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Abstract—Accurately monitoring the number of individuals
inside a building is vital to limiting COVID-19 transmission. Low
adoption of contact tracing apps due to privacy concerns has
increased pervasiveness of passive digital tracking alternatives.
Large arrays of WiFi access points can conveniently track mobile
devices on university and industry campuses. The CrowdMap
system employed by the University of Southern California enables
such tracking by collecting aggregate statistics from connections
to access points around campus. However, since these devices
can be used to infer the movement of individuals, there is still
a significant risk that even aggregate occupancy statistics will
violate the location privacy of individuals. We examine the use
of Differential Privacy in reporting statistics from this system
as measured using point and range count queries. We propose
discretization schemes to model the positions of users given only
user connections to WiFi access points. Using this information
we are able to release accurate counts of occupants in areas of
campus buildings such as labs, hallways, and large discussion
halls with minimized risk to individual users’ privacy.

Index Terms—differential privacy, WiFi access points

I. INTRODUCTION

Accurately monitoring the number of individuals in indoor
spaces is vital to supporting facilities administrators with the
challenges of efficiently allocating spaces while ensuring the
health & safety of students and staff. For example, in the recent
COVID-19 pandemic, contact tracing has been an effective
tool in tracking disease spread. Occupancy monitoring in a
small business is relatively easy compared to universities, in-
dustry campuses, and large businesses whose essential workers
must also be afforded protections in the workplace.

Digital contact tracing solutions that utilize GPS and low-
energy Bluetooth technologies in mobile devices to monitor
real-time locations or proximity of individuals may be used
to monitor occupancy, but raise serious privacy concerns. A
location trace can expose users to a wide range of attacks
such as unwanted spams/scams or physical danger, and various
associated privacy breaches that may disclose sensitive per-
sonal details such as one’s health status, political, or religious
inclinations [1].

At the University of Southern California (USC), we have
developed CrowdMap, a non-intrusive passive digital tracking
platform that utilizes a large network of WiFi routers. Research
has shown WiFi to be the most promising alternative to GPS
for indoor, context-aware and location-based services [3], [4].
Due to privacy concerns, such a WiFi system collects only
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connection logs and their timestamps. This information is
generated at thousands of Access Points (APs) across the
university’s three campuses to estimate occupancy counts. Fig.
2 shows the placement of the APs on a single floor in one
of the buildings on campus. The monitoring platform enables
users to view aggregate population density counts at each
AP over time in different visual and textual formats, such as
chloropeth maps, scatter plots, statistic reports, and more.

The granularity of reporting in such traditional WiFi systems
is severely limited due to privacy concerns, with only connec-
tion events being recorded (as opposed to triangulated users’
positions). However, since an individual may make connec-
tions to an AP from nearby hallways and classrooms or even
through walls, estimating the exact location of individuals is
an important challenge. Such reporting is crucial to identifying
work and common areas where employees could have close
contact (within 6 feet) with others such as the cafeteria, locker
rooms, waiting areas, and routes of entry and exit. At the same
time, since these devices can be linked to the movement of
individuals, there is still a significant danger that aggregate
computation will violate the location privacy of individuals.
To prevent privacy breaches that may result from uncontrolled,
direct release of occupancy statistics, it is important to design
and deploy techniques for privacy protection.

In this work we propose a privacy analysis of the CrowdMap
system utilizing the powerful Differential Privacy (DP) model.
DP [2] is a popular model to achieve privacy, but its
mechanisms—via the addition of random noise—can also
lead to a severe decrease in data utility. Previous work [7]
has shown DP’s success in leveraging noise to secure data;
our analysis extends DP’s use to various queries and data
representations.

We first address the use-case of reporting statistics per AP
which, while of limited use due to reporting granularity, is still
useful for learning building-level and floor-level occupancy
counts. Since each AP has its own identifier, this data may
be viewed as a 1D histogram. We employ state-of-the-art DP
mechanisms for histogram publishing for this task. We show
that in this setting simple mechanisms are effective even when
noise may perturb the true counts significantly, since utility for
real-world use is preserved.

