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Abstract
In this paper we establish some symmetry results for positive solutions of semilinear elliptic
equations with mixed boundary conditions. In particular, we show that the positive solution
in a super-spherical sector must be symmetric. The monotonicity property is also proved.
Our proof is based on the well-known moving plane methods.

Mathematics Subject Classification Primary 35J61 · Secondary 35B06 · 35M12 · 35B50

1 Introduction

In this paper we investigate qualitative properties of the classical solutions of the equation

�u + f (u) = 0 in � (1.1)

with mixed boundary conditions.
Symmetry properties of partial differential equations are interesting since it is natural to

ask whether or not solutions inherit the same symmetry from the differential operator and
from the domain and boundary conditions. There is a large literature on this topic. Alexandrov
[1] introduced the reflection principle and showed that a closed embedded hypersurface in
the Euclidean space must be a sphere. The reflection principle was also used by Serrin [37]
for a symmetry result of overdetermined problems and by Gidas, Ni and Nirenberg [17,18]
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to derive radial symmetry results for positive solutions of semilinear elliptic equations. The
reflection principle is usually called the method of moving planes after these seminal papers.
Thismethodwas revisited in the influential paper [4] of Berestycki andNirenberg. In [4], they
generalized the methods of moving planes and introduced the sliding method to prove the
monotonicity by aversionof themaximumprinciple in domains of small volumewhich allows
one to handle symmetry results for rough domains. Later, many other authors have devoted
attention to these questions, without being exhaustive we mention the papers by Li [27], Li
and Ni [28], Chen and Li [10,11], Caffarelli, Gidas and Spruck [7], and Berestycki, Caffarelli
and Nirenberg [2,3] and the references therein. In [12,21,30,34,35], the axial symmetry of
solutions with lower Morse index is also studied.

The zero Dirichlet condition is a very forceful condition and implies the monotonicity
of positive solutions near the boundary. From the results of Gidas, Ni and Nirenberg [17],
the zero Dirichlet condition will “force” all positive solutions of (1.1) to posses the same
radial symmetry when � is a ball, while the zero Neumann condition allows many other
possibilities. In fact, for problem (1.1) with boundary condition of Neumann type, the least
energy solutions are often not radially symmetric and many researchers have focused on
the least energy solution, single peak solution and multi-peak solution; See [12,15,20,22–
26,29,31–33,39,40]. Naturally, it is interesting to see how different domains and boundary
value conditions may influence the symmetry properties of positive solutions.

When the domain is a spherical sector, Berestycki and Pacella [6] proved the radial sym-
metry properties of positive solutions of (1.1) with mixed boundary conditions, provided the
amplitude of spherical sector is less or equal toπ . Zhu [42] proved a similar result for singular
solutions when the amplitudemay be greater thanπ and f satisfies some supercritical growth
conditions. The first two authors [9,41] proved the symmetry and monotonicity properties
of positive elliptic solutions with mixed boundary conditions in a standard spherical cone
and in a super-spherical cone. Researchers are also concerned about the symmetry results for
mixed boundary problems, see [8,13,14,38].

In this paper, we will use a variety of the moving plane method and bootstrap method to
prove some symmetry and monotonicity results for positive solutions of a semilinear elliptic
equation under mixed boundary conditions in a super-spherical sector.

First let us introduce some terminology. Forβ ∈ (0, π] anda ∈ (−∞, 1), we let� = �β,a

be the intersection of the open cone C and the unit ball B = {x ∈ R
n : |x | < 1} where C is

an open sector such that

C = {(x1, x2, x ′) ∈ R
n : x1 − a > |x2| cot β

2
}.

We call �β,a a super-spherical sector if a ∈ (0, 1), �β,a a (standard) spherical sector if
a = 0, �β,a a sub-spherical sector if a < 0.

We consider the following equation with mixed boundary conditions
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u + f (u) = 0 in �,

u > 0 in �,
∂u
∂ν

= 0 on 	N ,

u = 0 on 	D

(1.2)

where ν is the unit outer normal to �, 	D = ∂� ∩ ∂B is the sphere boundary and 	N =
∂�\∂B is the sector boundary.

Through this paper, we always assume that f is a local Lipschitz continuous function on
[0,∞), a ∈ (0, 1) and the solution u is classical, say u ∈ C2(�) ∩ C1(� ∪ 	N ) ∩ C(�).
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The main result is as follows:

Theorem 1 Assume that f is local Lipschitz in [0,∞), 0 < β ≤ π and a ∈ (0, 1). Let u be
a classical solution of (1.2). Then we have the following properties:

(i) u is symmetric with respect to the hyperplane {x2 = 0};
(ii) u is monotone in x2, that is, x2ux2 < 0 for x ∈ � satisfying x2 �= 0;
(iii) u is monotone in x1, that is, ux1 < 0 in �;
(iv) u is radially symmetric with respect to x ′ ∈ R

n−2.

Since the moving plane method strongly relies on the equation and geometric structure of
the domain and boundary conditions, so the condition 0 < β ≤ π in Theorem 1 is needed.
We expect it to be optimal due to a similar phenomenon in [6] and the condition is geometrical
in terms of related isoperimetric inequalities.

Comparing with the result in Berestycki and Pacella [6], our domain is the super-spherical
sector, which is different than the spherical symmetry in [6]. The boundary conditions force
the expected symmetry to be evenly symmetric (instead of spherical symmetry) since the
center of ball does not lie in the vertices set of the sector C nor is the domain spherical
symmetric.

The proof of this theorem is based on the methods of moving planes [17] and the ideas
developed in [6], and there are some new difficulties due to the Neumann boundary. To
overcome the difficulties, the main idea is to compare u with its reflection uλ,ϑ . First, the
maximum principle for mixed boundary problems in narrow domains will be used to show
the negativity of wλ,ϑ = u − uλ,ϑ . Second, the parallel hyperplanes will move along both
the lower and upper Neumann boundary. Third, one can obtain a priori information of the
NeumannorDirichlet boundary conditions forwλ,ϑ on the boundary causedby	N . In another
word, the proof depends deeply on the understanding and obtaining a priori information about
the signs of some directional derivatives of u.

Since the solution u is assumed to be classical, the standard elliptic theory implies that u is
alsoC2 up to the smooth boundary point. The solutionmay not beC2 at non-smooth boundary
point including the mixed boundary ∂C ∩ ∂B and the vertex set ∂C ∩ {x1 = a, x2 = 0} of the
sector C.

We point out that Theorem 1 is valid for β = π and β = π/2. In fact, using the mirror
reflection along the Neumann boundary, one can obtain a positive Dirichlet solution in the
even extension of the domain, and then the results of Theorem 1 follows from [4,17].

The structure of this paper is as follows. In Sect. 2, we introduce a version of the maximum
principle for the mixed boundary conditions in a narrow domain. Section 3 illustrates the
symmetry for some special case that β is a right angle or a straight angle. The proof of (i)-(iii)
in Theorem 1 will be divided into different range of β, this is given through Sects. 4–7. In
Sect. 8, we prove the radial symmetry of u in x ′ ∈ R

n−2.

2 Maximum principle for mixed boundary conditions

In this section, we consider the maximum principle of the following linear equation

⎧
⎪⎨

⎪⎩

L[u] = �u + c(x)u = f in �,

B[u] = u = g on 	0,

B[u] = ∇u · γ + βu = h on 	1.

(2.1)
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We usually assume that � ⊂ R
n , n ≥ 2 is an open bounded subset, 	0 and 	1 are two

disjoint subsets of ∂� such that 	0 is relatively closed, 	1 is open C1 manifold and that the
closure of 	0 ∪ 	1 is ∂�. Here γ is a vector valued function on 	1 such that |γ | = 1 and
γ · ν > 0 on 	1 where ν is the outer unit normal vector to ∂�. We always assume that β is a
nonnegative function on 	1 and c is a bounded function in �,

|c(x)| < c0 for x ∈ � (2.2)

where c0 is a positive constant.
It is well-known [19,36] that under the condition c ≤ 0 in � we have

if f ≤ 0 in �, g ≥ 0 on 	0, h ≥ 0 on 	1, then u ≥ 0 in �.

This property is called the maximum principle for (L,B) in �. When 	1 is an empty set, this
is the usual maximum principle, and there are some well-known sufficient conditions (see
[4,5,19,36]):

(1) c ≤ 0 in �;
(2) There exists a positive continuous function g over� such that g ∈ W 2,∞

loc (�) andL[g] ≤
0 in �;

(3) � lies in a narrow band, � ⊂ {0 < (x − x0) · e < η} for some x0 ∈ R
n , |e| = 1 where

η > 0 is some constant depending only on c0;
(4) The measure satisfies |�| < δ, provided diam(�) < d and δ depends only on c0 and d;
(5) λ1(L,�) > 0, this is a sufficient and necessary condition. Here the first principal eigen-

value λ1(L,�) is defined by

λ1(L,�) = sup{λ ∈ R : ∃φ > 0 in � satisfying (L + λ)φ ≤ 0 in �} (2.3)

where φ ∈ W 2,n
loc (�) ∩ C(�).

The third and fourth sufficient conditions above are very important and play a key role in
the process of the method of moving planes.

For the mixed boundary cases, we have a modified sufficient condition as in (2).

Lemma 1 ( [41]) Assume that there exists a function g ∈ C2(�)∩C(�)∩C1(�∪	1) such
that

⎧
⎪⎨

⎪⎩

L[g] = �g + c(x)g ≤ 0 in �,

g > 0 on �,

∇g · γ + βg ≥ 0 on 	1.

Then the maximum principle holds for (L,B) in �.

Using this lemma, we can prove the maximum principle holds in some sectorial domain.

Lemma 2 Let (2.2) hold. Assume that (L,B,�) satisfy

(1) � is contained in a sector C = {x ∈ R
n : x1 > βx2, x2 > 0} for some β ∈ R;

(2) 	1 ⊂ ∂C and B = ν · ∇ is the outward norm derivative operator on 	1;
(3) � ⊂ {x ∈ R

n : x21 + x22 < η2} where

η = j0,1√
c0

and j0,1 is the first zero of the first kind bessel function J0.
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Then the maximum principle holds for (L,B) in �.

