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1. Introduction and statement of results

In this paper, we consider the constant Q)-curvature type equation

enu
where S™ is the n-dimensional sphere and
n—2
[1.20 (A +k(n—k—1)), for n even;

o\1/2 _n-3
(_A + (250 ) 1.2 (A + k(n —k—1)), for n odd

is the Paneitz operator on S™ and « is a positive constant. The volume form dw is
normalized so that [, dw = 1.
The corresponding functional is defined in H % (S™) by

Ta(u) = %/(Pnu)udw +(n—1)! /udw _ =D 1n/e"“dw. (1.2)

n
Sn N Sn

If « =1, (1.1) corresponds to the constant Q-curvature equation on S™. It is shown
in [1] that the following Beckner’s inequality, a higher order Moser-Trudinger type in-
equality, holds

Ji(u) >0, weH?(S"). (1.3)

Furthermore, J; is invariant under the conformal transformation

u(€) = u(r€) + - In(|det(dr)(€)))

where 7 is an element of the conformal group of S™ and |det(-)| is the modulus of the
corresponding Jacobian determinant. Equality in (1.3) is only attained at functions of
the form

wé)=—-In(1-¢-€+C, CeR,

where ¢ € B"! .= {¢ € R"M |¢] < 1}. (See also [7].) In particular, (1.1) with o = 1
has a family of axially symmetric solutions

w(€) =—In(1l —a&), £€S"forac(-1,1).

On the other hand, an improved Aubin-type inequality has been shown in [7, Lemma
4.6]: for any o > 1/2, there exists a constant C'(«) > 0 such that J,(u) > —C(«)
provided that u belongs to the set of functions with center of mass at the origin
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Ez{UEH%(S"):/e"”{jdw:O; i=12,--- ,n+1}
S’n,

This gives rise to the existence of a minimizer ug of J, in £, and wg satisfies the
corresponding Euler-Lagrange equation

nu n+1
e

for some constants a;,7 = 1,2,---n + 1. Furthermore, by exploiting the invariance of J;
under the conformal transformation, [7, Remarks (3) (ii) for Cor. 5.4] implies that the
following Kazdan-Warner condition

/(VQ,V&)e"“dw:O, 1=1,2,---n+1 (1.5)
Sn

is also applicable for the prescribing Q-curvature equation
Pou+(n—1—Qe"™ =0, €£ecS".

It is an immediate consequence that a; = 0, ¢ = 1,2,---n + 1 in (1.4). (See [32], proof
of Theorem 2.6.) This argument is reminiscent of that in [6, Cor. 2.1] on the constant
Gaussian curvature type equation, or the mean field equation on S2,

2u

—aA 1— ——
@ u+< fSQeQ“dw

) =0, £eS* (1.6)
For (1.6), there is a vast literature. See, e.g., [6], [16] and references therein. Moreover,
interested reader is referred to [3,8,10,11,13,19-21,24-26,29,30,33] for literature on equa-
tions that have conformal structure.

In what follows, we shall consider axially symmetric functions that are only dependent
on &. The first aim of this article is to discuss the classification of axially symmetric
solutions for (1.1) at the critical parameter o = #_1 We have the following theorem.

Theorem 1.1. If o = nLH
then u must be constant.

and u s an azially symmetric solution to (1.1) with n > 2,

The rest of this paper focuses on (1.1) with n even in the axially symmetric setting.
We shall show that (1.1) admits only constant solutions when a belongs to some suitable
subinterval in (1/2,1) for n = 6, 8. As a consequence we obtain an improved Aubin-type
inequality for axially symmetric functions in £. Note that the case n = 4 has been
considered in [17] and similar results are obtained.

Considering solutions axially symmetric about £;-axis and denoting & by x, we can
reduce (1.1) to
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n noy(n— (nil)'ﬁr % nu
a(-D2[1=2)2d]" Y 4 (n—1) - F("T“)v( )e =0, (1.7)

where v = f_ll(l —g?) T e,
One can refer to Section 3, for the detailed derivation of (1.7). By direct computations,
we see that the corresponding functional I, (u) in H2 (—1,1) can be expressed as follows

Ia(u) = (*1)5 %/(1 — :172)71752[(1 — xz)%u/](”*l)qu (’I’L _ 1)!/(1 . IQ)%U

_(n_l)'ﬁr(%) F(nTH> 2 ”TJ" nu
NG ﬁF(Z)/l(l s

where H?(—1,1) is defined as the restriction of H(S™) in the set of functions axially
symmetric about &;-axis and £; = x. Moreover, the set £ is replaced by

g, = {u e H2(S*) : u = u(z) and /lx(1 — 22" = o}. (1.8)

Let

() _ 115+ /2851
a’ = ———

19
~ 0.6168 and o® = —~ ~ 0.8261.
273 and.a 23

Now we state the main results.

Theorem 1.2. Let n = 6 or 8. If o™ < a < 1, then (1.7) admits only constant solutions.
As an immediate consequence, we have

ulen)gT Io(u)=0.

We believe that .J; 5(u) > 0 for u € £, given the similar inequality for S? as shown in
[16].
Next we define the following first momentum functionals on H % (S™)

Ta(u) = %/(Pnu)udw + (n— 1)!/udw
Sn Sn
? +1
- In /e dw | - Z;(/e &dw)?
n =1 gn

Note that Ju(u) = Jo(u) when u € £.
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As a consequence of Theorem 1.2, we have the following sharp inequality on S™ for
axially symmetric functions reminding us of the infinite inequalities arising from the
Szegd limit theorem [4,5,15].

Theorem 1.3. Let n =6 or 8, then

T (u) >0, Vue{ueH(S"):u€)=u(&)}.

nt1

Using a bifurcation approach and Theorem 1.1-1.2, we can also show the existence of

. . . 1 1
non constant axially symmetric solution for a € (TL_H’ 3)-

1 l)
n+172/°
,a(")) and a sequence of non constant

Theorem 1.4. Forn > 2, there exists a non constant solution uq to (1.7) fora € (

Moreover, there exists a sequence o, € (L

n+1
solutions ugq,, ,m =1,2,--- to (1.7) such that o, — %, fil(l - xZ)anz‘e"““m = 1{?—5&%
2

and |[uq,, || oo ((—1,17) = 00 as m — 00.

We also establish the following proposition concerning the centers of mass and first
order momenta of solutions to (1.1).

Proposition 1.5. If u solves (1.1), then

/enu&vdw:O and /u&dw:O, i=1,2--,n+1,
Sn §n

whenever o # 1.

The remainder of this paper is organized as follows. First, we give some preliminaries
and validate Theorem 1.1 and Proposition 1.5 in the study of the case n > 2 in Section 2.
Section 3 is devoted to the case n = 6 or 8 and the proof of Theorems 1.2-1.3. In
Section 4, we carry out a bifurcation analysis of (1.7) and its equivalent form, and prove
Theorem 1.4 based on Theorems 1.1 and 1.2.

2. Preliminaries and classification of a = P

In this section, we state several preliminaries which will be needed in the proof of our
main results.

Note that the eigenfunctions associated with the Paneitz operator coincide with those
associated with the Laplacian. It is natural to introduce Gegenbauer polynomials, see
[14, 8.93], which can be considered as a family of generalized Legendre polynomials.

Let us first introduce the Gegenbauer polynomials (see [14, 8.93]). Recall that

k n
C’:zl(x)_(__l) Llan-DEGE) (e L g o

—(1
2 ) KT (n—1TC(k+%) e
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n—1
and degree k. Then C, ? satisfies

n—1

is called Gegenbauer polynomial of order *5

n—1 n—1 _ n—1
(1-22)(C,7 )" —nx(C,2 ) + M0, % =0, k=0,1,---, (2.2)
where Ay = k(k+n — 1).
After some calculations, it is easy to see from [14] that
n-1 T'(k+mn)
c —_ 2.3
and
1 7(k+n—2)! L (k4+n—2)! .
Ja-a T T @0 (n) = { TREEITEE Ay FES
Y 0 k # s.
(2.4)
Furthermore, we know that
n—1 n—1
P,C.2 =NC 7, (2.5)
where
n—1 I‘(n+ ]C)
Ap = k = . 2
o= T+ == (26)
s=0
Indeed, for n even,
ne2 nis
2

A = ﬁ[k(k—i—n—l)—l—s(n—s—l)]: H(k+s)(k+n—l—s)

s=0

[}

w
i

3

(k+s).

