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Abstract—Accurately monitoring the number of individuals
inside a building is vital to limiting COVID-19 transmission. Low
adoption of contact tracing apps due to privacy concerns has
increased pervasiveness of passive digital tracking alternatives.
Large arrays of WiFi access points can conveniently track mobile
devices on university and industry campuses. The CrowdMap
system employed by the University of Southern California enables
such tracking by collecting aggregate statistics from connections
to access points around campus. However, since these devices
can be used to infer the movement of individuals, there is still
a significant risk that even aggregate occupancy statistics will
violate the location privacy of individuals. We examine the use
of Differential Privacy in reporting statistics from this system
as measured using point and range count queries. We propose
discretization schemes to model the positions of users given only
user connections to WiFi access points. Using this information
we are able to release accurate counts of occupants in areas of
campus buildings such as labs, hallways, and large discussion
halls with minimized risk to individual users’ privacy.

Index Terms—differential privacy, WiFi access points

I. INTRODUCTION

Accurately monitoring the number of individuals in indoor

spaces is vital to supporting facilities administrators with the

challenges of efficiently allocating spaces while ensuring the

health & safety of students and staff. For example, in the recent

COVID-19 pandemic, contact tracing has been an effective

tool in tracking disease spread. Occupancy monitoring in a

small business is relatively easy compared to universities, in-

dustry campuses, and large businesses whose essential workers

must also be afforded protections in the workplace.

Digital contact tracing solutions that utilize GPS and low-

energy Bluetooth technologies in mobile devices to monitor

real-time locations or proximity of individuals may be used

to monitor occupancy, but raise serious privacy concerns. A

location trace can expose users to a wide range of attacks

such as unwanted spams/scams or physical danger, and various

associated privacy breaches that may disclose sensitive per-

sonal details such as one’s health status, political, or religious

inclinations [1].

At the University of Southern California (USC), we have

developed CrowdMap, a non-intrusive passive digital tracking
platform that utilizes a large network of WiFi routers. Research

has shown WiFi to be the most promising alternative to GPS

for indoor, context-aware and location-based services [3], [4].

Due to privacy concerns, such a WiFi system collects only

connection logs and their timestamps. This information is

generated at thousands of Access Points (APs) across the

university’s three campuses to estimate occupancy counts. Fig.

2 shows the placement of the APs on a single floor in one

of the buildings on campus. The monitoring platform enables

users to view aggregate population density counts at each

AP over time in different visual and textual formats, such as

chloropeth maps, scatter plots, statistic reports, and more.

The granularity of reporting in such traditional WiFi systems

is severely limited due to privacy concerns, with only connec-

tion events being recorded (as opposed to triangulated users’

positions). However, since an individual may make connec-

tions to an AP from nearby hallways and classrooms or even

through walls, estimating the exact location of individuals is

an important challenge. Such reporting is crucial to identifying

work and common areas where employees could have close

contact (within 6 feet) with others such as the cafeteria, locker

rooms, waiting areas, and routes of entry and exit. At the same

time, since these devices can be linked to the movement of

individuals, there is still a significant danger that aggregate

computation will violate the location privacy of individuals.

To prevent privacy breaches that may result from uncontrolled,

direct release of occupancy statistics, it is important to design

and deploy techniques for privacy protection.

In this work we propose a privacy analysis of the CrowdMap

system utilizing the powerful Differential Privacy (DP) model.

DP [2] is a popular model to achieve privacy, but its

mechanisms—via the addition of random noise—can also

lead to a severe decrease in data utility. Previous work [7]

has shown DP’s success in leveraging noise to secure data;

our analysis extends DP’s use to various queries and data

representations.

We first address the use-case of reporting statistics per AP
which, while of limited use due to reporting granularity, is still

useful for learning building-level and floor-level occupancy

counts. Since each AP has its own identifier, this data may

be viewed as a 1D histogram. We employ state-of-the-art DP

mechanisms for histogram publishing for this task. We show

that in this setting simple mechanisms are effective even when

noise may perturb the true counts significantly, since utility for

real-world use is preserved.

