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Abstract

In this paper we establish some symmetry results for positive solutions of semilinear elliptic
equations with mixed boundary conditions. In particular, we show that the positive solution
in a super-spherical sector must be symmetric. The monotonicity property is also proved.
Our proof is based on the well-known moving plane methods.

Mathematics Subject Classification Primary 35J61 - Secondary 35B06 - 35M12 - 35B50

1 Introduction

In this paper we investigate qualitative properties of the classical solutions of the equation
Au+ f(u) =0in Q (1.1)

with mixed boundary conditions.

Symmetry properties of partial differential equations are interesting since it is natural to
ask whether or not solutions inherit the same symmetry from the differential operator and
from the domain and boundary conditions. There is a large literature on this topic. Alexandrov
[1] introduced the reflection principle and showed that a closed embedded hypersurface in
the Euclidean space must be a sphere. The reflection principle was also used by Serrin [37]
for a symmetry result of overdetermined problems and by Gidas, Ni and Nirenberg [17,18]
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to derive radial symmetry results for positive solutions of semilinear elliptic equations. The
reflection principle is usually called the method of moving planes after these seminal papers.
This method was revisited in the influential paper [4] of Berestycki and Nirenberg. In [4], they
generalized the methods of moving planes and introduced the sliding method to prove the
monotonicity by a version of the maximum principle in domains of small volume which allows
one to handle symmetry results for rough domains. Later, many other authors have devoted
attention to these questions, without being exhaustive we mention the papers by Li [27], Li
and Ni [28], Chen and Li [10,11], Caffarelli, Gidas and Spruck [7], and Berestycki, Caffarelli
and Nirenberg [2,3] and the references therein. In [12,21,30,34,35], the axial symmetry of
solutions with lower Morse index is also studied.

The zero Dirichlet condition is a very forceful condition and implies the monotonicity
of positive solutions near the boundary. From the results of Gidas, Ni and Nirenberg [17],
the zero Dirichlet condition will “force” all positive solutions of (1.1) to posses the same
radial symmetry when €2 is a ball, while the zero Neumann condition allows many other
possibilities. In fact, for problem (1.1) with boundary condition of Neumann type, the least
energy solutions are often not radially symmetric and many researchers have focused on
the least energy solution, single peak solution and multi-peak solution; See [12,15,20,22—
26,29,31-33,39,40]. Naturally, it is interesting to see how different domains and boundary
value conditions may influence the symmetry properties of positive solutions.

When the domain is a spherical sector, Berestycki and Pacella [6] proved the radial sym-
metry properties of positive solutions of (1.1) with mixed boundary conditions, provided the
amplitude of spherical sector is less or equal to 7. Zhu [42] proved a similar result for singular
solutions when the amplitude may be greater than 7 and f satisfies some supercritical growth
conditions. The first two authors [9,41] proved the symmetry and monotonicity properties
of positive elliptic solutions with mixed boundary conditions in a standard spherical cone
and in a super-spherical cone. Researchers are also concerned about the symmetry results for
mixed boundary problems, see [8,13,14,38].

In this paper, we will use a variety of the moving plane method and bootstrap method to
prove some symmetry and monotonicity results for positive solutions of a semilinear elliptic
equation under mixed boundary conditions in a super-spherical sector.

Firstlet us introduce some terminology. For 8 € (0, m]anda € (—o0, 1),weletX = Xg 4
be the intersection of the open cone C and the unit ball B = {x € R" : |x| < 1} where C is
an open sector such that

C={(x1,x,x)eR":xy—a > |x2|cot§}.

We call Xg , a super-spherical sector if a € (0, 1), Xg, a (standard) spherical sector if
a =0, Xg 4 a sub-spherical sector if a < 0.
We consider the following equation with mixed boundary conditions

Au+ f(u) =0 in X,

0 in X,
"z m (12)
55 =0 on 'y,
u=>0 onI'p

where v is the unit outer normal to X, I'p = 9% N dB is the sphere boundary and I'y =
90X\ dB is the sector boundary.

Through this paper, we always assume that f is a local Lipschitz continuous function on
[0, 00), a € (0, 1) and the solution u is classical, say u € Cz(E) N CI(E ury) NCc@).
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The main result is as follows:

Theorem 1 Assume that f is local Lipschitz in [0, 00), 0 < 8 < w and a € (0, 1). Let u be
a classical solution of (1.2). Then we have the following properties:

(1) u is symmetric with respect to the hyperplane {x; = 0};

(i1) u is monotone in X2, that is, xouy, < 0 for x € X satisfying xo # 0;

(iii) u is monotone in x1, that is, uy, < 0in X;

(iv) u is radially symmetric with respect to x' € R" 2.

Since the moving plane method strongly relies on the equation and geometric structure of
the domain and boundary conditions, so the condition 0 < 8 < 7 in Theorem 1 is needed.
We expect it to be optimal due to a similar phenomenon in [6] and the condition is geometrical
in terms of related isoperimetric inequalities.

Comparing with the result in Berestycki and Pacella [6], our domain is the super-spherical
sector, which is different than the spherical symmetry in [6]. The boundary conditions force
the expected symmetry to be evenly symmetric (instead of spherical symmetry) since the
center of ball does not lie in the vertices set of the sector C nor is the domain spherical
symmetric.

The proof of this theorem is based on the methods of moving planes [17] and the ideas
developed in [6], and there are some new difficulties due to the Neumann boundary. To
overcome the difficulties, the main idea is to compare u with its reflection u™? First, the
maximum principle for mixed boundary problems in narrow domains will be used to show
the negativity of w*? = u — u*?. Second, the parallel hyperplanes will move along both
the lower and upper Neumann boundary. Third, one can obtain a priori information of the
Neumann or Dirichlet boundary conditions for w**? on the boundary caused by I'y. In another
word, the proof depends deeply on the understanding and obtaining a priori information about
the signs of some directional derivatives of u.

Since the solution u is assumed to be classical, the standard elliptic theory implies that u is
also C? up to the smooth boundary point. The solution may not be C2 at non-smooth boundary
point including the mixed boundary dC N d B and the vertex set 3C N {x; = a, xo = 0} of the
sector C.

We point out that Theorem 1 is valid for 8 = 7 and 8 = /2. In fact, using the mirror
reflection along the Neumann boundary, one can obtain a positive Dirichlet solution in the
even extension of the domain, and then the results of Theorem 1 follows from [4,17].

The structure of this paper is as follows. In Sect. 2, we introduce a version of the maximum
principle for the mixed boundary conditions in a narrow domain. Section 3 illustrates the
symmetry for some special case that § is a right angle or a straight angle. The proof of (i)-(iii)
in Theorem 1 will be divided into different range of B, this is given through Sects. 4-7. In
Sect. 8, we prove the radial symmetry of u in x’ € R" 2,

2 Maximum principle for mixed boundary conditions
In this section, we consider the maximum principle of the following linear equation

Llul=Au+cx)u=f inQ,
Blul=u=g on ['g, 2.1
Blul=Vu-y+Bu=h only.

@ Springer



130 Page4of25 R.Yao et al.

We usually assume that 2 C R", n > 2 is an open bounded subset, I'g and T"; are two
disjoint subsets of 92 such that Iy is relatively closed, I'; is open C'! manifold and that the
closure of I'g U I'1 is 2. Here y is a vector valued function on I'; such that |y| = 1 and
y -v > 0 on I'] where v is the outer unit normal vector to €2. We always assume that g is a
nonnegative function on I'; and ¢ is a bounded function in €2,

lc(x)] < co forx € 2.2)

where ¢ is a positive constant.
It is well-known [19,36] that under the condition ¢ < 0 in 2 we have

if f<0inQ,g>0o0nTp,h>0o0nTl, thenu > 0in Q.

