and PT
[182, 269, 271] within the right grain of a bicrystal under shear strain γ at fixed vertical compressive stress. The
cases without dislocations in the right grain (left column) and with dislocations in the right grain (right column)
are shown. The last row, corresponding to the stationary structure for γ = 0.2 includes the contour lines of the
equilibrium transformation work σσσ:::εεεt(η) = ∆ψθ = 1 GPa. For the most of the stationary interfaces, this phase
equilibrium condition is satisfied. Reproduced with permission from [184].
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were obtained in [182–184, 270] using PFA approach to interaction between dislocations and PTs
presented in Section 16.5 and [271]. Example of the solution for a bicrystal under compression
and shear is presented in Fig. 22. Dislocation pileup located in the left grain (not shown) creates
a strong concentrator of all components of the stress tensor σσσ in the right grain, which exceeds the
crystal lattice instability limit and leads to a barrierless nucleation of a HPP. It is also important
that the deviatoric stresses in the nanoscale defect-free regions are limited by the theoretical
strength rather than the macroscopic yield strength and may be one to two orders of magnitude
greater. All this increases the local driving force for PT, enabling drastic reduction of the applied
pressure to initiate and run the PT. For the chosen parameters, the applied pressure is 3-20 times
smaller than the PT pressure under hydrostatic conditions in the presence of a single dislocation
and 2-12.5 times lower than the phase equilibrium pressure. The unique highly deviatoric stresses
that cannot be achieved for the macroscopic sample may lead to new phases and phenomena. The
stationary geometry of the HPP is determined by the thermodynamic equilibrium

σσσ : εεεt = ∆ψθ (162)

either at point of the interfaces (Fig. 22) or in terms of the stress tensor averaged over the
entire grain or polycrystal. In the local approach, stresses due to dislocations are included in σσσ;
if separated from the external stresses, they will reproduce an athermal threshold for interface
motion KΣ due to interaction with dislocations (see also Section 11.4).

For larger scale, a scale-free PFA for the coupled evolution of multivariant martensitic mi-
crostructure and discrete dislocation bands was presented in [92, 259]. It includes a scale-free
PFA for martensitic PTs [91, 167, 267]. Dislocation pileups or shear bands are introduced by the
contact problem formulation, considering continuous sliding displacements (dislocations) along
the discrete slip systems. This allows one to produce stress concentrators required for nucleation
of the HPP, similar to the nanoscale approach described above. Scale-free model, while is much
simpler than the nanoscale model, reproduces well all results obtained for nanoscale model for a
bicrystal. Also, this model is applied in [92, 259] for FEM simulations of the strain-induced PTs
in a polycrystal sample under compression and shear (Fig. 23). The phase equilibrium condition
(162) in terms of local transformation work at the interface and transformation work averaged
over the entire polycrystal was confirmed. Also, similar to the nanoscale model, we obtained for
the scale-free model that stresses averaged over all martensitic and austenitic regions, as well as
for the entire polycrystal are equal:

< σσσ >M=< σσσ >A=< σσσ > . (163)

Note that result similar to Eq. (163) was obtained in [219] for traditional continuum plasticity
and sharp interface rather than for the PFA and localized plasticity. Also, evolution of the volume
fraction of HPP in each grain and in a sample, and averaged over the sample the volume fraction
of HPP, each martensitic variant, pressure, and shear stress versus shear strain are determined
in [92, 259]. All the obtained info is planned to be applied for derivation of more precise strain-
controlled kinetic equation than Eq. (161), which is currently used.

MD simulations in [52] on amorphization of Si I at the tip of the 60o shuffle dislocation pileup
against three different grain boundaries under shear confirms main the analytical [246, 247] and
PFA [92, 182–184, 259, 270] results. Thus resolved shear stress for initiation of amorphization
reduces from ∼ 9 GPa for perfect crystal down to ∼ 1.5 GPa for 8 dislocations in a pileup. At
the same time, screw shuffle dislocations in Si I pass through all three grain boundaries (Σ3, Σ9,
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(a) 

Figure 23: Evolution of high-pressure phase (red) and dislocation structure in a polycrystalline sample under
shear at constant compressive stress obtained with the scale-free PFA. Reproduced with permission from [259].

and Σ19) and cannot pileup, and consequently affect a PT [53]. Atomistic mechanism of strain-
induced nucleation of amorphous phase, different for different grain boundaries is elucidated.
While Σ3 grain boundary amorphous band propagates along the (112) plane directly, for Σ9,
and Σ19 boundaries the stacking faults and an intermediate phase precede the formation of an
amorphous band along the (110) and (111) planes, respectively.

MD simulations of the interactions of plasticity and α − ε PT under shock in iron bicrystals
in [468] also confirms the reduction in PT pressure due to the effect of the grain boundary
and dislocations induced by grain boundary and pre-existing dislocations. This work also gives
important atomistic detail of the promotion of the PT and distinguishes between strain- and
stress-induced PTs.

At the same time, in the MD studies of shock loading of a polycrystalline iron sample [135,
136, 190, 444] dislocation activity is suppressed by small grain size (< 10 nm), or PT precedes
plastic flow, and nucleation of the high-pressure phase is promoted by grain boundary and triple
junctions.

The simultaneous occurrence of dislocation bursts [145] and amorphization in SI has been
found in shock experiments [469–471]. In these works, both MD simulations and transmission
electron microscopy offer that the stacking faults along {111} planes and their intersections serve
as nucleation sites for amorphization. For larger shock intensity, the amorphous band broad-
ens and deviates from the {111} plane toward the maximum-shear-stress plane. Shock-induced
amorphization in SiC was studied in a similar way in [472]. Amorphization in SmCo5 without
dislocations under uniaxial loading was studied with MD and experimentally in [318].