Next, we focus on range queries, since they can be used as
building blocks in many processing tasks. Range count queries



can be executed over the space of a floor of a building, thus
a 2D query. We show that utility degradation due to DP noise
dwarfs in comparison to errors that implicit discretization
of the space incur. We use a baseline grid-based approach
to uniformly spread the counts at APs in the spatial region
around it. We also propose an advanced approach that utilizes
a Voronoi partitioning of the floor space into regions where
user counts can be uniformly assumed to be spread. We greatly
reduce error in reporting counts and hence make possible
answering accurate 2D range count queries on WiFi systems
that collect only AP connection logs. Once sanitized, the data
from CrowdMap (or similar WiFi systems) can be publicly
released while guaranteeing the privacy of each individual.
Our contributions are as follows:

o We evaluate the state-of-the-art DP mechanisms in 1-
Dimensional and 2-Dimensional subsets of the location
data reported in CrowdMap.

o We demonstrate the differences between existing DP
mechanisms and their impacts in the chosen setting.

o We present competing data representations of user lo-
cations to evaluate the privacy-utility trade-off against a
manually defined ground truth.

We organize the rest of the paper as follows: Section
IT describes the CrowdMap system and the data collection
process. Section III introduces background on differential
privacy. Section IV analyzes 1-Dimensional point queries.
Section V illustrates challenges of answering range queries
in 2-Dimensional setting. Sections VI and VII present an
experimental evaluation on range count queries based on pro-
posed discretization schemes to improve utility. We conclude
in Section VIIL.

II. CROWDMAP SYSTEM

CrowdMap [5] is a passive tracking system designed at
USC’s Integrated Media Systems Center (IMSC) to manage
COVID-19 transmission on campus. The physical assets in
CrowdMap include thousands of access points connected to a
centralized controller and a sophisticated network operations
system running on dedicated servers. APs are strategically
placed throughout USC’s campuses to optimize WiFi signals
to users, and as a byproduct, are ideal for passively capturing
whereabouts of individuals on campus. CrowdMap captures
data packets transmitted in existing WiFi traffic and extracts
both received signal strength (RSS) and MAC address of each
user’s mobile device without installing any dedicated apps.
Devices periodically transmit data to maintain their association
with the access point.

The raw data is comprised of connection information
uploaded nightly, each data point consisting of a unique
anonymized identifier (MD5-hashed MAC address), AP name,
connect time, disconnect time, connection duration, and SSID.
As a pre-processing step, raw data is cleaned to filter out non-
user connections, as the network management system does
not distinguish between stationary devices such as printers
and individuals’ active devices. Several data cleaning steps,
calibrated using on-site analysis, help CrowdMap accurately
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estimate the counts of users, as opposed to counts of devices of
a user. For example, by simply deleting all connections shorter
than 3 minutes or longer than 12 hours, moving individuals and
stationary devices can be reconciled. For the privacy-related
work our focus will be on USC’s main campus, the University
Park Campus (UPC), as it is the largest of the three campuses,
with daily averages from March 6, 2021 to May 25, 2021
showing 156 buildings, 3902 APs, 580777 connection attempts
before cleaning, and 53504 connections after cleaning.

III. DIFFERENTIALLY PRIVATE MONITORING

Differential privacy (DP) is a privacy-preserving technique
which guarantees that results will not be affected whether
or not any one individual is present in the data [6]. It
allows learning of useful information about a population using
aggregate statistics while permitting privacy leakage up to a
statistically bound value of ¢.

An e-differentially private algorithm [6] is defined as a
randomized algorithm M, for neighboring datasets D and D’
differing by at most one element and for all Y C Range(M)
for which the following holds:

PriM(D) € Y] < ePr[M(D’) € Y]

To achieve ¢-DP, the result obtained by evaluating a function
(e.g., a query) f on the input data must be perturbed by adding
noise sampled from a random variable Z. The amount of
noise required to ensure the mechanism M(D) = f(D) + Z
satisfies a given privacy guarantee depends on how sensitive
the function f is to changes in the input, and the specific
distribution chosen for Z. The Laplace Mechanism (LPM) [2]
is tuned to the sensitivity Sy computed according to the global
¢1-norm as Sy = supp.p | f(D) — f(D')|2 for every pair of
neighboring datasets D, D’ . LPM adds zero-mean Laplace
noise Z = Laplace(x|b) = ﬁe*%, where b = Sy /e.

We examine the impacts of differential privacy in 1D space
with simple point-queries, posing questions such as 'How
many individuals are in a particular building?’ and in 2D
space with more complex range queries, posing queries such
as 'How many individuals are in this hallway (specified as
a 2D bounding-box) on a particular floor?’. The use of both
dimensions is critical in enabling useful applications such as
evaluating utilization rate of spaces.

Further, we examine DP-algorithms which are either data-
independent or data-dependent. A data-independent algorithm
maintains a consistent error rate over all possible datasets on
a fixed domain since the noise scale for such a mechanism
is independent to the scale of the data. Whereas, a data-
dependent algorithm adjusts its error rate, while consuming the
privacy budget to determine the scale of the data [10]. Of the
mechanisms analyzed, Identity, Privelet, H, HB, and Greedy H
are data-independent, while all others are data-dependent [7].

