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1. Introduction and statement of results

In this paper, we consider the constant Q-curvature type equation

αPnu + (n − 1)!
(

1 − enu∫
Sn enudw

)
= 0, on Sn, (1.1)

where Sn is the n-dimensional sphere and

Pn =

⎧⎨
⎩
∏n−2

2
k=0 (−Δ + k(n − k − 1)), for n even;(

−Δ +
(

n−1
2

)2
)1/2 ∏n−3

2
k=0 (−Δ + k(n − k − 1)), for n odd

is the Paneitz operator on Sn and α is a positive constant. The volume form dw is 
normalized so that 

∫
Sn dw = 1.

The corresponding functional is defined in H
n
2 (Sn) by

Jα(u) = α

2

∫
Sn

(Pnu)udw + (n − 1)!
∫
Sn

udw − (n − 1)!
n

ln
∫
Sn

enudw. (1.2)

If α = 1, (1.1) corresponds to the constant Q-curvature equation on Sn. It is shown 
in [1] that the following Beckner’s inequality, a higher order Moser-Trudinger type in-
equality, holds

J1(u) ≥ 0, u ∈ H
n
2 (Sn). (1.3)

Furthermore, J1 is invariant under the conformal transformation

u(ξ) → u(τξ) + 1
n

ln(|det(dτ)(ξ)|)

where τ is an element of the conformal group of Sn and |det(·)| is the modulus of the 
corresponding Jacobian determinant. Equality in (1.3) is only attained at functions of 
the form

u(ξ) = − ln(1 − ζ · ξ) + C, C ∈ R,

where ζ ∈ Bn+1 := {ξ ∈ Rn+1, |ξ| < 1}. (See also [7].) In particular, (1.1) with α = 1
has a family of axially symmetric solutions

u(ξ) = − ln(1 − aξ1), ξ ∈ Sn for a ∈ (−1, 1).

On the other hand, an improved Aubin-type inequality has been shown in [7, Lemma 
4.6]: for any α > 1/2, there exists a constant C(α) ≥ 0 such that Jα(u) ≥ −C(α)
provided that u belongs to the set of functions with center of mass at the origin
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L = {v ∈ H
n
2 (Sn) :

∫
Sn

envξjdw = 0; j = 1, 2, · · · , n + 1}.

This gives rise to the existence of a minimizer u0 of Jα in L, and u0 satisfies the 
corresponding Euler-Lagrange equation

αPnu + (n − 1)!
(

1 − enu∫
Sn enudw

)
=

n+1∑
i=1

aiξie
nu, on Sn (1.4)

for some constants ai, i = 1, 2, · · · n + 1. Furthermore, by exploiting the invariance of J1
under the conformal transformation, [7, Remarks (3) (ii) for Cor. 5.4] implies that the 
following Kazdan-Warner condition∫

Sn

〈∇Q, ∇ξi〉enudw = 0, i = 1, 2, · · · n + 1 (1.5)

is also applicable for the prescribing Q-curvature equation

Pnu + (n − 1)! − Qenu = 0, ξ ∈ Sn.

It is an immediate consequence that ai = 0, i = 1, 2, · · · n + 1 in (1.4). (See [32], proof 
of Theorem 2.6.) This argument is reminiscent of that in [6, Cor. 2.1] on the constant 
Gaussian curvature type equation, or the mean field equation on S2,

−αΔu +
(

1 − e2u∫
S2 e2udw

)
= 0, ξ ∈ S2. (1.6)

For (1.6), there is a vast literature. See, e.g., [6], [16] and references therein. Moreover, 
interested reader is referred to [3,8,10,11,13,19–21,24–26,29,30,33] for literature on equa-
tions that have conformal structure.

In what follows, we shall consider axially symmetric functions that are only dependent 
on ξ1. The first aim of this article is to discuss the classification of axially symmetric 
solutions for (1.1) at the critical parameter α = 1

n+1 . We have the following theorem.

Theorem 1.1. If α = 1
n+1 and u is an axially symmetric solution to (1.1) with n ≥ 2, 

then u must be constant.

The rest of this paper focuses on (1.1) with n even in the axially symmetric setting. 
We shall show that (1.1) admits only constant solutions when α belongs to some suitable 
subinterval in (1/2, 1) for n = 6, 8. As a consequence we obtain an improved Aubin-type 
inequality for axially symmetric functions in L. Note that the case n = 4 has been 
considered in [17] and similar results are obtained.

Considering solutions axially symmetric about ξ1-axis and denoting ξ1 by x, we can 
reduce (1.1) to
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α (−1)
n
2 [(1 − x2) n

2 u′](n−1) + (n − 1)! −
(n − 1)!

√
πΓ

(
n
2
)

Γ
(

n+1
2

)
γ

enu = 0, (1.7)

where γ =
∫ 1

−1(1 − x2) n−2
2 enu.

One can refer to Section 3, for the detailed derivation of (1.7). By direct computations, 
we see that the corresponding functional Iα(u) in H

n
2 (−1, 1) can be expressed as follows

Iα(u) = (−1)
n
2

α

2

1∫
−1

(1 − x2)
n−2

2 [(1 − x2) n
2 u′](n−1)u + (n − 1)!

1∫
−1

(1 − x2)
n−2

2 u

−
(n − 1)!

√
πΓ

(
n
2
)

nΓ
(

n+1
2

) ln

⎛
⎝ Γ

(
n+1

2
)

√
πΓ

(
n
2
) 1∫

−1

(1 − x2)
n−2

2 enu

⎞
⎠ ,

where H
n
2 (−1, 1) is defined as the restriction of H n

2 (Sn) in the set of functions axially 
symmetric about ξ1-axis and ξ1 = x. Moreover, the set L is replaced by

Lr =
{

u ∈ H2(S4) : u = u(x) and
1∫

−1

x(1 − x2)
n−2

2 enu = 0
}

. (1.8)

Let

α(6) = 115 +
√

2851
273 ≈ 0.6168 and α(8) = 19

23 ≈ 0.8261.

Now we state the main results.

Theorem 1.2. Let n = 6 or 8. If α(n) ≤ α < 1, then (1.7) admits only constant solutions. 
As an immediate consequence, we have

inf
u∈Lr

Iα(u) = 0.

We believe that J1/2(u) ≥ 0 for u ∈ L, given the similar inequality for S2 as shown in 
[16].

Next we define the following first momentum functionals on H
n
2 (Sn)

Jα(u) = α

2

∫
Sn

(Pnu)udw + (n − 1)!
∫
Sn

udw

− (n − 1)!
2n

ln

⎛
⎜⎝
⎛
⎝∫
Sn

enudw

⎞
⎠

2

−
n+1∑
i=1

(
∫
Sn

enuξidw)2

⎞
⎟⎠ .

Note that Jα(u) = Jα(u) when u ∈ L.
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As a consequence of Theorem 1.2, we have the following sharp inequality on Sn for 
axially symmetric functions reminding us of the infinite inequalities arising from the 
Szegö limit theorem [4,5,15].

Theorem 1.3. Let n = 6 or 8, then

J n
n+1

(u) ≥ 0, ∀u ∈ {u ∈ H
n
2 (Sn) : u(ξ) = u(ξ1)}.

Using a bifurcation approach and Theorem 1.1–1.2, we can also show the existence of 
non constant axially symmetric solution for α ∈ ( 1

n+1 , 12 ).

Theorem 1.4. For n ≥ 2, there exists a non constant solution uα to (1.7) for α ∈ ( 1
n+1 , 12 ). 

Moreover, there exists a sequence αm ∈ ( 1
n+1 , α(n)) and a sequence of non constant 

solutions uαm
, m = 1, 2, · · · to (1.7) such that αm → 1

2 , 
∫ 1

−1(1 − x2) n−2
2 enuαm =

√
πΓ

(
n
2
)

Γ
(

n+1
2

)
and ‖uαm

‖L∞([−1,1]) → ∞ as m → ∞.

We also establish the following proposition concerning the centers of mass and first 
order momenta of solutions to (1.1).

Proposition 1.5. If u solves (1.1), then
∫
Sn

enuξidw = 0 and
∫
Sn

uξidw = 0, i = 1, 2, · · · , n + 1,

whenever α �= 1.

The remainder of this paper is organized as follows. First, we give some preliminaries 
and validate Theorem 1.1 and Proposition 1.5 in the study of the case n ≥ 2 in Section 2. 
Section 3 is devoted to the case n = 6 or 8 and the proof of Theorems 1.2–1.3. In 
Section 4, we carry out a bifurcation analysis of (1.7) and its equivalent form, and prove 
Theorem 1.4 based on Theorems 1.1 and 1.2.

2. Preliminaries and classification of α = 1
n+1

In this section, we state several preliminaries which will be needed in the proof of our 
main results.

Note that the eigenfunctions associated with the Paneitz operator coincide with those 
associated with the Laplacian. It is natural to introduce Gegenbauer polynomials, see 
[14, 8.93], which can be considered as a family of generalized Legendre polynomials.

Let us first introduce the Gegenbauer polynomials (see [14, 8.93]). Recall that

C
n−1

2
k (x) =

(
−1
2

)k Γ (k + n − 1) Γ
(

n
2
)(

n
) (1 − x2)− n−2

2
dk

dxk
(1 − x2)k+ n−2

2 (2.1)

k!Γ (n − 1) Γ k + 2
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is called Gegenbauer polynomial of order n−1
2 and degree k. Then C

n−1
2

k satisfies

(1 − x2)(C
n−1

2
k )′′ − nx(C

n−1
2

k )′ + λ̄kC
n−1

2
k = 0, k = 0, 1, · · · , (2.2)

where λ̄k = k(k + n − 1).
After some calculations, it is easy to see from [14] that

|(C
n−1

2
k )′| ≤ Γ (k + n)

nΓ (n − 1) Γ(k) (2.3)

and

1∫
−1

(1 − x2)
n−2

2 C
n−1

2
k (x)C

n−1
2

s (x) =

⎧⎨
⎩

π(k+n−2)!
2(n−2)k!(k+ n−1

2 )[Γ( n−1
2 )]2 := An

(k+n−2)!
k!(k+ n−1

2 ) k = s;

0 k �= s.

(2.4)
Furthermore, we know that

PnC
n−1

2
k = λkC

n−1
2

k , (2.5)

where

λk =
n−1∏
s=0

(k + s) = Γ(n + k)
Γ(k) . (2.6)

Indeed, for n even,

λk =
n−2

2∏
s=0

[k(k + n − 1) + s(n − s − 1)] =
n−2

2∏
s=0

(k + s)(k + n − 1 − s)

=
n−1∏
s=0

(k + s).

The final formula also works when n is odd.
We now prove Proposition 1.5. Since (1.1) is invariant under addition by a constant, 

we can normalize u so that 
∫
Sn enudw = 1. Then, (1.1) can be written as

αPnu = (n − 1)!(enu − 1), ξ ∈ Sn. (2.7)

As in [6,22], we can multiply (2.7) by ξi, i = 1, 2, · · · , n + 1 and integrate to get

α

∫
(Pnu)ξidw = (n − 1)!

