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Abstract

Computational design of molecules for optimal performance is of interest in many fields, including
chemical engineering. Often, however, these methods, in particular those based on rigorous
mathematical optimization, do not explicitly take into consideration chemistry information, such
as (but not limited to) synthesis feasibility. This opinion article discusses traditional and current
approaches through examples from the literature where properties that depend on chemical
transformations of the molecule are incorporated in the design process. Through these examples,
the article highlights the importance of cheminformatics, graph theory, and machine learning in:
(1) representation of the molecules, (2) reaction prediction and generation, and (3) property
estimation. The article finally presents a vision of including information about chemical
transformations in molecule design procedures, highlighting rigorous optimization and machine

learning approaches such as generative modeling and reinforcement learning.
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1. Introduction

Design of molecules for a chemical process is of tremendous interest to chemical engineers and
chemists. The sheer size of the molecule universe, often estimated! to be on the order of 10296,
implies that experimental approaches are likely insufficient to explore this space comprehensively.
Computational approaches broadly termed computer-aided molecule design (CAMD)**, are
therefore more tractable in discovering promising molecular candidates for a target application.
Such approaches have been pursued for decades and include: (1) explicit enumeration of
molecules (either queried from a database such as PubChem or constructed from fragments) and
subsequent screening based on a chosen property metric’; (2) evolutionary optimization based
techniques to search the space using expert heuristics® ’; (3) rigorous mathematical optimization
including derivative-free optimization, to construct molecules from building blocks such that one
or more properties are optimized®!'; and (4) more recently, machine learning and artificial
intelligence based approaches that include generative modeling to sample molecules'?, continuous
optimization over a reduced-dimensional learned latent space'®, and reinforcement learning to
dynamically optimize the molecular structure to maximize rewards (e.g. a chosen property
metric)!* 5. Furthermore, the process systems engineering (PSE) community has correctly
identified the multiscale nature of molecule design by integrating this step with process-level

information'®'3,

These approaches enable identifying a molecule (or a set of molecules) that can be further
examined experimentally, thereby rendering the problem of molecule design substantially more
tractable, however, they are often not cognizant of the underlying chemistry-specific constraints.

Chemistry information can be pertinent to molecule design for at least three reasons. First,
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molecules identified by the chosen approach should be synthetically feasible (or synthesizeable),
i.e., they should be synthesized using available raw materials (feedstocks) and well-established
and selective chemistries. Mathematically rigorous methods such as optimization-based design or
artificial intelligence may identify molecules with superior properties than the reference (or
benchmark) molecules; however, these methods also often identify unrealistic structures that may
be too energetically unstable or require several synthesis steps to be produced cost-effectively in
an industrial setting'®. Second, in addition to requiring synthetic feasibility, plausible chemistry-
based restrictions may arise from a sustainability standpoint. For instance, there may be a desire
to produce the molecule from renewable sources and/or using benign chemistries. Concepts such
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as “bioprivileged” 2° molecules, i.e., whether or not a molecule can be made from biomass
the popular metrics such as E-factor?> and atom economy, that can be used to determine the
greenness of a molecule synthesis procedure, require ascertaining the synthesis routes to make the
target molecule from specific set of building blocks and chemistries. Third, in several cases such
as the design of fuels, energy carriers, solvents, and molecular catalysts, the underlying process
chemistry may be integral to the performance of the molecule and cannot be easily delinked.
Specific examples include: (1) being aware of the charging/discharging chemistry while designing
liquid organic hydrogen carriers (LOHCs)?; (2) tracking the decomposition chemistry to
determine the environmental impact of molecules?*?%; and (3) taking into account how
intermediates and transition states of the reaction network interact with the molecular catalyst or
solvent?’. Finally, rather than designing a molecule for a specific target, chemistry information is
also relevant in charting and analyzing the synthesis landscape for product portfolio design.

Specifically, mapping out the whole network of synthesis options available, starting from a given

set of reactants and using known chemistries, provides a wholistic (or “systems”) understanding



of “what can be made?” and “how can they be made?”. For instance, one could address questions
such as: what are the molecules that can be made from lignin monomers using heterogeneous

catalysis? Which of them are feasible candidates as fuels?