Proof Let

g(x) = J0(
j0,1
d

�), � =
√

x21 + x22 .

Then
⎧
⎪⎨

⎪⎩

�g + c(x)g = (c − (
j0,1
d )2)g < 0 in �,

g > 0 in �,

∂νg = 0 in 	1.

Thus, we finish the proof by applying Lemma 1. ��
Now we show the positivity of solution at the nonsmooth point of Neumann boundary.

Remark 1 If the assumption in Lemma 2 holds, and if Lu ≤ 0 in �, Bu ≥ 0 on ∂�, then
either u vanishes completely in � or u is positive in �\	0.

Proof By the maximum principle in Lemma 2, u is nonnegative in �. Suppose that u is
positive somewhere in �. By the strong maximum and Hopf lemma, u is positive in all �

except at the Dirichlet boundary and the corner formed by two smooth Neumann boundary
(x1 = x2 = 0). Thus, �u − c0u ≤ −(c + c0)u < 0 in �.

In order to prove the positivity along the corner, we choose an arbitrary fixed point P ∈
{x1 = x2 = 0} ∩ 	1 and suppose P = O is the origin for simplicity. There exists a small
δ > 0 such that Q2δ ∩ 	0 = ∅ where

Qδ = {x ∈ R
n : x21 + x22 ≤ δ2, |xi | ≤ δ,∀ 3 ≤ i ≤ n}.

We construct an auxiliary function v over Qδ as follows

v(x) = I0(γ �)

n∏

i=3

cos
πxi
2δ

with γ =
√

c0 + (n − 2)π2

4δ2
.

Then �v − c0v = 0 and

u − εv ≥ 0 on ∂Qδ ∩ �

for fixed ε satisfying 0 < ε < inf{u(x)/v(x) : x ∈ ∂Qδ ∩ �, � = δ}. Therefore,
⎧
⎪⎨

⎪⎩

�(u − εv) − c0(u − εv) < 0 in � ∩ Qδ,

(u − εv) ≥ 0 on � ∩ ∂Qδ,

∂ν(u − εv) ≥ 0 on ∂� ∩ Qδ.

It follows by the maximum principle that u−εv ≥ 0 in�∩Qδ . Therefore, u(P) ≥ εv(P) >

0. The proof is complete. ��
We point out that another proof of Remark 1 is given by reflection and the Hopf’s lemma,

see [13, Lemma 2.4].
Lastly, we state two useful lemmas about the monotonicity near the Dirichlet boundary

and Neumann boundary. We consider a solution u(x) of the equation

�u + f (u) = 0 in �, (2.4)

where f is a local Lipschitz continuous function and � is a bounded domain.
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Lemma 3 Let x̄ ∈ ∂� and let ν(x̄) be the outer unit normal vector at the point x̄ ∈ ∂�.
Let γ be a unit vector in R

n satisfying ν(x̄) · γ > 0. For some ε > 0 assume that u is a
C2 solution in �ε where �ε = � ∩ {|x − x̄ | < ε}, u ≥ 0, u �≡ 0 in �ε and u = 0 on 	ε.
Moreover, suppose that the boundary 	ε is C2. Then there exists a δ > 0 such that

∂u

∂γ
< 0 in �δ = � ∩ {|x − x̄ | < δ}.

Proof See the proof in Lemma 2.1 of [17]. ��
Lemma 4 Assume that x̄ = (x̄1, . . . , x̄n) ∈ ∂� and �ε(x̄) = B+

ε (x̄) for some ε > 0 where
�ε(x̄) = � ∩ Bε(x̄) and B+

ε (x̄) = Bε(x̄) ∩ {x1 > x̄1}. Suppose that u is a C2 solution in
�ε(x̄) satisfying Neumann boundary condition ∂x1u = 0 on Bε(x̄) ∩ {x1 = x̄1} and

u(x ′, xn) < u(x ′, 2x̄n − xn) for xn > x̄n and x ∈ �ε(x̄).

Then

∂u

∂xn
(x̄) < 0.

Proof This is proved by using Serrin’s boundary lemma. The readers can find details in the
proof in Theorem 2.4 of [6]. ��

3 The special case ˇ is a straight angle or a right angle

In this section we consider the special case that β is a straight angle or a right angle via
reflection along flat Neumann boundary.

Lemma 5 Assume that β = π . Then the solution u of (1.2) have the following properties:

(1) u is symmetric with respect to the hyperplane {x2 = 0}, that is,
u(x1,−x2, x3, x4, . . . , xn) = u(x);

(2) x2ux2 < 0 for x ∈ � satisfying x2 �= 0;
(3) ux1 < 0 for x ∈ �.

Proof This can be proved by the origin moving plane method. Indeed, if one denotes u by
reflection;

ũ(x) =
{
u(x), x1 ≥ a,

u(2a − x1, x2, . . . , xn), x1 < a

Then ũ is a positive Dirichlet solution of (1.1) in �̃ = � ∪�′ ∪	N where�′ is the reflection
domain of � with respect to the hyperplane {x1 = a}. Applying the well-known result in
[4,17], one deduces the symmetry and monotonicity properties of ũ and u. ��

Lemma 6 Assume that β = π/2. Then the solution u of (1.2) has the following properties:

(1) ux1 ± ux2 < 0 in �;
(2) x2ux2 < 0 for x ∈ � satisfying x2 �= 0;
(3) x2ux1 − x1ux2 > 0 for x ∈ � satisfying x2 �= 0.
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Fig. 1 The shape Dλ,π/2,0 for
β = π/2

Tλ,π/2

O x

x
π
2

Tλ,π/2

O
x

x
π
2

Proof (Method 1: By Reflection). We can reflect the solution u along the (flat) Neumann
boundary 	N to obtain a solution with a Dirichlet condition in a larger domain. Indeed, if
one denotes ũ the reflection function of u with respect to the Neumann boundary 	N , that is

ũ(x) =

⎧
⎪⎨

⎪⎩

u(x1, x2, x ′), x ∈ �,

u(x2, x1, x ′), x ∈ �1

u(−x2,−x1, x ′), x ∈ �2

where �1 is the reflection of � w.r.t. 	+
N , �2 the reflection of � ∪ �1 w.r.t. 	−

N , and �̂

is the interior of the closure of � ∪ �1 ∪ �2. Here we assume the vertex set of the sector
C passing though V = (0, 0, 0, . . . , 0) by translation. Then it is clear that ũ is a classical
positive solution of

�ũ + f (ũ) = 0 in �̂, ũ = 0 on ∂�̂

Note that �̂ is symmetric and convex along the direction e1, e2, e1 ± e2. Applying the well-
known result in [4,17], one deduces the symmetry and monotonicity properties of ũ and
u.

(Method 2: By the method of moving plane directly). One can use the moving plane
method and the maximum principle for mixed boundary to obtain ux1 ± ux2 < 0 in � (see
Figure 1). Then one can obtain that u is symmetric w.r.t. to x2 and ux2 > 0 for x ∈ �

satisfying x2 < 0. The details will be illuminated later in Lemma 7. ��

As proved by the reflection method, we see that the solution u is C2 at the point of
nonsmooth Neumann boundary {x1 = a, x2 = 0} ∩ ∂C when β = π/2. By using this
reflection, one can see that u ∈ C2(�\(∂B ∩ ∂C)) when π/β ∈ N where N is the collection
of all nonnegative integers. We note that for general case of β, u may not be C2 at the point
of nonsmooth Neumann boundary.

4 The case ˇ ∈ (�/2, 2�/3]
In this section we will prove the symmetry of u with variable x2. Let us define the moving
hyperplanes and moving domains to be used in the process of the methods of moving planes,
and these notations will be also used for all range of β ∈ (0, π].

For simplicity, we always assume that the vertex line of the sector C passing though
V = (0, 0, 0, . . . , 0), and the center of the ball is O = (−a, 0, 0, . . . , 0). Denote the lower
Neumann boundary and upper Neumann boundary by 	−

N = 	N ∩ {x2 < 0} and 	+
N =

	N ∩ {x2 > 0}. Set Pλ = (λ cos(β/2),−λ sin(β/2), 0, . . . , 0). We consider the moving
hyperplane Tλ,ϑ passing through Pλ which forms with the lower boundary 	−

N an angle
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Fig. 2 The moving hyperplane
Tλ,ϑ and the moving domain
Dλ,ϑ,ϑ1

ϑ

Tλ,ϑ

Tλ,ϑ1

Tλ,ϑ3

Tλ̌,ϑ̌ = T̂
λ̂,ϑ̂

O

Pλ

ϑ ∈ (0, (π + β)/2], that is,

Tλ,ϑ = {x ∈ R
n : [x1 − λ cos

β

2
] sin(ϑ − β

2
) − [x2 + λ sin

β

2
] cos(ϑ − β

2
) = 0}. (4.1)

See Figure 2. As usual �′, B ′ will be the reflection of �, B with respect to Tλ,ϑ and xλ,ϑ

is the symmetry point of x . Similarly to Tλ,ϑ , we denote T̂λ,ϑ by the reflection of Tλ,ϑ with
respect to the hyperplane {x2 = 0},

T̂λ,ϑ = {x ∈ R
n : [x1 − λ cos

β

2
] sin(ϑ − β

2
) + [x2 − λ sin

β

2
] cos(ϑ − β

2
) = 0}.

We want to prove

ux1 sin(ϑ − β/2) − ux2 cos(ϑ − β/2) < 0 on Tλ,ϑ ∩ �, (4.2a)

ux1 cos(β/2) − ux2 sin(β/2) < 0 on Tλ,π/2 ∩ 	−
N , (4.2b)

ux1 sin(ϑ − β/2) + ux2 cos(ϑ − β/2) < 0 on T̂λ,ϑ ∩ �, (4.2c)

ux1 cos(β/2) − ux2 sin(β/2) < 0 on T̂λ,π/2 ∩ 	+
N (4.2d)

for λ > 0 and ϑ ∈ [β/2, (π + β)/2]. The proofs of (4.2c) and (4.2d) are similar to (4.2a)
and (4.2b), and the proof of (4.2a) and (4.2b) depends on (4.2c) and (4.2d) for larger λ. This
is the reason why we discuss (4.2c) and (4.2d) here. Set

λM (ϑ) = sup{λ > 0 : Tλ,ϑ ∩ � �= ∅}, ϑ ∈ (0, (π + β)/2],
λmax = sup{λM (ϑ) : ϑ ∈ (0, (π + β)/2]} = (1 − a) sec(β/2).