∫
enuξidw.
Sn Sn
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It is easy to see from (2.2) and (2.5) that

−Δξi = λ̄1ξi and Pnξi = λ1ξi, i = 1, 2, · · · , n + 1.

We further have

nα

∫
Sn

uξidw =
∫
Sn

enuξidw.

On the other hand, let

Q = (n − 1)!
α

+ (n − 1)!
(

1 − 1
α

)
e−nu.

Then (2.7) can be reduced to

Pnu + (n − 1)! − Qenu = 0 (2.8)

As stated in the Introduction, the Kazdan-Warner condition (1.5) holds. It follows from 
(1.5) that

0 = n!
(

1
α

− 1
)∫
Sn

〈∇u, ∇ξi〉dw = −n!
(

1
α

− 1
)∫
Sn

uΔξidw = nn!
(

1
α

− 1
)∫
Sn

uξidw.

Therefore,
∫
Sn

uξidw = 0 and
∫
Sn

enuξidw = 0 i = 1, 2, · · · , n + 1

whenever α �= 1. Proposition 1.5 has been proven.
Throughout this paper, we assume that u is axially symmetric w.r.t. ξ1-axis, i.e., 

u = u(ξ1) for u ∈ C∞(Sn). We may drop the subscript for simplicity to write

u = u(x), x ∈ (−1, 1).

Next, we shall prove the uniqueness of axially symmetric solutions when α = 1
n+1 in 

(1.1) for all n ≥ 2.
Let

u =
∞∑

k=0

akC
n−1

2
k (x). (2.9)

As previously discussed, we can get
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Pnu =
∞∑

k=0

λkakC
n−1

2
k (x), (2.10)

Now we assume that u is solution for (2.7) and define

G(x) = (1 − x2)u′. (2.11)

One has

G =
∞∑

k=0

bkC
n−1

2
k (x). (2.12)

By the recursive relations of C
n−1

2
k (x) ([14, 8.939])

(1 − x2)(C
n−1

2
k (x))′ = 2(n − 1)C

n−1
2

k−1 (x) − kxC
n−1

2
k (x)

= (k + n − 1)xC
n−1

2
k (x) − (k + 1)C

n−1
2

k+1 (x),

we have

(1−x2)(C
n−1

2
k (x))′ = (k + n − 1)(k + n − 2)

2k + n − 1 C
n−1

2
k−1 (x)− k(k + 1)

2k + n − 1C
n−1

2
k−1 (x), for k ≥ 1.

(2.13)
Therefore, we see from (2.12) and (2.13) that

bk =
{

(k+n)(k+n−1)
2k+n+1 − k(k−1)

2 ak−1 for k ≥ 1;
n(n−1)

n+1 a1 for k = 0.
(2.14)

Differentiate (2.7) w.r.t. x and multiply both sides by (1 − x2) to get

(1 − x2)(Pnu)′ = n!
α

enu(1 − x2)u′.

Replacing enu by α
(n−1)! Pnu + 1, we derive that

(1 − x2)(Pnu)′ = nPnuG + n!
α

G. (2.15)

Inspired by Osgood, Phillips and Sarnak [27], we shall compare the coefficients in front 
of C

n−1
2

k (x) in both sides of (2.15). It is worthy pointing out that 1-d case is solved by 
comparing Fourier coefficients in [31].

Proof of Theorem 1.1. We first compare the coefficients before C
n−1

2
0 (x). By (2.10) and 

(2.14), we see that
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(1 − x)2(Pnu)′ = n(n − 1)
n + 1 λ1a1C

n−1
2

0 (x)

+
∞∑

k=1

[
(k + n)(k + n − 1)λk+1

2k + n + 1 ak+1 − k(k − 1)λk−1

2k + n − 3 ak−1

]
C

n−1
2

k (x).
(2.16)

On the other hand, multiplying (2.15) by (1 − x2) n−2
2 and integrating, we obtain

2n(n − 2)!n!
n + 1 Ana1 = n

∫
Sn

PnuG + 2n(n − 2)!n!
n + 1 Ana1.

Equivalently, we have

2(n − 2)!n!
n + 1

(
1 − 1

α

)
a1 =

∫
Sn

PnuG. (2.17)

It remains to compute 
∫
Sn PnuG. It follows from (2.10), (2.12), (2.14) and (2.4) that

∫
Sn

PnuG =
1∫

−1

(1 − x2)
n−2

2

( ∞∑
k=0

λkakC
n−1

2
k (x)

) ∞∑
k=0

bkC
n−1

2
k (x)

= An

∞∑
k=1

(k + n − 2)!
k!(k + n−1

2 )
λkakbk

= 2An

∞∑
k=1

λk

[
(k + n)!

k!(2k + n − 1)(2k + n + 1)ak+1ak

− (k − 1)(k + n − 2)!
(k − 1)!(2k + n − 3)(2k + n − 1)ak−1ak

]

= 2An

∞∑
k=1

[
(k + n − 1)!λk+1

(k − 1)!(2k + n − 1)(2k + n + 1)ak+1ak

− (k − 1)(k + n − 2)!λk

(k − 1)!(2k + n − 3)(2k + n − 1)ak−1ak

]

= 0.

By (2.17), we conclude that

if α �= 1, then a1 = 0 and so b0 = 0. (2.18)
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Then we compare the coefficients in front of C
n−1

2
1 (x) in (2.15). More precisely,

1∫
−1

(1 − x2) n
2 (Pnu)′C

n−1
2

1 = n

1∫
−1

(1 − x2)
n−2

2 (Pnu)′PnuGC
n−1

2
1

+ n!
α

1∫
−1

(1 − x2)
n−2

2 GC
n−1

2
1 . (2.19)

From (2.16), we deduce that

1∫
−1

(1 − x2) n
2 (Pnu)′C

n−1
2

1 (x) = 2n!(n + 1)!
n + 3 Ana2. (2.20)

For the second term of RHS of (2.19), we have

n!
α

1∫
−1

(1 − x2)
n−2

2 GC
n−1

2
1 = 2(n!)2

α(n + 3)Ana2. (2.21)

For the first term of RHS of (2.19), after integration by part, we obtain

1∫
−1

(1 − x2)
n−2

2 PnuGC
n−1

2
1 (x) = −n − 1

n

1∫
−1

PnuGd((1 − x2) n
2 )

= n − 1
n

1∫
−1

(1 − x2)
n−2

2
[
(1 − x2)(Pnu)′G + (1 − x2)G′Pnu

]
dx

:= n − 1
n

(I + II).

By (2.9)–(2.13), we find

(1 − x2)G′ =
∞∑

k=1

bk

[
(k + n − 1)(k + n − 2)

2k + n − 1 C
n−1

2
k−1 (x) − k(k + 1)

2k + n − 1C
n−1

2
k−1 (x)

]

= n(n − 1)
n + 1 b1C

n−1
2

0 (x) +
∞∑

k=1

(
(k + n)(k + n − 1)

2k + n − 1 bk+1 − k(k − 1)
2k + n − 3bk−1

)

× C
n−1

2
k (x). (2.22)

After some computations, we deduce from (2.10), (2.4), (2.16) and (2.22),
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I + II = 2(n + 1)!n!
n + 3 Ana2b1 − 2n!n!

n + 3Ana2b1

+2An

∞∑
k=2

ak+1bkλk+1

[
(k + n)!

(2k + n + 1)(2k + n − 1)k!

− (k + n − 1)!
(2k + n − 1)(2k + n + 1)k!

]

+2An

∞∑
k=2

akbk+1λk

[
(k + n)!

(2k + n + 1)(2k + n − 1)k!

− (k + n − 1)!
(2k + n − 1)(2k + n + 1)(k − 1)!

]

= 2n(n!)2

n + 3 Ana2b1 + 2nAn

∞∑
k=2

(k + n − 1)!λk

(2k + n + 1)(2k + n − 1)k!

×
(

k + n

k
ak+1bk + akbk+1

)

= 2n(n − 1)n!(n + 1)!
(n + 3)(n + 5) Ana2

2

+ 2n(n − 1)An

∞∑
k=2

λk(k + n)(k + n)!
(2k + n + 1)(2k + n − 1)(2k + n − 3)kk!a

2
k+1

−2n(n − 1)An

∞∑
k=2

λk(k + n + 1)!
(2k + n + 1)(2k + n − 1)(2k + n − 3)(k + 1)!akak+2

= 2n(n − 1)An

∞∑
k=2

(k + n − 1)!
(2k + n + 1)(2k + n − 1)(k − 1)!

×
(

(k + n − 1)λk−1

(2k + n − 3)(k − 1)a2
k − (k + n + 1)(k + n)λk

k(2k + n − 3)(k − 1) akak+2

)

= n(n − 1)An

∞∑
k=0

(k + n − 1)!
∏n−1

s=1 (k + s)
(k + 1)(2k + n + 1)(k + 1)!b

2
k+1.

Therefore,

1∫
−1

(1 − x2)
n−2

2 Pnu = (n − 1)2An

∞∑
k=0

(k + n − 1)!
∏n−1

s=1 (k + s)
(k + 1)(2k + n + 1)(k + 1)!b

2
k+1. (2.23)

Combining (2.20)–(2.23), we have

2(n!)2

(n − 1)2(n + 3)

(
n + 1 − 1

α

)
a2 =

∞∑ (k + n − 1)!
∏n−1

s=1 (k + s)
(k + 1)(2k + n + 1)(k + 1)!b

2
k+1.
k=0
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It is easy to see that if α = 1
n+1 then bk = 0 for k ≥ 1. Thus, G ≡ 0 and u ≡ C. �

3. The case: n is even

In this section, we shall show some results for (1.1) with n ≥ 6 even, which can be 
regarded as the generalization of recent results in [17] for n = 4.

Let θi, i = 1, 2, . . . , n denote the usual angular coordinates on the sphere with

θn ∈ [0, 2π] and θi ∈ [0, π], i = 1, 2, . . . , n − 1

and define x = cos θ1. Then the metric tensor is

g =

⎛
⎜⎜⎜⎜⎝

(1 − x2)−1 0 0 · · · 0
0 1 − x2 0 · · · 0
0 0 (1 − x2) sin2 θ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 − x2) sin2 θ2 . . . sin2 θn−1

⎞
⎟⎟⎟⎟⎠ (3.1)

In what follows, we shall consider axially symmetric functions which only depend on x. 
For such functions, we have

∫
Sn

dw =
Γ
(

n+1
2

)
2π

n+1
2

1∫
−1

π∫
0

π∫
0

· · ·
2π∫

0

(1−x2)
n−2

2 sin(n−2) θ2 · · · · · · sin θn−1dθn · · · dθ2dx. (3.2)

Note that
π
2∫

0

sins−1θdθ = 2s−2B
(s

2 ,
s

2

)
= 2−1B

(
1
2 ,

s

2

)
.