—

w
[}

The final formula also works when n is odd.
We now prove Proposition 1.5. Since (1.1) is invariant under addition by a constant,

we can normalize u so that [g, €""dw = 1. Then, (1.1) can be written as
aPpu=(n—1)le"™—-1), £eS". (2.7)

As in [6,22], we can multiply (2.7) by &, i =1,2,--- ;n+ 1 and integrate to get

a/(Pnu)fidw =(n-— 1)!/6”“§idw.

Sn Sn



C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335 7

It is easy to see from (2.2) and (2.5) that
_A£1:X1£7, and Pngi:Alfh 7/:1,27777/—1—1

We further have
na/uﬁidw = /6”“§idw.
Sn Sr

On the other hand, let

0= (n_1)!+(n_1)!<1_1>6_m'

Then (2.7) can be reduced to
Pou+(n—1)!—Qe™ =0 (2.8)

As stated in the Introduction, the Kazdan-Warner condition (1.5) holds. It follows from
(1.5) that

1 1 1
0=mn! < — 1) /(VU,V§i>dw = —nl ( — 1) /uA&dw = nn! < — 1) /u&dw.
@ @ Q@
Sn sn §n
Therefore,
/u&-dw:() and /e””&dw:O 1=1,2,---,n+1
Sn Sn

whenever « # 1. Proposition 1.5 has been proven.
Throughout this paper, we assume that u is axially symmetric w.r.t. & -axis, i.e.,
u=u(&) for u € C°(S™). We may drop the subscript for simplicity to write

u=u(x), ze(-1,1).

Next, we shall prove the uniqueness of axially symmetric solutions when o« = %H in
(1.1) for all n > 2.
Let
0 n—1
u=>Y aC,* (). (2.9)
k=0

As previously discussed, we can get
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o n—1
Pou= Z AwarC 2 (2), (2.10)
k=0
Now we assume that u is solution for (2.7) and define
G(z) = (1 —2*)u. (2.11)

One has
G=3 07 (x). (2.12)
k=0

n—1
By the recursive relations of C, * (z) ([14, 8.939])

n—1

(1= )(C.7 (@) =200 = )G, (2) — haC ™ (@)
— (k +n— 1)1‘01:%1 (:L’) — (k + 1)0];_%11 (ﬂf),

we have

not (k+n—-1)(k+n—2) ==t k(k+1) n=1

(1-2%)(C,* (x)) = T p— k51 (@)= g =7 Ok (@), for k> 1.
(2.13)
Therefore, we see from (2.12) and (2.13) that
(hfn)(k+n—1)  k(k—1) )
b — D — =5 0k—1 for k > 1; (2 14)
E= 9 nn-1) for k — :
G} or k=0.
Differentiate (2.7) w.r.t.  and multiply both sides by (1 — z?) to get
|
(1 - 22)(Pou) = Lemu(1 — 2?)ud.
«
Replacing €™ by ﬁPnu + 1, we derive that
|
(1 —2%)(Pyu) = nP,uG + %G. (2.15)

Inspired by Osgood, Phillips and Sarnak [27], we shall compare the coefficients in front

n—1
of C;.? (x) in both sides of (2.15). It is worthy pointing out that 1-d case is solved by
comparing Fourier coefficients in [31].

n—1
Proof of Theorem 1.1. We first compare the coefficients before Cy 2 (x). By (2.10) and
(2.14), we see that
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n(n—1)
n+1

[ (k+n)(k4+n— 1A E(k —1)Ap_1 et
+Z[ T R N N R

(1 —2)*(Pyu) = )\1(110 (:17)

(2.16)

k=1
On the other hand, multiplying (2.15) by (1 — )%2 and integrating, we obtain

2n(n — 2)In!
n+1

2n(n — 2)In!

Analzn/PnuGJr ]

N

na1-

Equivalently, we have

2(n —2)In! 1
_— - — = . 2.1
n+ 1 (1 a) aq /Pn’LLG ( 7)
N

It remains to compute [, P,uG. It follows from (2.10), (2.12), (2.14) and (2.4) that

1 oo oS]
/PnuG — /(1 — 2" (Z )\kakCI:T (93)> ZbkaT (x)
Sn —1 k=0 k=0

> —2)!
= An Z (k o )\kakbk

nl 1
el Uy
3 (k +n)!
=2A
nkZﬂ/\k {k!(2k+n1)(2k+n+1)ak+1ak

(k—1)(k+n—2)!
S (k=1)!(2k+n—3)(2k+n— 1)ak1ak}

k +n— 1)')\k+1
=24,
Z{ 2k+n—1)(2k+n+1)ak+lak

(k—1)(k+n—2)\
T k- DIk +n-3)2k+n- 1)a’”a’“}

=0.

y (2.17), we conclude that

if « # 1, then a; =0 and so by = 0. (2.18)
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n-1
Then we compare the coefficients in front of C| 2 (z) in (2.15). More precisely,

2252 (Pu) PouGC,

Le—0_
—
I
8

1
/ (1- )3 (Pu)Cy® =n
-1

! n—2 n—1
+ "E /(1 e aelor (2.19)

From (2.16), we deduce that

1
n n_1 B 2nl(n + 1)!
Z1
For the second term of RHS of (2.19), we have
W 2(nt)?
n. n—2 n=1 n.
— [(1-2*)"7 T = Aas. 2.21
—[a-)Tac aln 134 (2.21)
S1
For the first term of RHS of (2.19), after integration by part, we obtain
1 1
o\ =2 n—1 n—1 P
(1—2%)7 PuGC,? (x)=— - PouGd((1 —z%)?)
-1 -1
. 1
= n; /(1 — :(;2)"772 [(1—2?)(Pou) G+ (1 — 2°)G' Pyul dx
Z1
n—1
= I+11).
—Lr+10)
By (2.9)—(2.13), we find
(k+n—-1)(k+n—-2) n=1 k(k+1) =1
n(n—l) 2 ((k+n)k+n-1) E(k—1)
— — by
nt1 2o +I;( Yern—1 M T op gkt
<O 7 (x). (2.22)

After some computations, we deduce from (2.10), (2.4), (2.16) and (2.22),
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(k+n)!
2k +n+1)2k+n—1)k!

+24, Z ak+1bp Akt1 {
k=2

(k+n—1)!
(2k+n— 1)(2k+n+1)k!}

(k+n)!
(2k+n+1)2k+n—1)k!

+24, Z arbp41 Ak {
k=2

(k+n—1)!

S @k+n—-1)2k+n+1)(k—1) ]
_ 2n(n!)?
 on+3

> (k+n— 1)\
. 2MmA,
G2b1 +2n I;(Qk—l—n—l—l)(%—i-n—l)k!

k+n
X ? ak+1bg + arbri1

_ 2n(n—1)n!(n+1)! 5
P P

A (k +n)(k 4+ n)!

+2n(n—1)A, Z
k=2

Ae(k +n+ 1))

2
2k +n+ 1)(2k +n— 1)(2k +n— 3)kk!FH1

—2n(n —1)A,
k=
B (k+n—1)
= 2n(n = 14n kZ:Q (2k4+n+1)(2k+n—1)(k—1)!