This property is called the maximum principle for (£, B) in 2. When I'j is an empty set, this

is the usual maximum principle, and there are some well-known sufficient conditions (see

[4,5,19,36]):

(1) ¢ <0in 2;

(2) There exists a positive continuous function g over €2 such that g € W[i’fo () and L[g] <
0in ;

(3) Q lies in a narrow band, 2 C {0 < (x — x¢) - ¢ < n} for some xo € R", |e] = 1 where
n > 0 is some constant depending only on co;

(4) The measure satisfies |2| < §, provided diam(2) < d and § depends only on ¢y and d;

(5) A1(L, 2) > 0, this is a sufficient and necessary condition. Here the first principal eigen-
value A1 (L, ) is defined by

A (L, 2) =sup{r € R: 3¢ > 0in Q satisfying (L + A)¢ < 0in Q} 2.3)
where ¢ € W2 () N C(Q).

The third and fourth sufficient conditions above are very important and play a key role in
the process of the method of moving planes.
For the mixed boundary cases, we have a modified sufficient condition as in (2).

Lemma 1 ( [41]) Assume that there exists a function g € C*(Q)NC(Q)NCY(QUT) such
that

Llg]l=Ag+c(x)g <0 ing,
g>0 on Q,
Vg-y+Bg=0 onTy.

Then the maximum principle holds for (L, B) in Q.
Using this lemma, we can prove the maximum principle holds in some sectorial domain.

Lemma2 Let (2.2) hold. Assume that (L, B, Q) satisfy

(1) Qis contained in a sector C = {x € R" : x| > Bx2,x2 > 0} for some B € R;
(2) 't C 9C and B = v - V is the outward norm derivative operator on I'y;
(3) QC{xeR? :xl2 +x§ < 02} where

_ Joa
Veo

and jo,1 is the first zero of the first kind bessel function Jy.
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Then the maximum principle holds for (L, B) in 2.

Proof Let
Jo,1
g0 = (o). o= \/x+xd

Then

Ag+c(g = (e~ (g <0 inQ,

g>0 in 2,

g =0 inIy.
Thus, we finish the proof by applying Lemma 1. O

Now we show the positivity of solution at the nonsmooth point of Neumann boundary.

Remark 1 If the assumption in Lemma 2 holds, and if Lu <0in Q, Bu > 0 on 0%, then
either u vanishes completely in €2 or u is positive in Q\I'g.

Proof By the maximum principle in Lemma 2, u is nonnegative in . Suppose that u is
positive somewhere in Q. By the strong maximum and Hopf lemma, u is positive in all Q
except at the Dirichlet boundary and the corner formed by two smooth Neumann boundary
(x1 = x2 = 0). Thus, Au — cou < —(¢c + co)u < 0in Q.

In order to prove the positivity along the corner, we choose an arbitrary fixed point P €
{x1 = xp = 0} N T and suppose P = O is the origin for simplicity. There exists a small
8 > 0 such that Qs N Ty = @ where

Os={x eR":x] +x3 <8% |x| <8,V3<i<n)

We construct an auxiliary function v over Qs as follows

n
X (n —2)m2
U(X) = IO(VQ)[!COS 5 Wlth Y = m

Then Av — cov = 0 and
u—ev>00nd0sNQ
for fixed ¢ satisfying 0 < & < inf{u(x)/v(x) : x € Qs N Q, 0 = 8}. Therefore,
A(u —ev) —co(u —ev) <0 in 2N Qs,

(u—cev) >0 onQNags,
dy(u —ev) >0 on a2 N Qs.

It follows by the maximum principle that u —ev > 0in 2N Q. Therefore, u(P) > cv(P) >
0. The proof is complete. O

We point out that another proof of Remark 1 is given by reflection and the Hopf’s lemma,
see [13, Lemma 2.4].

Lastly, we state two useful lemmas about the monotonicity near the Dirichlet boundary
and Neumann boundary. We consider a solution u#(x) of the equation

Au+ f(u) =0in Q, 2.4)

where f is a local Lipschitz continuous function and €2 is a bounded domain.
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Lemma3 Let x € 02 and let v(x) be the outer unit normal vector at the point x € 0S2.
Let y be a unit vector in R" satisfying v(x) - y > 0. For some ¢ > 0 assume that u is a
C? solution in Q. where Qp = QN {lx —%| <&}, u >0, u #0in Qg andu =0on T,.
Moreover, suppose that the boundary Ty is C2. Then there exists a § > 0 such that

du . _
a—<0m525:§20{|x—x|<5}.

14
Proof See the proof in Lemma 2.1 of [17]. ]
Lemma4 Assume that x = (x1,...,X,) € 0Q2 and Q¢ (x) = Bj()?)for some ¢ > 0 where

Qe (x) = QN Be(x) and Bj()?) = By(¥) N {x1 > x1}. Suppose that u is a C* solution in
Q¢ (x) satisfying Neumann boundary condition dx,u = 0 on B¢(X) N {x| = X1} and

u(x’, xp) < u(x', 2%, — x,) for x, > X, and x € Qe (X).
Then

ou
0xy

(x) <0.

Proof This is proved by using Serrin’s boundary lemma. The readers can find details in the
proof in Theorem 2.4 of [6]. ]

3 The special case (3 is a straight angle or a right angle

In this section we consider the special case that 8 is a straight angle or a right angle via
reflection along flat Neumann boundary.

Lemma 5 Assume that B = mw. Then the solution u of (1.2) have the following properties:
(1) u is symmetric with respect to the hyperplane {x, = 0}, that is,
M(X], X2, X3, X4, ...y -xl’l) == M(.x);

(2) xuy, < 0for x € X satisfying xo # 0;
(3) uy, <0forx e X.

Proof This can be proved by the origin moving plane method. Indeed, if one denotes u by
reflection;

- u(x), x| =z a,

u(x) =

ua —x1,x2,...,%x), X1 <a

Then i is a positive Dirichlet solution of (1.1) in S = S UX/'UTy where X is the reflection
domain of ¥ with respect to the hyperplane {x; = a}. Applying the well-known result in
[4,17], one deduces the symmetry and monotonicity properties of i and u. O

Lemma 6 Assume that § = /2. Then the solution u of (1.2) has the following properties:

(1) uy, £uy, <0inX;
(2) xuy, < 0forx € X satisfying xo # 0;
(3) xouy, — x1ux, > 0 for x € X satisfying xo # 0.
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Fig.1 The shape Dy /2,0 for
B=m/2

Ty x/2

Proof (Method 1: By Reflection). We can reflect the solution u along the (flat) Neumann
boundary I'y to obtain a solution with a Dirichlet condition in a larger domain. Indeed, if
one denotes u the reflection function of u with respect to the Neumann boundary I'y, that is

u(x, x2, x'), x € X,
i(x) = Juxz, x1,x), x€eX
u(—xz, —x1,x'), x € Iy

where X is the reflection of ¥ w.r.t. I’;, 3 the reflection of ¥ U ¥ w.rt. I'y, and s
is the interior of the closure of ¥ U ¥ U X,. Here we assume the vertex set of the sector
C passing though V = (0, 0,0, ..., 0) by translation. Then it is clear that i is a classical
positive solution of

Aii+ f@)=0inY, i=00nd%

Note that 3 is symmetric and convex along the direction ey, e2, e; & e2. Applying the well-
known result in [4,17], one deduces the symmetry and monotonicity properties of i and
u.