(4.3)

Let σλ(x) ∈ [0, 2π) be the polar angle as follows

x1 − λ cos(β/2) =
√

[x1 − λ cos(β/2)]2 + [x2 + λ sin(β/2)]2 cos[σλ(x) − β/2],
x2 + λ sin(β/2) =

√

[x1 − λ cos(β/2)]2 + [x2 + λ sin(β/2)]2 sin[σλ(x) − β/2].
(4.4)

For λ ∈ R
+, 0 ≤ ϑ1 < ϑ = (ϑ1 + ϑ3)/2 < ϑ3 ≤ π with ϑ ∈ [β/2, (π + β)/2], we

define the moving domain as follows

Dλ,ϑ,ϑ1 = {x ∈ � ∩ �′ : ϑ1 < σλ(x) < ϑ},
see Figure 2.
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The boundary ∂Dλ,ϑ,ϑ1 consists of three parts:

(1) 	0
λ,ϑ,ϑ1

= Tλ,ϑ ∩ ∂Dλ,ϑ,ϑ1 , this is always non-empty as 0 < λ < λM (ϑ);

(1) 	1
λ,ϑ,ϑ1

= (∂B ∪ ∂B ′) ∩ (∂Dλ,ϑ,ϑ1\Tλ,ϑ ), this is the boundary caused by the sphere ∂B

and its reflection ∂B ′. 	1
λ,ϑ,ϑ1

belongs ∂B if ϑ ≥ β/2, λ > 0;

(1) 	2
λ,ϑ,ϑ1

= ∂Dλ,ϑ,ϑ1\(	0
λ,ϑ,ϑ1

∪	1
λ,ϑ,ϑ1

), and	2
λ,ϑ,ϑ1

contains two parts:	2A
λ = 	2

λ,ϑ,ϑ1
∩

Tλ,ϑ1 and 	2B
λ = 	2

λ,ϑ,ϑ1
∩ T

λ̌,2ϑ−β
.

For simplicity, we omit the subscripts ϑ, ϑ1 and denote these notations by 	0
λ, 	

1
λ, 	

2
λ, 	

2A
λ

and 	2B
λ . Here T

λ̌,ϑ̌
= T̂

λ̂,ϑ̂
stands for the hyperplane related to the reflection of the upper

boundary 	+
N w.r.t. Tλ,ϑ where ϑ̌ = 2ϑ −β, ϑ̂ = π −2ϑ +2β, λ̂ and λ̌ are given as follows

λ̂ = λ sin ϑ

sin(ϑ − β)
, λ̌ = λ + λ sin β

sin(2ϑ − β)
, (4.5)

and λ̂ > λ̌ if and only ifπ −2ϑ+2β < 2ϑ−β, i.e.,ϑ > (π +3β)/4.We note that	2A
λ ∩	2B

λ

(which is nonempty or not) is a non-smooth part of 	2
λ, both 	2A

λ \	2B
λ and 	2B

λ \	2A
λ are

relatively open and are smooth subsets of ∂Dλ,ϑ,ϑ1 . Observe that 	
1
λ,ϑ,ϑ1

∪ 	2B
λ,ϑ,ϑ1

is always
non-empty for 0 < λ < λM (ϑ).

Set

wλ,ϑ(x) = u(x) − uλ,ϑ (x) (4.6)

where uλ,ϑ (x) = u(xλ,ϑ ). Clearly, wλ,ϑ satisfies

�wλ,ϑ + cλ,ϑ (x)wλ,ϑ = 0 in Dλ,ϑ,ϑ1 , (4.7a)

wλ,ϑ = 0 on 	0
λ, (4.7b)

wλ,ϑ < 0 on 	1
λ (4.7c)

for ϑ ∈ [β/2, (π + β)/2] where

cλ,ϑ = f (uλ,ϑ (x)) − f (u(x))

uλ,ϑ (x) − u(x)

is a uniformly (w.r.t. λ, ϑ) bounded function, say, |cλ,ϑ | < c0 for some constant c0 > 0.
In order to prove (4.2a), it suffices to prove that

wλ,ϑ(x) = u(x) − uλ,ϑ (x) < 0 for x ∈ Dλ,ϑ,ϑ1 . (4.8)

Using Hopf boundary lemma, we see (4.2a) is a direct consequence of (4.8).

Lemma 7 (Tλ,ϑ is orthogonal to the boundary of sector) Let β ∈ (0, 2π/3]. Assume that our
conclusion (4.2) holds for all λ > �. Then (4.2) holds for ϑ = π/2 and λ > �1 = η1�

where

η1 = max{1
2
, cosβ}. (4.9)

Remark 1 (4.2) holds for ϑ = π/2 and λ ≥ (1 − a) csc(β/2)max{ 12 , cosβ}.
Proof Let ϑ = π/2 and ϑ1 = 0 be fixed. For λ > �1, we see that

(i) if π/3 ≤ β ≤ 2π/3, then 	2B
λ ⊂ T2λ,π−β , β/2 ≤ π − β ≤ (π + β)/2 and 2λ ≥ �;

(ii) if 0 < β < π/3, then 	2B
λ ⊂ Tλ secβ,2β , β/2 ≤ 2β ≤ (π + β)/2 and λ secβ ≥ �.
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By the assumption, we see that w = wλ,ϑ satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�wλ,ϑ + cλ,ϑ (x)wλ,ϑ = 0 in Dλ,ϑ,ϑ1

wλ,ϑ = 0 on 	0
λ,

wλ,ϑ < 0 on 	1
λ,

∇wλ,ϑ · ν ≤ 0 on 	2A
λ ,

∇wλ,ϑ · ν < 0 on 	2B
λ .

(4.10)

Step1:Starting themovingplane.Letη be the small constant that themaximumprinciple
holds for Dirichlet boundary condition or mixed boundary condition when the domain width
is less than η. From the definition of Dλ,ϑ,ϑ1 , we see that there exists a δ0 > 0 such that for
every λ ∈ (λM (ϑ) − δ0, λM (ϑ)),

diam(Dλ,ϑ,ϑ1) < η

and

	1
λ,ϑ,ϑ1

�= ∅, 	2
λ,ϑ,ϑ1

⊂ Tλ,ϑ1 .

Applying themaximum principle withmixed boundary condition in Lemma 2, we deduce the
negativity of wλ,ϑ,ϑ1 in Dλ,ϑ,ϑ1 . Moreover, the Hopf boundary lemma implies the negativity
of wλ,ϑ,ϑ1 on 	2

λ,ϑ,ϑ1
⊂ Tλ,ϑ1 . Hence,

wλ,ϑ < 0 in Dλ,ϑ,ϑ1\Tλ,ϑ

and (4.2a) hold for λ ∈ (λM (ϑ) − δ0, λM (ϑ)).
Furthermore, by the same argument in Theorem 2.4 of [6] (see Lemma 4), one can prove

that |Du| �= 0 along the lower boundary of the sector,

ux1 cos(β/2) − ux2 sin(β/2) < 0 on 	−
N ∩ Tλ,π/2. (4.11)

Let λ̄ be

λ̄ = inf{λ′ > 0 : (4.8) and (4.2a) hold for every λ ≥ λ′}.
Step 2: Proving that λ̄ ≤ �1. Otherwise, we assume λ̄ > �1. By continuity, we have

wλ̄,ϑ (x) ≤ 0 for x ∈ Dλ̄,ϑ,ϑ1
.

Recalling that 	1
λ,ϑ,ϑ1

∪ 	2B
λ,ϑ,ϑ1

is always non-empty, we obtain from the strong maximum
principle and Hopf boundary lemma that

wλ̄,ϑ (x) < 0 for x ∈ Dλ̄,ϑ,ϑ1
\Tλ̄,ϑ (4.12)

where the negative at 	2A
λ,ϑ,ϑ1

∩ 	2B
λ,ϑ,ϑ1

is obtained by Figure 1. Therefore, we have strictly
inequalities

ux1 sin(ϑ − β/2) − ux2 cos(ϑ − β/2) < 0 on Tλ̄,ϑ ∩ �, (4.13a)

ux1 cos(β/2) − ux2 sin(β/2) < 0 on Tλ̄,π/2 ∩ 	−
N . (4.13b)

Since u has strictly monotonicity properties near the smooth boundary, we denote by� the
intersection ofmixed boundary ∂C∩∂B and Tλ̄,π/2. Then� has two parts�− = �∩{x2 < 0}
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and �+ = � ∩ {x2 > 0}. Clearly �− ⊂ {x1 = x̄1, x2 = x̄2} and �+ ⊂ {x1 = ¯̄x1, x2 = ¯̄x2}
where

x̄1 = λ̄ cos(β/2), x̄2 = −λ̄ sin(β/2),

¯̄x1 = ¯̄λ cos(β/2), ¯̄x2 = ¯̄λ sin(β/2), ¯̄λ = λ̄ sin(ϑ)

sin(ϑ − β)
.