Next, we focus on range queries, since they can be used as
building blocks in many processing tasks. Range count queries
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can be executed over the space of a floor of a building, thus

a 2D query. We show that utility degradation due to DP noise

dwarfs in comparison to errors that implicit discretization

of the space incur. We use a baseline grid-based approach

to uniformly spread the counts at APs in the spatial region

around it. We also propose an advanced approach that utilizes

a Voronoi partitioning of the floor space into regions where

user counts can be uniformly assumed to be spread. We greatly

reduce error in reporting counts and hence make possible

answering accurate 2D range count queries on WiFi systems

that collect only AP connection logs. Once sanitized, the data

from CrowdMap (or similar WiFi systems) can be publicly

released while guaranteeing the privacy of each individual.

Our contributions are as follows:

• We evaluate the state-of-the-art DP mechanisms in 1-
Dimensional and 2-Dimensional subsets of the location

data reported in CrowdMap.

• We demonstrate the differences between existing DP
mechanisms and their impacts in the chosen setting.

• We present competing data representations of user lo-
cations to evaluate the privacy-utility trade-off against a

manually defined ground truth.

We organize the rest of the paper as follows: Section

II describes the CrowdMap system and the data collection

process. Section III introduces background on differential

privacy. Section IV analyzes 1-Dimensional point queries.

Section V illustrates challenges of answering range queries

in 2-Dimensional setting. Sections VI and VII present an

experimental evaluation on range count queries based on pro-

posed discretization schemes to improve utility. We conclude

in Section VIII.

II. CROWDMAP SYSTEM

CrowdMap [5] is a passive tracking system designed at

USC’s Integrated Media Systems Center (IMSC) to manage

COVID-19 transmission on campus. The physical assets in

CrowdMap include thousands of access points connected to a

centralized controller and a sophisticated network operations

system running on dedicated servers. APs are strategically

placed throughout USC’s campuses to optimize WiFi signals

to users, and as a byproduct, are ideal for passively capturing

whereabouts of individuals on campus. CrowdMap captures

data packets transmitted in existing WiFi traffic and extracts

both received signal strength (RSS) and MAC address of each

user’s mobile device without installing any dedicated apps.

Devices periodically transmit data to maintain their association

with the access point.

The raw data is comprised of connection information

uploaded nightly, each data point consisting of a unique

anonymized identifier (MD5-hashed MAC address), AP name,

connect time, disconnect time, connection duration, and SSID.

As a pre-processing step, raw data is cleaned to filter out non-

user connections, as the network management system does

not distinguish between stationary devices such as printers

and individuals’ active devices. Several data cleaning steps,

calibrated using on-site analysis, help CrowdMap accurately

estimate the counts of users, as opposed to counts of devices of

a user. For example, by simply deleting all connections shorter

than 3 minutes or longer than 12 hours, moving individuals and

stationary devices can be reconciled. For the privacy-related

work our focus will be on USC’s main campus, the University

Park Campus (UPC), as it is the largest of the three campuses,

with daily averages from March 6, 2021 to May 25, 2021

showing 156 buildings, 3902 APs, 580777 connection attempts

before cleaning, and 53504 connections after cleaning.