((k+n—1)Ak1 s (k+n+1)(k+n)h >
2k +n—3)(k—1)"* %2k +n—3)(k_ 1) *k+2

S (ktn - DS (k+s) o
—1)A, 2 b2,
n(n ;;) k+1)(2k +n+ 1)k + 1) FH

Therefore,

/(1793) Pu— (n—1)%4, i (k+n— 1)t H;L:_ll(k+5)
1

b2,
(k+1)(2k +n+ 1)(k+ 1)+

Combining (2.20)—(2.23), we have

2(nt)? . (kn— DI (k4 s)
(n—w%n+$("+1> 1

O

z_; 2k+n+1)2k+n—-1)2k+n—3)(k+1)!

(k+1)(2k +n+1)(k+ 1) *+V

11

QG2
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It is easy to see that if & = n%rl then by =0 for k > 1. Thus, G=0andu=C. O
3. The case: n is even

In this section, we shall show some results for (1.1) with n > 6 even, which can be
regarded as the generalization of recent results in [17] for n = 4.

Let 6;, i =1,2,...,n denote the usual angular coordinates on the sphere with

0, €10,2r] and 6, €[0,7], i=1,2,...,n—1

and define x = cos ;. Then the metric tensor is

(1—22)7t 0 0 0
0 1— a2 0 0
g= 0 0 (1—2?)sin’6, --- 0 (3.1)
0 0 0 o (1—2%)sin?6,...sin%6,

In what follows, we shall consider axially symmetric functions which only depend on x.
For such functions, we have

- 5%

s -10

1

(1—2? LE sin™ 2 gy ..o sin 0, _1d0,, - - - dfadz. (3.2)

Note that

1 s
s—1 _ 0s—2 2 2) 1
sin®~0d0 = 2 B(2 2) 2” B<2 2)

O\mm

Then for £k =2,3,...,n—1,

= _ T n+l—k
0

2’ 2 F("+g_k)

We further have

n+2 k
gn k=2 1

1
=t n
:7( +) /(lfo) 7 dz
1

1
T n+1) n—1 n+1k
dw = (EI)H\/_F (1—2?) " dy
T 2

VAT (3)

N3
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1
o (n — 1)' _ ;L'2 n;2 "
= 2 1 (nj2 - 1P Jo-y T

for even n. Moreover,

1o 2L (g3 2 ca— et L g a2ys
su=lgl 3 (lalbe 5 ) = 0 -at) L Ja -ty
=1 - zHu" — nazd
and
Pa=(-)? [1-a)5u]00 = ()P [(1-2) P afD (33

for uw = u(x). Hence, we can transform the original equation (1.1) on S™ into an ODE
(1.7).

In the following, we assume that o < 1.

Let G be defined as (2.11). In view of equation (1.7), we drive

n n—2 — D/xl (2
(-3 (1-2)7 Q)" 4 (n—1) — (n—1) ‘/f (2)e““ =0. (3.4)
L (24)
By differentiating (3.4), we further have
n n n—2 ! n—2
(DA -a)E[1 -2 0" - 21 -a?) T C
—(=1)¥n(1 - 22" G[1 - 2?) " GV =. (3.5)
For simplicity, let
Anst kD (n—1) not _T(k+n—-1)
k = 71_‘ (k‘ Tho 1)Ck and dk = 7]{;!1_‘ (TL — 1) bk (3.6)

and drop the hat and the index "T_l in the notation in later discussion. In the following,
we will study the above Cy and dy.
Combining (2.12) and (2.18), we have the following decomposition using the orthog-

onal polynomials Cy, k > 1:

G =) diC(x). (3.7)
k=1

Recall that

M= k(k+n—1) and)\kzw
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Note that (2.3) and (2.4) respectively become

Ch@) <2, vae (-1,1) (38)
and
1 2 [(n/2 = DA
1 _ 2 'n;Q _ n — ! k - .
/( =) 4 Zh—Da, M (3.9)
21
Define d; = 8 and
2 dz f_l 1—952)HC',37 for k > 2;
; ﬁ2f_ (1—2?) Cl, for k =1.

It follows from (2.2) and (3.3) that

[(1-2%)EC;]) = -M(1 - 2?7 Gy

and

1 o0
/(1 )T =Y 8, (3.10)
-1
1

/(1 e HI(CAL W'} (3.11)

2 X k
:Z Z ”Z+1 £2. (3.12)
k:l

=1

Next, we shall state some important integral identities which will be used frequently
in the proof of the main results.

Lemma 3.1. We establish the following equalities for G.

/(17962)”%201@:7 e (é; (3.13)
Z1
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1
/(1_332)%: _ nzl(l—aﬁ),
-1

Proof. A direct calculation shows that

1 1
/(1 - xz)ngz CiG = ﬁ/(l - mz)ngz — 7\/%1—‘ (53) .
-1 -1

Then (3.13) follows.

n—2

15

(3.14)

(3.15)

(3.16)

To prove (3.14) and (3.15), multiplying (3.4) by [ (1 — s?)"2 Ck(s)ds with k > 1
B

and integrating over [—1, 1], we have

1 =z

//Uswﬁa@k<nw1xwﬁamﬂ+mm

Z1-1
2 (/2 - DY
Y

e"“} =0.

After integrating by parts, we obtain

(vt [ [1-) T o - e
— (1Fa [(1-2) T N0 - a?)

-1

n—2

2 Ck(sc)

1
al'(n+k—1) o\ n=2

Furthermore,

(3.17)
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1 =z

T 1
//(1 - sQ)HQZCk(s) = w/(l - sg)nTﬁCk(s) ‘71 - /(1 —xQ)%ka
121 -1 -1 (318)
VAT ()
ar (=5%)
By (2.2) we find that
/(1 )" C(s) = —%(1 —)3CL). (3.19)

Let k = 1, then from (3.17)—(3.19) we deduce that

Va(n — DI (%) / L™ /an—1)IC ()
AT (25) Jo-r - or (zz3y o)

This leads to (3.14).
When k > 2, (3.15) follows from (3.17)—(3.19). Here we employ the fact that
'n+k—-1) A

_ e _ (n—=1)ly/aT (%)
W—;\—:and2 U(n/2 = D)2 = r () 2

For (3.16), multiplying (3.5) by = and integrating from —1 to 1, we obtain

1
/ [(_1)%(1 —a?)3[(1- 22" G - ng!xu —2?)Fa

(3.20)
— (1) Ena(1 —23) "7 G(1 - mz)nTQG](”_l)} —0.
By integrating by parts, we find
1 1
JEnta-aEn -6 = [()i - )0l -6
- o (3.21)

Furthermore,
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n—2

p) G](n_l)

(-1t [lo1 - =) T Gl - 2?)

n—2 n—2

:n/[(l—xQ)TG](T) s -2 + 2 - T (322)

=202 [l - e e

-1

It follows from (3.20)—(3.22) that

«
—1

n! <n+1 — l) /lx(l—mQ)"TzG: w_/lu(l—x?)"zzc] 302,

which, joint with (3.13), implies (3.16). O

Multiplying (3.5) by G and integrating over [—1, 1], we have

(3.23)

where
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1
/ (PaG)Gdw = (1) / (1-2%) " [(1-2*)Fa) " Ve
sn 21

27 1(n/2 - D2

la)* (n—1)!

(3.24)

However, the last term is very sophisticated, and we will consider it for the cases n = 6

and n = 8 below. More precisely, after some complicated computations, we derive that
for n =6,

2_ 80

/(1 ~2?)2G2[(1 — 2226 = —5 /(1 226G (1— 223(G)°, (3.25)

Le—

and for n = 8,
1 1 1
/(1 — 223G (1 - 22)°G)") = 1260/(1 — 2)HG")? + 252 /(1 — 22)°G(G")?
—1 —1 —1

1 1
+7/(1 — 225G (G®)% — 21 /[(1 — )G (1 - 2?)®(G")2 (3.26)
-1 —1
The details of the computation are postponed to Appendices A and B.
In view of the above relations, (3.23) for n = 6 becomes

1

1
G125 [0 - 22 -2 [a-wpe
| |

«
—1
X X (3.27)
—30 /(1 —2%)4G'(G")? - 160 /(1 —22)3(@")? =o0.
—1 —1
Similarly, (3.23) for n = 8 is equivalent to
1 | 1
612428 [ -a?Pa@p - T [a-atpc?
«
—1 —1
1 1
— 56 {180 /(1 —2H)4G")3 + 36 /(1 —2%)5G"(G")? (3.28)
—1 —1

+ [ (1=2?)°G(GP)? =3 [[(1-2°)G)P (1 - 2%)>(G")?| =0.
/ /
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Next we shall show a family of important gradient estimates in S™, which generalizes
a similar result in S*%.