(Method 2: By the method of moving plane directly). One can use the moving plane
method and the maximum principle for mixed boundary to obtain uy, £ u,, < 0in X (see
Figure 1). Then one can obtain that u is symmetric w.r.t. to xo and u,, > 0 forx € X
satisfying xp < 0. The details will be illuminated later in Lemma 7. O

As proved by the reflection method, we see that the solution u is C2 at the point of
nonsmooth Neumann boundary {x; = a,x; = 0} N dC when B = /2. By using this
reflection, one can see that u € C2(X\(dB N 3C)) when /B € N where N is the collection
of all nonnegative integers. We note that for general case of 8, u may not be C? at the point
of nonsmooth Neumann boundary.

4 Thecase B € (/2, 2m/3]

In this section we will prove the symmetry of u with variable x;. Let us define the moving
hyperplanes and moving domains to be used in the process of the methods of moving planes,
and these notations will be also used for all range of 8 € (0, «].

For simplicity, we always assume that the vertex line of the sector C passing though
vV =(0,0,0,...,0), and the center of the ball is O = (—a, 0,0, ..., 0). Denote the lower
Neumann boundary and upper Neumann boundary by I'y, = I'y N {x2 < 0} and F; =
Iy N{xy > 0}. Set P, = (Acos(B/2), —Asin(B/2),0,...,0). We consider the moving
hyperplane T, » passing through P, which forms with the lower boundary I'); an angle
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Fig.2 The moving hyperplane
T, and the moving domain

Dy, 9,9,

v e (0, (m + B)/2], that is,

Thp ={x eR": [x; —rcos g] sin(¥ — g) — [x2 4+ Asin g]cos(ﬂ — g) =0}. 4.1)

See Figure 2. As usual X', B’ will be the reflection of ¥, B with respect to T; » and x*?
is the symmetry point of x. Similarly to T} », we denote T » by the reflection of T} » with
respect to the hyperplane {x; = 0},

72,\,19 ={x eR":[x; — Acos g] sin(¥ — g) + [x2 — Asin g]cos(ﬂ — g) = 0}.

We want to prove

Uy, Sin(® — B/2) —uy, cos( —B/2) <0onT) sy NZ, (4.2a)
Uy, co8(B/2) — uy, sin(B/2) <0onT) 7 NIy, (4.2b)
Uy, sin(? — B/2) + uy, cos( — B/2) < 0on 7119 nx, (4.2¢)
Uy, cos(B/2) — uy, sin(/2) < 0on f)\,ﬂ/z N I‘;\; (4.2d)

for A > 0 and ¥ € [B/2, (= + B)/2]. The proofs of (4.2¢c) and (4.2d) are similar to (4.2a)
and (4.2b), and the proof of (4.2a) and (4.2b) depends on (4.2c) and (4.2d) for larger A. This
is the reason why we discuss (4.2¢) and (4.2d) here. Set

AM@)=sup{A >0: T N £P}, e, @@+p)/2],
Amax = sup{Ay (B) : 9 € (0, (m + B)/2]} = (1 — a) sec(B/2).
Let 0, (x) € [0, 2) be the polar angle as follows

4.3)

x1 = 1cos(B/2) = /x1 — 1cos(B/DP + [x2 + Asin(B/2)1 coslon (x) — B2 o

X2+ 1Sin(B/2) = \/[x1 = 2.cos(B/2)P + [xa + Asin(B/ D sinlor, (x) — /2],

Fora e RT,0 <9 <0 = (% +%3)/2 < 93 < w with ® € [B/2, (m + B)/2], we
define the moving domain as follows

Dy 99, = {xeXn I P < oy(x) < 9},

see Figure 2.
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The boundary 9 D;, ., consists of three parts:

(1) Fg,ﬂ,ﬂl = Ty,9 N 0Dy 9, this is always non-empty as 0 < A < Ay (9);

(1) 1"1719’191 = (@B UIB')N (dD;. 9, \Tx.»), this is the boundary caused by the sphere d B
and its reflection 9 B’. F/{,zw, belongs dB if & > B/2, A > 0;

(1) TF 59, = 0D 9.9,\(I') 5 5 UT} ;5 ),and T o contains two parts: T34 =T , , N

2B _ 2 3
Ty and T = T3 5 0 T)\,Zﬁfﬁ'

For simplicity, we omit the subscripts ¢}, ¥ and denote these notations by ro, I‘i, F%, F)%A

and F%B. Here T; r

boundary F; w.r.t. T » where B =20— B, d=m—20+ 28, % and X are given as follows

A sin v Asin B
T T a A )\ = )\ + T Ao o
sin(¢r — B) sin(29 — B)

3 = T; ; stands for the hyperplane related to the reflection of the upper

A= 4.5)
and A > iifandonlyif 7w —20 428 < 20 —f,i.e., 9 > (7w +38)/4. We note that 24 NI ?5
(which is nonempty or not) is a non-smooth part of I'Z, both F%A\FiB and F%B\F)%A are
relatively open and are smooth subsets of 9 D;, s, . Observe that I‘)lm,’ﬁ1 U F%%,I,l is always
non-empty for 0 < A < Ay ().

Set

wh? (x) = u(x) — u*? (x) (4.6)

where u*? (x) = u(x*?). Clearly, w™? satisfies

Aw*? 4 MV ywh? = 0in Dy, (4.72)
w*? =0onT?, (4.7b)
w*? < 0on F)lh 4.7¢)

for 9 € [B/2, (w + B)/2] where
oot _ @70 = fux)

u*? (x) — u(x)

is a uniformly (w.r.t. A, ©) bounded function, say, |c*?| < ¢q for some constant ¢y > 0.
In order to prove (4.2a), it suffices to prove that

wh? (x) = u(x) —u*?(x) < 0forx € D; p.9,. (4.8)
Using Hopf boundary lemma, we see (4.2a) is a direct consequence of (4.8).

Lemma?7 (T, g is orthogonal to the boundary of sector) Let B € (0, 2m /3]. Assume that our
conclusion (4.2) holds for all A > A. Then (4.2) holds for V = w/2 and A > A1 = nm A
where

n = max{%, cos B}. 4.9)

Remark 1 (4.2) holds for # = w/2 and A > (1 — a) csc(B/2) max{%, cos B}.
Proof Let ¢ = m/2 and ©¥; = 0 be fixed. For . > A1, we see that

(1)if /3 < B <2m/3, then F%B CTyn-p,B/2<m—B=<(7+p)/2and 21 > A;
(1) if 0 < B < /3, then FfB C Thsecp2p-B/2 <28 < (w+pB)/2and AsecB > A.
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A

By the assumption, we see that w = w ¥ satisfies

Awr? + AP (xwr? =0 in D; 9,9,

wh? =0 onT?,

wh? <0 on Fi, (4.10)
Vu*? . v <0 on F%A,

Vu*r? v <0 on 28,

Step 1: Starting the moving plane. Let 1) be the small constant that the maximum principle
holds for Dirichlet boundary condition or mixed boundary condition when the domain width
is less than 7. From the definition of Dy y »,, we see that there exists a §op > 0 such that for
every A € (Ay(9) — 80, Ay (D)),

diam(D;hﬁ,zyl) <n
and
1 2
Lo 79 Tige CDo-

Applying the maximum principle with mixed boundary condition in Lemma 2, we deduce the
negativity of w*??1 in Dy s s,. Moreover, the Hopf boundary lemma implies the negativity
of w*%?1 on Ff 9.9 C T).v,. Hence,

w)"ﬁ < 0in D)hngyl\T)h,y

and (4.2a) hold for & € (Ap () — 80, Ay (D).
Furthermore, by the same argument in Theorem 2.4 of [6] (see Lemma 4), one can prove
that | Du| # 0 along the lower boundary of the sector,