III. DIFFERENTIALLY PRIVATE MONITORING

Differential privacy (DP) is a privacy-preserving technique

which guarantees that results will not be affected whether

or not any one individual is present in the data [6]. It

allows learning of useful information about a population using

aggregate statistics while permitting privacy leakage up to a

statistically bound value of ε.
An ε-differentially private algorithm [6] is defined as a

randomized algorithm M , for neighboring datasets D and D’
differing by at most one element and for all Y ⊆ Range(M)
for which the following holds:

Pr[M(D) ∈ Y ] ≤ eεPr[M(D′) ∈ Y ]

To achieve ε-DP, the result obtained by evaluating a function
(e.g., a query) f on the input data must be perturbed by adding
noise sampled from a random variable Z. The amount of
noise required to ensure the mechanismM(D) = f(D) + Z
satisfies a given privacy guarantee depends on how sensitive

the function f is to changes in the input, and the specific

distribution chosen for Z. The Laplace Mechanism (LPM) [2]
is tuned to the sensitivity Sf computed according to the global

�1-norm as Sf = supD�D′ |f(D)− f(D′)|2 for every pair of
neighboring datasets D, D′ . LPM adds zero-mean Laplace

noise Z = Laplace(x|b) = 1
2be

− |x|
b , where b = Sf/ε.

We examine the impacts of differential privacy in 1D space

with simple point-queries, posing questions such as ’How

many individuals are in a particular building?’ and in 2D

space with more complex range queries, posing queries such

as ’How many individuals are in this hallway (specified as

a 2D bounding-box) on a particular floor?’. The use of both

dimensions is critical in enabling useful applications such as

evaluating utilization rate of spaces.

Further, we examine DP-algorithms which are either data-

independent or data-dependent. A data-independent algorithm

maintains a consistent error rate over all possible datasets on

a fixed domain since the noise scale for such a mechanism

is independent to the scale of the data. Whereas, a data-

dependent algorithm adjusts its error rate, while consuming the

privacy budget to determine the scale of the data [10]. Of the

mechanisms analyzed, Identity, Privelet, H, HB, and Greedy H
are data-independent, while all others are data-dependent [7].

Identity [2] adds noise to each data-point using LPM.

Privelet [8] applies a wavelet transform according to input

data frequencies before adding logarithmic noise. H [7] is

a hierarchical method that uniformly allocates the privacy
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Fig. 1. Mean Absolute Error of DP Algorithms in 1D

budget. HB [9] organizes queries in a tree structure and

uniformly distributes the privacy budget over each node,

adaptively selecting the optimal branching factor b. Greedy
H [10] functions similar to H, forming bins in the gener-
ated hierarchical tree in a greedy fashion. Uniform [7] is a

data-dependent baseline algorithm that employs a uniformity

assumption on the input data. MWEM [11] updates counts

with multiplicative weights under an exponential mechanism

for a pre-defined number of rounds.AHP [12], or Accurate

Histogram Publication, uses a greedy clustering algorithm

to form partitions of noisy counts obtained by the Laplace

mechanism, setting cells with counts < a pre-defined threshold
value to 0. DPCube [13] employs a two-phase partitioning,
first using the domain of input data and then using a kd-tree.

DAWA [10] uses dynamic programming to compute least cost
partitions of noisy counts. QuadTree [17] recursively partitions
input data into equal sized quadrants. UGrid [16], or Uniform
Grid, partitions input data domain into m x m equally sized

cells and calculates a noisy count for each cell. AGrid [16],
or Adaptive Grids, adaptively partitions cells before extracting

noisy counts for each. EFPA [14], also known as the Enhanced
Fourier Perturbation Algorithm, applies a discrete Fourier

transform to input data and adds Laplacian noise to the top k
Fourier coefficients. SF [15], or StructureFirst, is a histogram
based algorithm which determines the structure of input data

before applying noise.

IV. 1-DIMENSIONAL RESULTS

Recall that in 1-Dimension we treat each AP as a unique

identifier, ignoring its proximity information to other APs.

Thus only point queries can be posed against such data, for

instance asking questions such as ’How many individuals

are in a particular floor?’. Such a query may be answered

by aggregating the counts reported at each AP on a floor.

Using workloads of such queries, mean absolute error was

measured between true counts in the input data and noisy

counts produced from application of DP mechanisms with

privacy budgets of 0.1 (high privacy regime) and 1.0 (low

privacy regime).