Then for k = 2, 3, . . . , n − 1,

π∫
0

sinn−kθkdθk = B

(
1
2 ,

n − k + 1
2

)
=

√
πΓ

(
n+1−k

2
)

Γ
(

n+2−k
2

) .

We further have

∫
Sn

dw =
Γ
(

n+1
2

)
π

n−1
2

n−1∏
k=2

√
πΓ

(
n+1−k

2
)

Γ
(

n+2−k
2

)
1∫

−1

(1 − x2)
n−2

2 dx

=
Γ
(

n+1
2

)
√

πΓ
(

n
2
) 1∫

(1 − x2)
n−2

2 dx
−1
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= (n − 1)!
2n−1[(n/2 − 1)!]2

1∫
−1

(1 − x2)
n−2

2 dx,

for even n. Moreover,

Δu = |g|− 1
2

∂

∂x

(
|g| 1

2 g11 ∂u

∂x

)
= (1 − x2)− n−2

2
∂

∂x

[
(1 − x2) n

2
∂u

∂x

]

= (1 − x2)u′′ − nxu′

and

Pnu = (−1)
n
2 [(1 − x2) n

2 u′](n−1) = (−1)
n
2 [(1 − x2)

n−2
2 Δu](n−2) (3.3)

for u = u(x). Hence, we can transform the original equation (1.1) on Sn into an ODE 
(1.7).

In the following, we assume that α < 1.
Let G be defined as (2.11). In view of equation (1.7), we drive

α(−1) n
2 ((1 − x2)

n−2
2 G)(n−1) + (n − 1)! −

(n − 1)!
√

πΓ
(

n
2
)

Γ
(

n+1
2

)
γ

enu = 0. (3.4)

By differentiating (3.4), we further have

(−1) n
2 (1 − x2) n

2 [(1 − x2)
n−2

2 G](n) − n!
α

(1 − x2)
n−2

2 G

− (−1) n
2 n(1 − x2)

n−2
2 G[(1 − x2)

n−2
2 G](n−1) = 0. (3.5)

For simplicity, let

Ĉ
n−1

2
k = k!Γ (n − 1)

Γ (k + n − 1)C
n−1

2
k and dk = Γ (k + n − 1)

k!Γ (n − 1) bk (3.6)

and drop the hat and the index n−1
2 in the notation in later discussion. In the following, 

we will study the above Ck and dk.
Combining (2.12) and (2.18), we have the following decomposition using the orthog-

onal polynomials Ck, k ≥ 1:

G =
∞∑

k=1

dkCk(x). (3.7)

Recall that

λ̄k = k(k + n − 1) and λk = Γ(n + k)
.
Γ(k)
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Note that (2.3) and (2.4) respectively become

|C ′
k(x)| ≤ λ̄k

n
, ∀x ∈ (−1, 1); (3.8)

and

1∫
−1

(1 − x2)
n−2

2 CkCl = 2n−1[(n/2 − 1)!]2λ̄k

(n + 2k − 1)λk
δkl. (3.9)

Define d1 = β and

t2
k =

{
d2

k

∫ 1
−1(1 − x2) n−2

2 C2
k , for k ≥ 2;

β2 ∫ 1
−1(1 − x2) n−2

2 C2
1 , for k = 1.

It follows from (2.2) and (3.3) that

[
(1 − x2) n

2 C ′
k

]′ = −λ̄k(1 − x2)
n−2

2 Ck

and

[(1 − x2)
n−2

2 Ck](n−2) = (−1)
n−2

2
λk

λ̄k

Ck.

After direct calculations, we obtain the following decompositions.

1∫
−1

(1 − x2)
n−2

2 G2 =
∞∑

k=1

t2
k, (3.10)

1∫
−1

(1 − x2) n
2 (G′)2 =

∞∑
k=1

λ̄kt2
k, (3.11)

1∫
−1

∣∣∣[(1 − x2)
n−2

2 G](
n−2

2 )
∣∣∣2 =

∞∑
k=1

λk

λ̄k

t2
k =

∞∑
k=1

Γ(n + k − 1)
Γ(k + 1) t2

k. (3.12)

Next, we shall state some important integral identities which will be used frequently 
in the proof of the main results.

Lemma 3.1. We establish the following equalities for G.

1∫
(1 − x2)

n−2
2 C1G =

√
πΓ

(
n
2
)

2Γ
(

n+3
2

)β, (3.13)

−1
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1∫
−1

(1 − x2) n
2

enu

γ
= n

n + 1(1 − αβ), (3.14)

1∫
−1

(1 − x2)
n−2

2 CkG = −2n−1[(n/2 − 1)!]2

αλk

1∫
−1

enu

γ
(1 − x2) n

2 C ′
k, k ≥ 2, (3.15)

1∫
−1

∣∣∣[(1 − x2)
n−2

2 G](
n−2

2 )
∣∣∣2 =

√
π(n − 2)!Γ

(
n
2
)

Γ
(

n+3
2

) (
n + 1 − 1

α

)
β. (3.16)

Proof. A direct calculation shows that

1∫
−1

(1 − x2)
n−2

2 C1G = β

1∫
−1

(1 − x2)
n−2

2 x2 =
√

πΓ
(

n
2
)

2Γ
(

n+3
2

)β.

Then (3.13) follows.
To prove (3.14) and (3.15), multiplying (3.4) by 

∫ x

−1(1 − s2) n−2
2 Ck(s)ds with k ≥ 1

and integrating over [−1, 1], we have

1∫
−1

x∫
−1

(1 − s2)
n−2

2 Ck(s)
[
α(−1) n

2 ((1 − x2)
n−2

2 G)(n−1) + (n − 1)!

− 2n−1[(n/2 − 1)!]2

γ
enu

]
= 0.

After integrating by parts, we obtain

(−1) n
2 α

1∫
−1

x∫
−1

(1 − s2)
n−2

2 Ck(s)((1 − x2)
n−2

2 G)(n−1)

= (−1)
n+2

2 α

1∫
−1

((1 − x2)
n−2

2 G)(n−2)(1 − x2)
n−2

2 Ck(x)

= αΓ(n + k − 1)
Γ(k + 1)

1∫
−1

(1 − x2)
n−2

2 Ck(x)G.

(3.17)

Furthermore,
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1∫
−1

x∫
−1

(1 − s2)
n−2

2 Ck(s) =

⎛
⎝x

x∫
−1

(1 − s2)
n−2

2 Ck(s)

⎞
⎠∣∣∣1

−1
−

1∫
−1

(1 − x2)
n−2

2 xCk

= −
√

πΓ
(

n
2
)

2Γ
(

n+3
2

)δ1k.

(3.18)

By (2.2) we find that

x∫
−1

(1 − s2)
n−2

2 Ck(s) = − 1
λ̄k

(1 − x2) n
2 C ′

k(x). (3.19)

Let k = 1, then from (3.17)–(3.19) we deduce that

√
π(n − 1)!Γ

(
n
2
)

λ̄1Γ
(

n+1
2

)
1∫

−1

(1 − x2) n
2

enu

γ
=

√
π(n − 1)!Γ

(
n
2
)

2Γ
(

n+3
2

) (1 − αβ).

This leads to (3.14).
When k ≥ 2, (3.15) follows from (3.17)–(3.19). Here we employ the fact that

Γ(n + k − 1)
Γ(k + 1) = λk

λ̄k

and 2n−1[(n/2 − 1)!]2 =
(n − 1)!

√
πΓ

(
n
2
)

Γ
(

n+1
2

) .

For (3.16), multiplying (3.5) by x and integrating from −1 to 1, we obtain

1∫
−1

[
(−1) n

2 x(1 − x2) n
2 [(1 − x2)

n−2
2 G](n) − n!

α
x(1 − x2)

n−2
2 G

− (−1) n
2 nx(1 − x2)

n−2
2 G[(1 − x2)

n−2
2 G](n−1)

]
= 0.

(3.20)

By integrating by parts, we find

1∫
−1

(−1) n
2 x(1 − x2) n

2 [(1 − x2)
n−2

2 G](n) =
1∫

−1

(−1) n
2 [x(1 − x2) n

2 ](n)[(1 − x2)
n−2

2 G]

= (n + 1)!
1∫

−1

x(1 − x2)
n−2

2 G.

(3.21)

Furthermore,



C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335 17
(−1) n
2 n

1∫
−1

[x(1 − x2)
n−2

2 G][(1 − x2)
n−2

2 G](n−1)

= n

1∫
−1

[(1 − x2)
n−2

2 G](
n−2

2 )
[
x((1 − x2)

n−2
2 G)( n

2 ) + n

2 ((1 − x2)
n−2

2 G)( n−2
2 )

]

= n(n − 1)
2

1∫
−1

|[(1 − x2)
n−2

2 G]( n
2 −1)|2.

(3.22)

It follows from (3.20)–(3.22) that

n!
(

n + 1 − 1
α

) 1∫
−1

x(1 − x2)
n−2

2 G = n(n − 1)
2

1∫
−1

|[(1 − x2)
n−2

2 G]( n
2 −1)|2,

which, joint with (3.13), implies (3.16). �
Multiplying (3.5) by G and integrating over [−1, 1], we have

1∫
−1

(−1) n
2 (1 − x2) n

2 G[(1 − x2)
n−2

2 G](n) − n!
α

1∫
−1

(1 − x2)
n−2

2 G2

− (−1) n
2 n

1∫
−1

(1 − x2)
n−2

2 G2[(1 − x2)
n−2

2 G](n−1) = 0.

(3.23)

For the first term,

1∫
−1

(−1) n
2 (1 − x2) n

2 G[(1 − x2)
n−2

2 G](n)

= (−1) n
2

1∫
−1

[(1 − x2)
n−2

2 G][(1 − x2) n
2 G′](n−1)

+ (−1) n
2 n

1∫
−1

[x(1 − x2)
n−2

2 G][(1 − x2)
n−2

2 G](n−1)

= �G�2 + n(n − 1)
2

1∫
−1

|[(1 − x2)
n−2

2 G]( n
2 −1)|2,

where
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�G�2 = 2n−1[(n/2 − 1)!]2

(n − 1)!

∫
Sn

(PnG)Gdw = (−1)
n
2

1∫
−1

(1 − x2)
n−2

2 [(1 − x2) n
2 G′](n−1)G.