Incorporating chemistry information, beyond synthetic feasibility, in the overall process of
designing molecules is well-recognized. While there are specific examples in the literature that
accomplish this, there are no systematic and rigorous frameworks that have been pursued to
integrate molecular characteristics related to underlying chemical transformations within the
problem of molecule design. Even synthesis feasibility is arguably often treated as a secondary
requirement with primacy given to molecular performance metrics. This opinion article focuses
on current chemistry-informed approaches to molecule design. The next section introduces general
concepts useful in molecule design and tracking chemistry while the subsequent section discusses
specific examples from the literature where chemistry information has been incorporated at
different stages of the design process. This opinion will skip the detailed discussion of property-
based molecule design methods in view of other comprehensive works on that topic. Finally, this
article ends with an outlook for seamlessly imbuing molecule design procedures with chemistry

cognizance.

II. General concepts

Chemical graph theory: Fundamental to automated processing of chemical information is the
representation of molecules as graphs, wherein atoms represent the nodes and the bonds represent

the edges?® (Figure 1). The nodes and edges are further annotated with atom-specific and bond-



specific information such as atom type, charge, unpaired electron count, bond order, etc.
Consequently, many concepts from algorithmic graph theory, such as breadth- and depth-first
graph traversal, automorphism and subgraph isomorphism, cycle detection, etc., and from spectral
graph theory, such as graph Laplacian, adjacency matrix, eigenvalues and eigenspectrum, etc.,
have been employed to represent, characterize, and manipulate molecular structures. More
recently, graph kernels?® and graph convolutional networks®° find place in the context of machine

learning for molecules.
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Figure 1: Graph theoretic representation of acetaldehyde. Atom and bond attributes are
included.

Molecular property prediction: CAMD, per se, requires the prediction of relevant properties using
a reliable method. While ab initio methods including quantum chemistry and molecular
simulations offer robust predictive framework to compute electronic to bulk properties, the
associated computational cost often render them as intractable options. Data-driven methods,
trained on experimental or computational data (or both) offer a more tractable solution particularly
if a large number of property evaluations are necessary for identifying suitable candidates.
Traditionally, such models included group additivity®' (Figure 2a) and quantitative structure

property relations*® while more recently the use of machine learning, ranging from generalized



sparse additive models*® ** to deep neural networks®>7, has gained significant attention due to
data availability in many cases and advances in computational methods and theories to represent
discrete data structures such as graphs. In particular, graph convolutional neural networks to
identify latent spaces as well as predict molecular properties®® * (Figure 2b) have gained
significant attention. In cases where data is limited or hard to acquire, the emerging ideas include
transfer*® and multitask learning*' whereby correlated data-rich and data-lean properties (tasks)
can be learned together (sequentially as in the case of transfer learning and concurrently in the case
of multitask learning). Further, a judicious design of the training set using concepts such as active

learning*? can also minimize the cost of building reliable data-driven models.
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Figure 2 (a) An illustrative schematic of group contribution: Butane-1,2,3-triol is decomposed
into first (solid), second (dashed), and third (dotted) order groups (the formula for group
contribution is also shown), (b) A schematic of a graph convolutional neural network to compute
properties from molecular structure as input. The group contribution formula shown in (a) is an
easy-to-interpret linear model involving the summation of a regressed contribution, [,
corresponding to each group (fragment) i, times the occurrence of the fragment, x;.