Inheritance of dislocations by martensite in shape memory alloys was considered in experi-
ments and simple models in [40, 316, 317]. There is also huge literature on PT under indentation,
and compression of nanospehere and nanopilar, which we will not consider here.

17.4. Macroscale theory and FEM modeling of strain-induced transformations

The main goal of a macroscopic modeling and simulations is to determine the evolution of the
distributions of the components of the stress tensor, accumulated plastic strain, and the volume
fraction of the HPP [100, 102, 295, 296] in a sample compressed in DAC and twisted in RDAC, see
example in Fig. 24. The first results were obtained analytically in [246, 247] with many simplifi-
cations, but still some important conclusions were made. The first FEM results in [295, 296] were
much more comprehensive, but still the material and contact friction models were simplified. The
most advanced model for coupled large elastoplasticity and strain-induced PT under megabar
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Figure 24: Comparison of distributions of pressure p (a), volume fraction of the HPP c (b), and accumulated
plastic strain q (c) for compression (1, 3, 5) and torsion (2, 4, 6) for the case when the yield strength of the HPP
is five times smaller than that for the low-pressure phase [295, 296]. Due to transformation softening, localized
deformation-transformation bands are observed.

pressure and corresponding FEM algorithms were developed and applied to study PT in BN un-
der compression in DAC [100] and torsion in RDAC [102] within rhenium gasket. Finite-strain
kinematics for a polycrystal included multiplicative decomposition of the deformation gradient
into elastic and inelastic parts, and then inelastic deformation rate was additively decomposed
into plastic and transformational parts, different from the multiplicative decomposition (142) for
a single crystal. Murnaghan elasticity rule and pressure-dependent Prager-Drucker yield condi-
tion for each phase along with the simplest mixture rule were utilized. Kinetic Eq. (161) for
strain-induced PT was implemented as well. Third- and fourth-degree anisotropic elastic energy
were utilized for diamond [103, 305]. Combined Coulomb and plastic friction between sample,
diamond, and gasket were considered. Without PTs, elastoplastic models were calibrated and
verified by independent experiments for rhenium [101, 103, 104] and tungsten [305] up to 300
GPa and 400 GPa, respectively. Various experimental phenomena have been reproduced and ex-
plained, some have been predicted, methods of controlling PTs were suggested, and some possible
misinterpretations of experimental results have been demonstrated, see [246, 252].

18. Scale transitions and phenomenological theories for interaction between phase
transformation and plasticity

An averaged description of phase transformations in terms of the volume fraction of phases
is presented in [25, 59, 60, 227, 228, 385] at small strain and in [228, 381] at large strain. An
averaging procedure for PT with semicoherent interfaces at large strains is developed in [237]. A
computational studies of martensite formation and averaging, including multicale approaches, can

88



be found in [121, 175, 209, 219, 263, 331–333, 405, 432, 433]. Strain-induced PTs are described
in [82, 370, 418]. Significant progress in the study of TRIP is presented in [58, 60, 113, 115, 368].

More detailed studies, e.g., [24, 152, 174, 200, 218, 330] demonstrate dependence of PT kinet-
ics on strain/stress mode and path, texture, temperature, and strain rate; some of them include
constitutive modeling. Simultaneous occurrence of stress-induced and plastic strain-induced PTs
was modeled in [107, 321]. In the last paper, these two types of PTs are distinguished based
on the transformation mechanism: for stress-induced PT γ-austenite transforms directly to α′-
martensite, but for strain-induced PT these transformation occurs through appearance of bands of
ε-martensite, and α′-martensite nucleates at intersection of these bands (alternatively, martensite
may nucleate at intersection of twins [78]). An advanced version of elastoplastic self-consistent ap-
proach to the behavior of polycrystalline aggregate, initially developed in [431] was implemented.

Simulations of the interaction between PTs and plasticity, utilizing macroscscale constitutive
equations can be found in [45, 295, 296, 322, 323, 395, 406]. Models and simulations for single
crystals and dynamic loading can be found in [20, 105, 106]. Some theories and FEM approaches
to strain-induced PTs coupled to large elastoplasticity under high pressure were analyzed in
Section 17.4.

19. Fracture and interaction between fracture and phase transformation in inelastic
materials

A general theory summarized in Boxes 1, 2, and 6-8 is applicable to fracture, including crack
and void nucleation and growth [172, 244, 248]. Fracture is defined as a thermomechanical process
of change in some region of tensile and shear elastic moduli and yield strength from their initial
values to zero. This process cannot be arrested at a material point in the intermediate state. After
complete fracture, the tensile stresses in the fracture region are zero. Formally, fracture here is
considered as a particular case of a PT without transformation strain and a specific properties
of the product phase (vacuum), which was coined in [244, 248] a generalized second-order PT.
With such a definition, local driving force Eq. (31) for an isothermal fracture, neglected internal
variables, and independent of εεεp free energy, reduces to

ρX = − 0.5

000∫

EEE1

εεεe ::: dEEE :::εεεe − ρ ∆ψθ =

εεεe2∫

εεεe1

σσσ ::: dεεεe + 0.5εεεe 1 :::EEE1 :::εεεe 1 − ρ ∆ψθ . (164)

It is not clear where to get ∆ψθ. In applications, it can be included in athermal friction or just
neglected. But we will keep it for generality.

Similar to PTs, the developed approach is valid for an arbitrary inelastic material, because
the constitutive equations were not used in the process of derivation. To illustrate the method,
we consider analytical solutions to two simple problems.