(3.24)
However, the last term is very sophisticated, and we will consider it for the cases n = 6

and n = 8 below. More precisely, after some complicated computations, we derive that 
for n = 6,

1∫
−1

(1 − x2)2G2[(1 − x2)2G](5) = −5
1∫

−1

(1 − x2)4G′(G′′)2 − 80
3

1∫
−1

(1 − x2)3(G′)3, (3.25)

and for n = 8,

1∫
−1

(1 − x2)3G2[(1 − x2)3G](7) = 1260
1∫

−1

(1 − x2)4(G′)3 + 252
1∫

−1

(1 − x2)5G′(G′′)2

+7
1∫

−1

(1 − x2)6G′(G(3))2 − 21
1∫

−1

[(1 − x2)G](3)(1 − x2)5(G′′)2. (3.26)

The details of the computation are postponed to Appendices A and B.
In view of the above relations, (3.23) for n = 6 becomes

�G�2 + 15
1∫

−1

|[(1 − x2)2G]′′|2 − 6!
α

1∫
−1

(1 − x2)2G2

− 30
1∫

−1

(1 − x2)4G′(G′′)2 − 160
1∫

−1

(1 − x2)3(G′)3 = 0.

(3.27)

Similarly, (3.23) for n = 8 is equivalent to

�G�2 + 28
1∫

−1

|[(1 − x2)3G](3)|2 − 8!
α

1∫
−1

(1 − x2)3G2

− 56
[
180

1∫
−1

(1 − x2)4(G′)3 + 36
1∫

−1

(1 − x2)5G′(G′′)2

+
1∫
(1 − x2)6G′(G(3))2 − 3

1∫
[(1 − x2)G](3)(1 − x2)5(G′′)2

]
= 0.

(3.28)
−1 −1
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Next we shall show a family of important gradient estimates in Sn, which generalizes 
a similar result in S4.

Lemma 3.2. For all x ∈ [−1, 1], we have

Gj := (−1)j [(1 − x2)jG](2j+1) ≤ (2j + 1)!
α

, x ∈ (−1, 1), 0 ≤ j ≤ n

2 − 1. (3.29)

Proof. We will first prove the result for the case n = 6.
Since
[
(1 − x2)2G

](5) =
[
(1 − x2)((1 − x2)G)′′ − 4x((1 − x2)G)′ − 2(1 − x2)G

](3)

=
[
(1 − x2)((1 − x2)G)(3) − 6x((1 − x2)G)′′ − 6((1 − x2)G)′

]′′

= −(1 − x2)G′′
1 + 10xG′

1 + 20G1.

Therefore, by (3.4) we have

−(1 − x2)G′′
1 + 10xG′

1 + 20G1 ≤ 5!
α

. (3.30)

Let M1 = maxx∈[−1,1] G′
1(x).

Case 1:

M1 = lim
xk→1

G′
1(xk) for some xk ∈ (−1, 1).

As in [17], let r = |x′| =
√

1 − x2, then we write

G(x) = Ḡ(r), G1(x) = Ḡ1(r) and u(x) = ū(r) for r ∈ [0, 1) and x ∈ (0, 1],

and ū(r) can be extended evenly so that ū(r) ∈ C∞(−1, 1). Hence,

G1(x) = Ḡ1(r) = d3

dx3 (−r2Ḡ(r))

= d3

dx3 [r3
√

1 − r2ūr] := d3

dx3 [g(r2)],
(3.31)

where g(s), s ∈ (−1, 1) is a C∞ function.
Let g0(s) = g(s) and

gi(s) = −2g′
i−1(s)

√
1 − s, i = 1, 2, 3.

Then gi(s) ∈ C∞(−1, 1) for i = 1, 2, 3. Differentiate g(r2) with respect to x:

d
g(r2) = −2g′(r2)

√
1 − r2 = g1(r2).
dx
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Similarly, we have

di

dxi
g(r2) = gi(r2), i = 2, 3.

Therefore, G1(x) = Ḡ1(r) ∈ C∞(−1, 1) and is even. We now can write

Ḡ1(r) = c1 + c2r2 + c3r4 = O(r6) near r = 0. (3.32)

Then c2 ≤ 0, since M1 = G1(1) = Ḡ1(0). Note that near r = 0,

xG′
1(x) =

√
1 − r2 dḠ′

1(x)
dr

dr

dx

= −2c2 + O(r2)

and

(1 − x2)G′′
1(x) = (−2(c2 − 4c3) + O(r2))r2.

It follows from (3.30) that

G1 ≤ 5!
20α

= 3!
α

, ∀x ∈ [−1, 1]. (3.33)

Case 2: if

M1 = lim
xk→−1

G′
1(xk) for some xk ∈ (−1, 1).

Then it is similar to the case 1 to show (3.33).
Case 3: Let M1 = G1(x0) for some x0 ∈ (−1, 1). Then

G′
1(x0) = 0 and G′′(x0) ≤ 0.

(3.33) immediately follows from (3.30).
We see from (3.33) that

((1 − x2)G)(3) = −6G′ − 6xG′′ + (1 − x2)G′′′ ≥ − 6
α

, ∀x ∈ [−1, 1].

Repeating the previous arguments, we can conclude

G′ ≤ 1
α

, ∀x ∈ [−1, 1].

In general, we can start with Gj , j = n − 2.
2
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In view of (3.4), one directly has

(−1) n
2 ((1 − x2)

n−2
2 G)(n−1) ≤ (n − 1)!

α
.

Since

(−1) n
2 ((1 − x2)

n−2
2 G)(n−1) = −(1 − x2)G′′

n
2 −2 + 2(n − 1)G′

n
2 −2 + (n − 1)(n − 2)G n

2 −2,

we can follow the same arguments above to obtain (3.29) for j = n
2 −2. Then we can apply 

mathematical induction on j from n
2 −2 to 0 to conclude (3.29) for all 0 ≤ j ≤ n

2 −1. �
3.1. The case: n = 6

Throughout the rest of this subsection, we will focus on n = 6 and the equation

αP6u + 5!
(

1 − e6u∫
S6 e6udw

)
= 0, (3.34)

where P6 = −Δ(−Δ + 4)(−Δ + 6). As previously introduced,

P6u = −[(1 − x2)3u′](5) = −[(1 − x2)2Δu](4), (3.35)

and equation (3.34) is reduced to

−α[(1 − x2)3u′](5) + 5! − 27

γ
e6u = 0. (3.36)

In view of (3.10)–(3.12), we derive that

1∫
−1

(1 − x2)4(G′′)2 =
∞∑

k=1
λ̄k(λ̄k − 6)t2

k. (3.37)

Moreover, (3.12) can be rewritten as

1∫
−1

|[(1 − x2)2G]′′|2 =
∞∑

k=1

(λ̄k + 4)(λ̄k + 6)t2
k. (3.38)

Lemma 3.3. Let n = 6, using the semi-norm �G� defined in (3.24), we have the following 
estimate:

�G�2 ≤
(

30
α

− 15
) 1∫

|[(1 − x2)2G]′′|2 − 320
α

1∫
(1 − x2)3(G′)2. (3.39)
−1 −1
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Proof. By (3.10), (3.37), (3.38) and Lemma 3.2, we get

�G�2 + 15
1∫

−1

|[(1 − x2)2G]′′|2

≤ 1
α

1∫
−1

[
6!(1 − x2)2G2 + 30(1 − x2)4(G′′)2 + 160(1 − x2)3(G′)2]

= 1
α

1∫
−1

[
30

∣∣[(1 − x2)2G]′′
∣∣2 − 320(1 − x2)3(G′)2

]
.

So (3.39) holds. �
Proposition 3.4. If 2

3 < α < 1, any axially symmetric solution to (3.34) must be constant.

Proof. We only need to show that either α ≤ 2
3 or that G and hence u is identically 0. 

Indeed, when α > 2/3, it follows from (3.39) that

�G�2 + 15
1∫

−1

|[(1 − x2)2G]′′|2 <
3
2

∞∑
k=1

(30λ̄2
k − 20λ̄k + 720)t2

k.

Equivalently,

0 >

∞∑
k=1

[
(λ̄k + 15)(λ̄k + 4)(λ̄k + 6) − 3

2(30λ̄2
k − 20λ̄k + 720)

]
t2
k

=
∞∑

k=1

(λ̄k − 6)(λ̄2
k − 14λ̄k + 120)t2

k.

In view of (2.2) the assertion holds. �
For n = 6, (3.13) and (3.16) become

1∫
−1

(1 − x2)2C1G = 16
105β (3.40)

and

1∫
|[(1 − x2)2G]′′|2 = 256

35

(
7 − 1

α

)
β. (3.41)
−1
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Inspired by [18] and [12], our basic strategy is to assume β �= 0, and show that it leads 
to a contradiction with the range of α. It is fairly easy to see from (3.41) that

if β = 0, then ∇u = 0, which shows that u is a constant. (3.42)

In what follows, suppose that β �= 0 and

3
5 < α ≤ 2

3 . (3.43)

Then it is easy to see from (3.40) and (3.14) that

0 < β <
1
α

. (3.44)

Proof of Theorem 1.2 for n = 6. We first define the following quantity

D :=
∞∑

k=3

[
λ̄k(λ̄k + 4)(λ̄k + 6) −

(
14 + 112

9α

)
(λ̄k + 4)(λ̄k + 6) + 320

α
λ̄k

]
t2
k. (3.45)

We now give the upper bound of D. From (3.39) we see that

D = �G�2 −
(

14 + 112
9α

) 1∫
−1

|[(1 − x2)2G]′′|2 + 320
α

1∫
−1

(1 − x2)3(G′)2

−
(

1280
3α

− 960
)

β2
1∫

−1

(1 − x2)2C2
1

≤
(

158
9α

− 29
) 1∫

−1

|[(1 − x2)2G]′′|2 + 16
21

(
192 − 256

3α

)
β2

≤ 16β

7

[
16
5

(
7 − 1

α

)(
158
9α

− 29
)

+
(

64 − 256
9α

)
β

]
.

(3.46)

It is easy to check D > 0. Combining (3.44) and (3.46), we have

16
5

(
7 − 1

α

)(
158
9α

− 29
)

+
(

64 − 256
9α

)
1
α

> 0.

Therefore,

α < ᾱ := 221 +
√

13345
<

2
. (3.47)
522 3
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To estimate the refined lower bound of D, we define

g(t) = t −
(

14 + 112
9α

)
+ 320

α

t

(t + 4)(t + 6) .

Then it is easy to see that

g′(t) > 0 for t ≥ λ̄3(= 24).

Thus,

D =
∞∑

k=3

[
λ̄k −

(
14 + 112

9α

)
+ 320

α

λ̄k

(λ̄k + 4)(λ̄k + 6)

]
(λ̄k + 4)(λ̄k + 6)t2

k

≥
[
λ̄3 −

(
14 + 112

9α

)
+ 320

α

λ̄3

(λ̄3 + 4)(λ̄3 + 6)

] ∞∑
k=3

(λ̄k + 4)(λ̄k + 6)t2
k

=
(

10 − 208
63α

) ∞∑
k=3

(λ̄k + 4)(λ̄k + 6)t2
k.