Generation of synthesis routes: Synthesis pathways can be generated either in the forward
direction, i.e., starting from the reactants and proceeding forward until target molecules are
reached, or in the reverse direction (retrosynthesis) wherein the formation of a given molecule is

traced backwards until easily available molecules are reached. In both approaches, the traditional



way to generate reactions and intermediates is through the use of expert-determined reaction
templates (or reaction rules) as shown in Figure 3. These templates contain information about the
plausible set of chemical transformations that can occur; for instance, double bond hydrogenation,
Friedel-Crafts alkylation, and the Suzuki coupling can all be considered as generic reaction rules.
When these templates are applied to the molecular graph of the reactant (or the product in the case
of retrosynthesis), new graphs are generated corresponding to the product (or the reactant in the
case of retrosynthesis), thereby leading to the generation of new reactions. The templates can be
applied iteratively to generate a sequence of steps that relate the initial reactant and the final
product. Computer-aided synthesis planning (CASP), or computer-aided organic synthesis
(CAOS), has largely revolved around retrosynthesis** * because the goal is to produce a specific
molecule (the target drug, for instance). On the other hand, forward synthesis is more relevant
when the synthesis landscape needs to be explored or pathways to a class of molecules (e.g.,

alcohols) needs to be identified.
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Figure 3: A schematic of graph-based generation of reactions using reaction templates (rules). I.

shows a carbonyl hydrogenation rule; Il. shows the graph representation of this rule; Ill. shows

the application of graph transformation rule to the reactant graph (Figure 1) to produce product
graph (ethanol); IV. shows the resulting hydrogenation reaction.

Forward synthesis is usually carried out using rule-based reaction network generators*. A recent
example of such tools is Rule Input Network Generator (RING) developed by Rangarajan et al*®-
8. As shown in Figure 4, RING accepts as input initial reactants and reaction rules, written in the

form of a program in a domain-specific chemistry specification language. These instructions are

then used by a network generator that iteratively applies the rules to the reactants and products



generated thereof to construct a comprehensive reaction network that is complete and correct with
respect to the inputs. RING also accepts instructions and queries to extract information from the
reaction network, such as identifying pathways connecting the reactants with the products.
Pathways
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Figure 4: Schematic of inputs, outputs, and components of RING, an example of a rule-based
network generator for forward generation of synthesis network and routes.

II1. Approaches and examples of chemistry cognizant molecule selection

This section sketches a few approaches that directly or indirectly use chemistry information while
designing molecules. Most of the applications in the literature focus on synthesizeability (or
synthesis routes) either during or after molecule design; applications involving chemistry
information other than synthesis (forward or reverse) are relatively scarce but are also discussed

to highlight the different types of chemistry information that may need to be tracked.

Synthesizeability check as a postprocessing step: A straight-forward way to account for
synthesizeability in design approaches is to use it as a secondary screening criterion once
molecules have been designed/selected based on performance criteria. Such an evaluation can be
via: (1) explicit identification of the retrosynthetic pathway so that potential bottlenecks can be

determined a priori, or (2) computation of synthesis or molecular complexity scores as relatively



inexpensive surrogate indicators of how easy it is to synthesize the target molecule. Retrosynthesis
tools (CASP) can be used to identify the synthesis routes in the first method; as mentioned earlier,
traditionally these tools utilized reaction templates and expert heuristics to identify promising
pathways*’; more recently, machine learned tools for reaction prediction have been effectively
used for the same®*>!. For the second method, either traditional additive, fragment-based models
can be used as surrogate scores for ease of synthesis and molecular complexity>>°. In particular,
these models were usually trained on sets of molecules whose ease of synthesis was determined
by organic synthetic chemists, whether or not they are available commercially or present in
databases such as PubChem>®. More recently, machine learned models have been used to evaluate
synthetic feasibility. For instance, in one study, a neural network was trained on a reaction corpus
to compute the synthesis scores of molecules with the constraint that the score of the product in a
reaction in the corpus is greater than or equal to that of the reactants>’. This ensures that the score
is roughly correlated to the number of steps required to produce the molecule. In another study, a
retrosynthesis tool was used on a collection of molecules to determine whether or not synthetic
pathways could be found; subsequently, a machine learned classifier was trained to predict the
result (i.e., success or failure) of the retrosynthetic tool*. While both approaches offer a means to
incorporate synthetic feasibility into the overall workflow of molecule design, the drawback is that
it is plausible that all of the solutions from the molecule design step, or at least a large fraction of
them, may be deemed synthetically infeasible; from a computational cost standpoint, such a

workflow would be inefficient.