19.1. Crack propagation in elastoplastic material

Equations for crack propagation in an elastic-perfectly-plastic material were derived in [244,
248] in a framework similar to the [86] framework for the plane stress. The localized plastic region
OAB (Fig. 25) ahead of the crack is subjected to cohesive stresses σ = σy on the extended crack
surfaces OA and OB ; AKLB is the fracture zone. The transforming volume before fracture
V1 = b ∆ l δ̄ , where δ̄ is some intermediate value of the crack opening at the length ∆ l and b

is the thickness of the sample.
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plane stress case (i.e. in a thin sheet). The localized plastic region OAB (Fig. 3) in
front of the crack is under the action of cohesive (restraining) stresses � � �y on the
extended crack surfaces OA and OB, the separation distance � between these sur-
faces is determined by known formulae (e.g. Rice, 1968a). We will use the following
interpretation: with a crack propagation by a distance �l fracture occurs in the ®nite
region AKLB; during this process the surface PAK (and RBL) shifts due to defor-
mation to position PA0 (and RB0). Eq. (1) for an isothermal process at neglected "t

and "y and the validity of Eq. (14) appears as follows

�X �
�"e2

"e1

� : d"e � 0:5"e1 : E1 : "e1 ÿ �� y: �81�

Here we took into account the fact that E2 � 0. Let us make additional simplifying
assumptions. We will take into account the stress and elastic strain "e normal to the
crack plane only; the work of other components is neglected. If the width of the
fracture zone AA0 is small (this is really the case, as will be seen from the solution),
due to zero stresses at the surface AB and the plane stress condition this is a rea-
sonable hypothesis. Additionally we assume that during the fracture process

E �� � � E 1ÿ �� � and �y �� � ÿ �y 1ÿ �� �; i:e: "e � �y �� �
E �� � �

�y

E1
� const: �82�

Due to these assumptions the work integral in Eq. (81) disappears, elastic energy

0:5"e1 : E1 : "e1 � 0:5
�2y
E1

�83�

is constant and the transforming volume before transformation V1 � b�l��, where ��

is some intermediate value of the crack opening at the length �l and b is the thick-
ness of the thin sheet. As the local dissipation increment due to fracture �X �
0:5

�2y
E1
ÿ �� y is homogeneously distributed in the fracture region and is indepen-

dent of the geometry of this region, we arrive at the situation considered in Sections

Fig. 3. The crack position MABN before and MA0B0N after crack advance by distance �l; AOB and

A0O0B0 are the localized plastic regions before and after crack advance; AKLB is the fracture zone.

870 V.I. Levitas / International Journal of Plasticity 16 (2000) 851±892

Figure 25: The positions of a crack MABN before and MA′B′N after crack advance by distance ∆l ; AOB and
A′O′B′ are the localized plastic regions before and after crack advance by distance ∆l ; AKLB is the fracture
zone at the beginning of fracture process. Reproduced with permission from [244].

Neglecting all the stresses and elastic strains εe but normal to the crack plane only and
assuming that during the fracture process

E (ξ) = E (1− ξ) and σy (ξ) = σy (1− ξ) , i.e. εe =
σy (ξ)

E (ξ)
=

σy
E1

= const, (165)

we obtain that the work integral in Eq.(164) is zero. Evaluating elastic energy, we obtain

ρX = 0.5
σ2
y

E1

− ρ ∆ψθ, (166)

which is uniform in the fracture region and is independent of its geometry; thus, we have to
use equations from Boxes 6-8. The thermodynamic fracture criterion and the principle of the
minimum of transforming mass can be expressed as

(
0.5

σ2
y

E1

− ρ ∆ψθ − ρK0

)
b ∆ l δ̄ − 2 Γ ∆ l b = 0 ; ∆ l δ̄ → min . (167)

The minimum value of δ̄ is determined from the fracture criterion (167). Condition ∆ l → min
leads to ∆ l = a , where a is the interatomic distance in the direction of crack propagation.
Then δ̄ = δ is the crack opening displacement between points A and B and the thermodynamic
fracture criterion (167) can be transformed to the criterion of critical crack opening

δ = δc :=
2 Γ

0.5
σ2
y

E1

− ρ ∆ψθ − ρK0

. (168)

In contrast to previous publications, the critical crack opening is defined in terms of known
material parameters.

For the Dugdale model δ =
J

σy
[389], where J is the path independent J -integral for the

pathes that do not cross the plastic region. Then criterion (168) can be expressed in term of the
critical value of J -integral

J = Jc := σy δc = σy
2 Γ

0.5
σ2
y

E1

− ρ ∆ψθ − ρK0

. (169)

Eq. (61) for transformation time can be expressed as a kinetic equation for a crack growth:

l̇ =
a

ts
=

a

t0
exp

(
− ρEa

Rθ

N

n
b a δc

)
. (170)
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Eq.(170) can be easily transformed to the traditional Arrhenius equation formulated in [478]
kinetic concept of strength based on experimental regularities, see also [57]. In our solution the
crack propagates atom by atom, i.e., almost continuously, in contrast to the discrete finite crack
advance in the model by [198]. The characteristic size in our model is the thickness δ .
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Figure 26: (a) The cross-section of an elastoplastic sample with notch under tension with six possible fracture
regions; (b) and (c) distribution of equivalent von Mises stress before fracture and after fracture in regions I-VI,
respectively. Reproduced with permission from [172].

FEM study of ductile fracture in a sample with edge notch under tension (Fig. 26 a) based
on the same theory is given in [172]. Six regions in a small rectangular near the edge notch was
considered in different combinations as a possible fracture zone. The distribution of von Mises
stress before fracture and after fracture in regions I-VI is shown in Figs. 26 b and c, respec-
tively. After solving multiple elastoplastic problems with fracture in different regions (modeled
as incremental reduction of elastic moduli down to zero), the mechanical part of the driving force
ϕ = ρ(X −∆ψθ) was evaluated, and various scenarios were compared (Table 1).