We suppose that both �− and �+ are non-empty set. One can choose a neighborhood N−
of �− and a neighborhood N+ of �+ such that (i) N− ∩ N+ = ∅; (ii) N− ⊂ {|x1 − x̄1|2 +
|x2 − x̄2|2 < η2}, N+ ⊂ {|x1 − ¯̄x1|2 + |x2 − ¯̄x2|2 < η2} where η is the small constant for
the maximum principle in narrow domain to hold; (iii) N− ∩ 	2B

λ = ∅, N+ ∩ 	2A
λ = ∅ for

every λ ∈ (λ̄ − δ1, λ̄) for some δ1 > 0. Recall that u has strictly monotone property near the
Dirichlet boundary (see Lemma 3), along the Neumann boundary (see (4.13b) and (4.2d)),
and in the interior (see (4.13a)). Combining this with the negativity of wλ̄,ϑ in (4.12), we
derive from continuity that

wλ,ϑ < 0 in Dλ,ϑ\(Tλ,ϑ ∪ N− ∪ N+)

for |λ − λ̄| < δ2 for some δ2 > 0 (assuming δ2 < δ1).
In the rest of the domain D̃ = Dλ,ϑ ∩ (N− ∪ N+), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�wλ,ϑ + cλ,ϑwλ,ϑ = 0,

∂νw
λ,ϑ = 0 on ∂(Dλ,ϑ ∩ N−) ∩ 	2A

λ ,

wλ,ϑ ≤, �≡ 0 on ∂(Dλ,ϑ ∩ N−)\	2A
λ ,

∂νw
λ,ϑ = 0 on ∂(Dλ,ϑ ∩ N+) ∩ 	2B

λ ,

wλ,ϑ ≤, �≡ 0 on ∂(Dλ,ϑ ∩ N+)\	2B
λ .

It follows by the maximum principle that wλ,ϑ < 0 in D̃ and then (4.8) holds. Therefore,
(4.2a) holds for ϑ = π/2 and 0 < λ̄ − λ � 1. This contradicts the definition of λ̄. Hence
λ̄ = �1, (4.8) and (4.2a) hold for ϑ = π/2 and λ > �. Similarly, (4.2c) holds and the proof
is finished. ��
Lemma 8 Let β ∈ (π/2, 2π/3]. Assume that (4.2) holds for all λ > �, then (4.2) holds for
ϑ = 3π/4 and λ > �2 = η2� where

η2 = max{1
2
, sin β + cosβ}.

Proof Let ϑ = 3π/4 and ϑ1 = π/2, ϑ3 = π be fixed. According to Lemma 7, wλ,ϑ,ϑ1

satisfies the boundary condition on 	2A
λ for λ > �1. Now for λ > �2, we see that 	2

λ ⊂
T

λ̂,2β−π/2, β/2 ≤ 2β − π/2 ≤ (π + β)/2, λ > �1 and

λ̂ = λ sin(3π/4)

sin(3π/4 − β)
> �.

Thus, (4.10) holds for λ > �2. The remain of the proof is similar to Lemma 7. ��
Lemma 9 Let β ∈ (π/2, 2π/3]. Assume that (4.2) holds for all λ > �, then (4.2) holds for
ϑ ∈ [β/2, 3π/4] and λ > �3 = η3� where

η3 = max{sin β + cosβ,
1

1 + sin β
}. (4.14)
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Proof The proof will be divided into several steps.
Step 1. We check the boundary condition on 	2B

λ for every λ > �3.

(C1) ϑ ∈ [(π + 3β)/4, (π + β)/2]. In this case, 	2B
λ ⊂ T

λ̂,ϑ̂
, ϑ̂ ∈ [β/2, (π + β)/2], and

λ̂ = λ sin ϑ

sin(ϑ − β)
≥ λ sin(3π/4)

sin(3π/4 − β)
> �.

(C2) ϑ ∈ [3β/4, (π + 3β)/4]. In this case, 	2B
λ ⊂ T

λ̌,ϑ̌
, ϑ̌ ∈ [β/2, (π + β)/2] and

λ̌ = λ + λ sin β

sin(2ϑ − β)
≥ λ(1 + sin β) > �.

(C3) ϑ ∈ (0, β). In this case, we will choose ϑ3 ≤ β and hence 	2B
λ = ∅.

Therefore, wλ,ϑ satisfies strictly the boundary condition of (4.10) on 	2B
λ . The boundary

condition of 	2A
λ will be given in the process of mathematical induction below.

Step 2. We shall show that (4.2a) holds for ϑ ∈ [π/2, 3π/4]. We claim that for every
m ∈ N

+ (the set of nonnegative integers), (4.2a) holds for every ϑ ∈ Jm and for every
λ > �2 where

Jm = { kπ

2m+1 ∈ [π
2

,
3π

4
] : k ∈ N

+}.

By Lemma 7 and Lemma 8, we see the assertion holds for m = 0, 1. Assume the assertion
holds for somem ≥ 1, that is, (4.2a) holds forϑ ∈ Jm and forλ > �2.Now letϑ ∈ Jm+1\Jm .
Then

ϑ = (2k + 1)π

2m+2 ∈ (
π

2
,
3π

4
) (4.15)

with m, k ∈ N
+. We define ϑ1 and ϑ3 as follows

ϑ1 = 2kπ

2m+2 , ϑ3 = (2k + 2)π

2m+2

and then ϑ1 and ϑ3 belong to Jm . Thus, (4.10) is satisfied for all λ > �3. Therefore, as in the
proof in Lemma 7, one can prove (4.2a) holds for λ > �3. Thus, (4.2a) holds for ϑ ∈ Jm+1

and for λ > �3. Thus, the assertion follows by mathematical induction.
Since J∞ = ∪∞

m=0 Jm is dense in [π/2, 3π/4], we deduce by continuity that

ux1 sin(ϑ − β/2) − ux2 cos(ϑ − β/2) ≤ 0 on Tλ,ϑ ∩ � (4.16)

holds for ϑ ∈ [π/2, 3π/4] and λ > �3. For every fixed ϑ ∈ (π/2, 3π/4), one can find
ϑ1, ϑ3 in [π/2, 3π/4] such that ϑ −ϑ1 = ϑ3 −ϑ > 0. Noting that ϑ > π/2 ≥ 3β/4, we see
wλ,ϑ satisfies (4.10) for all λ > �3. Therefore, as in the proof in Lemma 7, one can prove
that the strict inequality (4.2a) holds for λ > �3. Hence Step 2 is completed.

Now we know that (4.2a) holds for ϑ = β. In the next step we will consider θ ∈ [β/2, β)

and choose ϑ1 ∈ {0} ∪ [β/2, β] and ϑ3 ∈ (0, β] so that 	2B
λ is an empty set.

Step 3. We shall show that (4.2a) holds for ϑ ∈ [β/2, β] and λ > �3. We claim that
(4.2a) holds ϑ ∈ J̃m and λ > �3 where

J̃m = {kβ
2m

∈ [β
2

, β] : k ∈ N
+}
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From step 2, this claim is valid for m = 0. Assume that this claim holds for some m ≥ 0.
Now let ϑ ∈ J̃m+1\ J̃m . Then

ϑ = (2k + 1)β

2m+1 ∈ [β
2

, β) (4.17)

with m, k ∈ N. We define ϑ1 and ϑ3 as follows

ϑ1 = kβ

2m
, ϑ3 = (k + 1)π

2m

and then ϑ1 and ϑ3 belong to J̃m ∪ {0}. Thus, wλ,ϑ satisfies (4.10) for λ > �3. Therefore,
as in the proof in Lemma 7, one can prove (4.2a) holds for λ > �3. Thus, (4.2a) holds
for ϑ ∈ Jm+1 and for λ > �3. Thus, the assertion follows by mathematical induction.
Observing that J∞ = ∪∞

m=0 Jm is dense in [β/2, β], we deduce by continuity that (4.16)
holds for ϑ ∈ [β/2, β] and λ > �3. For every fixed ϑ ∈ (β/2, β), one can find ϑ1, ϑ3 is
contained in [β/2, β] such that ϑ −ϑ1 = ϑ3 −ϑ > 0. Noting that ϑ3 ≤ β and 	2B

λ is empty,
we see wλ,ϑ satisfies (4.10) for all λ > �3. Therefore, as in the proof in Lemma 7, one can
prove that the strict inequality (4.2a) holds for λ > �3. Step 3 is finished.

Following these steps above we conclude (4.2a) holds for ϑ ∈ [β/2, 3π/4], λ ≥ �3.
Similarly, (4.2c) holds for ϑ ∈ [β/2, 3π/4], λ ≥ �3. The proof is finished. ��
Lemma 10 Let β ∈ (0, π ]. Suppose (4.2) holds for all λ > �3 and ϑ ∈ [β/2, a0] for some
a0 satisfying

max{π
2

,
π + 4β

5
} ≤ a0 <

π + β

2
. (4.18)

Then (4.2) holds for all λ > �3 and ϑ ∈ [β/2, (π + β)/2].
Proof We divide the proof into three steps. For simplicity we set

ak+1 = π + 2β − ak
2

, k = 0, 1, 2, . . . . (4.19)

Step 1: (4.2) holds for λ > �3 and

max{a0, a1, π/2 + β/4} ≤ ϑ ≤ (π + β)/2. (4.20)

Note that

ϑ ∈ [a0, (π + β)/2], ϑ̂ ∈ [β/2, a0], 2ϑ − π ∈ [β/2, a0]
⇐⇒a0 ≤ ϑ ≤ (π + β)/2, a1 ≤ ϑ ≤ π/2 + 3β/4, π/2 + β/4 ≤ ϑ ≤ (π + a0)/2

⇐⇒max{a0, a1, π/2 + β/4} ≤ ϑ ≤ (π + β)/2.

Thus, when ϑ satisfies (4.20), one can choose ϑ1 = 2ϑ − π ∈ [β/2, a0], ϑ3 = π , so that
wλ,ϑ satisfies (4.10) for λ > �3. Following the same process in the proof of Lemma 7, we
deduce that (4.8) and (4.2a) hold for every λ > �3. Similarly, (4.2c) is also valid for λ > �3.
In conclusion, (4.2) holds for λ > �3 and ϑ satisfying (4.20) and in particular it holds for
ϑ = (π + β)/2.

Step 2: (4.2) holds for λ > �3 and

max{a0, a1} ≤ ϑ ≤ (π + β)/2. (4.21)

Assume a1 < π/2 + β/4 (otherwise, this step is valid). Note that ϑ ∈ [a1, π/2 + β/4]
implies 	2B

λ ∈ T
λ̂,ϑ̂

and

ϑ̂ ∈ [3β/2, a0] ⊂ [β/2, a0].
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Thus, wλ,ϑ satisfies strictly the boundary condition in (4.10) on 	2B
λ for λ > �3. Following

the same proof as in Lemma 7, we deduce that (4.2a) (and similarly (4.2c)) holds for ϑ ∈
[a1, π/2 + β/4] and λ > �3. Therefore, we finish this step.