Lemma 3.2. For all z € [-1,1], we have

: . 2j +1)!
G; = (-1)7[(1 — 22)’G)F*D < w, re(-1,1), 0<;< g —1. (3.29)
Q
Proof. We will first prove the result for the case n = 6.
Since

[(1-22)26]7 = [(1 = 22)((1 — 22)G)" — 4a((1 — 22)G) - 2(1 — 22)G] P

"

(1= 2®)((1 = 2)6)® — 6a((1 = 2%)G)" — 6((1 — 2*)G) |
= —(1-2*)GY + 102G + 20G;.
Therefore, by (3.4) we have
5!
—(1 — 23 GY + 102G, +20G; < ~ (3.30)

Let My = max ;1,1 G ().
Case 1:

M; = lim G)(zy) for some zy € (—1,1).
wk—>1

Asin [17], let r = |2/| = V1 — 22, then we write
G(z) = G(r), Gi(z)=Gi(r) and u(z) = i(r) forr € [0,1)and z € (0,1],
and @(r) can be extended evenly so that u(r) € C*°(—1,1). Hence,

} B,
Gi(z) = G1(r) = @(_T G(r))

P i) = L o),

T da? T dr?

(3.31)

where g(s), s € (—1,1) is a C* function.
Let go(s) = g(s) and

gi(s) = —2g;_1(s)V1—s, i=1,2,3.
Then g;(s) € C*(—1,1) for i = 1,2, 3. Differentiate g(r?) with respect to a:

d
T290%) = =20/ () V1 =% = . (r%).
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Similarly, we have

-, o
: =g =2,3.
T9(7) =gi(r%), =23

Therefore, G1(z) = G1(r) € C®(—1,1) and is even. We now can write

G1(r) = e1 4 cor® + c3r* = O(r®)  mnear r = 0. (3.32)

Then ¢y < 0, since M; = G1(1) = G1(0). Note that near r = 0,

dG'(x) dr
! _ 2 1
2Gi(z)=V1—-r ~ I
= —2cy + O(r?)

and

(1 —2%)GY () = (=2(cy — 4es) + O(r?))r.

It follows from (3.30) that
! 3!
Gi<—= > Vo e [—1,1]. (3.33)
Case 2: if
M; = lim Gj(zgx) for some x) € (—1,1).
rEp——1

Then it is similar to the case 1 to show (3.33).
Case 3: Let M1 = G1(z0) for some zp € (—1,1). Then

Gi(z0) =0 and G"(z9) <0.

(3.33) immediately follows from (3.30).
We see from (3.33) that

(1 -2)@)®) = —6G" - 62G" + (1 — 22)G" > 79, V€ [-1,1].
@
Repeating the previous arguments, we can conclude

G <—, Vexel-1,1].

QI+

In general, we can start with G, j = § — 2.
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In view of (3.4), one directly has

(n—1)!

(-1 -a?)F Q) <

Since
n—2

(-2 -2 @)Y =—(1- xQ)G'é_Q +2(n—-1)G% 5+ (n—1)(n—2)Gy o,

we can follow the same arguments above to obtain (3.29) for j = % —2. Then we can apply
mathematical induction on j from % —2t0 0 to conclude (3.29) forall 0 < j < % —1. O

8.1. The case:n =6

Throughout the rest of this subsection, we will focus on n = 6 and the equation

6u

e

where Pg = —A(—A + 4)(—A + 6). As previously introduced,
Psu = —[(1 —22)3u/]® = —[(1 — z2)2Au]@, (3.35)
and equation (3.34) is reduced to
97
—af(1 = z?)3u1®) 45! — 7eﬁu =0. (3.36)

In view of (3.10)—(3.12), we derive that

1
/ (1- 224G = 3 MO — O)F2. (3.37)
-1 k=1
Moreover, (3.12) can be rewritten as
1 o0
/ (1= 222612 = 5" + 4) O + 6)22. (3.38)
k=1

21
Lemma 3.3. Let n = 6, using the semi-norm |G| defined in (3.24), we have the following
estimate:

1 1

G < (% 15) Jia-wpaye =22 fa-ap@r. (33)

-1 -1
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Proof. By (3.10), (3.37), (3.38) and Lemma 3.2, we get

1

612415 [ 1[0 - ey

-1

IA
QIlr

Le— L—

[61(1 — 2%)*G? + 30(1 — 2*)*(G")? + 160(1 — 2?)*(G")?]

[30 I[(1 = 22)2G)"|* = 320(1 — x2)3(G')2} .

QIr

So (3.39) holds. O
Proposition 3.4. If% < a < 1, any azially symmetric solution to (3.34) must be constant.

Proof. We only need to show that either o < % or that G and hence u is identically O.
Indeed, when « > 2/3, it follows from (3.39) that

1

G2 + 15/|[<1 —PC) < 23780 — 203 + 720)8.

) k=1

Equivalently,

0> Z [(Xk +15)( A +4)(\r, + 6) 3 (30A% — 20\, 4 720) | 2

2
k=1
=Y (A —6)(A\2 — 14X, + 120)¢3.
k=1
In view of (2.2) the assertion holds. O
For n =6, (3.13) and (3.16) become
1
/(1 —2%)20,G = Eﬁ (3.40)
105
21

and

1

JACEERRSE (7 - 1) 8. (3.41)

-1
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23

Inspired by [18] and [12], our basic strategy is to assume 3 # 0, and show that it leads

to a contradiction with the range of «. It is fairly easy to see from (3.41) that

if 6 =0, then Vu = 0, which shows that u is a constant.

In what follows, suppose that 5 # 0 and

<a<

ol w
C»JI[\D

Then it is easy to see from (3.40) and (3.14) that

1
0<p<—.
@
Proof of Theorem 1.2 for n = 6. We first define the following quantity

112

= - - 320 <
D:=Y" {)\k M +4) (A +6) — (14+—> (Ak+4)(Ak+6)+7Ak} 2.
k=3

9

We now give the upper bound of D. From (3.39) we see that

D=|G)*- <14+ Q>/| [(1—2%)%G)" ) + 320 /1(1—9:2)3(6")2

—1
1

<1280960>52/ (1—2?)

-1

1
158 16 256
<9—a = 29) / (1 —23)2G)" |2 + 51 (192 = 3—a) 32

-1

163 [ 16 158 256
<) ) (n-2) 7]

It is easy to check D > 0. Combining (3.44) and (3.46), we have
16 158 256
T =) (= -29 4-22) = >0.
5 < a) ( Yo ) < 9o > ”

221+ /13345 2
522 <3

IN

Therefore,

a<a:=

w

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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To estimate the refined lower bound of D, we define

112 320 t
g(t) =t — <14+9—a> +7m

Then it is easy to see that

g'(t) >0 for t > \3(= 24).