On the other hand, we derive from (3.8), (3.9) and (3.15) that

t2
k = d2

k

1∫
−1

(1 − x2)2C2
k =

⎛
⎝ 1∫

−1

(1 − x2)2C2
k

⎞
⎠

−1 ⎡
⎣ 128

αλk

1∫
−1

e6u

γ
(1 − x2)3C ′

k

⎤
⎦

2

≤ (2k + 5)(λ̄k + 4)(λ̄k + 6)
128

[
8

αλk

λ̄k

7 (1 − αβ)
]2

= 128(2k + 5)
49(λ̄k + 4)(λ̄k + 6)

(
1
α

− β

)2

, k ≥ 2.

(3.48)

In particular,

d2
k ≤

⎛
⎝ 1∫

−1

(1 − x2)2C2
k

⎞
⎠

−1
128(2k + 5)

49(λ̄k + 4)(λ̄k + 6)

(
1
α

− β

)2

≤
[

2k + 5
7

(
1
α

− β

)]2

, k ≥ 2.

(3.49)

By (3.40), (3.41) and (3.48), we get the lower bound of D:
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D ≥
(

10 − 208
63α

) ∞∑
k=3

(λ̄k + 4)(λ̄k + 6)t2
k

=
(

10 − 208
63α

)⎡
⎣ 1∫

−1

|[(1 − x2)2G]′′|2 − 128
7 β2 − 1152

49

(
1
α

− β

)2
⎤
⎦

≥ 16
7

(
10 − 208

63α

)[
16β

5

(
7 − 1

α

)
− 8β2 − 72

7

(
1
α

− β

)2
]

.

(3.50)

By both (3.46) and (3.50), we see that

16β

7

[
16
5

(
7 − 1

α

)(
158
9α

− 29
)

+
(

64 − 256
9α

)
β

]

≥ 16
7

(
10 − 208

63α

)[
16β

5

(
7 − 1

α

)
− 8β2 − 72

7

(
1
α

− β

)2
]

.

A straightforward computation shows that

0 ≤ 16β

5

(
7 − 1

α

)[
158
9α

− 29 −
(

10 − 208
63α

)]
+ β2

[
64 − 256

9α
+ 8

(
10 − 208

63α

)]

+ 72
7

(
10 − 208

63α

)(
1
α

− β

)2

= 16β

5

(
7 − 1

α

)(
146
7α

− 39
)

+ 48β2
(

3 − 8
7α

)
+ 72

7

(
10 − 208

63α

)(
1
α

− β

)2

.

We further have

β

[
2
5

(
7 − 1

α

)(
146
7α

− 39
)

+ 1
α

(
18 − 48

7α

)]

≥
(

1
α

− β

)[(
18 − 48

7α

)
β −

(
90
7 − 208

49α

)(
1
α

− β

)]

:=
(

1
α

− β

)
I.

(3.51)

We want to show that the term I is nonnegative. Thus, we need to obtain the lower 
bound of β. Note that the argument exploited in [17] is not applicable to this case. 
Precisely, following [17], (3.46) implies that

(
64 − 256

9α

)
β >

16
5

(
7 − 1

α

)(
29 − 158

9α

)
.

However, the term 29 − 158
9α is positive when α > 158

261 ≈ 0.6054. Hence, we choose a 
suitable α > 158 so that
261
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I > 0, for α ∈ (α, ᾱ). (3.52)

Then α satisfies that

I ≥
(

18 − 48
7α

)
β +

(
208
49ᾱ

− 90
7

)(
1
α

− β

)

≥
(

18 + 90
7 − 48

7α
− 208

49ᾱ

)
β +

(
208
49ᾱ

− 90
7

)
1
α

≥
(

216
7 − 48

7α
− 208

49ᾱ

)(
7 − 1

α

)(
29 − 158

9α

)
9ᾱ

180ᾱ − 80 +
(

208
49ᾱ

− 90
7

)
1
α

≥ 0,

which indicates α ≥ 0.61488. So we take α = 0.61488. For α ∈ (α, ᾱ), it follows from 
(3.51) that

2
5

(
7 − 1

α

)(
146
7α

− 39
)

+ 1
α

(
18 − 48

7α

)
> 0.

Hence we find

α < α(6) := 115 +
√

2851
273 ≈ 0.61683. (3.53)

Theorem 1.2 for n = 6 is proven. �
3.2. The case: n = 8

This subsection focuses on the case n = 8. As we have addressed,

P8 = −Δ(−Δ + 6)(−Δ + 10)(−Δ + 12), (3.54)

and equation (1.1) for n = 8 becomes

α[(1 − x2)4u′](7) + 7! − 9 ∗ 29

γ
e8u = 0. (3.55)

In view of (3.10)–(3.12), we derive that

1∫
−1

(1 − x2)5(G′′)2 =
∞∑

k=1
λ̄k(λ̄k − 8)t2

k (3.56)

and
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1∫
−1

(1 − x2)6(G(3))2 =
∞∑

k=1

λ̄k(λ̄2
k − 26λ̄k + 144)t2

k. (3.57)

Moreover, (3.12) can be rewritten as

1∫
−1

|[(1 − x2)3G](3)|2 =
∞∑

k=1
λ̃kt2

k, (3.58)

where

λ̃k = (λ̄k + 6)(λ̄k + 10)(λ̄k + 12). (3.59)

Lemma 3.5. Let n = 8, then we have the following estimate:

�G�2 ≤ 28
(

2
α

− 1
) 1∫

−1

|[(1 − x2)3G](3)|2 − 20160
α

1∫
−1

(1 − x2)4(G′)2, (3.60)

where �G� is defined in (3.24).

Proof. By (3.28), Lemma 3.2 and (3.57)–(3.58), we get

�G�2 + 28
1∫

−1

|[(1 − x2)3G](3)|2

≤ 56
α

1∫
−1

[
6!(1 − x2)3G2 + 180(1 − x2)4(G′)2 + 54(1 − x2)5(G′′)2 + (1 − x2)6(G(3))2

]

= 56
α

∞∑
k=1

[
720 + 180λ̄k + 54λ̄k(λ̄k − 8) + λ̄k(λ̄2

k − 26λ̄k + 144)
]

t2
k

= 56
α

∞∑
k=1

[
(λk + 6)(λk + 10)(λk + 12) − 360λ̄k

]
t2
k

= 56
α

1∫
−1

[
|[(1 − x2)3G](3)|2 − 360(1 − x2)4(G′)2

]
.

The proof is complete. �
Proposition 3.6. If 21 ≤ α < 1, any axially symmetric solution to (1.1) must be constant.
25
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Proof. As in the proof of Proposition 3.4, when α > 21
25 , it follows from (3.60) that

�G�2 + 28
1∫

−1

|[(1 − x2)3G](3)|2 = 56
α

∞∑
k=1

[
λ̄3

k + 28λ̄2
k − 108λ̄k + 720

]
t2
k

<
200
3

∞∑
k=1

[
λ̄3

k + 28λ̄2
k − 108λ̄k + 720

]
t2
k.

Equivalently,

0 >

∞∑
k=1

[
(λ̄k + 28)λ̃k − 200

3 (λ̄3
k + 28λ̄2

k − 108λ̄k + 720)
]

t2
k

=
∞∑

k=1

(
λ̄4

k − 32
3 λ̄3

k − 2492
3 λ̄2

k − 14976λ̄k − 27840
)

t2
k > 0,

since λ̄k ≥ 8 and the equation

t4 − 32
3 t3 − 2492

3 t2 − 14976t − 27840 = 0

has two real solutions t1 ≈ −31.6 or t2 ≈ 2.1. This is a contradiction, which completes 
the proof. �
Remark 3.1. We note that it fails to get the same result as that in Proposition 3.4. The 
reason is the following: when α > 2/3, it follows from (3.60) that

�G�2 + 28
1∫

−1

|[(1 − x2)3G](3)|2 = 56
α

∞∑
k=1

[
λ̄3

k + 28λ̄2
k − 108λ̄k + 720

]
t2
k

< 84
∞∑

k=1

[
λ̄3

k + 28λ̄2
k − 108λ̄k + 720

]
t2
k.

Equivalently,

0 >
∞∑

k=1

[
(λ̄k + 28)(λ̄k + 6)(λ̄k + 10)(λ̄k + 12) − 84(λ̄3

k + 28λ̄2
k − 108λ̄k + 720)

]
t2
k

=
∞∑

k=1

(λ̄k − 8)(λ̄3
k − 20λ̄2

k − 1476λ̄k + 5040)t2
k.

There is no contradiction, since the equation

t3 − 20t2 − 1476t + 5040 = 0
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has the following real solutions

t1 ≈ −31.6, t2 ≈ 3.3 t3 ≈ 48.4.

Recall that (3.13) and (3.16) for n = 8 are reduced to

1∫
−1

(1 − x2)3C1G = 32
315β (3.61)

and

1∫
−1

|[(1 − x2)3G](3)|2 = 1024
7

(
9 − 1

α

)
β. (3.62)

As in the proof of Theorem 1.2 for n = 6, in what follows, we assume that

β �= 0,
2
3 < α <

21
25 (3.63)

and note

0 < β <
1
α

.

Proof of Theorem 1.2 for n = 8. Define

E :=
∞∑

k=3

[
λ̄kλ̃k −

(
18 + 18

α

)
λ̃k + 20160

α
λ̄k

]
t2
k. (3.64)

We now present the upper bound of E. From (3.60)–(3.62) we derive

E = �G�2 −
(

18
α

+ 18
) 1∫

−1

|[(1 − x2)3G](3)|2 + 20160
α

1∫
−1

(1 − x2)4(G′)2

− 7!
(

14
α

− 10
)

β2
1∫

−1

(1 − x2)2C2
1

≤
(

38
α

− 46
) 1∫

−1

|[(1 − x2)3G](3)|2 − 1024
(

7
α

− 5
)

β2

= 1024β
[(

38 − 46
)(

9 − 1
)

+ 7
(

5 − 7
)

β

]
.

(3.65)
7 α α α
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To estimate the lower bound of D, define

ḡ(t) = t −
(

18 + 18
α

)
+ 20160

α

t

(t + 6)(t + 10)(t + 12) .

Differentiating ḡ(t), we have

ḡ′(t) = 1 − 20160
α

2
(
t3 + 14t2 − 360

)
(t + 6)2(t + 10)2(t + 12)2 .

After some calculations, we deduce that ḡ′′(t) > 0 for t > λ̄3(= 30). Thus, for t ≥ 30,

ḡ′(t) ≥ ḡ′(30) = 1 − 109
252α

> 0

due to (3.63). We further have

E =
∞∑

k=3

[
λ̄k −

(
18 + 18

α

)
+ 20160λ̄k

αλ̃k

]
λ̃kt2

k

≥
(

12 − 8
α

) ∞∑
k=3

λ̃kt2
k

> 0,

(3.66)

since α > 2
3 . We conclude from (3.63), (3.65) and (3.66) that

0 < 7
(

7
α

− 5
)

β <

(
38
α

− 46
)(

9 − 1
α

)

and so

α < α(8) := 19
23 <

21
25 . � (3.67)

Remark 3.2. We wish to obtain for n = 8 a similar inequality as (3.51) for n = 6 so that 
the range of α can be more refined. However, the similar approach seems not working as 
shown below.