Uy, €0s(B/2) — ux, sin(B/2) < 0on Ty N T 7). 4.11)
Let A be
A =inf{A" > 0: (4.8) and (4.2a) hold for every A > 1'}.
Step 2: Proving that 1 < A;. Otherwise, we assume A > A1. By continuity, we have
wx'ﬂ(x) <Oforx e Di,ﬁ,z?l'

Recalling that F;\,z,,z,l u F%% Y is always non-empty, we obtain from the strong maximum
principle and Hopf boundary lemma that

wh? (x) < Oforx € Dy, » \Tsy (4.12)

where the negative at I‘%Aﬂ 9, 0 F%% 9 is obtained by Figure 1. Therefore, we have strictly
inequalities

Uy, sin(® — B/2) — uy, cos(r — B/2) < Oon T4 N 2, (4.13a)
Uy, c08(B/2) — uy, sin(B/2) < O0on Ti,n/z NCy. (4.13b)

Since u has strictly monotonicity properties near the smooth boundary, we denote by E the
intersection of mixed boundary 9CN9 B and T; . /2 Then E has two parts E~ = EN{x2 < 0}
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and ET = EN{x; > 0} Clearly E- C {x; = X1, x; =X} and BT C {x] = X1, %2 = ;2}
where
X1 = Acos(B/2), ¥ = —rsin(B/2),
A sin(®)

sin(® — B)’

We suppose that both £~ and E™ are non-empty set. One can choose a neighborhood N_
of £~ and a neighborhood N of_EJr such that (i) N- NNy = @; (i) N= C {|x; — x>+
|2 — %21 < 12}, Ny C {|x1 — X112 + |x2 — %2|> < 5?} where 5 is the small constant for
the maximum principle in narrow domain to hold; (iii) V- N F%B =@, Ny N F/%A = { for
every A € (A — 81, 1) for some §; > 0. Recall that u has strictly monotone property near the
Dirichlet boundary (see Lemma 3), along the Neumann boundary (see (4.13b) and (4.2d)),

and in the interior (see (4.13a)). Combining this with the negativity of wh? in (4.12), we
derive from continuity that

%1 = ncos(B/2), Fr=Asin(B/2), A=

w*? < 0in Dy y\(Th.9 UN_ UN)

for |» — A| < &, for some 8, > 0 (assuming §, < 81).
In the rest of the domain D = Dj_» N (N_ U N), we have

Awh? 4 APy =0,

dywh? =0ond(D; p NN_)NTA,
wh? <, #00nd(Dyy NN)\I2A,
dyw*? =0o0nd(Dyp NNy) NT2E,
wh? <, # 0ond(D; 9 NN\TEE.

It follows by the maximum principle that w*? < 0 in D and then (4.8) holds. Therefore,
(4.2a) holds for ® = /2 and 0 < A — A < 1. This contradicts the definition of A. Hence
X = Ay, (4.8) and (4.2a) hold for ¥ = 7 /2 and A > A. Similarly, (4.2¢) holds and the proof
is finished. m}

Lemma8 Let B € (r/2, 2 /3]. Assume that (4.2) holds for all A > A, then (4.2) holds for
Y =3n/4and . > Ay = na A where

1
N = max{i, sin B 4+ cos B}.
Proof Let ¥ = 3m/4 and ¥y = /2,93 = = be fixed. According to Lemma 7, w*?-71

satisfies the boundary condition on T'24 for 4 > Aj. Now for A > A,, we see that I'Z C
Ti,2ﬂ77‘[/2’ :3/2 = Zﬂ - 7T/2 = (T[ +ﬂ)/2’ A > A] and

A Asin(3w/4)
)\. = 7] >
sin(3z/4 — B)
Thus, (4.10) holds for A > Aj;. The remain of the proof is similar to Lemma 7. m}

Lemma9 Let § € (/2,27 /3]. Assume that (4.2) holds for all . > A, then (4.2) holds for
Y € [B/2,3n/4] and A > A3 = n3 A where

1
13 = max{sin 8 + cos 3, m}. (4.14)
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Proof The proof will be divided into several steps.
Step 1. We check the boundary condition on F%B for every A > Aj.

(C1) # € [(x +3B)/4, (w + B)/2]. In this case, [}5 C T3 5, D € [/2, (x + B)/2], and

Asin - Asin(37/4)

A= — > — >
sin(® — B) ~ sin(3w/4 — B)

(C2) v €[3B8/4, (w + 3B)/4]. In this case, F)%B CT; s % € [B/2, (x + B)/2] and

Lomat 38 (U tsing) > A
= _— Sin > .
sin(29 — B) —

(C3) ¥ € (0, B). In this case, we will choose 3 < 8 and hence FfB = 0.

Therefore, w*? satisfies strictly the boundary condition of (4.10) on F/%B. The boundary
condition of F%A will be given in the process of mathematical induction below.

Step 2. We shall show that (4.2a) holds for & € [7/2, 37 /4]. We claim that for every
m € NV (the set of nonnegative integers), (4.2a) holds for every ©+ € J,, and for every
A > Ao where

km T 37

g Mt o +
J’"—{2m+1 6[2, 4].keN 1.

By Lemma 7 and Lemma 8, we see the assertion holds for m = 0, 1. Assume the assertion
holds forsomem > 1, thatis, (4.2a) holds for ¢ € J,,, andford > Ap.Nowletd € Jy1\Jm-
Then

_ 2k + Hrm T 3w

P= e (G ) (4.15)
with m, k € NT. We define ¥ and 93 as follows
2k 2k +2)m
= B E g

and then ¢ and 93 belong to J,,,. Thus, (4.10) is satisfied for all . > A3. Therefore, as in the
proof in Lemma 7, one can prove (4.2a) holds for & > A3. Thus, (4.2a) holds for ¢ € Jy, 41
and for A > Aj3. Thus, the assertion follows by mathematical induction.

Since Joo = Ufno:ofm is dense in [ /2, 37 /4], we deduce by continuity that

Uy, sSin(® — B/2) —uy, cos(t — B/2) <0onT;, y NZ (4.16)

holds for ¢ € [r/2,3m /4] and A > Aj3. For every fixed ¢ € (7/2, 37w /4), one can find
P, 93 in [ /2, 3 /4] such that ¥ — ) = 93 — & > 0. Noting that @ > 7 /2 > 38/4, we see
wh? satisfies (4.10) for all A > Aj3. Therefore, as in the proof in Lemma 7, one can prove
that the strict inequality (4.2a) holds for A > A3. Hence Step 2 is completed.

Now we know that (4.2a) holds for ¢ = B. In the next step we will consider 6 € [8/2, 8)
and choose 91 € {0} U [B/2, 8] and 93 € (0, B] so that F%B is an empty set.

Step 3. We shall show that (4.2a) holds for & € [B/2, ] and A > A3. We claim that
(4.22) holds # € J,, and » > A3 where
k

I = { [Z.B]:k e NT}

2
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From step 2, this claim is valid for m = 0. Assume that this claim holds for some m > 0.
Now let ¥ € Jy4+1\Jpm. Then

Qk+ 1) B
b= €5, @17)
with m, k € N. We define ¢ and 93 as follows
k k+1
g = KBy, kDT
2m 2m

and then ¥ and 93 belong to Ju U {0}. Thus, w*? satisfies (4.10) for A > Aj. Therefore,
as in the proof in Lemma 7, one can prove (4.2a) holds for A > A3. Thus, (4.2a) holds
for ¥ € J,41 and for A > Aj3. Thus, the assertion follows by mathematical induction.
Observing that Joo = US>, J,, is dense in [8/2, B], we deduce by continuity that (4.16)
holds for ¢ € [B/2, ] and A > As. For every fixed ¥ € (8/2, B), one can find ¥, 93 is
contained in [8/2, B] such that ¢ — ) = 3 — ¥ > 0. Noting that /3 < f and F%B is empty,
we see w7 satisfies (4.10) for all A > Ajz. Therefore, as in the proof in Lemma 7, one can
prove that the strict inequality (4.2a) holds for A > Asz. Step 3 is finished.