Thus,
s 112 320 Ak
D= i — 14+—>+ })\+4)\+6t
;M( 90 ) "o Gu )0 1 oy) TR0
- 112 320 >
> g — 144+ —= )+ = e +4) (M +6)t2
o (e ) R ) S o

= (10 - %) D>k +4) (A +6)t3.

k=3

On the other hand, we derive from (3.8), (3.9) and (3.15) that

1 1 -1 1
12 6u
£ = d? / (1-a%)%C} = ( / (1- x2>202) [—8 / ket
Qg vy

5 2 ,
- (2k+5)(;\;€12;4)(/_\k+6) [%%(1_0@]2 (3.48)
- () 22
In particular,
/ - 128(2k + 5) 1 2
= (/1(1_x2)20,3) 490w, + 4O\ + 6) <E _B) 19)

IA

() e

By (3.40), (3.41) and (3.48), we get the lower bound of D:
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LUzOO—%E> (A + 4) (A + 6)t2
63
k=3
208 / 128 1152 /1 2
_ =/ _ 2)2 m2 _ ~EY 02 2YE -
= (10-Z2) | [l -eperp - Fp - B2 (1) (3.50)
—1

16 208\ | 163 1 , T2/(1 2
> 7 (10-55) l?(“a)‘gﬂ -2 (5-7) 1
By both (3.46) and (3.50), we see that
163 [16 1\ (158 256
)G ) (-3
16 208\ | 163 1 , T2/(1 ?
27(10m)[5 (r-5) -9 7(aﬂ>]'

A straightforward computation shows that
og]gﬂ<7i>[§fzg(u)éi)]+52%4§f+8<u)éi>}
-
= ? (7—é> (%—39) + 483 (3—%) +7—72 <10—%> (é—ﬁ)é

We further have
)
(222 o
- (; 5) I

We want to show that the term I is nonnegative. Thus, we need to obtain the lower
bound of 8. Note that the argument exploited in [17] is not applicable to this case.
Precisely, following [17], (3.46) implies that

256 16 1 158
64 — — >—(7T——](29——].
< 9o ) h 5 ( a) ( 9o )
However, the term 29 — % is positive when a > 28 ~ (0.6054. Hence, we choose a

261
suitable a > % so that
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I>0, forac/(aa). (3.52)

Then « satisfies that

48 208 90
I>(18—— =) (==
(8 7a)ﬂ+<4904 7)< 6)
208 208 90\ 1
18+—z4ga)5+(m7)§

7_7208 S 1) (g 138 9 (208 90\1
Tao 49« a 9a 180 — 80 49« 7)) «
0,
which indicates a > 0.61488. So we take o = 0.61488. For « € (a, @), it follows from

(3.51) that
14 1 4
<7——> (—6—39) + — (18——8> > 0.
« To « To

©) . 115+ /2851
o 273

Y

v

(G101 V]

Hence we find

a<o ~ 0.61683. (3.53)
Theorem 1.2 for n = 6 is proven. O
3.2. The case:n =8

This subsection focuses on the case n = 8. As we have addressed,

Py = —A(=A +6)(—A + 10)(—A +12), (3.54)

and equation (1.1) for n = 8 becomes

29
o1 —22)*/ D 71— 9 x S = 0. (3.55)
In view of (3.10)—(3.12), we derive that
1 oo
/(1 — 22)%(G")? Z (A —8)t2 (3.56)
—1 =1

and
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M8

1
Ja-arreey -

b
I

1
Moreover, (3.12) can be rewritten as

1

[l =spa@p - ka,

-1

where

S\k = (/_\k + 6)(/_\k + 10)(5% +12).

Lemma 3.5. Let n = 8, then we have the following estimate:

|G ? <28<——1)/|1—x G|®)? — 2061160/1(1—
1

where |G| is defined in (3.24).
Proof. By (3.28), Lemma 3.2 and (3.57)—(3.58), we get

1

G2 + 28 / (1 — 22312

-1

Me(AF — 267, + 144)t7

(3.57)

(3.58)

(3.59)

)M G2, (3.60)

+ (1 o $2)6(G(3))2:|

1
< 96 / (611 = 2%)°G2 4 180(1 — 2%)4(G)? + 54(1 - 2%)°(G")?
(0%
1
_ % 3" [720+ 180Ak + 54Xk (Ax — 8) + Ae(AF — 26X + 144)] £
k=1
- % D [+ 6)(x +10) (A + 12) — 360A] £
k=1
1
=2 [ - a6 = 3000 - )G
1

The proof is complete. O

Proposition 3.6. If < a < 1, any azially symmetric solution to (1.1) must be constant.
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Proof. As in the proof of Proposition 3.4, when o > %, it follows from (3.60) that

1

56 = < - -
1G)% + 28/ 11— 22)3G) ¥ 2 = — > [XR +28A7 — 108X + 720] £7
-1 k=1
200 o= < < <
<5 [} + 28A% — 108X, + 720] t;.
k=1
Equivalently,
0 — -~ — — —
0> [()\k +28) A\ — —— (A} + 28)\7 — 108\, + 720)] t2
k=1
<, 32-, 2492 -
=> (Ai - ?)\% - T/\i — 14976, — 27840) t2 >0,
k=1

since \; > 8 and the equation

32, 2492
S

3 t2 — 14976t — 27840 = 0

t4

has two real solutions ¢t; =~ —31.6 or ¢5 ~ 2.1. This is a contradiction, which completes
the proof. O

Remark 3.1. We note that it fails to get the same result as that in Proposition 3.4. The
reason is the following: when « > 2/3, it follows from (3.60) that

oo

1
Tele® 28/ 11— 22)3GI®)? = % > [XR +28A7 — 108X + 720] £7
—1

k=1

<84 T [A] 4 28XF — 108\, + 720] £7.
k=1
Equivalently,

0>

NE

[(Ak +28) (A 4 6) (Mg + 10)(Ag, + 12) — 84(A} + 28A7 — 108X, + 720)] ¢,

>
Il
—

(Ax — 8)(A\3 — 207 — 1476, + 5040)t2.

M

el
Il

1

There is no contradiction, since the equation

3 — 202 — 1476t + 5040 = 0
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has the following real solutions
tl ~ —31.67 t2 ~ 3.3 tg ~ 48.4.

Recall that (3.13) and (3.16) for n = 8 are reduced to

1
-1

and

1

Jla-apaop =12 (s- 1)

-1

As in the proof of Theorem 1.2 for n = 6, in what follows, we assume that

and note
1
0<p<—.
«

Proof of Theorem 1.2 for n = 8. Define

[ - 18\ ~ 20160 -
E:=>)" [Am - (18 + E) M+ — Ak} £3.
k=3

We now present the upper bound of E. From (3.60)—(3.62) we derive

E=|G)? - (18+18>/| (1—22)3GQ)®)? + 20;60 /1(1—x2)4(G’)2

-1

1
-7 (? - 10) 52 /( —2%)20?
-1

(__46)/| GI®? — 1024 <£_5> e
P

IN

29

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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To estimate the lower bound of D, define

. 18 20160 4
g(t):t—<18+g>+ a (t+6)(t+10)(t+12)

Differentiating g(t), we have

20160 2(t* + 14> — 360)

gty =1-—, (t+6)2(t + 10)2(t + 12)2

After some calculations, we deduce that g”(t) > 0 for ¢ > A\3(= 30). Thus, for ¢ > 30,

109
a > a = _—
gt)2gB0)=1-75->0

due to (3.63). We further have

= [- 18 20160\ | ~
E:Z |:>\k <18+E) +Tk:| )\kt%
k

8\ o= < (3.66)
> (12— = Apt?
_( a)zkk
0

since o > 2. We conclude from (3.63), (3.65) and (3.66) that

o<r(E o< (2 4) o)

and so

19 21
a < a(s) = —

53 < 55- (3.67)

Remark 3.2. We wish to obtain for n = 8 a similar inequality as (3.51) for n = 6 so that
the range of o can be more refined. However, the similar approach seems not working as
shown below.