As in (3.48), we find

λ̃kt2
k ≤ 512(2k + 7)

9

(
1
α

− β

)2

, k ≥ 2. (3.68)

It follows from (3.61), (3.62) and (3.68) that
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E ≥
(

12 − 8
α

) ∞∑
k=3

λ̃kt2
k

≥
(

12 − 8
α

)⎡
⎣ 1∫

−1

|[(1 − x2)3G](3)|2 − 512β2 − 512 ∗ 11
9

(
1
α

− β

)2
⎤
⎦

= 512
(

12 − 8
α

)[
2β

7

(
9 − 1

α

)
− β2 − 11

9

(
1
α

− β

)2
]

.

(3.69)

Combining both (3.65) and (3.69), we conclude that

2β

7

[(
38
α

− 46
)(

9 − 1
α

)
+ 7

(
5 − 7

α

)
β

]

≥
(

12 − 8
α

)[
2β

7

(
9 − 1

α

)
− β2 − 11

9

(
1
α

− β

)2
]

.

Equivalently,

0 ≤ 2β

7

(
9 − 1

α

)(
46
α

− 58
)

+ 22β2
(

1 − 1
α

)
+ 11

9

(
12 − 8

α

)(
1
α

− β

)2

.

Furthermore,

β

[
2
7

(
9 − 1

α

)(
46
α

− 58
)

+ 22
α

(
1 − 1

α

)]

≥
(

1
α

− β

)[
22β

(
1 − 1

α

)
− 11

9

(
12 − 8

α

)(
1
α

− β

)]
.

(3.70)

However, the r.h.s. of (3.70) is negative. Thus, the previous argument for n = 6 is not 
applicable here.

Theorem 1.2 follows from (3.42), (3.53) and (3.67).
Next we shall show Theorem 1.3.

Proof of Theorem 1.3. Following [7], we define φP,t, P ∈ Sn, t > 0 to be φP,t(ξ) = ξ̃ :=
π−1

P (ty), where y = πP (ξ) is the stereographic project of Sn from P as the north pole to 
the equatorial plane. In particular, we denote φt = φP0,t where P0 = (1, 0, · · · 0).

Given u ∈ H
n
2 (Sn) and t > 0, let

v(ξ) = u(φt(ξ)) + n + 1
n2 ln |det(dφt)|, ξ ∈ Sn.

We first claim that J n
n+1

owns the following invariance property:

J n (u) = J n (v), ∀u ∈ H
n
2 (Sn), t > 0. (3.71)
n+1 n+1



32 C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335
The proof has been carried out in detail for the case n = 4 in [17, Pro. 3.4]. The same 
argument there works for general n with slight modifications; so we will skip the proof 
here. We further see that for any u ∈ H

n
2 (Sn), there is a φP,t such that

v(ξ) = u(φP,t(ξ)) + n + 1
n2 ln |det(dφP,t)|, ξ ∈ Sn

belongs to L.
In conclusion, Theorem 1.3 follows immediately from Theorem 1.2 and (3.71). �
We note that a similar but more general Szegö type inequality for u ∈ H1(S2) is proven 

in [4] using a variational method under a mass center constraint, in combination with 
the improved Moser-Trudinger inequality in [16]. For the classical Szegö limit theorem, 
please see [15]. Interested reader is referred to [2] for a generalization of Szegö limit 
theorem on arbitrary Riemann surfaces.

4. Bifurcation

In this section we shall obtain results on bifurcation curves to (1.7) in general for α > 0
and in particular for α ∈ ( 1

n+1 , 12 ). We shall first apply the standard bifurcation theory 
to analyze the local bifurcation diagram. Let us recall the following general theorem.

Theorem 4.1. ([9, Theorem 1.7]) Let X, Y be Hilbert spaces, V a neighborhood of 0 in 
X and F : (−1, 1) × V → Y a map with the following properties:

(1) F (t, 0) = 0 for any t;
(2) ∂tF , ∂xF and ∂2

t,xF exist and are continuous;
(3) ker(∂xF (0, 0)) = span{w0} and Y/R(∂xF (0, 0)) are one-dimensional;
(4) ∂2

t,xF (0, 0)w0 /∈ R(∂xF (0, 0)).

If Z is any complement of ker(∂xF (0, 0)) in X. Then there exists ε0 > 0, a neighborhood 
of (0, 0) in U ⊂ (−1, 1) × X and continuously differentiable maps η : (−ε0, ε0) → R and 
z : (−ε0, ε0) → Z such that η(0) = 0, z(0) = 0 and

F −1(0) ∩ U \ ((−1, 1) × {0}) = {(η(ε), εw0 + εz(ε)) | ε ∈ (−ε0, ε0)}.

Recall that the shape of the above local bifurcating branch can be further described 
by the following theorem (see, e.g., [23, I.6]):

Theorem 4.2. In the setting of Theorem 4.1, let ψ �= 0 ∈ Y −1 satisfy

R(∂xF (0, 0)) = {y ∈ Y | 〈ψ, y〉 = 0},

where Y −1 is the dual space of Y . Then we have
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η′(0) = −
〈∂2

x,xF (0, 0)[w0, w0], ψ〉
2〈∂2

t,xF (0, 0)w0, ψ〉 .

Furthermore, the bifurcation is transcritical provided that η′(0) �= 0.

Note that critical points of Iα(u) satisfy

(−1)
n
2 [(1 − x2) n

2 u′](n−1) + ρ(1 − x2)
n−2

2

(
1 −

√
πΓ

(
n
2
)

Γ
(

n+1
2

) enu∫ 1
−1(1 − x2) n−2

2 enu

)
= 0,

x ∈ (−1, 1), (4.1)

where ρ = (n−1)!
α .

Let

V =
{

u ∈ Hn(Sn) : u = u(x),
∫
Sn

udw = 0
}

;

W =
{

u ∈ L2(Sn) : u = u(x),
∫
Sn

udw = 0
}

and define a nonlinear operator T : R × V → W as

T (ρ, u) = Pnu + ρ

(
1 − enu∫

Sn enudw

)
.

Obviously, the operator T is well defined. After direct computations, one has

∂uT (ρ, 0)φ = Pnφ − nρφ.

Define

F(ρ, u) = u + ρP −1
n

(
1 − enu∫

Sn enudw

)
.

Let S denote the closure of the set of nontrivial solutions of

F(ρ, u) = 0. (4.2)

It is clear that (4.2) and (4.1) are equivalent.
Let λk and C

n−1
2

k be given in (2.5). Then by similar arguments as in [17, Lemma 5.3], 
we have

Theorem 4.3. Let ρk = λk

n for k = 1, 2, 3, . . . , the points (ρk, 0) are bifurcation points 
for the curve of solutions (ρ, 0). In particular, there exists ε0 > 0 and continuously 
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differentiable functions ρk : (−ε0, ε0) → R and ψk : (−ε0, ε0) → {C
n−1

2
k }⊥ such that 

ρk(0) = ρk, ψk(0) = 0 and every nontrivial solution of (4.1) in a small neighborhood of 
(ρk, 0) is of the form

(ρk(ε), εC
n−1

2
k + εψk(ε)).

In particular, when k = 2, the bifurcation point (ρ2, 0) = ( (n+1)!
n , 0) is a transcritical 

bifurcation point. Indeed, we have

ρ′
2(0) = − (n + 1)!

2

∫ 1
−1(1 − x2) n−2

2 (C
n−1

2
k )3∫ 1

−1(1 − x2) n−2
2 (C

n−1
2

k )2
= − (n + 1)!(n − 1)2

n(n + 5) �= 0.

Corollary 4.4. Let αk = n!
λk

for k = 1, 2, 3, . . . , the points (αk, 0) are bifurcation points 
for the curve of solutions (α, 0) of (1.7). Moreover, when k = 2, the bifurcation point 
( 1

n+1 , 0) is a transcritical bifurcation point.

Remark 4.1. When k = 1, the bifurcation leads to the family of solutions u = − ln(1 −
ax), a ∈ (−1, 1) and ρ = (n − 1)!. It is clear that (ρk, 0) is not a transcritical bifurcation 

point for k odd since C
n−1

2
k is an odd function and ρ′(0) = 0 in this case. It should be 

true that (ρk, 0) is a transcritical bifurcation point for k even, we only need to check if ∫ 1
−1(1 −x2) n−2

2 (C
n−1

2
k )3 �= 0 in this case, which can be confirmed for small k numerically. 

However, in this paper we only need to use the transcriticality of (ρ2, 0).

In order to analyze the global bifurcation diagram, we employ a global bifurcation 
theorem via degree arguments (see [23,28]) and also exploit special properties of solutions 
to (4.1).

First, we recall a global bifurcation result (see [23, Theorem II.5.8]).

Proposition 4.5. In Theorem 4.3, the bifurcation at (ρk, 0) is global and satisfies the 
Rabinowitz alternative, i.e., a global continuum of solutions to (4.1) either goes to infinity 
in R × W or meets the trivial solution curve at (ρm, 0) for some m ≥ 1 and m �= k.

Next we state and prove the following more specific global bifurcation result regarding 
(4.1).

Theorem 4.6. 1) For k ≥ 2, there exists a global continuum of solutions B+
k ⊂ S \

{(ρ, 0), ρ ∈ R} of (4.1) which coincides in a small neighborhood of (ρk, 0) with

{(ρk(ε), εC
n−1

2
k + εψk(ε)), ε < 0}.

B+
k is contained in N2 := {(ρ, u) : ρ > (n+1)!

n , u ∈ L2(−1, 1)} and is uniformly bounded 

in L2(−1, 1) for ρ in any fixed finite interval [ρm, ρM ] ⊂ ( (n+1)! , ∞). Furthermore, B+
k
n
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satisfies the improved Rabinowitz alternative, i.e., either B+
k extends in ρ to infinity or 

meets the trivial solution curve at (ρm, 0) for some m ≥ 2.
2) Similarly, for k ≥ 2, there exists a global continuum of solutions B−

k which coincides 
in a small neighborhood of (ρk, 0) with {(ρk(ε), εC

n−1
2

k + εψk(ε)), ε > 0}. When k ≥ 3, 
B−

k is contained in N2 and satisfies the boundedness for ρ in any fixed finite interval 
[ρm, ρM ] ⊂ (2(n − 1)!, ∞). Furthermore, the improved Rabinowitz alternative holds.

3) Moreover, B+
k = {u : u(x) = v(−x), v ∈ B−

k } when k is odd.
4) The global continuum of solutions B−

2 of (4.1) must be contained in the set

N1 :=
{

(ρ, u) : ρ ∈
(

(n − 1)!
α(n) ,

(n + 1)!
n

)
⊃ (2(n − 1)!, (n + 1)!

n
), u ∈ L2(−1, 1)

}
.