Following these steps above we conclude (4.2a) holds for & € [B/2,37/4], . > As.
Similarly, (4.2c) holds for & € [B/2, 37w /4], A > A3. The proof is finished. O

Lemma 10 Let B € (0, ). Suppose (4.2) holds for all . > Az and ¥ € [B/2, ag] for some
ao satisfying

4
max{E,n_F ﬁ}5a0<ﬂ+'3.
2 5 2

Then (4.2) holds for all A > A3 and ¥ € [B/2, (m + B)/2].

(4.18)

Proof We divide the proof into three steps. For simplicity we set
T +2B8 —ag

tpr = ———2——k=0.1.2,.... (4.19)

Step 1: (4.2) holds for . > A3 and
max{ag, a;, t/2 + B/4} <9 < (7 + B)/2. (4.20)
Note that
9 € lag, (x + B)/2), ¥ €[B/2,a0l, 20 —m € [B/2, ao]
a0V =@ +p)/2,a1 =V =7m/2+3B/4.7/2+ /4 <V < (7 +a0)/2
<= max{ag, ai, w/2 + B/4} <O < (m + B)/2.

Thus, when ¢ satisfies (4.20), one can choose ¥ = 29 — 7 € [B/2, apl, ¥3 = 7, so that
w*? satisfies (4.10) for A > Aj3. Following the same process in the proof of Lemma 7, we
deduce that (4.8) and (4.2a) hold for every A > A3z. Similarly, (4.2c) is also valid for A > A3.
In conclusion, (4.2) holds for . > A3 and ¢ satisfying (4.20) and in particular it holds for
¥ = (1 + B)/2.

Step 2: (4.2) holds for . > A3 and

max{ap, a1} <9 < (w + B)/2. 4.21)

Assume a; < m/2 + /4 (otherwise, this step is valid). Note that ¢ € [a1, /2 + /4]
implies F)%B €T; 5 and

b € [38/2, a0l C [B/2, aol.
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Thus, w™¥ satisfies strictly the boundary condition in (4.10) on I'?% for & > A3. Following
the same proof as in Lemma 7, we deduce that (4.2a) (and similarly (4.2c)) holds for ¢ €
a1, w/2 + B/4] and A > Aj3. Therefore, we finish this step.

In particular, Lemma 10 finishes if ay > a; (i.e., ap > (7w + 28)/3). So we assume
ap < (w +2pB)/3 in the rest of the argument.

Step 3: (4.2) holds for L > Az and /2 <9 < (7w + B)/2.

We first claim that (4.2) holds for A > A3z and ¥ € U/C:io Jr where

B T+p
Je=1[=, U , ———
k [2 ax] U [azi+1 2 ]
and {ay} is defined in (4.19). Clearly, the series {a;} has the following properties:
T+2 T+2
lim aq; = * '8, ax < 42 < +2P < ayy3 <ax41,k=0,1,2,....
k—00 3

Now suppose that this claim holds for k = k > 0. Let ¢ € [ay, ax.+2] be fixed. For the
choice of ¥ and 3 and the boundary conditions for w*? on F%A, we observe that

I ={0 =1 +93)/2:01 € [B/2, asc], D3 € laze+1, (7 + B)/2]}
=[Qax+1+ B) /4, 2a2 + 7 + B)/4] (4.22)
Dlazk, azc+2]
since
Qage+1 + B) — 4ay = (w +3p) — Saz <0,
Qaye + 7 + B) — a2 =axy — B > 0.

o 2B 2B S S
For the boundary condition on I';”, we see I';” C TA’ 5= TA’ 3 with

B € lazyes1, (T + B)/2], A > A > Az when & > (7 + 38)/4, (4.23a)
D € [azesr, (r + B)/21,h > A > Az when & < (7 + 3B)/4 (4.23b)

where we have used 2ag — 8 > ay, i.e.,ap > (7w +48)/5. It immediately follows that wh?
satisfies (4.10) for A > A3. As in the proof of Lemma 7, we deduce that (4.8) and (4.2a) hold
for A > Aj. Similarly, (4.2c) holds for A > As.

Let 9 € [azc+3, (r + B)/2]. Note that

I ={0 =1 +33)/2: 01 € [B/2, azcy2], V3 € [anc+1, (m + B)/2]}
=[Qaxc+1 + B)/4, Qa2 +m + ) /4] (4.24)
3[02K+3» 02K+]]

since

QRazeq1 + B) —4day43 =axy41 — (@ +p) <0,
QRazeqr +m + B) — 4axcy1 = 6ax2 — (r +3p) > 0.

We also have F%B CT; 5 and

O € [B, aze42] C [B/2, azes2l.

It immediately follows that wh? satisfies (4.10) for A > As. As in the proof of Lemma
7, we deduce that (4.2) holds for A > Az and ¢ € [ayc+3, (m + B)/2]. Therefore, the
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assertion holds for k = k + 1. By mathematical induction we finish the proof of the claim
for & € U2y Jk = [B/2, (r + B)/21\{(7 +2B)/3}.
For 6 = ( + 28)/3, one can prove that

wh T2 < 0in Dy (r12p)/3,00458)/6-
and (4.2a) hold for A > Aj. Similarly, (4.2c) holds for A > Ajz. Therefore, the proof is
complete. O

Combining these lemmas above, we conclude the symmetry of u.

Theorem 2 Let B € (1w/2,2m/3]. Then (4.2) holds for v € [B/2, (w + B)/2] for .. > 0. In
particular we have

(i) uy, <0inX%;
(i) xouy, < 0in X N{xy # 0},
(iii) u is symmetric with respect to the hyperplane {x, = 0}.

Proof Step 1: The monotonicity properties of u.
Set Ag = Apax Where

Amax = sup{i : Ty (+p)2 N Y # 0} = (1 —a)sec(B/2).

Clearly, T y/2o N X =@ forall L > Agand & € [B/2, (r + B)/2]. Denote n = n3 where n3
is given in (4.14). Using Lemma 7-10, we deduce that (4.2) holds for ¢ € [8/2, (= + B)/2]
for A > nAo. Repeating these lemmas serval times we conclude that (4.2) holds for ¥ €
(B/2, (w + B)/2] for » > 7K Ag for every k > 1. This leads to the first part of the conclusion.

Conclusion (i) is a direct consequence of (4.2a) with ¥ = (;r 4+ ) /2. Conclusion (ii) is a
direct consequence of (4.2b), (4.2d) with ¥ = /2. By continuity, we deduce that u,, = 0
for x € ¥ satisfying x, = 0.

Step 2: The even symmetry of u with respect to variable x;. Indeed, we shall give two
methods to prove the even symmetry.

Methods 1: The moving plane method. From the proof of Lemma 9, we deduce w*-#/2 < 0

in D; g for all A > 0. By letting A — 0t, we see u(x) < u(xy, —x2, X3, ..., %)
for x < 0. Similarly, by moving fk,ﬂ/z from large A to A = 0, one can conclude that
u(x) < wu(xy, —x2,x3,...,x,) for x > 0. This leads to the even symmetry of u with
respect to xp, i.e., u(x) = u(xy, —x2,x3, ..., x,) forx € .