Fig. 1 presents the MAE for all state-of-art DP algorithms in

1-Dimension. A Data Independent algorithm such as Identity is
a basic approach which adds Laplacian noise to the histogram

and reports the final counts. Despite the algorithm’s simplicity,

it performs well on simple point queries. This is as expected

since there is limited proximal information that more advanced

methods can exploit. For instance, DPCube performs a two
step partitioning of the histogram, attempting to find regions

with similar counts in order to smooth out the random noise.

This, while intuitive in instances where nearby regions have

similar aggregate counts, results in extreme deviation from

input data in our setting and given the small scale of our

sample, produces poor results.

We conclude that the signal (the counts at each AP) are large

enough to not be diluted by the noise (Laplace mechanism for

example has a variance of 2/ε). However, 1D point queries

have limited use. Therefore we extend our data representation

to the 2-Dimensional setting.

V. ESTABLISHING A BASELINE: GROUND TRUTH

The 2-Dimensional setting enables us to estimate how

many individuals may be located within a specified range.

However, given only the connection logs provided to us from

the CrowdMap system, it is difficult to answer accurately

how many occupants are within a particular query range. For

instance, a query covering the region of a room may return an

incorrect answer when the associated AP serving that room is

located outside its (and hence the query’s) spatial extents.

In order to evaluate how successful a particular DP mecha-

nism is in answering such queries, we must have some existing

knowledge of where said user is located. For this setting,

we pose range queries on a single floor: the 1st floor of

the USC Herman Ostrow Dental School building, shown in

Fig. 2. Our ground truth is approximated as bounding boxes,

seen in Fig. 2, around each access point using knowledge

of WiFi signal strength in relation to physical obstructions

(walls in a building) and on-site WiFi receiving devices.

These boxes serve to estimate a region in which a user

connected to a particular AP is assumed to be uniformly

located within. Aggregate counts at each AP, previously used

for 1-Dimensional point queries, are uniformly spread in each

bounding box, providing each connection with a coordinate

location used for evaluating accuracy of query responses.

VI. 2-DIMENSIONAL RESULTS

A. Query Size

In the 2-Dimensional space we are now also presented

with another parameter to tune: query size. For clarity of

presentation, we normalize our input floorplan to a -5 x 5
grid. A query consists of location coordinates (x, y) within
our normalized space and a query size q. Using this infor-
mation, each query is denoted by the polygon described by

(x− q, y− q), (x− q, y+ q), (x+ q, y+ q), (x+ q, y− q). For
example, a large query with q = 2.0 covers a region of more
than 10% of our input floor space. Hence we focus on query
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Fig. 4. Voronoi Approach

sizes of q = 0.25, 0.50, 1.0 to simulate realistic queries that a
query issuer might ask in practice.

B. Grid discretization approach

Querying in 2D naturally gives way to a grid partitioning of

our floorplan. In this approach we split our floorplan into n x n
cells of equal size, shown in Fig. 3, and employ a uniformity

assumption on each cell, assuming that counts at a particular

AP are uniformly spread over the entire space of any cells

that contain said AP. A query overlapping a cell that contains

an AP will return the total count at said AP. Further, a query

overlapping 0 AP-containing cells will have a true response of

0. Choice of granularity n is highly specific to the floor plan,
the number and position of APs, and the query sizes of interest

to a query issuer. This makes automating this parameter very

difficult.

We then utilize differentially private mechanisms on work-

loads of randomly generated range queries over our grid-

partitioned floorplan. The utilization of range queries instead

of the previously used point queries is critical in that we are

now able to identify coordinates of individual connections to

each AP, similar to identifying user’s exact locations.
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Results shown in Fig. 5, and for the remainder of this

paper, are a subset of the mechanisms evaluated in Fig. 1.