For example, for fracture in narrow regions II, IV and VI, ϕ is larger and its growth is faster
during the fracture propagation than for thick regions I, III and V. However, the resistance due
to the surface energy for a thin layer is larger than for a thick layer. When fracture occurs
simultaneously in regions II + IV or II + IV + VI rather than first in a small region II and then
spreads through regions IV and VI, the ϕ is larger, i.e. it is thermodynamically more favorable
scenario. However, the damaging volume Vn grows by factors 2 and 3, respectively. Thus, the
subsequent growth is more favorable kinetically, if the thermodynamic criterion is met.

At a relatively small surface energy, a void nucleation in region VI occurs instead of crack
propagation. The mechanical driving force is significantly larger than for any damage scenarios.
After pore nucleation fracture propagates from pore to notch. This corresponds to a well-accepted
experimental result that the void nucleation and bridging ahead of the crack tip is an actual
physical mechanism of ductile fracture.

An analytical approximation of the computational results for ϕ allowed us to analyze the
application of macroscopic thermally activated kinetics from Boxes 5, 6, and 8. Below are the
found typical cases in the determining two characteristic sizes of the fracture region: (a) from
the principle of minimum of fracture time without any constraints; (b) from the thermodynamic
fracture criterion; (c) as an interatomic distance, and (d) as the sample size. In some cases crack
advance is finite; however, different from [198], the advance is determined from the extremum
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principle or the thermodynamic fracture criterion rather than being a chosen material parameter.

Table 1: Mechanical driving force ϕ = ρ(X −∆ψθ) for different fracture scenarios; Vn is the volume of fracture
zone. Red color designates the regions where fracture has already occurred; dashed regions show the fracture zone
for the current simulation step. Reproduced with permission from [172].

 
 

Table 1. Driving force   for different scenarios of fracture. 
 

 , MPA     Vn  
Fracture in I, II  2.5 4 

 
Fracture in III, IV after fracture in I, II 2.52 4 

 
Fracture in V, VI after fracture in I-IV 2.57 4 

 
Fracture in II 3.38 1 

 
Fracture in IV after fracture in II 4.45 1 

 
Fracture in VI after fracture in II, IV 4.97 1 

 
Fracture in I-IV 2.79 8 

 
Fracture in I-VI 3.24 12 

 
Fracture in II, IV 6.48 2 

 
Fracture in II, IV, VI 10.59 3 

 
Fracture in VI 23.29 1 

 
Fracture in IV 10.62 1 

 
Fracture in II after fracture in VI 3.69 1 

 
Fracture in IV after fracture in VI 7.22 1 

 
 

initial 

current 

19.2. Interaction between fracture and phase transitions

Relatively large transformation strain induces high stresses, that may relax by crack and void
nucleation and growth instead of plasticity, see examples in [156]. At the same time, a large stress
concentrator at the crack tip may induce PT [48, 419], which may increase material toughness;
this is the so-called transformation-toughening phenomenon.

To illustrate some types of interaction between fracture and PT in elastoplastic material,
several model problems were solved in [172] for sample and loading shown in Fig. 26a. Obtained
results are presented in Table 2. For fracture in region II, ϕ = 3.38MPa before PT and ϕ =
1.35MPa after PT in region I + II, due to stress relaxation caused by dilatational transformation
strain. Fracture in region II + IV decreases the mechanical driving force for PT in region I down
to −8.06 MPa due to stress release and increases ϕ for PT in regions V and VI by moving stress
concentrator closer.

Next, consider competition between PT and fracture for athermal (time-independent) kinetics,
see Box 4. We compare four processes: PT region I + II or in I–IV, and fracture in region II
or in region II + IV. Let each of these processes be thermodynamically admissible, i.e. the
thermodynamic SC criterion (38) is met for the selected values of the surface energy and K0.
One has to select which thermomechanical process will take place in reality, i.e., to choose the
single solution among all possible ones. This is situation described in Section 6.6, i.e., the best
unique solution is the stable one.

According to the extremum principle (45), which is the global SC criterion for the determi-
nation of the stable deformation process, for the prescribed normal stress the larger the normal
displacement averaged over line BC is the more stable is the SC process. Based on Table 3, frac-
ture in region II + IV should occur as the most stable SC process. If for fracture in region II + IV
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the thermodynamic fracture criterion (38) is not met, then PT in region I–IV should take place.
For the case when PT in region I + II and fracture in region II are the only thermodynamically
possible, the fracture will occur. Consequently, similar to PTs (see Section 14), in addition to the
thermodynamic fracture and PT criteria (38), the global fracture and PT criteria (44) and (45)
based on stability analysis should be applied for some cases.

For time-dependent kinetics we do not need additional global fracture and PT criteria for this
case. Indeed, the principle of minimum of transformation time allows us to choose which process
– PT or fracture – will occur in the shortest time. However, in the case of time-dependent kinetics
of PT or fracture and time independent plasticity we may need the global criterion of SC again,
because plastic flow without PT and fracture may be the most stable process.

Table 2: Mechanical driving force ϕ = ρ(X −∆ψθ) for different scenarios of fracture and phase transformation.
Red color designates the PT regions; dashed regions show the fracture zones. Reproduced with permission from
[172].

 
 

 
Table 2. Driving force   for various scenarios of fracture and PT. 

 
The first process , MPA The second 

process
, MPA  

PT in I, II 7.01 Fracture in II 1.35 

-------  Fracture in II 3.38 

Fracture in II, IV 6.48 PT in I -8.06 

Fracture in II, IV 6.48 PT in V 10.17 

Fracture in II, IV 6.48 PT in VI 12.62 

 
 

Table 3. Normal displacement, averaged over BC, for various 
processes. 