Furthermore, B−
2 is unbounded in L∞([−1, 1]), and there exists a sequence of (ρ(t), u(t)) ∈

B−
2 , t = 1, 2, · · · such that ρ(t) → 2(n − 1)! and ‖u(t)‖L∞([−1,1]) → ∞. As an immediate 

consequence, there is a nontrivial solution to (4.1) for any ρ ∈ (2(n − 1)!, (n+1)!
n ).

Proof. The proof is similar to that of the case n = 4 in [17]. So we omit it. �
Proof of Theorem 1.4. Theorem 1.4 follows immediately from Theorem 4.6. This leads 
to the existence of a nontrivial solution to (1.7) for α ∈ ( 1

n+1 , 12 ). �
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Appendix A. Proof of (3.25)

In this appendix, we compute the term 
∫ 1

−1(1 − x2)2G2[(1 − x2)2G](5).
First,

1∫
−1

(1 − x2)2G2[(1 − x2)2G](5) =
1∫

−1

(1 − x2)4G2G(5) − 20
1∫

−1

x(1 − x2)3G2G(4)

−40
1∫

−1

(1 − 3x2)(1 − x2)2G2G(3) + 240
1∫

−1

x(1 − x2)2G2G′′ + 120
1∫

−1

(1 − x2)2G2G′

:=
5∑

Ii. (A.1)

i=1
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Let

G5 =
1∫

−1

(1 − x2)4(G3)(5) = 3
1∫

−1

(1 − x2)4G2G(5) + 30
1∫

−1

(1 − x2)4GG′G(4)

+ 60
1∫

−1

(1 − x2)4GG′′G(3) + 60
1∫

−1

(1 − x2)4(G′)2G(3) + 90
1∫

−1

(1 − x2)4G′(G′′)2

:=
5∑

i=1
G5i,

G4 =
1∫

−1

x(1 − x2)3(G3)(4) = 3
1∫

−1

x(1 − x2)3G2G(4) + 24
1∫

−1

x(1 − x2)3GG′G(3)

+ 18
1∫

−1

x(1 − x2)3G(G′′)2 + 36
1∫

−1

x(1 − x2)3(G′)2G′′

:=
4∑

i=1
G4i,

X1 = (1 − 7x2)(1 − x2)2, X2 = (1 − 3x2)(1 − x2)2 and

G
(j)
3 =

1∫
−1

Xj(G3)(3) = 3
1∫

−1

XjG2G(3) + 18
1∫

−1

XjGG′G′′ + 6
1∫

−1

Xj(G′)3

:=
3∑

i=1
G

(j)
3 i, j = 1, 2.

Here, we neglect the coefficients before G5i, G4i and G3i. For example, G54 =
∫ 1

−1(1 −
x2)4(G′)2G(3).

After integration by parts,

1∫
−1

(1 − x2)4G2G(5) = −
1∫

−1

[(1 − x2)4G2]′G(4) = 8G41 − 2G52;

1∫
−1

(1 − x2)4GG′G(4) = 8G42 − (G53 + G54);

1∫
(1 − x2)4GG′′G(3) = 4G43 − 1

2G55;

−1
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1∫
−1

(1 − x2)4(G′)2G(3) = 8G44 − 2G55. (A.2)

Similarly,

1∫
−1

x(1 − x2)3G2G(4) = −G
(1)
3 1 − 2G42;

1∫
−1

x(1 − x2)3GG′G(3) = −G
(1)
3 2 − G43 − G44

1∫
−1

x(1 − x2)3G(G′′)2 = −G
(1)
3 2 − G42 − G44

1∫
−1

x(1 − x2)3(G′)2G′′ = −1
3G

(1)
3 3

(A.3)

Then

I1 + I2 + a1G5 + a2G4

= (1 + 3a1)G51 + 30a1G52 + 60a1(G53 + G54) + 90a1G55

+ (3a2 − 20)G41 + 24a2G42 + 18a2G43 + 36a2G44

= (24a1 − 2)G52 + ... + (24a1 + 3a2 − 12)G41 + ...

= (24a1 − 2)[8G42 − (G53 + G54)] + 60a1(G53 + G54) + 90a1G55

+ (24a1 + 3a2 − 12)G41 + ...

= (36a1 + 2)(G53 + G54) + 90a1G55 + (24a1 + 3a2 − 12)G41

+ (24a2 + 192a1 − 16)G42 + ...

= −5G55 + (24a1 + 3a2 − 12)G41 + (24a2 + 192a1 − 16)G42

+ (144a1 + 18a2 + 8)(G43 + 2G44).

Thus,

I1 + I2 + a1G5 + a2G4 + 5G55

= (24a1 + 3a2 − 12)G41 + (24a2 + 192a1 − 16)G42 + (144a1 + 18a2 + 8)(G43 + 2G44)

= −(24a1 + 3a2 − 12)G(1)
3 1 + (144a1 + 18a2 + 8)(G42 + G43 + 2G44)

= −(24a + 3a − 12)G(1)1 − (144a + 18a + 8)G(1)2 + (144a + 18a + 8)G 4.
1 2 3 1 2 3 1 2 4
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Let t = 24a1 + 3a2, then we have

I1 + I2 + a1G5 + a2G4 + 5G55 + t − 12
3 G

(1)
3

= 6(t − 12)G(1)
3 2 − (6t + 8)G(1)

3 2 + 2(t − 12)G(1)
3 3 − 6t + 8

3 G
(1)
3 3

= −80G
(1)
3 2 − 80

3 G
(1)
3 3.

Notice that

1∫
−1

XjG2G(3) = −
1∫

−1

X ′
jG2G′′ − 2

1∫
−1

XjGG′G′′ = −
1∫

−1

X ′
jG2G′′ − 2G

(j)
3 2

1∫
−1

XjGG′G′′ = −1
2

1∫
−1

XjG(G′)2 − 1
2G

(j)
3 3.

(A.4)

Then

I3 − 80G
(1)
3 2 − 80

3 G
(1)
3 3 = 40

1∫
−1

X ′
2G2G′′ + 80

1∫
−1

[X2 − X1]GG′G′′ − 80
3 G

(1)
3 3

= 40
1∫

−1

X ′
2G2G′′ + 320

1∫
−1

x2(1 − x2)2GG′G′′ − 80
3 G

(1)
3 3.

Thus,

I3 + I4 − 80G
(1)
3 2 − 80

3 G
(1)
3 3 = I4 +

1∫
−1

40X ′
2G2G′′ + 320

1∫
−1

x2(1 − x2)2GG′G′′

−80
3 G

(1)
3 3

= 80
1∫

−1

x(1 − x2)2[3(1 − x2) − (9x2 − 5)]G2G′′ − 320
1∫

−1

x(1 − x2)(1 − 3x2)G(G′)2

−
1∫

−1

(1 − x2)2
[
160x2 − 80

3 (1 − 7x2)
]

(G′)3

= 160
1∫

x(1 − x2)(3x2 − 1)(G2G′′ + 2G(G′)2) − 80
3

1∫
(1 − x2)3(G′)3
−1 −1
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= 160
3

1∫
−1

x(1 − x2)(3x2 − 1)(G3)′′ − 80
3

1∫
−1

(1 − x2)3(G′)3.

It is easy to see that

5∑
i=1

Ii = −a1

1∫
−1

(1 − x2)4(G3)(5) − a2

1∫
−1

x(1 − x2)3(G3)(4)

− t − 12
3

1∫
−1

(1 − 7x2)(1 − x2)2(G3)(3)

− 160
3

1∫
−1

x(1 − x2)(3x2 − 1)(G3)′′ + 40
1∫

−1

(1 − x2)2(G3)′

− 5
1∫

−1

(1 − x2)4G′(G′′)2 − 80
3

1∫
−1

(1 − x2)3(G′)3

= −5
1∫

−1

(1 − x2)4G′(G′′)2 − 80
3

1∫
−1

(1 − x2)3(G′)3.

Appendix B. Proof of (3.26)

Compute 
∫ 1

−1(1 − x2)3G2[(1 − x2)3G](7). First,

1∫
−1

(1 − x2)3G2[(1 − x2)3G](7) =
1∫

−1

(1 − x2)6G2G(7) − 42
1∫

−1

x(1 − x2)5G2G(6)

−126
1∫

−1

(1 − x2)4 (1 − 5x2)G2G(5) + 840
1∫

−1

x(1 − x2)3 (3 − 5x2)G2G(4)

+2520
1∫

−1

(1 − x2)3 (1 − 5x2)G2G(3) − 3 × 7!
1∫

−1

x(1 − x2)3G2G′′ − 7!
1∫

−1

(1 − x2)3G2G′

:=
7∑

Ii (B.1)

i=1
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Let

G7 =
1∫

−1

(1 − x2)6(G3)(7) = 3
1∫

−1

(1 − x2)6G2G(7) + 42
1∫

−1

(1 − x2)6GG′G(6)

+ 126
1∫

−1

(1 − x2)6GG′′G(5) + 126
1∫

−1

(1 − x2)6(G′)2G(5) + 210
1∫

−1

(1 − x2)6GG(3)G(4)

+ 630
1∫

−1

(1 − x2)6G′G′′G(4) + 630
1∫

−1

(1 − x2)6(G′′)2G(3) + 420
1∫

−1

(1 − x2)6G′(G(3))2

:=
8∑

i=1
G7i;

and

G6 =
1∫

−1

x(1 − x2)5(G3)(4) = 3
1∫

−1

x(1 − x2)5G2G(6) + 36
1∫

−1

x(1 − x2)5GG′G(5)

+ 90
1∫

−1

x(1 − x2)5GG′′G(4) + 90
1∫

−1

x(1 − x2)5(G′)2G(4) + 60
1∫

−1

x(1 − x2)5G(G(3))2

+ 360
1∫

−1

x(1 − x2)5G′G′′G(3) + 90
1∫

−1

x(1 − x2)5(G′′)3

:=
7∑

i=1
G6i.

We consider these functions

X
(1)
5 = [x(1 − x2)5]′ = (1 − x2)4(1 − 11x2), X

(2)
5 = (1 − x2)4(1 − 5x2);

X
(s)
4 =

[
X

(j)
5

]′
, s = 1, 2; X

(3)
4 = x(1 − x2)3(3 − 5x2);

X
(s)
3 =

[
X

(j)
4

]′
, s = 1, 2, 3; X

(4)
3 = (1 − x2)3(1 − 5x2).