Poorly performing algorithms, like Greedy H and DPCube
are left out for clarity. Considering previously determined

algorithmic performance in related works such as those in

[7], we are able to identify the variance between relative

inserted noise. We observe that error values are significantly

larger than the noise inserted by the privacy mechanisms at

the corresponding privacy levels. Therefore, we hypothesize

that the grid discretization itself introduces significant errors

and hence fails to convey any useful information in the range

counts. Also, the employed uniformity assumption fails to

accurately account for spread of users surrounding a particular

AP, such as connections that may truly reside in a different

physical room than that of the AP. Ultimately, the large

incurred error is a result of the poor representation mechanism

and accompanying uniformity assumption.

C. Voronoi Approach

We propose to split the floorplan into a Voronoi partitioning

to improve estimates of user positions. By setting each AP as

the site used to construct the surrounding polygons, shown in

Fig. 4. In contrast to the Grid-based approach, we uniformly

spread the counts at each AP over the entire space of the corre-

sponding Voronoi polygon, assigning each count a coordinate

location. This allows us to reasonably infer user locations in

relation to whichever AP they are connected to. In this way we

can also more accurately represent the spread of WiFi signals

generated at each AP subject to physical constraints such as

walls, which a baseline Gridding approach fails to achieve.

We evaluate this approach by examining DP mechanisms

on workloads of randomly generated range queries over our

Voronoi diagram. Results of the best performing DP mecha-

nisms in Fig. 6 show that larger query sizes incur larger error.

We hypothesize that this is due to incrementally incurred DP

noise of queries covering multiple Voronoi cells. However, the

Voronoi Approach performs significantly better than the Grid-

ding Approach. We formalize this notion further by comparing

results of both approaches.
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Fig. 6. 2D Voronoi Results at ε = 0.1

VII. 2-DIMENSIONAL METHOD COMPARISON

Fig. 7 and Fig. 8 show significant differences in results

produced by each approach at the same DP privacy parameter

ε = 0.1. Unsurprisingly, as epsilon increases in Fig. 11 and
Fig. 12 (meaning less noise is inserted to the counts of each

AP), each DP mechanism improves in accuracy. Notably the

Voronoi approach produces much less error at each measured

value of ε, primarily due to its better ability to spread counts
in the vicinity of each AP. Hence we examine the differences

between the approaches used in spreading aggregate counts at

each AP across their respective floorplans.

As stated previously, the two approaches have fundamental

differences in their discretization of the floorplan. We focus

our attention on queries of smaller sizes (such as in Figure 7)

as they align more closely with queries we may pose in real-

life scenarios. Assuming that one AP covers one particular

room on a given floor, identifying locations of users connected

to that AP would constitute a small query size. In this setting,

our Voronoi approach clearly outperforms the baseline grid

partitioning by reducing the implicit errors in discretization.

We believe this to be a result of the Voronoi partitioning’s

ability to much more accurately mimic WiFi signal strength.

Slightly larger query sizes of Q = 0.50 shown in Fig. 8 show
similar results. But for very large query sizes (analogous to

large auditoriums) we see that both approaches produce similar

results, as in Fig. 9. This is due to larger query sizes covering

multiple Voronoi cells and Grid cells, respectively. Hence,

noise error is incrementally accumulated in each case.

In Fig. 10 we evaluate two of the best performing algorithms

in both approaches: Identity and AG. Results displayed show
that the DP mechanisms in the Voronoi approach function

much better than in the Gridding approach especially at

smaller query sizes. As previously noted, lower query sizes

more closely align to real-world applications of such a system.

Hence, the proposed Voronoi partitioning is much more suited

to this application as it is capable of mimicking WiFi spread

in a highly accurate manner around access points.

VIII. CONCLUSION

In a 1-Dimensional setting, we see that simple DP mech-

anisms are sufficiently accurate in protecting user privacy,

provided that the use-cases only require simple point queries.
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However, when a query issuer may want to know counts in a

2-Dimensional spatial region, whether that be an entire room,

hallway, or floor, we show that discretization schemes are more

important to accurately answering such queries than the noise

introducing DP mechanisms.
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