 
The process Displacement 

uBC 
, 

MPA 
 

PT in I, II 0.7491  10 -3 7.01 
 

PT in I, II, III, IV 0.988  10 -3 8.81 
 

Fracture in II 0.9659  10 -3 3.38 
 

Fracture in II, IV 2.415  10 -3 6.48 
 

 
 
 PT Fracture 

Table 3: Normal displacement, averaged over line BC, and mechanical driving force ϕ for various processes. Red
color is for the PT regions; dashed regions designate the fracture zones. Reproduced with permission from [172].

 
 

 
Table 2. Driving force   for various scenarios of fracture and PT. 

 
The first process , MPA The second 

process
, MPA  

PT in I, II 7.01 Fracture in II 1.35 

-------  Fracture in II 3.38 

Fracture in II, IV 6.48 PT in I -8.06 

Fracture in II, IV 6.48 PT in V 10.17 

Fracture in II, IV 6.48 PT in VI 12.62 

 
 

Table 3. Normal displacement, averaged over BC, for various 
processes. 

 
The process Displacement 

uBC  (mm) 
, 

MPA 
 

PT in I, II 0.7491  7.01 
 

PT in I, II, III, IV 0.988  8.81 
 

Fracture in II 0.9659  3.38 
 

Fracture in II, IV 2.415  6.48 
 

 
 
 PT Fracture One of the remaining problems is the mass balance for fractured material. In the energy

methods of fracture mechanics the fractured region is removed. From physical point of view,
fracture means that atoms are separated by the distance when their interaction is negligible. For
such a formulation, the volume of the fracture region increases during the fracture process from
zero to some value determined by a solution of a mechanical problem. For modes II and III, crack
surfaces can be in contact.

Other problem is related to definition of fracture: which components of the elasticity tensor
EEE tend to zero and in which sequences? The stress state and thermodynamic driving force may
depend on the chosen process.
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19.3. Void nucleation in infinite elastoplastic sphere

Spherical void nucleation in an infinite elastic-perfectly-plastic sphere under a homogeneously
distributed tensile stress p was considered in [244] in small strain approximation. Fracture process
was modelled by decreasing the bulk modulus K in a small sphere with a radius r from an initial
value K1 to zero accompanied by jump ∆ψθ under isothermal conditions. The stress state for
this problem was taken from [393]. Surface stresses were neglected. For an elastic material, the
mean tensile stress inside the transforming zone is

p̃ = p
S1 + q

S + q
, (171)

where S1 =
1

3K1

and S =
1

3K
are the elastic bulk compliance of undamaged material and

during the fracture, q =
1

4µ1

, µ1 is the shear modulus of undamaged material. For a void after

fracture K2 = 0 , S2 → ∞ . After integration one obtains

ρXe = 0.5 p2

(
1

3K1

+
1

4µ1

)
− ρ∆ψθ = p2 3

4

(1− νo)
E

− ρ∆ψθ , (172)

where E and νo are Young’s modulus and the Poisson ratio of the undamaged material.
For void nucleation in an elastoplastic material, during the increase in compliance S , the

material initially deforms elastically. Plastic deformation near the damaging region starts at
S = Sp determined from equation

p̃p = p
S1 + q

Sp + q
= p − 2

3
σy , (173)

According to [393], in the elastoplastic regime variation of stress p̃ is determined by equation

p̃ (S − S1) =
2

3
σy (S1 + q) exp

(
p − p̃

2/3σy
− 1

)
. (174)

After manipulations, one obtains for elastoplastic regime

ρXp =
3 (1− νo)

4E

(
2

3
σy

)2 [
2 exp

(
3 p

2σy
− 1

)
− 1

]
− ρ∆ψθ . (175)

Since X is independent of radius r , we can use the same equations and conclusions like for PT
in a spherical nucleus in Section 8. For macroscale thermally-activated kinetics, the principle
of minimum mass results in condition r → min and equation from Box 7 are applicable for
the radius of the thermodynamically admissible void and the fracture time. One can also apply
equations in Box 4 to described thermally activated void nucleation, like for PT in Section 8.

For an elastic sphere, the thermodynamic criterion for void nucleation was presented in [57]. It
was obtained that the stress required for void nucleation reduces with the increasing void radius,
i.e., nucleation of an infinite void needs the smallest p̃. The same should be true for elastoplastic
sphere. In contrast, our kinetic approach allows determination of the explicit void radius and
nucleation time versus applied tensile stress.

Numerous papers are devoted to the void nucleation and growth due to diffusion of vacancies,
Kirkendall effect, and chemical reaction, see e.g., [109, 311] and references herein.

Thermodynamic driving force for a void growing in elastoplastic material
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19.4. Alternative approach to void nucleation

Completely different definition of the void nucleation due to fracture is accepted and used
in [256]: it is a thermomechanical process of the growth of a cavity inside the solid from zero
to some critical size due to atomic or molecular bond breaking. Applying our thermodynamic
approach to such a definition, taking into that dissipation due to fracture only is independent of
the volume under consideration, and considering sample infinitesimally larger than a void, it was
obtained for the thermodynamic driving force

Xv =

uuu2∫

0

∫

Σ

pppΣ···duuuΣdΣ−
un2∫

0

∫

Σ

2γ

R
dundΣ, (176)

where pppΣ is the traction vector in the solid at the variable void surface Σ, uuu and un is the
displacement vector and its normal component at the void surface, and 1/R is the mean curvature
of the void surface. Thus, the thermodynamic driving force for the void nucleation (i.e., the
dissipation due to fracture only) is localized at the void surface, is independent of plastic strain
in solid, and represents the difference between work produced by external traction acting on the
void surface pppΣ and work produced by the Laplacian pressure 2γ