As in (3.48), we find

2
At2 < W (; — ﬁ) . k>2. (3.68)

It follows from (3.61), (3.62) and (3.68) that



C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335 31

8 o= -«
E>(12—-= 2
:(2-3) S

 -3)[fn- -
=m<m—a>[¥< 5 ﬁz—%—ﬂ

i5) and (3.69), we conclude that

L[ -2)1(-2)

512511 /1 2
SETER N

Combining both (3.6

7
8\ |23 1 , 11 /1 2
> (12-2) [7 (o-2)-7-5(5-7) 1
Equivalently,
2
0< 25 <9——> (4—6—58> + 2232 (1—l> —i—E <12—§> <1—5> .
7 a « 9 « «
Furthermore,
BB (E-2)20-3)
7 « a a «
(3.70)

1 1 11 8 1
(G2 (-2) -5 (-0 G
a o 9 o o]
However, the r.h.s. of (3.70) is negative. Thus, the previous argument for n = 6 is not

applicable here.

Theorem 1.2 follows from (3.42), (3.53) and (3.67)
Next we shall show Theorem 1.3.

Proof of Theorem 1.3. Following [7], we define ¢py, P € S™,t > 0 to be ¢p(§) =&

p (ty), where y = mp(&) is the stereographic project of S™ from P as the north pole to
the equatorial plane In particular, we denote ¢, = ¢p, + where Py = (1,0,---0).

Given u € H%(S™) and t > 0, let

o(6) = u(6u(©) + " Ildet(do)], €S

Vu € H2(S"), t > 0. (3.71)

Ton () =T n (v),
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The proof has been carried out in detail for the case n = 4 in [17, Pro. 3.4]. The same
argument there works for general n with slight modifications; so we will skip the proof
here. We further see that for any u € H 2 (S™), there is a ¢p such that

o(6) = w6 () + o Inldet(dbp,), €€ 6"

belongs to £.
In conclusion, Theorem 1.3 follows immediately from Theorem 1.2 and (3.71). O

We note that a similar but more general Szegd type inequality for u € H'(S?) is proven
in [4] using a variational method under a mass center constraint, in combination with
the improved Moser-Trudinger inequality in [16]. For the classical Szego limit theorem,
please see [15]. Interested reader is referred to [2] for a generalization of Szegd limit
theorem on arbitrary Riemann surfaces.

4. Bifurcation
In this section we shall obtain results on bifurcation curves to (1.7) in general for o > 0

) 2) We shall first apply the standard bifurcation theory
to analyze the local bifurcation diagram. Let us recall the following general theorem.

and in particular for a € (==

Theorem 4.1. ([9, Theorem 1.7]) Let X, Y be Hilbert spaces, V' a neighborhood of 0 in
X and F: (—=1,1) x V=Y a map with the following properties:

(1)
(2)
(3)
(4)

( ,0) =0 for any t;

L EF, 0, F and 5‘ LI exist and are continuous;

er(0;F(0,0)) = span{wo} and Y/R(0;F(0,0)) are one-dimensional;
mF( 70)w0 ¢ R(azF(OaO))'

ngmﬁj

t,

If Z is any complement of ker(9,F(0,0)) in X. Then there exists g > 0, a neighborhood
of (0,0) in U C (—1,1) x X and continuously differentiable maps n : (—eg,e9) = R and
z: (—eo,e0) = Z such that n(0) =0, z(0) =0 and

F7H0)N U\ ((=1,1) x {0}) = {(n(e), ewo +e2(¢)) | € € (—0,20)}-

Recall that the shape of the above local bifurcating branch can be further described
by the following theorem (see, e.g., [23, 1.6]):

Theorem 4.2. In the setting of Theorem 4.1, let ) #0 € Y1 satisfy

R(0:F(0,0)) ={y € Y | (¢,y) = 0},

where Y1 is the dual space of Y. Then we have
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<ag,zF<O7 0) [w07 wO]v ¢>
2(07 . F(0,0)wo, ¥)

7'(0) = —

Furthermore, the bifurcation is transcritical provided that 1'(0) # 0.

Note that critical points of I,,(u) satisfy

(C1)F [(1—22) D 1 p(1 — 0?)"F (1 - fﬁff) i ) o,
ve(-1,1), (4.1)

where p = @
Let

Vv {u € H™MS") 1 u = u(z), SZ wdw = 0};

W= {u € L*(S™) : u = u(x), /udw = 0}

Nig

and define a nonlinear operator 7 : R x V — W as

enu
=P, 1— .
T (p,u) u+p ( on o dw)

Obviously, the operator 7 is well defined. After direct computations, one has

0.T (p,0)6 = Prtp — np.

Define

enu
F = Pol1——o—.
(pv ’LL) U+ Py, < fS" enudw>

Let S denote the closure of the set of nontrivial solutions of
F(p,u)=0. (4.2)

It is clear that (4.2) and (4.1) are equivalent.

n—1
Let Ay and C, > be given in (2.5). Then by similar arguments as in [17, Lemma 5.3],
we have

Theorem 4.3. Let p, = % for k =1,2,3,..., the points (pi,0) are bifurcation points
for the curve of solutions (p,0). In particular, there exists e9 > 0 and continuously
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n—1
differentiable functions py : (—€o,e0) = R and ¢y : (—eo,e0) = {C),* }* such that
pk(0) = pi, ¥ (0) = 0 and every nontrivial solution of (4.1) in a small neighborhood of
(pk,0) is of the form

In particular, when k = 2, the bifurcation point (p2,0) = (@,0) is a transcritical
bifurcation point. Indeed, we have
1 n-2 "1
, (n+ 1! J2,(1=2%)77 (C,* )P (n+1)l(n—1)?
P2(0) = = 2 1 N () 70
S (A=22)=(C )
Corollary 4.4. Let oy = ;\L—; for k =1,2,3,..., the points (ag,0) are bifurcation points

for the curve of solutions (,0) of (1.7). Moreover, when k = 2, the bifurcation point
(%H, 0) is a transcritical bifurcation point.

Remark 4.1. When k = 1, the bifurcation leads to the family of solutions u = —In(1 —
ax),a € (—1,1) and p = (n — 1)L. Tt is clear that (px, 0) is not a transcritical bifurcation

point for k odd since C’,:% is an odd function and p’(0) = 0 in this case. It should be

true that (pg,0) is a transcritical bifurcation point for k even, we only need to check if
n— n—1
f_ll(l —x?)"2 : (C,.* )3 # 0 in this case, which can be confirmed for small k& numerically.

However, in this paper we only need to use the transcriticality of (p2,0).

In order to analyze the global bifurcation diagram, we employ a global bifurcation
theorem via degree arguments (see [23,28]) and also exploit special properties of solutions
to (4.1).

First, we recall a global bifurcation result (see [23, Theorem I1.5.8]).

Proposition 4.5. In Theorem /.3, the bifurcation at (pg,0) is global and satisfies the
Rabinowitz alternative, i.e., a global continuum of solutions to (4.1) either goes to infinity
in R X W or meets the trivial solution curve at (py,,0) for some m > 1 and m # k.

Next we state and prove the following more specific global bifurcation result regarding
(4.1).

Theorem 4.6. 1) For k > 2, there exists a global continuum of solutions B,:' c S\
{(p,0),p € R} of (4.1) which coincides in a small neighborhood of (p,0) with

n—1

{(pr(e),eC,? +evi(e)),e < 0}.

B;f is contained in N3 := {(p,u) : p > (D! 0 e L2(—1,1)} and is uniformly bounded

in L2(=1,1) for p in any fized finite interval [pm, par] C (M,oo) Furthermore, By

n



C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335 35

satisfies the improved Rabinowitz alternative, i.e., either B,j extends in p to infinity or
meets the trivial solution curve at (pm,,0) for some m > 2.

2) Similarly, for k > 2, there exists a global continuum of solutions B, which coincides
in a small neighborhood of (pi,0) with {(pr(e), €C' + ei(e)),e > 0}. When k > 3,
B, is contained in Ny and satisfies the boundedness for p in any fized finite interval
[Pm, ] C (2(n — 1)1, 00). Furthermore, the improved Rabinowitz alternative holds.

8) Moreover, B = {u : u(z) = v(—x),v € B; } when k is odd.