Identity [2] adds noise to each data-point using LPM.
Privelet [8] applies a wavelet transform according to input
data frequencies before adding logarithmic noise. H [7] is
a hierarchical method that uniformly allocates the privacy
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Fig. 1. Mean Absolute Error of DP Algorithms in 1D

budget. HB [9] organizes queries in a tree structure and
uniformly distributes the privacy budget over each node,
adaptively selecting the optimal branching factor b. Greedy
H [10] functions similar to H, forming bins in the gener-
ated hierarchical tree in a greedy fashion. Uniform [7] is a
data-dependent baseline algorithm that employs a uniformity
assumption on the input data. MWEM [11] updates counts
with multiplicative weights under an exponential mechanism
for a pre-defined number of rounds.AHP [12], or Accurate
Histogram Publication, uses a greedy clustering algorithm
to form partitions of noisy counts obtained by the Laplace
mechanism, setting cells with counts < a pre-defined threshold
value to 0. DPCube [13] employs a two-phase partitioning,
first using the domain of input data and then using a kd-tree.
DAWA [10] uses dynamic programming to compute least cost
partitions of noisy counts. QuadTree [17] recursively partitions
input data into equal sized quadrants. UGrid [16], or Uniform
Grid, partitions input data domain into m x m equally sized
cells and calculates a noisy count for each cell. AGrid [16],
or Adaptive Grids, adaptively partitions cells before extracting
noisy counts for each. EFPA [14], also known as the Enhanced
Fourier Perturbation Algorithm, applies a discrete Fourier
transform to input data and adds Laplacian noise to the top &
Fourier coefficients. SF' [15], or StructureFirst, is a histogram
based algorithm which determines the structure of input data
before applying noise.

IV. 1-DIMENSIONAL RESULTS

Recall that in 1-Dimension we treat each AP as a unique
identifier, ignoring its proximity information to other APs.
Thus only point queries can be posed against such data, for
instance asking questions such as 'How many individuals
are in a particular floor?’. Such a query may be answered
by aggregating the counts reported at each AP on a floor.
Using workloads of such queries, mean absolute error was
measured between true counts in the input data and noisy
counts produced from application of DP mechanisms with
privacy budgets of 0.1 (high privacy regime) and 1.0 (low
privacy regime).
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Fig. 1 presents the MAE for all state-of-art DP algorithms in
1-Dimension. A Data Independent algorithm such as Identity is
a basic approach which adds Laplacian noise to the histogram
and reports the final counts. Despite the algorithm’s simplicity,
it performs well on simple point queries. This is as expected
since there is limited proximal information that more advanced
methods can exploit. For instance, DPCube performs a two
step partitioning of the histogram, attempting to find regions
with similar counts in order to smooth out the random noise.
This, while intuitive in instances where nearby regions have
similar aggregate counts, results in extreme deviation from
input data in our setting and given the small scale of our
sample, produces poor results.

We conclude that the signal (the counts at each AP) are large
enough to not be diluted by the noise (Laplace mechanism for
example has a variance of 2/¢). However, 1D point queries
have limited use. Therefore we extend our data representation
to the 2-Dimensional setting.

V. ESTABLISHING A BASELINE: GROUND TRUTH

The 2-Dimensional setting enables us to estimate how
many individuals may be located within a specified range.
However, given only the connection logs provided to us from
the CrowdMap system, it is difficult to answer accurately
how many occupants are within a particular query range. For
instance, a query covering the region of a room may return an
incorrect answer when the associated AP serving that room is
located outside its (and hence the query’s) spatial extents.

In order to evaluate how successful a particular DP mecha-
nism is in answering such queries, we must have some existing
knowledge of where said user is located. For this setting,
we pose range queries on a single floor: the 1st floor of
the USC Herman Ostrow Dental School building, shown in
Fig. 2. Our ground truth is approximated as bounding boxes,
seen in Fig. 2, around each access point using knowledge
of WiFi signal strength in relation to physical obstructions
(walls in a building) and on-site WiFi receiving devices.
These boxes serve to estimate a region in which a user
connected to a particular AP is assumed to be uniformly
located within. Aggregate counts at each AP, previously used
for 1-Dimensional point queries, are uniformly spread in each
bounding box, providing each connection with a coordinate
location used for evaluating accuracy of query responses.