R
. For a spherical void of a radius

r under axisymmetric normal tensile stress σn in solid at the void surface, Eq. (176) simplifies to

Xv =

rc∫

0

∫

Σ

(
σn −

2γ

r

)
drdΣ = σn

4

3
πr3

c − γ4πr2
c . (177)

Here rc is the radius of the critical nucleus, which can be found from minimization of Xv with
respect to rc, or equivalently, from the mechanical equilibrium equation σn = 2γ

rc
. Since for a

subcritical nucleus σn <
2γ
rc

, the thermodynamic driving force Xv is negative, and determines the
energy necessary for void nucleation, which is supplied by the thermal fluctuations. The large-
strain solution to the perfectly plastic problem on expansion of a spherical cavity from zero size
[154, 254] is

σn = σ − σc; σc :=
2

3
σy

(
1 + ln

(
2µα

3σy

))
. (178)

Here, α = 1+ν
1−ν and σc is the cavitation pressure, i.e., the possible maximum value of tensile

pressure that solid can sustain for neglected surface energy. Utilizing for such a driving force a
kinetic theory from Box 4, we obtain the explicit relationship between tensile stress for nanovoid
nucleation σ vs. temperature:

σn = σ − σc =

(
16πγ3

3βkθ

)1/2

. (179)

In addition to fracture, void nucleation may also occur due to PT-related mechanisms [250, 254,
255, 257], namely due to direct sublimation (i.e., transformation of a critical volume of solid to
gas), sublimation via virtual melting, and kinetic melting and evaporation of a stable liquid. Fig.
27 from [256] shows a complete temperature-tensile stress kinetic diagram for void nucleation due
to different processes.
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Figure 27: Kinetic dimensionless temperature-tensile stress criteria for the nucleation of a spherical void due to
fracture, sublimation, sublimation via virtual melting, and evaporation of a liquid drop within an elastoplastic
solid for two values of a specific surface energy γ (in J/m2). Temperature is normalized by the sublimation
temperature θ∗ for σ = 0 and neglected surface energy, and stress is normalized by a cavitation stress at melting
temperature σmc . The following designations of the curves are utilised: for fracture θvoid (red solid line), for direct
sublimation θds (green dashed line), for sublimation via virtual melting θvms (blue solid line), for kinetic melting
θm (black dotted line), for evaporation of melt θev (brown dash-style line), and for thermodynamic equilibrium
melting θeqm (magenta dash-dot-style line). Bold parts of curves correspond to the lowest temperature for a given
tensile stress at which critical void can appear. With increasing tensile stress, they correspond first to direct
sublimation, then to evaporation of liquid, sublimation via virtual melting (for γ = 0.25J/m2 only), and fracture
due to bond breaking. Reproduced with permission from [256].

19.5. Phase field approach to fracture

It is clear from solutions in Section 19 that search for crack trajectory in elastoplastic materials
based on the presented sharp interface theory and extremum principle is very computationally
expensive. Similar to PT, PFA with finite-width interface is much more effective for this purpose.
The PFA has been widely used for the simulation of fracture [2, 7, 32, 36, 37, 85, 146, 147, 153,
195, 211, 342, 409, 456] and damage [357, 358, 440, 456].

The order parameter φ in the majority of PFAs to fracture characterizes atomic bond breaking
in a solid and separates a sample into the undamaged solid (φ = 0), fully broken atomic bonds
(φ = 1), and the finite-width crack surface, in which the material is partially broken (0 < φ < 1).
The evolution of the damage order parameter occurs mainly in the crack tip zone and is described
as a solution of the corresponding Ginzburg-Landau equation. The Ginzburg-Landau equation
coupled with mechanics, i.e. kinematics, constitutive rules, and equilibrium/motion equations,
are used to obtain the evolution of the order parameter and stress-strain fields. All PFAs to
fracture can be divided into two groups: with a double-well potential, like for PTs, and with a
single-well potential.

PFAs with double-well potential. The first PFA for crack propagation utilizing the Ginzburg-
Landau equation for PT was presented in [7] with the concentration of point defects as the order
parameter. The coupled Ginzburg-Landau and elastodynamic equations were utilized for finding
the evolution of the order parameter and displacement fields for mode I crack propagation. The
KKL (Karma-Kessler-Levine) PFA for mode III of fracture [195] was similar to the conventional
PFA to dendritic solidification, i.e. to PT. The double-well energy barrier between the gaseous
and the solid states mimiced the fracture energy. This model overcame some limitations in [7],
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which could not completely release the nonphysical bulk stresses. The KKL model [195] has been
generalized to modes I and II of crack propagation in [153] and for description of quasi-static
crack growth paths in elastically anisotropic materials in [146, 147]. In [147], the double-well
term was substituted with the critical elastic energy and 1D analytical solution was presented.
Some drawbacks of the KKL model was discussed in [306] by analyzing the stress-strain curves
for the homogenous states. Some other PFA approaches with double-well term were developed in
[178, 409, 410] and for modeling of damage in [357, 358].

The PFAs with a double-well barrier treat fracture as a solid-gas transformation while it is an
atomic bond breaking; they lead to crack widening and lateral expansion during its propagation,
see [37, 307].

PFAs with single-well potential are not related to PTs, see [2, 4, 32, 36, 37, 119, 211, 306, 342].
However, they do not possess sufficient degrees of freedom to reproduce the complex stress-strain
curves obtained, e.g., in atomic simulations. Requirements to interpolation functions based on
the desired stress-strain curve were formulation and applied in [306].