In particular, Lemma 10 finishes if a0 ≥ a1 (i.e., a0 ≥ (π + 2β)/3). So we assume
a0 < (π + 2β)/3 in the rest of the argument.

Step 3: (4.2) holds for λ > �3 and β/2 ≤ ϑ ≤ (π + β)/2.
We first claim that (4.2) holds for λ > �3 and ϑ ∈ ∪∞

k=0 Jk where

Jk = [β
2

, a2k] ∪ [a2k+1,
π + β

2
]

and {ak} is defined in (4.19). Clearly, the series {ak} has the following properties:

lim
k→∞ ak = π + 2β

3
, a2k < a2k+2 <

π + 2β

3
< a2k+3 < a2k+1, k = 0, 1, 2, . . . .

Now suppose that this claim holds for k = κ ≥ 0. Let ϑ ∈ [a2κ , a2κ+2] be fixed. For the
choice of ϑ1 and ϑ3 and the boundary conditions for wλ,ϑ on 	2A

λ , we observe that

I ={ϑ = (ϑ1 + ϑ3)/2 : ϑ1 ∈ [β/2, a2κ ], ϑ3 ∈ [a2κ+1, (π + β)/2]}
=[(2a2κ+1 + β)/4, 2a2κ + π + β)/4]
⊃[a2κ , a2κ+2]

(4.22)

since

(2a2κ+1 + β) − 4a2κ = (π + 3β) − 5a2κ < 0,

(2a2κ + π + β) − 4a2κ+2 = a2κ − β > 0.

For the boundary condition on 	2B
λ , we see 	2B

λ ⊂ T
λ̌,ϑ̂

= T
λ̂,ϑ̄

with

ϑ̂ ∈ [a2κ+1, (π + β)/2], λ̂ > λ > �3 when ϑ ≥ (π + 3β)/4, (4.23a)

ϑ̌ ∈ [a2κ+1, (π + β)/2], λ̌ > λ > �3 when ϑ < (π + 3β)/4 (4.23b)

where we have used 2a0 − β ≥ a1, i.e., a0 ≥ (π + 4β)/5. It immediately follows that wλ,ϑ

satisfies (4.10) for λ > �3. As in the proof of Lemma 7, we deduce that (4.8) and (4.2a) hold
for λ > �3. Similarly, (4.2c) holds for λ > �3.

Let ϑ ∈ [a2κ+3, (π + β)/2]. Note that
I = {ϑ = (ϑ1 + ϑ3)/2 : ϑ1 ∈ [β/2, a2κ+2], ϑ3 ∈ [a2κ+1, (π + β)/2]}

=[(2a2κ+1 + β)/4, (2a2κ+2 + π + β)/4]
⊃[a2κ+3, a2κ+1]

(4.24)

since

(2a2κ+1 + β) − 4a2κ+3 = a2κ+1 − (π + β) < 0,

(2a2κ+2 + π + β) − 4a2κ+1 = 6a2κ+2 − (π + 3β) > 0.

We also have 	2B
λ ⊂ T

λ̂,ϑ̂
and

ϑ̂ ∈ [β, a2κ+2] ⊂ [β/2, a2κ+2].
It immediately follows that wλ,ϑ satisfies (4.10) for λ > �3. As in the proof of Lemma
7, we deduce that (4.2) holds for λ > �3 and ϑ ∈ [a2κ+3, (π + β)/2]. Therefore, the
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assertion holds for k = κ + 1. By mathematical induction we finish the proof of the claim
for ϑ ∈ ∪∞

k=0 Jk = [β/2, (π + β)/2]\{(π + 2β)/3}.
For θ = (π + 2β)/3, one can prove that

wλ,(π+2β)/3 < 0 in Dλ,(π+2β)/3,(π+5β)/6.

and (4.2a) hold for λ > �3. Similarly, (4.2c) holds for λ > �3. Therefore, the proof is
complete. ��

Combining these lemmas above, we conclude the symmetry of u.

Theorem 2 Let β ∈ (π/2, 2π/3]. Then (4.2) holds for ϑ ∈ [β/2, (π + β)/2] for λ > 0. In
particular we have

(i) ux1 < 0 in �;
(ii) x2ux2 < 0 in � ∩ {x2 �= 0};
(iii) u is symmetric with respect to the hyperplane {x2 = 0}.

Proof Step 1: The monotonicity properties of u.
Set �0 = λmax where

λmax = sup{λ : Tλ,(π+β)/2 ∩ � �= ∅} = (1 − a) sec(β/2).

Clearly, Tλ,ϑ/2 ∩ � = ∅ for all λ > �0 and ϑ ∈ [β/2, (π + β)/2]. Denote η̄ = η3 where η3
is given in (4.14). Using Lemma 7-10, we deduce that (4.2) holds for ϑ ∈ [β/2, (π + β)/2]
for λ > η̄�0. Repeating these lemmas serval times we conclude that (4.2) holds for ϑ ∈
[β/2, (π +β)/2] for λ > η̄k�0 for every k ≥ 1. This leads to the first part of the conclusion.

Conclusion (i) is a direct consequence of (4.2a) with ϑ = (π + β)/2. Conclusion (ii) is a
direct consequence of (4.2b), (4.2d) with ϑ = β/2. By continuity, we deduce that ux2 = 0
for x ∈ � satisfying x2 = 0.

Step 2: The even symmetry of u with respect to variable x2. Indeed, we shall give two
methods to prove the even symmetry.

Methods 1: Themoving planemethod. From the proof of Lemma 9,we deducewλ,β/2 < 0
in Dλ,β/2,0 for all λ > 0. By letting λ → 0+, we see u(x) ≤ u(x1,−x2, x3, . . . , xn)
for x2 < 0. Similarly, by moving T̂λ,β/2 from large λ to λ = 0, one can conclude that
u(x) ≤ u(x1,−x2, x3, . . . , xn) for x2 > 0. This leads to the even symmetry of u with
respect to x2, i.e., u(x) = u(x1,−x2, x3, . . . , xn) for x ∈ �.

Methods 2: The methods for uniqueness of overdetermined problem. Set v(x) =
u(x1,−x2, x3, . . . , xn). Then one can see that v and u satisfy the same equation on half
domain �+ = � ∩ {x2 > 0}, and same Dirichlet and Neumann datum on {x2 = 0}

v = u, vx2 = ux2 = 0 on � ∩ {x2 = 0}.
Applying Theorem 1 of [16], we derive that v−u vanishes completely in�+. The symmetry
property follows. ��

5 The case ˇ ∈ (2�/3,�)

In this section we will consider the case β > 2π/3. In this case wλ may not satisfy the
Neumann type condition on 	2B

λ . The main task is to overcome this difficult.
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For starting the moving plane process, we observe that 	2B
λ,ϑ is a empty set for large λ and

suitable range of ϑ . Let κ be a fixed integer such that

βκ < β ≤ βκ+1

where β j = (1 − 2− j )π , j ∈ N. Now we set β∗ = max{βκ+1, (π + 4β)/5}. Then there
exists a positive constant �∗ such that T�∗,β∗ ∩ � �= ∅ and

	2B
�∗,β∗,0 = ∅. (5.1)

We remark that (1) The choice of β∗ is between β and (π +β)/2, and β∗ will be used to apply
Lemma 10. (2) The condition T�∗,β∗ ∩ � �= ∅ is used to guarantee that �∗ ∈ (0, λmax ). (3)
(5.1) implies that 	2B

λ,ϑ,ϑ1
is empty for all λ ≥ �∗ and 0 ≤ ϑ1 < ϑ ≤ β∗.

Lemma 11 Let β ∈ (0, π) and let �∗ be chosen so that (5.1) holds. Then (4.2) holds for
λ ≥ �∗ and ϑ ∈ [β/2, (β + π)/2].
Proof Since λ ≥ �∗ is valid in this lemma, we know 	2B

λ is empty, so the results in Sect. 4
are valid without the hypothesis β ≤ 2π/3. As in the same process of Lemma 7, we conclude
that (4.2) holds for ϑ = β j , 1 ≤ j ≤ κ + 1. Using the same process of Lemma 9, (4.2) holds
for ϑ ∈ [β/2, βκ+1]. By setting ϑ = (β + π)/2, ϑ1 = β and ϑ̂ = π − 2θ + 2β = β, we
see that wλ,ϑ satisfies (4.10), and hence (4.8) and (4.2) hold for λ ≥ λ∗. By the definition
of β∗, one can check that 2β∗ − (β + π)/2 ∈ [β/2, βκ+1]. Hence one can prove that (4.2)
holds for ϑ = β∗ and for ϑ ∈ [β/2, β∗]. Finally, it follows from Lemma 10 that (4.2) holds
for ϑ ∈ [β∗, (π + β)/2]. ��
Lemma 12 Let β ∈ (2π/3, π). Suppose that there exists some � ∈ (0, λmax ) such that
(4.2) holds for λ > � and ϑ ∈ [β/2, (π + β)/2]. Then (4.2a) and (4.2c) holds for ϑ ∈
[β/2, (π + β)/2] and λ = �.

Proof By continuity, we see the following inequalities

ux1 sin(ϑ − β/2) − ux2 cos(ϑ − β/2) ≤ 0 on Tλ,ϑ ∩ �, (5.2a)

ux1 sin(ϑ − β/2) + ux2 cos(ϑ − β/2) ≤ 0 on T̂λ,ϑ ∩ � (5.2b)

hold for λ = � and ϑ ∈ [β/2, (π + β)/2].
Let ϑ ∈ [β/2, β) and then let ϑ1 ∈ {0} ∪ [β/2, β], ϑ3 ∈ [β/2, β] be fixed so ϑ − ϑ1 =

ϑ3 − ϑ > 0. Due to the negativity of wλ,ϑ on a nonempty set 	1
λ, one see that (4.8), (4.2a)

and (4.2c) hold for λ ≥ �.
Let ϑ ∈ [β, (π +β)/2) and ϑ1, ϑ3 ∈ [β/2, (π +β)/2] be fixed so ϑ −ϑ1 = ϑ3 −ϑ > 0.