VI. 2-DIMENSIONAL RESULTS
A. Query Size

In the 2-Dimensional space we are now also presented
with another parameter to tune: query size. For clarity of
presentation, we normalize our input floorplan to a -5 x 5
grid. A query consists of location coordinates (x,y) within
our normalized space and a query size g. Using this infor-
mation, each query is denoted by the polygon described by
(z—qy—q)(z—qy+q),(+qy+q),(x+q,y—q). For
example, a large query with ¢ = 2.0 covers a region of more
than 10% of our input floor space. Hence we focus on query
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Fig. 4. Voronoi Approach

sizes of ¢ = 0.25,0.50, 1.0 to simulate realistic queries that a
query issuer might ask in practice.

B. Grid discretization approach

Querying in 2D naturally gives way to a grid partitioning of
our floorplan. In this approach we split our floorplan into n x n
cells of equal size, shown in Fig. 3, and employ a uniformity
assumption on each cell, assuming that counts at a particular
AP are uniformly spread over the entire space of any cells
that contain said AP. A query overlapping a cell that contains
an AP will return the total count at said AP. Further, a query
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overlapping O AP-containing cells will have a true response of
0. Choice of granularity n is highly specific to the floor plan,
the number and position of APs, and the query sizes of interest
to a query issuer. This makes automating this parameter very
difficult.

We then utilize differentially private mechanisms on work-
loads of randomly generated range queries over our grid-
partitioned floorplan. The utilization of range queries instead
of the previously used point queries is critical in that we are
now able to identify coordinates of individual connections to
each AP, similar to identifying user’s exact locations.
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Results shown in Fig. 5, and for the remainder of this
paper, are a subset of the mechanisms evaluated in Fig. 1.
Poorly performing algorithms, like Greedy H and DPCube
are left out for clarity. Considering previously determined
algorithmic performance in related works such as those in
[7], we are able to identify the variance between relative
inserted noise. We observe that error values are significantly
larger than the noise inserted by the privacy mechanisms at
the corresponding privacy levels. Therefore, we hypothesize
that the grid discretization itself introduces significant errors
and hence fails to convey any useful information in the range
counts. Also, the employed uniformity assumption fails to
accurately account for spread of users surrounding a particular
AP, such as connections that may truly reside in a different
physical room than that of the AP. Ultimately, the large
incurred error is a result of the poor representation mechanism
and accompanying uniformity assumption.

C. Voronoi Approach

We propose to split the floorplan into a Voronoi partitioning
to improve estimates of user positions. By setting each AP as
the site used to construct the surrounding polygons, shown in
Fig. 4. In contrast to the Grid-based approach, we uniformly
spread the counts at each AP over the entire space of the corre-
sponding Voronoi polygon, assigning each count a coordinate
location. This allows us to reasonably infer user locations in
relation to whichever AP they are connected to. In this way we
can also more accurately represent the spread of WiFi signals
generated at each AP subject to physical constraints such as
walls, which a baseline Gridding approach fails to achieve.

We evaluate this approach by examining DP mechanisms
on workloads of randomly generated range queries over our
Voronoi diagram. Results of the best performing DP mecha-
nisms in Fig. 6 show that larger query sizes incur larger error.
We hypothesize that this is due to incrementally incurred DP
noise of queries covering multiple Voronoi cells. However, the
Voronoi Approach performs significantly better than the Grid-
ding Approach. We formalize this notion further by comparing
results of both approaches.

365

100 Identity
HB
QuadTree

uG

t

80

Mean Absolute Error

Query Size

Fig. 6. 2D Voronoi Results at € = 0.1

VII. 2-DIMENSIONAL METHOD COMPARISON

Fig. 7 and Fig. 8 show significant differences in results
produced by each approach at the same DP privacy parameter
€ = 0.1. Unsurprisingly, as epsilon increases in Fig. 11 and
Fig. 12 (meaning less noise is inserted to the counts of each
AP), each DP mechanism improves in accuracy. Notably the
Voronoi approach produces much less error at each measured
value of ¢, primarily due to its better ability to spread counts
in the vicinity of each AP. Hence we examine the differences
between the approaches used in spreading aggregate counts at
each AP across their respective floorplans.

As stated previously, the two approaches have fundamental
differences in their discretization of the floorplan. We focus
our attention on queries of smaller sizes (such as in Figure 7)
as they align more closely with queries we may pose in real-
life scenarios. Assuming that one AP covers one particular
room on a given floor, identifying locations of users connected
to that AP would constitute a small query size. In this setting,
our Voronoi approach clearly outperforms the baseline grid
partitioning by reducing the implicit errors in discretization.
We believe this to be a result of the Voronoi partitioning’s
ability to much more accurately mimic WiFi signal strength.
Slightly larger query sizes of () = 0.50 shown in Fig. 8 show
similar results. But for very large query sizes (analogous to
large auditoriums) we see that both approaches produce similar
results, as in Fig. 9. This is due to larger query sizes covering
multiple Voronoi cells and Grid cells, respectively. Hence,
noise error is incrementally accumulated in each case.