Methods 2: The methods for uniqueness of overdetermined problem. Set v(x) =
u(xy, —x2, X3, ..., Xp). Then one can see that v and u satisfy the same equation on half

domain ¥ = ¥ N {x, > 0}, and same Dirichlet and Neumann datum on {x, = 0}
V=1U, Uyy = Uy, :OOHEH{XQZO}_

Applying Theorem 1 of [16], we derive that v — u vanishes completely in ©*. The symmetry
property follows. o

5 The case B € (2m/3, )

In this section we will consider the case § > 27/3. In this case w* may not satisfy the

Neumann type condition on F)%B . The main task is to overcome this difficult.
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For starting the moving plane process, we observe that F%Bﬂ is a empty set for large A and
suitable range of . Let « be a fixed integer such that

Be < B = Bi+i

where f; = (1 — 27, j € N. Now we set B, = max{Becs1, (r + 48)/5}. Then there
exists a positive constant A, such that T, g, N X # ¥ and

rijﬂ*,o = (. (5.1

We remark that (1) The choice of B, is between 8 and (7 + ) /2, and B, will be used to apply
Lemma 10. (2) The condition Ta, g, N X # @ is used to guarantee that Ay € (0, Apax). (3)
(5.1) implies that T'}%, , 'is empty forall > A, and 0 < 9y < & < B,

Lemma 11 Let B8 € (0, ) and let A, be chosen so that (5.1) holds. Then (4.2) holds for
> Acand ¥ € [B/2, (B+m)/2]

Proof Since A > A, is valid in this lemma, we know F)%B is empty, so the results in Sect. 4
are valid without the hypothesis 8 < 27/3. As in the same process of Lemma 7, we conclude
that (4.2) holds for # = 8,1 < j < k + 1. Using the same process of Lemma 9, (4.2) holds
for & € [B/2, Bc+1]. By setting & = (B +m)/2, ¥4 = B and b =m—20+ 28 = B, we
see that wh? satisfies (4.10), and hence (4.8) and (4.2) hold for 1 > A.. By the definition
of By, one can check that 28, — (8 + w)/2 € [B/2, B«+1]. Hence one can prove that (4.2)
holds for ¥ = B, and for ¥ € [B/2, B,]. Finally, it follows from Lemma 10 that (4.2) holds
for ¥ € [Bs, (m + B)/2]. O

Lemma 12 Let B € (27/3, ). Suppose that there exists some A € (0, Ayqx) such that
(4.2) holds for A > A and ¥ € [B/2, (m + B)/2]. Then (4.2a) and (4.2c) holds for ¥ €
[B/2, (m + B)/2] and A = A.

Proof By continuity, we see the following inequalities

Uy, sin(® — B/2) —uy, cos(t —B/2) <0onTy s NZ, (5.2a)
Uy, sin(® — B/2) + uy, cos(r — B/2) < 0on YA",\J; nx (5.2b)

hold for . = A and ¥ € [B/2, (7w + B)/2].

Let ¢ € [B/2, B) and then let ¥ € {0} U [B/2, B], U3 € [B/2, B] be fixed so & — P =
Y3 — ¥ > 0. Due to the negativity of w*? on a nonempty set '), one see that (4.8), (4.2a)
and (4.2¢) hold for & > A.

Let? € [B, (m+B)/2) and ¥, 93 € [B/2, (m 4+ B)/2] be fixedso ¥ — ¥ = ¥3 —0 > 0.
Then either ¢ € [B, (r + B)/2] or D e [B, ( + B)/2] and hence w? satisfies a strict
boundary condition on a non-empty set FfB U F,{, S0 one can prove strict inequalities (4.8),
(4.2a) and (4.2¢) for L > A.

Similarly, let ¢ = (w 4+ B)/2 and ¢¥; = B, ¥3 = 7 be fixed. Then i B and hence
w*? has a strict boundary condition on a non-empty set 2% U T}, so one can prove strict
inequalities (4.8), (4.2a) and (4.2c) for A > A. O

In order to overcome the boundary condition of Neumann type w*? on a non-empty
set F%%, we observe and trace back to find a Dirichlet type boundary boundary condition
as in the original moving plane method. Indeed, we will obtain the negativity of w*? by
comparing the values of function u.
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Fig.3 The shape Dy 52,0 for
B € Q2n/3, 1)

Lemma 13 Let B € (27 /3, ). Suppose that there exists some A € (0, Ayax) such that (4.2)
holds for . > A and v € [B/2, (m + B)/2]). Then (4.8) and (4.2) hold for 9 = w /2 and
A> A1 = A — ¢ forsomee > 0.

Proof The proof will be divided into three steps.
Step 1: We prove that
w2 (x) = u(x) — u(x™™?) < 0forx € Da x/20- (5.3)
Let A =2A,0 =7 — B. Then FiB C T - When I‘iB is a empty subset (this case occurs
when A is large), (5.3) is valid as in Lemma 7. Hence we assume that I‘f\B is not a empty

subset, i.e., I'p N T 5 is not a empty subset. Lemma 3 gives the monotonicity properties

near the Dirichlet boundary and hence 8, w™-"/2

x is close to I'p N Ty
A,/2

> ( for all points x satisfying x € Ff\B and
55 see Figure 3. We will use a new observation to show the negativity
of w

Let x € Ty, and xhT/2 ¢ Ty y, be fixed with ¥y < Y2, Y| + ¥ = 7. In order to

prove

u(x) < u(x™m?,

we will introduce another point z and prove that

u(x) < uz), u(z) < ux™"?).

For simplicity, we shall use the polar coordinate (g, ) as in (4.4) with A = A for the first
two variables. The fixed point x and x*+7/2 are denoted by (8, V1, x) (3, ¥, x'), or (8, ¥1)
(0. V) for simplicity (we omit x” € R"~2). By the above argument we have proved that

w™P/2 < 0in Dy p2.0\Tap)2, (5.4)
wTHA2 < 0in DA, e+8)/2.8\TA,(n+8)/2 (5.5)

and
¥+ u(r, ) is strictly increasing in ¢ € J (5.6)

where J = [8/2, (w + B)/2]. (5.6) holds due to the fact that ¥ is convex in ¥ € J, that is,
(0,9),v; € J,i = 1,2 implies (o, ¥) € X for ¥ is between ¥ and 9.
Case 1: ) € J, Y € J.By (5.6)

M(é, 1/11) < M(é, 1;ﬁZ)
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Case2: Y| ¢ J, ¥ € J. From (5.4),
u(@. Y1) < u(@. ¥y
where | = 8 — ¥ € J. Noting that y» — | = 7 — B > 0, we deduce by (5.6) that
(@, Y1) < u(@. ¥2).
Case 3: Y| € J, Yy ¢ J. From (5.5),
u(@, ¥3) < u(0, ¥2)
where ¥ = (7 + ) — ¥ € J. Noting that y; — ¥; = B > 0, we deduce by (5.6) that
u(@, Y1) < u(@, ).
Cased: | ¢ J, Yo ¢ J.From (5.4) and (5.5),
u(©, Y1) <u@, 1), u@,y3) <u(@,y2)
where Y] = 8 — ¥ € J, ¥} = (w + B) — ¥» € J. Noting that
vy =Y =1+ B) — 2l = [B— Y1l =2y1 > 0,
we deduce by (5.6) that
u(©, ¥1) < u(@, ).

In all of these four cases we have proved u(g, V1) < u(o, ). Step 1 is finished.
Step 2: We claim that there holds

Uy, COS(B/2) — uy, sin(B/2) < Oon T 2 NTy. (5.7)

This can be done by using an argument of contradiction and applying Serrin’s boundary
lemma to w™ /% in D /2,0, see the details in Theorem 2.4 of [6].