Incorporating synthetic feasibility checks during molecule screening: High-throughput virtual

screening, i.e., the approach of explicit enumeration of large number of molecules and their
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subsequent evaluation one-by-one, can be modified so that the library of molecules that is screened
is generated in a focused manner. For instance, well-documented synthesis reaction templates®
can be systematically applied to easily available starting materials (and their products) to generate
a large number of synthetically feasible molecules®®-®2. More recently, it has been shown that

6364 e.g., using recurrent neural networks or autoencoders, can be used to

generative models
sample new molecules that are similar in properties to a set of known molecules; these methods
can then be employed to identify more synthesizeable molecules if the known molecules
themselves are easily synthesized. Generation and evaluation of focused libraries are particularly

popular in drug design to create lead libraries for virtual screening; however, they do not guarantee

solutions with performance as good as optimization-based approaches.

Reaction network generators can also be used to generate these focused molecular libraries; the
inputs (reactants and reaction rules) to these tools can be selected in such a way that the molecules
generated by the network (or a specific subset of it) will constitute the library; if the reaction rules
are derived from known chemistries, the molecules are in principle synthesizeable. For instance,
Broadbelt and coworkers recently showed that, using biomass-derived molecules as reactants and
common catalytic steps as reaction rules, network generation using their in-house software
NETGEN can identify biopriviledged compounds®’. Several of the generated compounds were
already in databases such as PubChem database indicating that many of the industrially useful
molecules have alternative pathways that may be more sustainable. Similarly, Rangarajan et al.
used RING to generate the space of fatty alcohols that can be derived from biomass-based platform

chemicals and known catalysis rules®®. Such an approach could enable applying complex chemical
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characteristics (or information, in general), e.g., being biomass-derived or derived from

biochemical routes, as constraints in molecule design.

Network flux analysis to optimally select synthesis routes and molecules: A number of molecules
may satisfy property specifications for an application, multiple routes may exist to make each
molecule, and a given raw material can be plausibly used to make many of the desired molecules.
One therefore encounters two questions while designing molecules: what to make? and how?

Reaction network flux analysis (RNFA), proposed by Marquardt and coworkers®” 8

, 1s quite
valuable in addressing this. A reaction network of synthesis options comprising a set of potential
products is first assembled in any suitable way (as will be further discussed). A flux-balance based
optimization problem is then solved to select initial reactants, reactions (and thereby one or more
pathways), and end products that satisfy user-specified criteria and objective. The problem can be
set up as a linear program with the variables being material flow for each molecule and fluxes for
each reaction as generically shown in Scheme 1; binary variables can be added (to determine if a
reaction is selected or not) to prevent reaction cycles and find alternative solutions. The objective
is usually a pathway-based technoeconomic metric, such as: (1) minimizing a cost function that
depends on the selected reactions and their fluxes or (2) minimizing the largest reaction enthalpy
barrier in the selected pathway. The flux balance shown in scheme 1 is a constraint to ensure that
there is an uninterrupted pathway between initial reactants and end product. One or more products

can be selected by the problem, e.g., a specific product or a blend of multiple products satisfies

boiling point or heating value requirements).

Scheme 1. A simplified problem formulation for simultaneous product and synthesis route selection. ® is
the objective of choice and is a function of ‘[, the molecular flows (input, output) for each compound
and the flux through each reaction. A is the stoichiometry matrix of the synthesis reaction network and 1
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represents a set of compounds. The problem is formulated to identify pathways to one or more output
compounds. The waste flux is set to be defined

Reaction
finpus neork Foutpus
Input fllix Reaction flux Output flux
Technoeconomic
m}“{d)i} objective
ey ™ Fipua + Af e = Foutpue = 0