In Fig. 10 we evaluate two of the best performing algorithms
in both approaches: Identity and AG. Results displayed show
that the DP mechanisms in the Voronoi approach function
much better than in the Gridding approach especially at
smaller query sizes. As previously noted, lower query sizes
more closely align to real-world applications of such a system.
Hence, the proposed Voronoi partitioning is much more suited
to this application as it is capable of mimicking WiFi spread
in a highly accurate manner around access points.

VIII. CONCLUSION

In a 1-Dimensional setting, we see that simple DP mech-
anisms are sufficiently accurate in protecting user privacy,
provided that the use-cases only require simple point queries.
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However, when a query issuer may want to know counts in a

2-Di

mensional spatial region, whether that be an entire room,

hallway, or floor, we show that discretization schemes are more
important to accurately answering such queries than the noise
introducing DP mechanisms.

IX. ACKNOWLEDGEMENT

This research has been funded in part by NIH award
RO1LMO014026 and NSF grants I1S-1910950, CNS-2027794,
CNS-2125530 and IIS-2128661, and an unrestricted cash

gift

from Microsoft Research. Any opinions, findings, and

conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the sponsors such as the NIH and NSF.

(1]

[2]

[3]

REFERENCES

P. Kalnis, G. Ghinita, K. Mouratidis and D. Papadias, “Preventing
Location-Based Identity Inference in Anonymous Spatial Queries,” in
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no.
12, pp. 1719-1733, Dec. 2007, doi: 10.1109/TKDE.2007.190662.
Dwork, C., McSherry, F., Nissim, K., Smith, A. (2006). Calibrating
Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T.
(eds) Theory of Cryptography. TCC 2006. Lecture Notes in Computer
Science, vol 3876. Springer, Berlin, Heidelberg.

H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie and C. Spanos, “FreeDe-
tector: Device-Free Occupancy Detection with Commodity WiFi,”
2017 IEEE International Conference on Sensing, Communication and
Networking (SECON Workshops), 2017, pp. 1-5, doi: 10.1109/SEC-
ONW.2017.8011040.

366

[4]

[5]

[6]

[71

[8

—

[91
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Voronoi Approach

H. Zou, Y. Zhou, J. Yang, C. J. Spanos, “Device-free occu-
pancy detection and crowd counting in smart buildings with WiFi-
enabled IoT,” Energy and Buildings, 2018, pp. 309-322, doi:
10.1016/j.enbuild.2018.06.040

S. Min, R. Ahuja, Y. Liu, A. Zaidi, C. Phu, L. Nocera, and C. Shahabi,
“CrowdMap: Spatiotemporal Visualization of Anonymous Occupancy
Data for Pandemic Response,” ACM SIGSPATIAL, 2021.

C. Dwork and A. Roth, “The algorithmic foundations of Differential
Privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211-407, 2013.

M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang, “Prin-
cipled evaluation of differentially private algorithms using DPBench,”
ACM SIGMOD, 2016.

X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet
transforms,” ICDE 2010.

W. Qardaji, W. Yang, and N. Li, “Understanding hierarchical methods
for differentially private histograms,” PVLDB, 2013.

C. Li, M. Hay, G. Miklau, and Y. Wang, “A data- and workload-aware
algorithm for range queries under Differential Privacy,” PVLDB 2014.
M. Hardt, K. Ligett, F. McSherry, ”A simple and practical algorithm for
differentially private data release,” NeurIPS 2012

X. Zhang, R. Chen, J. Xu, X. Meng, and Y. Xie, “Towards accurate
histogram publication under Differential Privacy,” Proceedings of the
2014 SIAM International Conference on Data Mining, 2014.

Y. Xiao, L. Xiong, L. Fan, S. Goryczka, "DPCube: Differentially Private
Histogram Release through Multidimensional Partitioning,” 2012

G. Acs, C. Castelluccia, and R. Chen, “Differentially private histogram
publishing through lossy compression,” 2012 IEEE 12th International
Conference on Data Mining, 2012.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu, “Differentially private
histogram publication,” 2012 IEEE 28th International Conference on
Data Engineering, 2012.

W. Qardaji, Weining Yang, and Ninghui Li, “Differentially private grids
for geospatial data,” 2013 IEEE 29th International Conference on Data
Engineering (ICDE), 2013.

G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu, “Differ-
entially private spatial decompositions,” IEEE ICDE, 2012.