4) The global continuum of solutions By of (4.1) must be contained in the set

N = {(p,u):pe <("‘1)! (”“)!> S (2(n - 1)), (”;1)!), ueLQ(—l,l)}.

a® 7 n

Furthermore, By is unbounded in L>([—1,1]), and there exists a sequence of (p,u?)) €
By, t=1,2,-- such that p — 2(n — 1)! and |[u® | pe((—1,1)) = 00. As an immediate

. .. . ) (n+1)!
consequence, there is a nontrivial solution to (4.1) for any p € (2(n — 1), *=—==).

Proof. The proof is similar to that of the case n =4 in [17]. So we omit it. O

Proof of Theorem 1.4. Theorem 1.4 follows immediately from Theorem 4.6. This leads

to the existence of a nontrivial solution to (1.7) for « € (n-s-l’ ). o
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Appendix A. Proof of (3.25)

In this appendix, we compute the term fil(l —22)2G?[(1 — 2%)2G)®),
First,

1 1 1
/(1 — 2261 - 22)%G)® = /(1 — )G G0 /x (1-22)*G?GW
—1 —1 -1

1 1 1
740/(1 —322)(1 — 2%)2G2G®) + 240/x(1 —22)2G*G" + 120 /(1 — 222G q’
1 —1

-1

=> "I (A.1)
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Let

1 1 1
Gs = /(1 — 4GB = 3/(1 —2%)*G*G®) + 30 /(1 —2Hica'gW
-1 -1

-1

1 1 1
+ 60 /(1 —2)AGG"G® + 60 /(1 —2H)4(G")?2a® 490 /(1 —22)*a(G")?
-1 -1 -1

1 1
2(1— 223 (GH)D = 3 / 2(1 — 22)PG2GW ¢ 24/93(1 e el
—1 —1
1
+ 18/x(1 — 22PG(C)? +36/x(1 ()2
21

-1
4
= ZC7Y4Z'7

i=1
X1 =(01-72%)(1—-2%)?% Xy = (1 —-32%)(1 — 22)? and

1 1 1 !
Gy :/Xj(st)(zs) :3/XjG2G(3) +18/XjGG’G”+6/Xj(G/)3
-1 -1 -1

21
3 .

=369, j=1.2
=1

Here, we neglect the coefficients before G5i, G4i and G3i. For example, G54 = f_ll(l —
x2)4(G’)2G(3).
After integration by parts,

1
(1—22)Pa2a®) = — /[(1 _ )G GW = 8G41 — 2Gs2;

-1

(1 - 22)*GG'GW =8G42 — (G53 + G54);

) 1
(1-2»)'GG"G®) =4G,43 — 5 G5

L L L
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1
/(1 —2H)4(G")2G®) = 8G 44 — 2Gi55. (A.2)
-1

Similarly,

2(1—2?)3G2GW = —G\V1 - 2G,2;
2(1-2?)3GEG% = G2 — G43 — G4d

2(1—22)3G(G")? = -G{V2 — G42 — Gu4

1

3G§1>3

2)3(G/)2G// -

8
—~
—_
I
8

»l-t\,_. »l—-\_. »‘—-\,i ’L\)—‘
=
=

Then

I + Iz 4+ a1G5 + a2G4
— (14 3a1)Gs1 + 3001 G52 + 60a1 (Gs3 + Gs4) + 90a, G55

+ (Baz — 20)G4l 4 24a2G42 + 18a2G43 + 36a2G44
= (24ay — 2)G52 + ... + (24ay + 3as — 12)G4l + ...
= (24a; — 2)[8G42 — (G353 + Gs4)] + 601 (Gs3 + Gs4) + 90a, G55

+ (24a1 + 3as — 12)G4l + ...
= (36ay + 2)(Gs3 + Gs4) + 90a1 G55 + (24as + 3az — 12)G4l

+ (24as + 192a; — 16)G42 + ...
— —5G55 + (24ar + 3as — 12)Gal + (24as + 19201 — 16)G42

+ (144(11 + 18as + 8)(G43 + 2G44)
Thus,

I + Ir + a1G5 + a2Gy + 5G55
= (24a1 + 3az — 12)Gal + (24as + 192a; — 16)G42 + (144a; + 18as + 8)(G43 + 2G44)
= —(24a1 + 3ay — 12)G{V1 + (144a; + 18as + 8)(G42 + G43 + 2G44)
= —(24a1 + 3ay — 12)G{V1 — (144a; + 18as + 8)G{V2 + (144a; + 18ay + 8)G4d.



38 C. Gui et al. / Journal of Functional Analysis 282 (2022) 109335
Let t = 24a, + 3as, then we have

11+IQ+G1G5+GQG4+5G55+ 3 G( )

6t—|—8

=6(t—12)G"2— (6t +8) G2+ 2(t — 12)6\V3 — = —G{V3

80
= —80G2 — ?Gél)&

Notice that

1
/X GG = /X etel —2/X GG'G" = /XJ’GZG" ~2G{)2
! (A4)

1
/X GGG = 5/ X,G(G)? - §G§f 3

-1
Then

1
I3 — 80GV2 — —G“ 3= 40/X2G2G” + 80/[X2 - X,]GG'G" — Eag”s
-1
1
_ INarTall 2 212 ! A~ 30 (1)
=40 [ X3G°G" +320 [ 2*(1-2*)’GC'G" - Gy,
-1

Thus,
1 1
(1) 80 (1) 1 A2 A 2 2\2 1 A1
I3+I4—80G3 2—§G3 3=10L+ | 40X;G°G" + 320 x(l—m)GGG
21 21
80
—5 Gy

/1: (1—22)?[3(1 — %) — (922 — 5)]G*G" — 320/1:(1 — 23 (1 - 32?)G(G")?
—1 —1
/ 80
— /(1 —z%)? {160952 — ?(1 — 7x2)} (G")?

=160 [ 2(1 - 2%)(32% — 1)(G?G" +26(G")?) - 2 [ (1 - 22)%(G")?
/ |
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1

1
- ? / 2(1—2?) (32> = 1)(G%)" — % / (1—a%)*(G)°

-1

It is easy to see that

5 1 1
Zli =—a /(1 —)HG*)®) ag/x(l —
i=1 Z1 1
1
-5 [a-ma - 2pe®

-1

1
160

Appendix B. Proof of (3.26)

Compute f_ll(l — 22)3G?[(1 — 22)3G]\). First,

1 1
/(1 _ P12’ = /(1 —2)5G2G0 — 42
-1 -1

xQ)S(GS)(AL)

-5 /;:;(1 ~ ) (322 — 1)(GP) + 40/(1 )G

1
/x(l —22)°G*G®)
21

1 1
~126 /(1 —a?)* (1 - 52%) G2G®) + 840/3:(1 —2%)% (3 - 52%) G*GW
—1 —1

1

1
+2520/(1 —2?)3 (1 - 52%) G*G® -3 x 7! /x(l _2PGRE — 7!
-1 el

7
i=1

1

-1

39

/(1 pe i lectel

(B.1)
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Let

1 1 1
Gr = /(1 — )56 = 3 /(1 —2?)°G2G™ 1 42 /(1 e elele
—1 —1

-1

1 1 1
+ 126/(1 —22)5GG"GY) + 126/(1 —22)5(G")%2G® 4210 /(1 e e e
1 —1 —1

1 1 1
+ 630 /(1 —23)5G'G"G™ + 630 /(1 —225(G")2G® + 420 /(1 —22)%a"(G®))?
1 —1 —1

and
1 1
Ge = /x(l —22)>(GHW = 3/95(1 —22)°G%2a + 36/3;(1 —22)°GGa'Go
-1 1 —1

1 1 1
+90 / 2(1 - 22°GG"GD 4 90 / 2(1 — 225 ()26 1 60 / 2(1 — 22 GG
—1 —1 —1
1 1
+ 360 / 2(1 — 22 GGG 4 90 / 2(1 — 22)5(G"Y?
4 21

7
= ZG(;’L
=1
We consider these functions
XV =1 -2’ = 1 -1 - 112?), XD = (1 - 2?)*(1 - ba?);
= [x9] L s=12 X =223 - 50, (B.2)
X = [X]},sfl23 XM =1 - 2231 - 522).