Then either ϑ̌ ∈ [β, (π + β)/2] or ϑ̂ ∈ [β, (π + β)/2] and hence wλ,ϑ satisfies a strict
boundary condition on a non-empty set 	2B

λ ∪ 	1
λ, so one can prove strict inequalities (4.8),

(4.2a) and (4.2c) for λ ≥ �.
Similarly, let ϑ = (π + β)/2 and ϑ1 = β, ϑ3 = π be fixed. Then ϑ̂ = β and hence

wλ,ϑ has a strict boundary condition on a non-empty set 	2B
λ ∪ 	1

λ, so one can prove strict
inequalities (4.8), (4.2a) and (4.2c) for λ ≥ �. ��

In order to overcome the boundary condition of Neumann type wλ,ϑ on a non-empty
set 	2B

λ,ϑ , we observe and trace back to find a Dirichlet type boundary boundary condition

as in the original moving plane method. Indeed, we will obtain the negativity of wλ,ϑ by
comparing the values of function u.
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Fig. 3 The shape Dλ,π/2,0 for
β ∈ (2π/3, π)

Tλ,π/2

O Tλ,β/2

x

xϑ

z

Lemma 13 Let β ∈ (2π/3, π). Suppose that there exists some � ∈ (0, λmax ) such that (4.2)
holds for λ > � and ϑ ∈ [β/2, (π + β)/2]. Then (4.8) and (4.2) hold for ϑ = π/2 and
λ > �1 = � − ε for some ε > 0.

Proof The proof will be divided into three steps.
Step 1:We prove that

w�,π/2(x) = u(x) − u(x�,π/2) < 0 for x ∈ D�,π/2,0. (5.3)

Let �̌ = 2�, ϑ̌ = π − β. Then 	2B
� ⊂ T

�̌,ϑ̌
. When 	2B

� is a empty subset (this case occurs

when � is large), (5.3) is valid as in Lemma 7. Hence we assume that 	2B
� is not a empty

subset, i.e., 	D ∩ T
�̌,ϑ̌

is not a empty subset. Lemma 3 gives the monotonicity properties

near the Dirichlet boundary and hence ∂νw
�,π/2 > 0 for all points x satisfying x ∈ 	2B

� and
x is close to 	D ∩ T

�̌,ϑ̌
; see Figure 3. We will use a new observation to show the negativity

of w�,π/2.
Let x ∈ T�,ψ1 and x�,π/2 ∈ T�,ψ2 be fixed with ψ1 < ψ2, ψ1 + ψ2 = π . In order to

prove

u(x) < u(x�,π/2),

we will introduce another point z and prove that

u(x) < u(z), u(z) < u(x�,π/2).

For simplicity, we shall use the polar coordinate (�, ψ) as in (4.4) with λ = � for the first
two variables. The fixed point x and x�,π/2 are denoted by (�̄, ψ1, x ′) (�̄, ψ2, x ′), or (�̄, ψ1)

(�̄, ψ2) for simplicity (we omit x ′ ∈ R
n−2). By the above argument we have proved that

w�,β/2 < 0 in D�,β/2,0\T�,β/2, (5.4)

w�,(π+β)/2 < 0 in D�,(π+β)/2,β\T�,(π+β)/2 (5.5)

and

ϑ �→ u(r , ϑ) is strictly increasing in ϑ ∈ J (5.6)

where J = [β/2, (π + β)/2]. (5.6) holds due to the fact that � is convex in ϑ ∈ J , that is,
(�, ϑi ), ϑi ∈ J , i = 1, 2 implies (�, ϑ) ∈ � for ϑ is between ϑ1 and ϑ2.

Case 1: ψ1 ∈ J , ψ2 ∈ J . By (5.6)

u(�̄, ψ1) < u(�̄, ψ2).
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Case 2: ψ1 /∈ J , ψ2 ∈ J . From (5.4),

u(�̄, ψ1) < u(�̄, ψ ′
1)

where ψ ′
1 = β − ψ1 ∈ J . Noting that ψ2 − ψ ′

1 = π − β > 0, we deduce by (5.6) that

u(�̄, ψ ′
1) < u(�̄, ψ2).

Case 3: ψ1 ∈ J , ψ2 /∈ J . From (5.5),

u(�̄, ψ ′
2) < u(�̄, ψ2)

where ψ ′
2 = (π + β) − ψ2 ∈ J . Noting that ψ ′

2 − ψ1 = β > 0, we deduce by (5.6) that

u(�̄, ψ1) < u(�̄, ψ ′
2).

Case 4: ψ1 /∈ J , ψ2 /∈ J . From (5.4) and (5.5),

u(�̄, ψ1) < u(�̄, ψ ′
1), u(�̄, ψ ′

2) < u(�̄, ψ2)

where ψ ′
1 = β − ψ1 ∈ J , ψ ′

2 = (π + β) − ψ2 ∈ J . Noting that

ψ ′
2 − ψ ′

1 = [(π + β) − ψ2] − [β − ψ1] = 2ψ1 > 0,

we deduce by (5.6) that

u(�̄, ψ ′
1) < u(�̄, ψ ′

2).

In all of these four cases we have proved u(�̄, ψ1) < u(�̄, ψ2). Step 1 is finished.
Step 2:We claim that there holds

ux1 cos(β/2) − ux2 sin(β/2) < 0 on T�,π/2 ∩ 	−
N . (5.7)

This can be done by using an argument of contradiction and applying Serrin’s boundary
lemma to w�,π/2 in D�,π/2,0, see the details in Theorem 2.4 of [6].

Step 3: We conclude the proof. Indeed, as in same process of step 2 in the proof of
Lemma 7, we see that (4.8), (4.2a) and (4.2b) hold for ϑ = π/2, ϑ1 = 0 and λ ∈ (�−ε1,�]
for some small ε1 > 0. Similarly, one can prove (4.2c) and (4.2d) hold for ϑ = π/2 and
λ ∈ (� − ε2,�] for some small ε2 > 0. Lemma 13 follows by taking ε = min{ε1, ε2}. ��
Lemma 14 Let β ∈ (2π/3, π). Suppose that there exists some � ∈ (0, λmax ) and �1 ∈
(0,�) such that (4.2) holds for λ > �, ϑ ∈ [β/2, (π + β)/2] and for λ > �1, ϑ = π/2.
Then (4.2) holds forϑ ∈ [β/2, a0]andλ > �3where a0 = (π+3β)/4,�3 = max{�1, η3�}
and

η3 = 1

sin β + 1
.

Proof We first deal with the boundary condition on 	2B
λ . For ϑ ∈ [β/2, a0] and λ > �3, we

have

(C1) ϑ ∈ [3β/4, (π + 3β)/4]. In this case, 	2B
λ ⊂ T

λ̌,ϑ̌
, ϑ̌ ∈ [β/2, (π + β)/2] and

λ̌ = λ + λ sin β

sin(2ϑ − β)
≥ λ(1 + sin β) > �.

(C2) ϑ ∈ (0, β). In this case, we will choose ϑ3 ≤ β and hence 	2B
λ = ∅.
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Therefore, wλ,ϑ satisfies the strict boundary condition on 	2B
λ . Choosing ϑ1 = π/2, ϑ3 = π

and following by the same process of Lemma 7, we see (4.2) holds for λ > �3 andϑ = 3π/4.
Now there are two possibilities: β ∈ [3π/4, π) and β ∈ (2π/3, 3π/4).
Assume β ∈ [3π/4, π). Then (3π/4+π)/2 = 7π/8 ≤ (π +β)/2.We have the following

cases:

(1) (4.2) holds for λ > �3 and ϑ ∈ [3π/4, 7π/8]. In fact, following by the same process of
Lemma 7, this can be done for ϑ = 7π/8 by choosing ϑ1 = 3π/4, ϑ3 = π . As in step 2
of Lemma 9, this can be done for ϑ ∈ (3π/4, 7π/8).

(2) (4.2) holds for λ > �3 and ϑ ∈ [3π/4, a0] (in particular for ϑ = β). Indeed, following
the proof of Lemma 7, one can prove (4.2) holds for ϑ ∈ [β j+2, β j+3] ∩ [π/2, a0] for
every j ∈ N where β j = (1 − 2− j )π .

(3) (4.2) holds for λ > �3 and ϑ ∈ [β/2, β]. This can be done similarly as in step 3 of
Lemma 9.

Assume β ∈ (2π/3, 3π/4). Then (3π/4 + π/2)/2 = 5π/8 ∈ (3β/4, (π + β)/2). We
have the following cases:

(1) (4.2) holds for λ > �3 and ϑ ∈ [5π/8, 3π/4]. In fact, following by the same process of
Lemma 7, this can be done for ϑ = 5π/8 by choosing ϑ1 = π/2, ϑ3 = 3π/4. As in step
2 of Lemma 9, this can be done for ϑ ∈ (5π/8, 3π/4).

(2) (4.2) holds for λ > �3 and ϑ ∈ [3β/4, 3π/4]. Indeed, by induction and the proof of
Lemma 7, one can prove that (4.2) holds for ϑ ∈ [b j+2, b j+1] ∩ [3β/4, 3π/4] for every
j ∈ N where b j = (1 + 2− j )π/2.

(3) (4.2) holds for λ > �3 and ϑ = c2, ϑ ∈ [c1, c2] and then for ϑ ∈ [c1, a0] where
c1 = 3β/4 and c j+1 = (π + c j )/2. Indeed, noting that c2 < (π + 3β)/4, one can prove
(4.2) holds for ϑ ∈ [c j+1, c j+2] ∩ [c1, (π + 3β)/4] for every j ∈ N.

(4) (4.2) holds for λ > �3 and ϑ ∈ [β/2, β]. This can be done similarly as in step 3 of
Lemma 9.

The lemma is proven. ��
Combining these lemmas above, we conclude the symmetry of u.

Theorem 3 Let β ∈ (2π/3, π). Then (4.2) holds for ϑ ∈ [β/2, (π + β)/2] for λ > 0. In
particular we have

(i) ux1 < 0 in �;
(ii) x2ux2 < 0 in � ∩ {x2 �= 0};
(iii) u is symmetric with respect to the hyperplane {x2 = 0}.
Proof Set �0 = λmax where

λmax = sup{λ : Tλ,(π+β)/2 ∩ � �= ∅} = (1 − a) sec(β/2).