Besides the works describing damage and the nonlinear stress-strain curves via weakening
elastic moduli, in [179, 187, 307, 451] they are included using eigen strain. Some contradictions
in these models were discussed in [306]. Surface stresses were introduced in PFA for fracture
in [306]. This model also includes scale-dependency and is applicable from the atomistic to the
macroscopic scales.

There is significant literature on combining PFA to fracture with plasticity for description
of phenomenological or dislocation plasticity, e.g., [2, 3, 83, 85, 343–346, 358, 394, 410, 440]
or twinning [71, 72], which requires separate detailed consideration. Detailed review on strain
gradient enhanced plasticity and damage theories in presented in [440].

19.6. Phase field approach to interaction between phase transformation and fracture
 

Figure 28: The distribution of the order parameter describing PT ahead of the moving crack tip for different
γ̄ = γM/γA and δ̄ = δc/δp (shown in figures) for the pseudoelastic regime. Reproduced with permission from [177].
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Interaction between fracture and martensitic PTs is a very important problem in the mechanics
and physics of strength, transformational, and deformational materials properties. For example,
the strong stress concentrator at the crack tip may cause nucleation of the product phase and
initiate PTs [48, 75, 128, 149, 329, 419]. PT dissipates energy and produces transformation strain
as a mechanism of inelastic deformation and elastic stress relaxation. This increases the resistance
to the crack propagation and material ductility, which is coined the transformation toughening.
Besides, stresses produced in the course of a PT may cause fracture, in particular during cyclic
loading of SMAs [156]. PFA has been widely used for modeling fracture (see Section 19.5) and PTs
(see Sections 11.4, 11.6 and 16), and their interaction [34, 35, 48, 73, 329, 397, 473]. However,
only several papers [73, 177, 338, 397, 473] study both fracture and PT within the PFA. The
most advanced PFA [177] is based on combination of PFAs to PT from [291], to fracture from
[306], but most important, to surface-induced pre-transformations and transformations [284, 309],
which leads to new nanoscale effects. In the PFA to surface-induced pre-transformations and
transformations, numerous effects were found after transition from sharp external surface [308,
310] to a finite-width external surface described with a separate order parameter in [284, 309]. In
PFA to fracture, free surfaces of finite width appear naturally, which makes it natural to integrate
PFA to PT and fracture with PFA to surface-induced PT with a finite-width external surface in
[284, 309]. Such a theory possesses two characteristic nanoscale parameters: widths of the crack
surface δc and the A −M interface width δp. Then the dimensionless scale parameter δ̄ = δc/δp
significantly affects PT and fracture, similar to other PFAs with two scale parameters, see Section
11.6 and [268, 269], Section 12 and [277, 282, 351, 353, 354], as well as review [251]. It was found
that the lower surface energy of M than that of A (i.e., γ̄ = γM/γA < 1) promotes nucleation of
M at the crack tip, its stabilization at the crack surface as a nanolayer (”wetting” by martensite),
as well as nucleation of the pre-martensite or M at the crack surfaces, even in the pseudoelastic
regime, when stress release near the crack surface has to lead to the reverse PT (Fig. 28). In
the opposite case, growth in the surface energy during PT inhibits the PT near the crack tip and
at the crack surfaces, and displaces M away from the crack tip in the pseudoelastic regime, and
leads to reverse PT at the crack tip in the pseudoplastic regime.

From the other side, different surface energies of A and M influence the crack evolution
through the change in cohesion and gradient energies, which affects crack nucleation location
and propagation trajectory (branching) and the process of interfacial damage evolution (Fig.
29), as well as transformation toughening. All these variations are significantly affected by the
dimensionless width δ̄ and the surface energy γ̄. Consequently, these are two new parameters
controlling coupled fracture and PTs.

PT at the preexisting void at finite strain was studied in [185, 226, 289].

20. Concluding remarks

The presented review focuses on the various fundamental problems of PTs, CRs, and fracture
in inelastic materials, which the author works last 30 years at. Within sharp interface approach,
explicit expression for the thermodynamic driving force for SCs within a finite region in an
inelastic material as well as extremum principle for finding all unknown parameters (position,
shape, orientation of the transformed region, i.e., position of phase interfaces) are derived and
discussed in Section 6. When a finite region represents volume covered by a moving interface
during infinitesimal time increment, theory describes interface propagation in inelastic materials.
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Figure 4. Damage distribution ϕ within and outside the phase interface shown in the

region [x,y]=[(‐10 10),(25 50)] for 𝛿̅=1 and different conditions shown in figures.  
Figure 29: The field of the order parameter describing damage distribution within and outside the A−M phase
interface for δ̄ = 1 and different γ̄ and time t shown in figures. Reproduced with permission from [177].

This theory represents a nontrivial conceptual generalization of the theory for SCs in elastic
materials. For elastic materials (see Section 4), the thermodynamic driving force for SCs is
the gain in the Gibbs energy and all unknown parameters are determined by minimization of
the Gibbs energy. While there were attempts to apply slightly modified Gibbs-energy-based
theory to inelastic material, this is contradictory. It was demonstrated in Section 6 that the
thermodynamic driving force for SCs in an inelastic material is the dissipation increment for the
complete SC in the region under study due to SC only, i.e., the difference between the total
dissipation increment and the dissipation increment due to all other dissipative processes but
SC (e.g., plastic flow, evolution of internal variables, etc.). Instead of a surface-independent
Eshelby integral in the theory of defects and path-independent J-integral in fracture mechanics,
we introduced a region-independent integral for arbitrary inelastic materials. For an interface
propagation, the driving force is not the Eshelby driving force but difference between the Eshelby
driving force and dissipation due to other processes than SCs, in particularly, plasticity.