Step 3: We conclude the proof. Indeed, as in same process of step 2 in the proof of
Lemma 7, we see that (4.8), (4.2a) and (4.2b) hold for ¥ = 7/2,9; = 0and A € (A —¢1, A]
for some small &; > 0. Similarly, one can prove (4.2¢) and (4.2d) hold for ¥ = 7/2 and
A € (A — &, A] for some small &, > 0. Lemma 13 follows by taking ¢ = min{e, e2}. O

Lemma 14 Let B € (2w /3, ). Suppose that there exists some A € (0, Apayx) and Ay €
(0, A) such that (4.2) holds for » > A, 0 € [B/2, (w + B)/2] and for A > Ay, ¥ = /2.
Then (4.2) holds for € [B/2, apland A > A3z whereay = (m+38)/4, A3 = max{A1, n3A}
and

1

B=Sng+1

Proof We first deal with the boundary condition on F%B. For ¥ € [B/2,a0]l and A > A3, we
have
(Cl) ¢ €[3B8/4, (r + 3B)/4]. In this case, F)%B CT;y % € [B/2, (x + B)/2] and

L=t s 0 4 sing) > A
= e —— s > .
sin29 — B) —

(C2) ¥ € (0, B). In this case, we will choose 3 < 8 and hence I‘%B = 0.
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Therefore, w”? satisfies the strict boundary condition on FfB .Choosing 91 = /2,93 =
and following by the same process of Lemma 7, we see (4.2) holds for A > Az and ¥ = 3w /4.
Now there are two possibilities: € [37/4, ) and B € (2n/3, 37w /4).
Assume 8 € [37/4, ). Then Br/44-7)/2 = Trn/8 < (7w +B)/2. We have the following
cases:

(1) (4.2) holds for A > Az and ¥ € [37/4, 7 /8]. In fact, following by the same process of
Lemma 7, this can be done for ¥ = 77 /8 by choosing ¥y = 37 /4, ¥3 = m. As in step 2
of Lemma 9, this can be done for ¢ € (37/4, 77/8).

(2) (4.2) holds for A > A3z and ¥ € [37/4, ap] (in particular for ¥ = B). Indeed, following
the proof of Lemma 7, one can prove (4.2) holds for ¢ € [B;42, Bj+3] N [7/2, ag] for
every j € Nwhere B; = (1 —27/)r.

(3) (4.2) holds for A > Az and ¥ € [B/2, B]. This can be done similarly as in step 3 of
Lemma 9.

Assume B € (27 /3,37w/4). Then 3n/4 4+ 7/2)/2 = 57 /8 € 3B/4, (w + B)/2). We
have the following cases:

(1) (4.2) holds for A > Az and ¥ € [57/8, 3w /4]. In fact, following by the same process of
Lemma 7, this can be done for ¥ = 57 /8 by choosing ¢ = /2, 3 = 37 /4. As in step
2 of Lemma 9, this can be done for ¢ € (57/8, 37 /4).

(2) (4.2) holds for A > Az and ¥ € [38/4, 37/4]. Indeed, by induction and the proof of
Lemma 7, one can prove that (4.2) holds for ¢ € [b; 12, bj+1]1N[38/4, 37 /4] for every
j € Nwhere b; = (14 27/)m/2.

(3) (4.2) holds for A > Az and ¢ = ¢, ¥ € [c1, c2] and then for & € [c1, ag] where
¢y =3B/4and cj11 = (m +c;)/2. Indeed, noting that ¢; < (7 + 38) /4, one can prove
(4.2) holds for ¥ € [cj+1, cjr2] N [cy, (r + 3B)/4] for every j € N.

(4) (4.2) holds for A > A3 and ¥ € [B/2, B]. This can be done similarly as in step 3 of
Lemma 9.

The lemma is proven. O
Combining these lemmas above, we conclude the symmetry of u.

Theorem 3 Let B € (2n/3, ). Then (4.2) holds for ¥ € [B/2, (x + B)/2] for > > 0. In
particular we have

(i) uxy, <0inx;
(i) xouy, < 0in X N{xy # 0};
(iii) u is symmetric with respect to the hyperplane {x, = 0}.

Proof Set Ay = A;ax Where
Amax = Sup{A 1 Th (w1py2 N X # 0} = (1 — a) sec(B/2).
Let us define
S ={) € (0, Apax) : (4.2) holds for every ¢ € [B/2, (m + B)/2], A € [V, Amax)]}-

From Lemma 11, [Ay, Apmax] C S and S is not a empty set. Lemma 12 implies S is relatively
closed in (0, A4y ). Lemma 13, Lemma 14 and Lemma 10 tell us that the set S is open. In
conclusion, S is relatively closed, open, nonempty set of (0, A4y ). Therefore, S = (0, Apax)-
This gives the first two conclusions. The symmetry property follows from step 2 of
Theorem 2. ]
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6 The case 8 € (0, /3]

In this section we consider the case 8 < 7 /3.

Lemma 15 Let B € (0, w/3]). Assume that there exists a constant A > 0 such that (4.2) holds
for every A > A. Then (4.2) holds for ¥ € [B/2, w/2] and & > A3 where Az = n3A and

1
= ,— 6.1
N3 = max{cos f, - n sm,B} 6.1
Proof Step 1. The function w*? satisfies a suitable boundary condition on I'?8 for A > Aj.
In fact, for ¥ € [( + 3B)/4, /2], we see ['?8 C T; 5 with
Asin 9

> > A
sin( —B) ~ cosB —
While for o € [7/4, (r + 38)/4], we see F%B C T; 5 with

D=1 —20428€[B/2, (m+B)/2]and i =

P=20-B€ [ﬁ/2,(n+ﬂ)/2]andizx+ﬂ =1 +sinB) > A
sin(29 — B)
where the assumption 8 < /3 is used.

Step 2. The conclusion holds for ¢ € [x/4, w/2]. In fact, by choosing ¥ = /2 and
91 = 0, one deduces from Lemma 7 that (4.8) and (4.2) hold for all A > A». Note that
the hypothesis § < /3 is used to guarantee that /4 € (38/4, (w + B)/2]. By choosing
¥ = /4 and ¥ = 0, one deduces from Lemma 7 that (4.8) and (4.2) hold for all A > A». By
mathematical induction as in step 2 of Lemma 9, we can get that (4.2) holds for all A > A,
and 9 € (w/4,7/2).

Step 3. The conclusion holds for ¢ € [B/2, w/2]. Indeed, taking ¥; = 0,93 = 20
in the proof of Lemma 7, one can get by induction that (4.2) holds for all A > Aj, ¥ €
(277727, 277"\ 71N [3B8/4, /2], for every j € N and then for ¥ € [38/4, /2]. Following
step 3 of Lemma 9, we deduce that (4.2) holds for all A > A and ¥ € N[B/2, B/2]. O

Theorem 4 Under the condition € (0, w/3], we have the same conclusion as stated in
Theorem 2.

Proof Note that 8 € (0, 7r/3] implies max{r/2, (x + 48)/5} < n/2. Using Lemma 15 and
Lemma 10, we can conclude this result by the same proof of Theorem 2. O

7 Thecase B € (m/3,m/2)

In this subsection we focus on the case 8 € (/3, 7/2). In this case F%ﬁrﬂ C T; 5 with
b =n /2 — B < B/2. Hence w*™/* does not satisfy the Neumann boundary condition on

r /4 When % is small. Thus, we will prove the negativity of wh7/4 as in step 1 in Lemma
13.

Lemma 16 Let B € (m/3,7/2). Assume that (4.2) holds for © € [B/2, (m + B)/2] and
A > A. Then we have that

(i) (4.2) holds for 0 = w/2 and A > A1 where A1 = A/2;

(ii) there exists a small constant ¢ > 0 such that (4.2) holds for ¥ = w/4 and . > A>
where Ay = max{A, A — &}.