Let us define

S = {λ′ ∈ (0, λmax ) : (4.2) holds for every ϑ ∈ [β/2, (π + β)/2], λ ∈ [λ′, λmax )}.
From Lemma 11, [�∗, λmax ] ⊂ S and S is not a empty set. Lemma 12 implies S is relatively
closed in (0, λmax ). Lemma 13, Lemma 14 and Lemma 10 tell us that the set S is open. In
conclusion, S is relatively closed, open, nonempty set of (0, λmax ). Therefore, S = (0, λmax ).
This gives the first two conclusions. The symmetry property follows from step 2 of
Theorem 2. ��
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6 The case ˇ ∈ (0,�/3]
In this section we consider the case β ≤ π/3.

Lemma 15 Let β ∈ (0, π/3]. Assume that there exists a constant� > 0 such that (4.2) holds
for every λ > �. Then (4.2) holds for ϑ ∈ [β/2, π/2] and λ > �3 where �3 = η3� and

η3 = max{cosβ,
1

1 + sin β
}. (6.1)

Proof Step 1. The function wλ,ϑ satisfies a suitable boundary condition on 	2B for λ ≥ �3.
In fact, for ϑ ∈ [(π + 3β)/4, π/2], we see 	2B

λ ⊂ T
λ̂,ϑ̂

with

ϑ̂ = π − 2ϑ + 2β ∈ [β/2, (π + β)/2] and λ̂ = λ sin ϑ

sin(ϑ − β)
≥ λ

cosβ
≥ �.

While for ϑ ∈ [π/4, (π + 3β)/4], we see 	2B
λ ⊂ T

λ̌,ϑ̌
with

ϑ̌ = 2ϑ − β ∈ [β/2, (π + β)/2] and λ̌ = λ + λ sin β

sin(2ϑ − β)
= λ(1 + sin β) ≥ �

where the assumption β ≤ π/3 is used.
Step 2. The conclusion holds for ϑ ∈ [π/4, π/2]. In fact, by choosing ϑ = π/2 and

ϑ1 = 0, one deduces from Lemma 7 that (4.8) and (4.2) hold for all λ > �2. Note that
the hypothesis β ≤ π/3 is used to guarantee that π/4 ∈ (3β/4, (π + β)/2]. By choosing
ϑ = π/4 and ϑ1 = 0, one deduces from Lemma 7 that (4.8) and (4.2) hold for all λ > �2. By
mathematical induction as in step 2 of Lemma 9, we can get that (4.2) holds for all λ > �2

and ϑ ∈ (π/4, π/2).
Step 3. The conclusion holds for ϑ ∈ [β/2, π/2]. Indeed, taking ϑ1 = 0, ϑ3 = 2ϑ

in the proof of Lemma 7, one can get by induction that (4.2) holds for all λ > �2, ϑ ∈
[2− j−2π, 2− j−1π]∩ [3β/4, π/2], for every j ∈ N and then for ϑ ∈ [3β/4, π/2]. Following
step 3 of Lemma 9, we deduce that (4.2) holds for all λ > �2 and ϑ ∈ ∩[β/2, β/2]. ��
Theorem 4 Under the condition β ∈ (0, π/3], we have the same conclusion as stated in
Theorem 2.

Proof Note that β ∈ (0, π/3] implies max{π/2, (π + 4β)/5} ≤ π/2. Using Lemma 15 and
Lemma 10, we can conclude this result by the same proof of Theorem 2. ��

7 The case ˇ ∈ (�/3,�/2)

In this subsection we focus on the case β ∈ (π/3, π/2). In this case 	2B
λ,π/4 ⊂ T

λ̌,ϑ̌
with

ϑ̌ = π/2 − β < β/2. Hence wλ,π/4 does not satisfy the Neumann boundary condition on
	2B

λ,π/4 when λ is small. Thus, we will prove the negativity of wλ,π/4 as in step 1 in Lemma
13.

Lemma 16 Let β ∈ (π/3, π/2). Assume that (4.2) holds for ϑ ∈ [β/2, (π + β)/2] and
λ > �. Then we have that

(i) (4.2) holds for ϑ = π/2 and λ > �1 where �1 = �/2;
(ii) there exists a small constant ε > 0 such that (4.2) holds for ϑ = π/4 and λ > �2

where �2 = max{�1,� − ε}.
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Fig. 4 The shape Dλ,π/4,0 for
β ∈ (π/3, π/2)

Tλ,π/4

O
Tλ,β/2

x

xϑ

z

Proof From Lemma 7, (4.2) holds for ϑ = π/2 and λ > �1 = �/2. This gives part (i).
By the same proof of Lemma 12, one can obtain that (4.2) holds for ϑ ∈ [β/2, (π +β)/2]

and λ = �. The case for ϑ = π/4 is more complicated. One can prove that

w�,π/4 < 0 in D�,π/4,0\T�,π/4. (7.1)

Indeed, the proof is similar to step 1 in Lemma 13. We will do it directly by proving

u(x) < u(z), u(z) < u(x�,π/4)

for some point z; see Figure 4. Let x ∈ D�,π/4,0\T�,π/4 be fixed. Then x ∈ T�,ψ1 and
x�,π/2 ∈ T�,ψ2 be fixed with ψ1 < ψ2, ψ1 + ψ2 = π/2. For simplicity, we use the polar
coordinate (�, ψ) as in (4.4) for the first two variables and omit the remain n − 2 variables
x ′ ∈ R

n−2. The fixed point x and x�,π/4 are denoted by (�̄, ψ1), (�̄, ψ2). By the above
argument we have proved that

wλ,β/2,0 < 0 in Dλ,β/2,0\Tλ,β/2 (7.2)

and

ϑ �→ u(�, ϑ) is strictly increasing in ϑ ∈ J (7.3)

where J = [β/2, (π + β)/2]. (7.3) holds due to the fact that � is convex in ϑ ∈ J , that is,
(�, ϑi ), ϑi ∈ J , i = 1, 2 implies (�, ϑ) ∈ � for ϑ is between ϑ1 and ϑ2.

Case 1: ψ1 ∈ [β/2, π/2], ψ2 ∈ [β/2, π/2]. By (7.3)

u(�̄, ψ1) < u(�̄, ψ2).

Case 2: ψ1 ∈ [0, β/2), ψ2 ∈ [β/2, π/2]. From (7.2),

u(�̄, ψ1) < u(�̄, ψ ′
1)

where ψ ′
1 = β −ψ1 ∈ [β/2, π/2]. Noting that ψ2 −ψ ′

1 = π/2−β > 0, we deduce by (7.3)
that

u(�̄, ψ ′
1) < u(�̄, ψ2).

In both cases we have proved u(�̄, ψ1) < u(�̄, ψ2) and hence (7.1) is proven.
The remaining part is similar to the proof of Lemma 13. ��

Lemma 17 Let β ∈ (π/3, π/2). Then (4.2) holds for ϑ ∈ [β/2, (π + 3β)/4] and λ > �3

where �3 = max{�2,�/(1 + sin β)}.
Proof If ϑ ∈ [3β/4, (π + 3β)/4] and λ > �3, we see 	2B

λ ∈ T
λ̌,ϑ̌

with

ϑ̌ = 2ϑ − β ∈ [β/2, (π + β)/2],
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and

λ̌ = λ(1 + sin β

sin(2ϑ − β)
) ≥ λ(1 + sin β) ≥ �.

Step 1. Since 3π/8 = (π/4+π/2)/2 ∈ [3β/4, π/2], we see that for λ > �3, (4.2) holds
for ϑ ∈ J∞ = ∪∞

m=1 Jm and then for ϑ ∈ [3π/8, π/2] where

Jm = { jπ
2m

∈ [3π
8

,
π

2
] : j = 1, 2, . . .},m = 1, 2, . . . .

This can be done as in step 2 of Lemma 9.
Step 2. For λ > �3, (4.2) holds for ϑ ∈ [3β/4, π/2] = ∪∞

m=1 J̃m where

J̃m = [ (1 + 21−m)π

4
,
π

2
] ∩ [3β

4
,
π

2
],m = 1, 2, . . . .

Step 3. For λ > �3, (4.2) holds for ϑ ∈ [β/2, β]. This can be done as in step 3 of Lemma
9. Here in this step we have used ϑ3 ≤ β and 	2B

λ = ∅.
Step 4. By choosing ϑ1 = β, ϑ3 = π , ϑ = (π + β)/2 and then ϑ̂ = β, we can prove that

for λ > �3, (4.2) holds for ϑ = (π + β)/2
Step 5. For ϑ ∈ [π/2, (π + 3β)/4], we can take ϑ3 = (π + β)/2,

ϑ1 = 2ϑ − ϑ3 ∈ [(π − β)/2, β] ⊂ [β/2, π/2].
Following the process in Lemma 7, one can show that (4.2) holds for and λ > �3. ��

Theorem 5 Under the condition β ∈ (π/3, π/2), we have the same conclusion as stated in
Theorem 2.

Proof Using Lemma 11, Lemma 16, Lemma 17 and Lemma 10, we can conclude this result
by the same proof of Theorem 3. ��

8 Radial symmetry in x ′ ∈ R
n−2

In this section we gives the proof of the symmetry in the last n − 2 variables x ′ ∈ R
n−2. The

proof does not need the symmetry and monotonicity result with respect to x1 and x2.

Lemma 18 The solution u is radially symmetric in the last n − 2 variables x ′ ∈ R
n−2.

Proof We prove that u is symmetric with respect to every hyperplane T0 which is orthogonal
to the upper Neumann boundary 	+

N and the lower Neumann boundary 	−
N . For simplicity

we assume that T0 is the hyperplane {xn = 0} and denote by Tλ the hyperplane parallels to
T0, that is,

Tλ = {x ∈ R
n : xn = λ}.