Special attention is devoted to kinetics of SCs, and three type of kinetics is considered: ather-
mal or rate-independent kinetics, thermally-activated kinetics of appearance of the critical nu-
cleus, and ”macroscale” thermally-activated kinetics, for which time for the appearance of a
macroscale region is postulated. For each type of kinetics, the kinetic equation and extremum
principle for determination of all unknown parameters are formulated. The athermal kinetics is
the most close to the traditional approach to SCs in elastic materials: when all types of dissi-
pation are neglected, the theory reduces to the Gibbs-energy-based theory for elastic materials.
However, for inelastic materials, two solutions are always possible: with and without SCs. It
was suggested to choose an actual solution with the help of the extremum principle for choosing
the stable solution, which represents the global SC criterion. This additional principle does not
have counterparts in elastic material, because for elastic materials solution corresponding to the
minimum of the Gibbs energy is the actual one.

For other two cases, the Arrhenius-type kinetics for the time of SCs is utilized, and all un-
known parameters are determined by the principle of the minimum of transformation time or
its particular cases (e.g., the principle of minimum of activation energy or transformation mass
(volume)). Since the Gibbs energy is not a driving force for inelastic materials, new definition
of the activation energy was suggested. Again, kinetic approaches, when all types of dissipation
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are absent, reduce to kinetics of SCs in elastic materials. Since this kinetics was not broadly
used in continuum approaches, it was presented in Section 4 as well. All extremum principles in
this theory were derived using the postulate of realizability, presented in Section 6.5 for athermal
kinetics and Section 6.8 for a macroscale thermally activated kinetics. In particular, the principle
of the minimum of transformation time, which follows from the postulate of realizability, was
intuitively used in material science and physical literature.

To illustrate the theory, various problems were solved analytically (even for large strains)
or numerically in Sections 8 - 11, 14, and 15 for PTs and CRs, and in Section 19 for fracture
and interaction between fracture and PT. Nontrivial points were related to various conditions at
the phase interface (coherence, with sliding and/or decohesion), new approach to the incoherent
phase interface, inheritance of plastic deformation during PTs and its effect on PT, introducing
RIP, deriving analytical expression for TRIP and RIP at the propagating interface and in shear
band, and martensite nucleation at the intersection of the shear bands. Virtual or intermediate
melting, much (from 100 to 5000 K) below the thermodynamic melting temperature as a new
mechanism of plastic deformation and stress relaxation during various PTs and high strain rate
loading was recently revealed and is discussed in Sections 12 and 13.

Phase field approaches to PTs, twinning, dislocations and their interaction is presented in
Section 16; PFA to fracture and interaction between fracture and PT is described in Section
19. PFAs described SCs in a continuous way by solving Ginzburg-Landau evolution equations
for the order parameters. Special attention was devoted to strict continuum thermomechanical
treatment of the PFA, which include formulation of new conditions for interpolation functions
for all material properties, and satisfaction of these conditions. In contrast to sharp-interface
approach, interfaces and defects have a finite width; there are no discontinuities and no needs
to satisfy jump conditions across interfaces and develop special numerical procedures to track
interface and defect motion. That is why very complex microstructure evolution (including split-
ting tips of martensitic variants, branching of cracks, and dendrite formation) can be reproduced
by direct simulations without any a priory information. The PFA also includes additional infor-
mation about stability and instability of phases and different states. All these items constitutes
advantages of the PFA. Multiple solutions to various PFA problems are presented and new effects
are revealed. At the same time, the sharp-interface approach gives specific expressions for the
thermodynamic driving forces for nucleation and evolution of defects. It is convenient for solu-
tion of problems with relatively simple geometry of interfaces and defects, and allows analytical
solutions for some problems.

PTs and CRs induced by large plastic shear under high pressure are reviewed in Section 17.
It includes new material phenomena and four-scale approaches for their analyses, from atomistic
studies to nano- and scale-free PFAs to microscale and macroscale modeling. This method of
plastic treatment has strong potential for technological applications since plastic shear drastically
(up to one to two order of magnitude) reduces PT and CR pressure and lead to new phases and
reaction products that are not accessible under hydrostatic conditions.

Due to multifaceted physics and mechanics of the interaction between PTs, CRs, and fracture
with plasticity, many aspects were not covered properly or covered at all. In particular, such
an interaction at the crystal plasticity and macroscopic levels, while shortly discussed in Section
18, requires much more attention. Sharp-interface approach to fracture in elastoplastic materials
is covered as an illustration of our general thermodynamic and kinetic approaches only, while
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many other approaches are developed in literature. Experimental, especially modern in situ
methods, at different scales, should be discussed separately. There is also huge literature on
lithium-ion batteries, in particular, silicon based, which includes large elastoplasticity of Si during
lithiation/delithiation and corresponding chemical reactions.

Most of the problems discussed in the review are far from being fully resolved; many of them
are in their infancy. Complexity and multidisciplinary and multifaceted character of the problems
on interaction between various SCs and plasticity as well as their applied significance will defi-
nitely attract a lot of attention from researches from various disciplines working at multiple scales.
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Hwang Y., Radermacher R., Levitas V. I., Kramer M. J., Zaeem M. A., Stebner A. P., Ott R. T.,

Cui J., Takeuchi I., 2019. Fatigue-resistant high-performance elastocaloric materials via additive

manufacturing. Science 366, 1116-1121.

[159] Hsieh S., Bhattacharyya P., Zu C., Mittiga T., Smart T. J., Machado F., Kobrin B., Höhn T. O.,
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[422] Tóth, G.I., Morris, R., Gránási, L., 2011a. Ginzburg-Landau-type multiphase field model for

competing fcc and bcc nucleation. Phys. Rev. Lett. 106, 45701.
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