Then define

1
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1 1

+ 60 / xYaca"a® + 60 / x9(@?a® 490 / xYa/(a"?
—1 —1 —1
5
=Y GYVi, j=1,%

i=1

1 1 1
Gij) :/Xf)(Gs)(‘l) :3/Xf)G2G(4)+24/X£j)GG’G(3)
-1
+18/X(])G GI/ +36/)((]) ) G"
-1

4
Z i, j=1,2,3;

and
Gy = /X”G?’(S) /XJ>G2G3>+18/X GGG”+6/X a'y?

—ZG(” j=1,2,3,4.

As in Appendix A, we neglect the coefficients before G7i, Ggt, . . . Géj)i.
After integration by parts, one has

1 1
Gl = /(1 —22)5G2a\" = — /[(1 — 225G GW = 12G41 — 2G72;
—1 —1
G72 =12Gg2 — (G73 + G74); G73 =12G43 — (G75 + G76); (B3)

1
G74 = 12G4 — 2G76;  G75 = 665 — 5 Gir;
G76 = 12G46 — (G77 + G78); G777 =4GgT;
Similarly,
— Gel = GV1 + 2G62; —Ge2 = G2 + (Ge3 + Ged);
— Ge3 = GV3 + (Ggb + Ggb); ~Ged = G4+ 2G66; (B.4)

1 1
— G5 =GV + (Ge3 + Gb); —Ggb = 50@”5 + 5 GoT;
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~ 691 =a1 42692 G2 =672+ (GY3+GY4);
o _ L Atra . L AG) %) () () (B.5)
- GY3 = 5(;43 34 §(;57 5; ~GY4 =G4 42695

~GP1=c1v2c)y —cf2-cf3=c2 160 —GYa=Gs
(B.6)

By these relations, we calculate

I + I + a1G7 + a2Gg
= (14 3a1)G71 + 42a1G72 + 126a1(G73 + G74) + 210a1 G5 + 630a1 (G76 + G77)
+ 420a1G,8
+ (3as — 42)Gsl + 36a2G62 + 90a2(Ge3 + Ge4) + 60a2G6b + 360a2G66 + 90a2G67
= (36a; — 2)G72 + ... + (36a1 + 3az — 30)Ggl + ...

= (90a1 + 2)(G73 + G74) + ...(360a1 + 30as + 36)Ge2 + ... — (36a1 + 3az — 30)GLV1
= (120a1 — 2)(G75 + 3G76) + 6300, G7 + 420a,G+8

+ (720a; + 60az — 12)(G3 + Ged)

+ 60a2G5 + 360a3G66 + 90a2GT — (36ay + 3az — 30)GLV1

— (360a; + 30as + 36)GLV2

= (270a;1 + 6)G77 + 7G78 + 3(720a; + 60as — 12)Ge6 + 90asGe7

— (36a1 + 3as — 30)GV1

— (360a; + 30as + 36)GV2 — (7204, + 60as — 12)(GLV3 + G 4)

= 7G78 + 42G4T — (36ay + 3a — 30)GLV1 — ... — (1080a; + 90ay — 18)GL5.

Let
II =11+ I + a1G7 + asGg — TG78 — 42G¢7 and 12a1 + as = t.
Then it follows from (B.5) that
IT = —(3t — 30)GLV1 — (30t + 36)GLY2 — (60t — 12)(GLY3 + GLY4) — (90t — 18)GLV5

= (3t — 30)G{M1 — (24t + 96)GLM2 — ..
— (3t — 30)G'V1 + (24t + 96)GWM2 — (36t — 108)(GV3 + aWa) — (90t — 18)GV5
4 4 5 5

5

= (3t — 30)G\V1 + (24t + 96)G\V2 + 18(t — 3)(GV3 + G{V4) — 252G V5.

Joint with (B.6), we further have
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11+ 252G8M5 = (3t — 30)G{M1 + (24 + 96)G{M2 + 18(¢ — 3)(G{V3 + G\V4)
= -3t —10)G{"1 +6(3t + 26)G M2 + 18(t — 3)(GV3 + GM4a)
=-3(t—10)G"1 — 6(3t + 26)GV2 — 210G M3 + 6(3t — 44)G V4

= —3(t—10)G{M1 — 6(3t + 26)GM2 — 2(3t — 44)GV3 — 210GV3.

Repeating the above arguments, we find

1
L 2

Then we compute

IT+ 15+ I+ Is + G
= 1T —126G21 + 840G V1 + 2520G{V1 + tG"
= —252G5 + 630GLY5 — 210613 + 630GV3 + 1680GY)3
+ (306871~ 126651 - 840651 + 2520681
+ (1680682 — 1566512 + 50462

+ (88683 — 252653 — 126063

3
=111y + [11, + Y 11§,
i=1

By (B.2), we derive
115 = 25265 + 630G 5

- /1 [630 (1 - 502) (1 - 2%)" = 252 (1 - 112%) (1 - )] &'(G")?

1
378/ (1-22)"G(G"%
-1

11T, = —210G4"3 + 630G'73 + 1680G Y3 = 0;

and

43
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1118 = 306571 — 126671 — 840651 + 252061
1
=72 /(25954 — 4822 +19)(1 — 22)2G*G®

-1

1
=72 / xPara®

1
1118? = 1680692 — 156G{"2 + 504G 2 = 216 / (152* — 262 + 3)(1 — 22)*GG'G"
-1

1
= 216/X§6)(1 —2?)2Ga'G",

-1

1
11189 = 88GV3 — 252673 — 1260673 = 72 / (152 — 2622 + 3)(1 — 2°)%(G')?
-1

= 72/X<6> 2?)%(G)>.

It follows from (A.4) that

3 1 1
L= 11 = —72 / G2G” / (216X§5> - 144X§6>) leleded
= 21

—1
1
(6) 212/ 3
+72/X3 (1—22)*(a")
1 1 1
I
= _72/ (X§5>) G*G" — 288/X2G(G’)2 + 1260/(1 —22)4 (a3,
—1 -1 -1

where Xy = x(1 — 22)(1552* — 1622 + 19). Then we consider

1 1
III5 4 Ig + I; = 444/)(2 [G°G" +2G(G")?] - 5040/(1 —23)3G*G’
—1

-1

+1260 [ (1 —2*)*(G")3
/
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1

1 1
= —48/X2(G3)’ - 1680/(1 —22)3(G3) + 1260/(1 —2H)4G"3.

-1

Put these results together, we conclude that

Ii = —ax

s_
i M\]
I

’L\»—A

1 1
(1 . x2)6(G3)(7) —ay /x(l . x2)5(G3)(6) . t/X;l)(G?’)(S)
—1 —1
1

X5(G3)"—1680 [ (1 — 223G +7 [ (1 — 225G (GP))?
_4 /

-1

-+ 378

H\ﬁ

1
(1-2? G’ (G")? + 1260 /(1 — 24 a"?
—1
1 1
= 7/(1 — 22862 + 42/3:(1 —22)3(G")? + 378/ (1-2%)° G'(G")?
1 -1

1
+ 1260/(1 —22)4(G")3.

Note that
1 1
/[(1 o xZ)G](i%)(l _ $2)5(GH)2 — /(1 _ 1,2)6((;//)2(;(3)
= 1 1 =
_ 6/1’(1 _ $2)5(G”)3 _ 6/(1 _ .’E2)5G/(GH)2
. 1 . 1
—_9 x(l _ :172)5(GH)3 -6 (1 _ 172)5G’(G”)2
/ /
Therefore,

/(1 ~22PE( — 2276 = 1260 /(1 _ MG + 252 /(1 GG
2 21 21
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1 1
+7/(1 _ )G () — 21 /[(1 _ )G (1 = 225G,
21 21
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