@ Springer



Symmetry in super-spherical sector Page210f25 130

Fig.4 The shape Dy 54,0 for
Be@/3,7/2)

Ty x4
Tx,5/2

Proof From Lemma 7, (4.2) holds for ¢ = 7 /2 and A > A = A/2. This gives part (i).
By the same proof of Lemma 12, one can obtain that (4.2) holds for ¢ € [8/2, (x + B)/2]
and A = A. The case for # = 7 /4 is more complicated. One can prove that

wA’”/4 < 0in DAJ,/4,0\TAJ,/4. (7.])
Indeed, the proof is similar to step 1 in Lemma 13. We will do it directly by proving
u(x) < u(z), uz) < u(x™>"*

for some point z; see Figure 4. Let x € D 7/4.0\Ta /4 be fixed. Then x € T4 y, and
xM7/2 e Ty, be fixed with ¥y < ¥, Y| + ¥ = 7/2. For simplicity, we use the polar
coordinate (o, ¥) as in (4.4) for the first two variables and omit the remain n — 2 variables
x’ € R"2. The fixed point x and x*7"/* are denoted by (2, ¥1), (0, ¥»). By the above
argument we have proved that

w20~ 0in D)L,ﬁ/z,()\T)\,ﬂ/z (7.2)
and
U+ u(p, ¥) is strictly increasing in ¢ € J (7.3)

where J = [B/2, (r + B8)/2]. (7.3) holds due to the fact that ¥ is convex in ¢ € J, that is,
(0, Vi), 9 € J,i = 1,2 implies (o, ) € X for ¥ is between ¥ and 9.
Case 1: | € [8/2, /2], Y2 € [B/2, /2]. By (7.3)

u(o, ¥1) < u(o, V).
Case 2: ¥ € [0, 8/2), V2 € [/2, 7/2]. From (7.2),
u(@, Y1) < u(0, 1)

where Y| = B — 1 € [B/2, w/2]. Noting that ¥, — | = /2 — > 0, we deduce by (7.3)
that

u(@, ¥1) < u(@, ).

In both cases we have proved u (o, V1) < u(0, ¥») and hence (7.1) is proven.
The remaining part is similar to the proof of Lemma 13. O

Lemma 17 Let B € (v/3, /2). Then (4.2) holds for 9 € [B/2, (x + 3B)/4] and . > A3
where Az = max{Ajy, A/(1 + sin 8)}.

Proof 1f 9 € [38/4, ( +3B)/4l and & > A3, we see I';% € Ty 5 with
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and

Loa =P o tsing) > A
= _— sin .
sin(29 — B)" — -
Step 1. Since 37 /8 = (w/4+7/2)/2 € [38/4, /2], we see that for A > A3z, (4.2) holds
for ¥ € Joo = U5, Jy and then for ¢ € [37/8, /2] where

3n «w

872
This can be done as in step 2 of Lemma 9. ~

Step 2. For A > A3, (4.2) holds for ¢ € [38/4, /2] = U}, J,, where

Jr .
In =15, €l lij=12.m=12....

- (142" 7 36
=1 4 105
Step 3. For A > A3, (4.2) holds for ¢ € [8/2, B]. This can be done as in step 3 of Lemma
9. Here in this step we have used 3 < 8 and F%B = 0.
Step 4. By choosing 91 = B, ¥3 = 7, ¥ = (7 + 8)/2 and then B = B, we can prove that
for A > A3, (4.2) holds for ¥ = (7w + B)/2
Step 5. For 9 € [7/2, (m + 38)/4], we can take 93 = (7w + B)/2,

U =20 -3 € [(r —B)/2, B1 C [B/2,7/2].

lm=12,....

Following the process in Lemma 7, one can show that (4.2) holds for and 1 > Aj3. ]

Theorem 5 Under the condition 8 € (w/3, w/2), we have the same conclusion as stated in
Theorem 2.

Proof Using Lemma 11, Lemma 16, Lemma 17 and Lemma 10, we can conclude this result
by the same proof of Theorem 3. O

8 Radial symmetry in x’ € R"~2

In this section we gives the proof of the symmetry in the last n — 2 variables x’ € R"~2. The
proof does not need the symmetry and monotonicity result with respect to x; and x3.

Lemma 18 The solution u is radially symmetric in the last n — 2 variables x' € R" 2.

Proof We prove that u is symmetric with respect to every hyperplane T which is orthogonal
to the upper Neumann boundary F; and the lower Neumann boundary I"j,. For simplicity
we assume that Tj is the hyperplane {x, = 0} and denote by T} the hyperplane parallels to
To, that is,

o={xeR":x, =1}
Denote Ag = sup{r : T, N X # @}. For A € (0, X¢), the open cap above T will be denoted

by X;, X, = {x € ¥ : x, > A}. The symmetry point of x with respect to 7, will denote by

X xh = (X1, . Xp—1. 20 — x). We set u* (x) = u(x*) and

w)‘(x) =ux)— u(xk) forx € X;.
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Note that u* satisfies the same equation and boundary condition as u. We deduce that w”
satisfies

Av* + A x)w* =0 inX;,

wh =0 onT) NX,
N (8.1)
wt <0 onI'pNaIx,
% =0 on'y NIOX,,
where
A fux) — fux?)
ctx) =
u(x) —u(x*)
is a uniform bounded function, |c¢*(x)| < ¢¢ for some co > O.
Our aim is to prove that
u(x) < u(x?) forx € \7, (8.2)

for every A € (0, Ag). We let X be the supremum of A such that (8.2) holds false, that is,
X = inf{} € (0, o) : (8.2) holds for every A € (', Ap)). (8.3)

Step 1. We claim that (8.2) holds for all A such that A9 — A is positive and sufficiently
small. Indeed, by the definition of ¥, , the diameter of X, is very small when A is close to .
By the maximum principle in Lemma 2 and Remark 1, we get that (8.2) holds for X satisfying
0 < Ao — A < 1. Thus, the constant X, given in (8.3), is well-defined and x € [0, 1o).

Step 2. We claim that (8.2) holds for A € (0, A1) and hence wo(x) < 0 for x € Xp.

Suppose that the assertion is false, then A > 0. Then, by continuity, w*(x) < 0in ;5. By
the strong maximum principle and Remark 1 we obtain

w* < 0in T;\ T, (8.4)

It follows from the Hopf boundary lemma that u,, < 0 on 75 N X. From Lemma 4, we can
obtain the strict monotonicity along the Neumann boundary and hence

uy, <0onT; N(SUTN) N {x? +x5 > 0} (8.5)

where we always assume that the vertex line of the sector C passes though V =
0,0,0,...,0).

Now let us fix a small subset N' = {x : Z;:ll xi2 + (xp — 12 < n/2} where 7 is a
small constant for the maximum principle in a narrow domain to hold; see Lemma 2. By
the monotonicity near Dirichlet boundary (see Lemma 3), strict monotonicity properties in
(8.5), and the negativity of w” in (8.4), one sees that

w* < 0in T;\(T5, UN)

for |» — A| < 8 for some 8 > 0 (assuming § < n/2).
In the rest of the domain D = ¥, NN, we have

Aw)»,rr/2 4 C)\,rr/Zw)»,ﬂ/2 =0
dw* =00ndD NTy,
w* <, % 0ondD\T'y.
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It follows by the maximum principle that w* < 0in D. Therefore, (8.2) holds for0 < A—x <
1. This contradicts the definition of 4. Hence A = 0, (8.2) holds for every A € (0, Ao) and
then w®(x) < 0 for x, > 0.

Step 3. If the hyperplanes are moved in the opposite direction, then we conclude that u is
symmetric with respect to Tp. Because of the fact that Ty is any hyperplane orthogonal to the
Neumann boundary I'y, we deduce that u is radially symmetric with respect to x’ € R"~2.

O
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