Denote λ0 = sup{λ : Tλ ∩ � �= ∅}. For λ ∈ (0, λ0), the open cap above Tλ will be denoted
by �λ, �λ = {x ∈ � : xn > λ}. The symmetry point of x with respect to Tλ will denote by
xλ, xλ = (x1, . . . , xn−1, 2λ − xn). We set uλ(x) = u(xλ) and

wλ(x) = u(x) − u(xλ) for x ∈ �λ.
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Note that uλ satisfies the same equation and boundary condition as u. We deduce that wλ

satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�wλ + cλ(x)wλ = 0 in �λ,

wλ = 0 on Tλ ∩ �,

wλ < 0 on 	D ∩ ∂�λ

∂wλ

∂ν
= 0 on 	N ∩ ∂�λ,

(8.1)

where

cλ(x) = f (u(x)) − f (u(xλ))

u(x) − u(xλ)

is a uniform bounded function, |cλ(x)| < c0 for some c0 > 0.
Our aim is to prove that

u(x) < u(xλ) for x ∈ �λ\Tλ, (8.2)

for every λ ∈ (0, λ0). We let λ̄ be the supremum of λ such that (8.2) holds false, that is,

λ̄ = inf{λ′ ∈ (0, λ0) : (8.2) holds for every λ ∈ (λ′, λ0)}. (8.3)

Step 1. We claim that (8.2) holds for all λ such that λ0 − λ is positive and sufficiently
small. Indeed, by the definition of�λ, the diameter of�λ is very small when λ is close to λ0.
By the maximum principle in Lemma 2 and Remark 1, we get that (8.2) holds for λ satisfying
0 < λ0 − λ � 1. Thus, the constant λ̄, given in (8.3), is well-defined and λ̄ ∈ [0, λ0).

Step 2. We claim that (8.2) holds for λ ∈ (0, λ0) and hence w0(x) ≤ 0 for x ∈ �0.
Suppose that the assertion is false, then λ̄ > 0. Then, by continuity, wλ̄(x) ≤ 0 in �λ̄. By
the strong maximum principle and Remark 1 we obtain

wλ̄ < 0 in �λ̄\Tλ̄, (8.4)

It follows from the Hopf boundary lemma that uxn < 0 on Tλ̄ ∩ �. From Lemma 4, we can
obtain the strict monotonicity along the Neumann boundary and hence

uxn < 0 on Tλ̄ ∩ (� ∪ 	N ) ∩ {x21 + x22 > 0} (8.5)

where we always assume that the vertex line of the sector C passes though V =
(0, 0, 0, . . . , 0).

Now let us fix a small subset N = {x : ∑n−1
i=1 x2i + (xn − λ̄)2 < η/2} where η is a

small constant for the maximum principle in a narrow domain to hold; see Lemma 2. By
the monotonicity near Dirichlet boundary (see Lemma 3), strict monotonicity properties in
(8.5), and the negativity of wλ̄ in (8.4), one sees that

wλ < 0 in �λ\(Tλ ∪ N )

for |λ − λ̄| < δ2 for some δ > 0 (assuming δ < η/2).
In the rest of the domain D̃ = �λ ∩ N , we have

⎧
⎪⎨

⎪⎩

�wλ,π/2 + cλ,π/2wλ,π/2 = 0,

∂νw
λ = 0 on ∂ D̃ ∩ 	N ,

wλ ≤, �≡ 0 on ∂ D̃\	N .
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It follows by themaximumprinciple thatwλ < 0 in D̃. Therefore, (8.2) holds for 0 < λ̄−λ �
1. This contradicts the definition of λ̄. Hence λ̄ = 0, (8.2) holds for every λ ∈ (0, λ0) and
then w0(x) ≤ 0 for xn > 0.

Step 3. If the hyperplanes are moved in the opposite direction, then we conclude that u is
symmetric with respect to T0. Because of the fact that T0 is any hyperplane orthogonal to the
Neumann boundary 	N , we deduce that u is radially symmetric with respect to x ′ ∈ R

n−2.
��

Acknowledgements The authors sincerely thank the anonymous referee for careful reading and helpful sug-
gestions which led to improvements of our original manuscript. The first author is supported by the Natural
Science Foundation of China (Grant No. 12001543).

References

1. Aleksandrov, A.: Uniqueness theorem for surfaces in the large I. Vestnik Leningrad Univ. 11(19), 5–17
(1956). (Russian)

2. Berestycki, H., Caffarelli, L., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz
domains. Commun. Pure Appl. Math. 50(11), 1089–1111 (1997)

3. Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in
unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25((1–2)), 69–94 (1997)

4. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil.
Mat. (N.S.) 22(1), 1–37 (1991)

5. Berestycki, H., Nirenberg, L., Varadhan, S.S.: The principal eigenvalue and maximum principle for
second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

6. Berestycki, H., Pacella, F.: Symmetry properties for positive solutions of elliptic equations with mixed
boundary conditions. J. Funct. Anal. 87(1), 177–211 (1989)

7. Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic
equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

8. Chen, H., Li, R., Yao, R.: Symmetry of positive solutions of elliptic equations with mixed boundary
conditions in a sub-spherical sector, Submitted to Nonlinearity

9. Chen, H., Yao, R.: Symmetry and monotonicity of positive solution of elliptic equation with mixed
boundary condition in a spherical cone. J. Math. Anal. Appl. 461(1), 641–656 (2018)

10. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3),
615–622 (1991)

11. Chen, W., Li, C.: Qualitative properties of solutions to some nonlinear elliptic equations in R
2. Duke

Math. J. 71(2), 427–439 (1993)
12. Chern, J.-L., Lin, C.-S.: The symmetry of least-energy solutions for semilinear elliptic equations. J. Differ.

Equ. 187(2), 240–268 (2003)
13. Chu, C.-P., Wang, H.-C.: Symmetry properties of positive solutions of elliptic equations in an infinite

sectorial cone. Proc. R. Soc. Edinburgh Sect. A 122(1–2), 137–160 (1992)
14. Damascelli, L., Pacella, F.: Morse index and symmetry for elliptic problems with nonlinear mixed bound-

ary conditions. Proc. R. Soc. Edinburgh Sect. A 149(2), 305–324 (2019)
15. del Pino, M., Felmer, P.L., Wei, J.: Multi-peak solutions for some singular perturbation problems. Calc.

Var. Partial Differ. Equ. 10(2), 119–134 (2000)
16. Farina, A., Valdinoci, E.: On partially and globally overdetermined problems of elliptic type. Am. J.Math.

135(6), 1699–1726 (2013)
17. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Com-

mun. Math. Phys. 68(3), 209–243 (1979)
18. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in

RN . Adv. Math. Suppl. Stud. A 7, 369–402 (1981)
19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

(2001)
20. Gui, C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84(3), 739–769 (1996)
21. Gui, C.: Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions. J. Differ. Equ.

252(11), 5853–5874 (2012)

123



Symmetry in super-spherical sector Page 25 of 25 130

22. Gui, C., Ghoussoub, N.: Multi-peak solutions for a semilinear Neumann problem involving the critical
Sobolev exponent. Math. Z. 229(3), 443–474 (1998)

23. Gui, C., Lin, C.-S.: Estimates for boundary-bubbling solutions to an elliptic Neumann problem. J. Reine
Angew. Math. 546, 201–235 (2002)

24. Gui, C., Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J.
Differ. Equ. 158(1), 1–27 (1999)

25. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed
Neumann problems. Canad. J. Math. 52(3), 522–538 (2000)

26. Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann
problems. Ann. Inst. H Poincare Anal. Non Lineaire 17(1), 47–82 (2000)

27. Li, C.: Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded
domains. Commun. Partial Differ. Equ. 16(4–5), 585–615 (1991)

28. Li, Y., Ni, W.-M.: Radial symmetry of positive solutions of nonlinear elliptic equations in Rn . Commun.
Partial Differ. Equ. 18(5–6), 1043–1054 (1993)

29. Lin,C.-S.: Locating the peaks of solutions via themaximumprinciple: I. TheNeumannproblem.Commun.
Pure Appl. Math. 54(9), 1065–1095 (2001)

30. Montefusco, E.: Axial symmetry of solutions to semlinear elliptic equations in unbounded domains. Proc.
R. Soc. Edinburgh Sect. A 133(5), 1175–1192 (2003)

31. Ni,W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun.
Pure Appl. Math. 44(7), 819–851 (1991)

32. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem.
Duke Math. J. 70(2), 247–281 (1993)

33. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear
Dirichlet problems. Commun. Pure Appl. Math. 48(7), 731–768 (1995)

34. Pacella, F.: Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J.
Funct. Anal. 192(1), 271–282 (2002)

35. Pacella, F., Weth, T.: Symmetry of solutions to semilinear elliptic equations via Morse index. Proc. Am.
Math. Soc. 135(6), 1753–1762 (2007)

36. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)
37. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43(4), 304–318 (1971)
38. Shi, X., Gu, Y., Chen, J.: Symmetry and monotonicity of positive solutions of systems of semilinear

elliptic equations. Acta Math. Sci. 17(1), 1–9 (1997). (Chinese)
39. Wei, J.: On the interior spike layer solutions to a singularly perturbed Neumann problem. Tohoku Math.

J. 50(2), 159–178 (1998)
40. Wei, J., Winter, M.: Symmetry of nodal solutions for singularly perturbed elliptic problems on a ball.

Indiana Univ. Math. 707–741, 159 (2005)
41. Yao, R., Chen, H., Li, Y.: Symmetry and monotonicity of positive solutions of elliptic equations with

mixed boundary conditions in a super-spherical cone. Calc. Var. Partial Differ. Equ. 57(6), 154 (2018)
42. Zhu, M.: Symmetry properties for positive solutions to some elliptic equations in sector domains with

large amplitude. J. Math. Anal. Appl. 261(2), 733–740 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Symmetry of positive solutions of elliptic equations with mixed boundary conditions in a super-spherical sector
	Abstract
	1 Introduction
	2 Maximum principle for mixed boundary conditions 
	3 The special case β is a straight angle or a right angle 
	4 The case βin(π/2, 2π/3]
	5 The case βin(2π/3, π)
	6 The case βin(0, π/3]
	7 The case βin(π/3, π/2)
	8 Radial symmetry in x'inmathbbRn-2
	Acknowledgements
	References