(B.2)

Then define

G
(j)
5 =

1∫
X

(j)
5 (G3)(5) = 3

1∫
X

(j)
5 G2G(5) + 30

1∫
X

(j)
5 GG′G(4)
−1 −1 −1
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+ 60
1∫

−1

X
(j)
5 GG′′G(3) + 60

1∫
−1

X
(j)
5 (G′)2G(3) + 90

1∫
−1

X
(j)
5 G′(G′′)2

:=
5∑

i=1
G

(j)
5 i, j = 1, 2;

G
(j)
4 =

1∫
−1

X
(j)
4 (G3)(4) = 3

1∫
−1

X
(j)
4 G2G(4) + 24

1∫
−1

X
(j)
4 GG′G(3)

+ 18
1∫

−1

X
(j)
4 G(G′′)2 + 36

1∫
−1

X
(j)
4 (G′)2G′′

:=
4∑

i=1
G4i, j = 1, 2, 3;

and

G
(j)
3 =

1∫
−1

X
(j)
3 (G3)(3) = 3

1∫
−1

X
(j)
3 G2G(3) + 18

1∫
−1

X
(j)
3 GG′G′′ + 6

1∫
−1

X
(j)
3 (G′)3

:=
3∑

i=1
G

(j)
3 i, j = 1, 2, 3, 4.

As in Appendix A, we neglect the coefficients before G7i, G6i, . . . G
(j)
3 i.

After integration by parts, one has

G71 =
1∫

−1

(1 − x2)6G2G(7) = −
1∫

−1

[(1 − x2)6G2]′G(4) = 12G61 − 2G72;

G72 = 12G62 − (G73 + G74); G73 = 12G63 − (G75 + G76);

G74 = 12G64 − 2G76; G75 = 6G65 − 1
2G78;

G76 = 12G66 − (G77 + G78); G77 = 4G67;

(B.3)

Similarly,

− G61 = G
(1)
5 1 + 2G62; −G62 = G

(1)
5 2 + (G63 + G64);

− G63 = G
(1)
5 3 + (G65 + G66); −G64 = −G

(1)
5 4 + 2G66;

− G65 = G
(1)
5 3 + (G63 + G66); −G66 = 1

G
(1)
5 5 + 1

G67;

(B.4)
2 2
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− G
(j)
5 1 = G

(j)
4 1 + 2G

(j)
5 2; −G

(j)
5 2 = G

(j)
4 2 + (G(j)

5 3 + G
(j)
5 4);

− G
(j)
5 3 = 1

2G
(j)
4 3 + 1

2G
(j)
5 5; −G

(j)
5 4 = G

(j)
4 4 + 2G

(j)
5 5;

(B.5)

−G
(j)
4 1 = G

(j)
3 1 + 2G

(j)
4 2; −G

(j)
4 2 − G

(j)
4 3 = G

(j)
3 2 + G

(j)
4 4; −G

(j)
4 4 = 1

3G
(j)
3 3.

(B.6)
By these relations, we calculate

I1 + I2 + a1G7 + a2G6

= (1 + 3a1)G71 + 42a1G72 + 126a1(G73 + G74) + 210a1G75 + 630a1(G76 + G77)

+ 420a1G78

+ (3a2 − 42)G61 + 36a2G62 + 90a2(G63 + G64) + 60a2G65 + 360a2G66 + 90a2G67

= (36a1 − 2)G72 + ... + (36a1 + 3a2 − 30)G61 + ...

= (90a1 + 2)(G73 + G74) + ...(360a1 + 30a2 + 36)G62 + ... − (36a1 + 3a2 − 30)G(1)
5 1

= (120a1 − 2)(G75 + 3G76) + 630a1G77 + 420a1G78

+ (720a1 + 60a2 − 12)(G63 + G64)

+ 60a2G65 + 360a2G66 + 90a2G67 − (36a1 + 3a2 − 30)G(1)
5 1

− (360a1 + 30a2 + 36)G(1)
5 2

= (270a1 + 6)G77 + 7G78 + 3(720a1 + 60a2 − 12)G66 + 90a2G67

− (36a1 + 3a2 − 30)G(1)
5 1

− (360a1 + 30a2 + 36)G(1)
5 2 − (720a1 + 60a2 − 12)(G(1)

5 3 + G
(1)
5 4)

= 7G78 + 42G67 − (36a1 + 3a2 − 30)G(1)
5 1 − ... − (1080a1 + 90a2 − 18)G(1)

5 5.

Let

II = I1 + I2 + a1G7 + a2G6 − 7G78 − 42G67 and 12a1 + a2 = t.

Then it follows from (B.5) that

II = −(3t − 30)G(1)
5 1 − (30t + 36)G(1)

5 2 − (60t − 12)(G(1)
5 3 + G

(1)
5 4) − (90t − 18)G(1)

5 5

= (3t − 30)G(1)
4 1 − (24t + 96)G(1)

5 2 − ...

= (3t − 30)G(1)
4 1 + (24t + 96)G(1)

4 2 − (36t − 108)(G(1)
5 3 + G

(1)
5 4) − (90t − 18)G(1)

5 5

= (3t − 30)G(1)
4 1 + (24t + 96)G(1)

4 2 + 18(t − 3)(G(1)
4 3 + G

(1)
4 4) − 252G

(1)
5 5.

Joint with (B.6), we further have
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II + 252G
(1)
5 5 = (3t − 30)G(1)

4 1 + (24t + 96)G(1)
4 2 + 18(t − 3)(G(1)

4 3 + G
(1)
4 4)

= −3(t − 10)G(1)
3 1 + 6(3t + 26)G(1)

4 2 + 18(t − 3)(G(1)
4 3 + G

(1)
4 4)

= −3(t − 10)G(1)
3 1 − 6(3t + 26)G(1)

3 2 − 210G
(1)
4 3 + 6(3t − 44)G(1)

4 4

= −3(t − 10)G(1)
3 1 − 6(3t + 26)G(1)

3 2 − 2(3t − 44)G(1)
3 3 − 210G

(1)
4 3.

Repeating the above arguments, we find

− 1
126I3 = G

(2)
5 1 = G

(2)
3 1 − 4G

(2)
3 2 + 2G

(2)
3 3 − 5G

(2)
4 3 − 5G

(2)
5 5;

1
840I4 = G

(3)
4 1 = −G

(3)
3 1 + 2G

(3)
3 2 − 2

3G
(3)
3 3 + 2G

(3)
4 3.

Then we compute

II + I3 + I4 + I5 + tG
(1)
3

= II − 126G
(2)
5 1 + 840G

(3)
4 1 + 2520G

(4)
3 1 + tG

(1)
3

= −252G
(1)
5 5 + 630G

(2)
5 5 − 210G

(1)
4 3 + 630G

(2)
4 3 + 1680G

(3)
4 3

+
(

30G
(1)
3 1 − 126G

(2)
3 1 − 840G

(3)
3 1 + 2520G

(4)
3 1

)
+

(
1680G

(3)
3 2 − 156G

(1)
3 2 + 504G

(2)
3 2

)
+

(
88G

(1)
3 3 − 252G

(2)
3 3 − 1260G

(3)
3 3

)

:= III1 + III2 +
3∑

i=1
III

(i)
3 .

By (B.2), we derive

III1 = −252G
(1)
5 5 + 630G

(2)
5 5

=
1∫

−1

[
630

(
1 − 5x2) (1 − x2)4 − 252

(
1 − 11x2) (1 − x2)4

]
G′(G′′)2

= 378
1∫

−1

(
1 − x2)5

G′(G′′)2;

III2 = −210G
(1)
4 3 + 630G

(2)
4 3 + 1680G

(3)
4 3 = 0;

and
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III
(1)
3 = 30G

(1)
3 1 − 126G

(2)
3 1 − 840G

(3)
3 1 + 2520G

(4)
3 1

= 72
1∫

−1

(25x4 − 48x2 + 19)(1 − x2)2G2G(3)

:= 72
1∫

−1

X
(5)
3 G2G(3);

III
(2)
3 = 1680G

(3)
3 2 − 156G

(1)
3 2 + 504G

(2)
3 2 = 216

1∫
−1

(15x4 − 26x2 + 3)(1 − x2)2GG′G′′

:= 216
1∫

−1

X
(6)
3 (1 − x2)2GG′G′′;

III
(3)
3 = 88G

(1)
3 3 − 252G

(2)
3 3 − 1260G

(3)
3 3 = 72

1∫
−1

(15x4 − 26x2 + 3)(1 − x2)2(G′)3

:= 72
1∫

−1

X
(6)
3 (1 − x2)2(G′)3.

It follows from (A.4) that

III3 :=
3∑

i=1
III

(i)
3 = −72

1∫
−1

(
X

(5)
3

)′
G2G′′ +

1∫
−1

(
216X

(5)
3 − 144X

(6)
3

)
GG′G′′

+ 72
1∫

−1

X
(6)
3 (1 − x2)2(G′)3

= −72
1∫

−1

(
X

(5)
3

)′
G2G′′ − 288

1∫
−1

X2G(G′)2 + 1260
1∫

−1

(1 − x2)4(G′)3,

where X2 = x(1 − x2)(155x4 − 16x2 + 19). Then we consider

III3 + I6 + I7 = −144
1∫

−1

X2
[
G2G′′ + 2G(G′)2] − 5040

1∫
−1

(1 − x2)3G2G′

+ 1260
1∫
(1 − x2)4(G′)3
−1
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= −48
1∫

−1

X2(G3)′ − 1680
1∫

−1

(1 − x2)3(G3)′ + 1260
1∫

−1

(1 − x2)4(G′)3.

Put these results together, we conclude that

7∑
i=1

Ii = −a1

1∫
−1

(1 − x2)6(G3)(7) − a2

1∫
−1

x(1 − x2)5(G3)(6) − t

1∫
−1

X
(1)
3 (G3)(3)

− 48
1∫

−1

X2(G3)′′ − 1680
1∫

−1

(1 − x2)3(G3)′ + 7
1∫

−1

(1 − x2)6G′(G(3))2

+ 42
1∫

−1

x(1 − x2)5(G′′)3

+ 378
1∫

−1

(
1 − x2)5

G′(G′′)2 + 1260
1∫

−1

(1 − x2)4(G′)3

= 7
1∫

−1

(1 − x2)6G′(G(3))2 + 42
1∫

−1

x(1 − x2)5(G′′)3 + 378
1∫

−1

(
1 − x2)5

G′(G′′)2

+ 1260
1∫

−1

(1 − x2)4(G′)3.

Note that

1∫
−1

[(1 − x2)G](3)(1 − x2)5(G′′)2 =
1∫

−1

(1 − x2)6(G′′)2G(3)

− 6
1∫

−1

x(1 − x2)5(G′′)3 − 6
1∫

−1

(1 − x2)5G′(G′′)2

= −2
1∫

−1

x(1 − x2)5(G′′)3 − 6
1∫

−1

(1 − x2)5G′(G′′)2

Therefore,

1∫
(1 − x2)3G2[(1 − x2)3G](7) = 1260

1∫
(1 − x2)4(G′)3 + 252

1∫
(1 − x2)5G′(G′′)2
−1 −1 −1
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+7
1∫

−1

(1 − x2)6G′(G(3))2 − 21
1∫

−1

[(1 − x2)G](3)(1 − x2)5(G′′)2.
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