Allowed inputs/outputs: foutputi = 0 Vi & lowgpue  finpuei = 0 Vi € Tinpue

Linear property specs: P(foutput) =0

In the original work, the reaction network was manually assembled from the literature; Marvin et
al.%, on the other hand, used RING to generate a more comprehensive network of biomass-derived
molecules and corresponding reactions. In particular, as schematized in Figure 5, carefully curated
set of reaction rules based on proven heterogeneous catalytic transformations and the top DOE-
determined biomass-based platform chemicals were input into RING to generate a network of
several thousand reactions and species (which, in principle, are also bioavailable). This network
contained several compounds that could be blended with gasoline. The network was then fed into
a mixed-integer linear program that identified product portfolio (i.e., mixture of molecules) that
could be blended with representative gasoline samples such that all of ASTM fuel standards could
be satisfied. Concurrently, the synthesis routes to make each of the molecules from biomass were
also identified. Multiple optimal solutions can be identified and analyzed further in terms of
thermochemistry or process considerations (such as reaction or phase coupling) in a post-

processing step’’. The network, in principle, can also include a comprehensive set of reported
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reactions in the literature, e.g., the reaxys database. Lakpin and coworkers used this database to
identify strategic molecules (via graph theory and network traversal, not RNFA) that could play a
role in upcycling waste streams’!. Arguably, one could apply RNFA to such a network although
techniques such as reinforcement learning’? can also be pursued in view of the sheer size of the
network (and, consequently, of the optimization problem in RNFA). Finally, the network of

synthesis options can also be generated using retrosynthesis pathways for a collection of target

molecules’.
_ Physicochemical properties
Top DOE biomass Reactro'n rules Thermochemical properties
1 1
platform molecules v v
RN A Network

—rr el I > Gasoline blends

LA e s pa L 5 > --- )
ST “ Synthesis routes

Figure 5: Automated workflow for product and synthesis route selection using network generation
and optimization.

The RNFA approach may also not yield molecules with performance on par with optimization-
based approaches; however, it allows for effectively combining chemistry information and
molecule selection into a single-step optimization problem. This provides a more systems
viewpoint in design; a molecule with exquisite properties but that is not easily synthesizeable is,
from a wholistic view, inferior to a synthesizeable molecule that has relatively poor performance
but satisfies minimum property specs. Furthermore, the formulation allows for multiple objectives
to be explored so that contrasting solutions may be identified. For instance, sustainability metrics
(measured as the flux of waste CO> generated as byproduct, the E-factor of the products, or LCA
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specs’®) can be introduced as an alternative objective to cost or thermochemistry and pareto-
optimal solutions can be identified and analyzed. Synthesis network can also be controlled by
precisely choosing which reactants and reaction rules are allowed; for instance, RING can be used
to (1) generate molecules derivable from shale gas or carbon dioxide (analogous to bioprivileged)
or (2) create synthons using electrochemistry, which can then be used as input to the flux balance

analysis.

Incorporating chemistry characteristics beyond synthesizeability: Reaction network generation
can also be used to explicitly include chemistry information beyond synthesis into the process of
molecule selection. Consider the example of ) )
Discharging H,

designing two-way liquid organic hydrogen
carriers (LOHCs)®. Here, a hydrogen-lean
molecule, such as toluene, is hydrogenated at ~ Methylcyclohexane

(LOHC)

the energy source using molecular hydrogen;

_ Figure 6. A schematic of two-way LOHC with
the hydrogen-rich product, discharging and charging chemistries.

methylcyclohexane, the hydrogen carrier (i.e., the LOHC), can then be stored and transported to
the point of energy demand where it can be dehydrogenated to produce hydrogen (Figure 6); the
toluene molecule thus generated is recycled back to the source. One important property of LOHCs
is the hydrogen storage capacity, i.e., the amount of hydrogen released per gram of the hydrogen-
rich form. Determining this theoretical capacity automatically for any molecule (as is needed for
molecule design), however, is nontrivial because to quantify the amount of hydrogen released by
a single molecule, the hydrogen-rich and hydrogen-lean pair connected via a series of

dehydrogenation reactions has to be identified. Furthermore, the practical storage capacity depends
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on the kinetics and thermochemistry of the individual dehydrogenation steps (of which there can

be multiple, each with varying thermokinetics). Paragian et al.?}

showed that the hydrogen-
rich/lean pair and the dehydrogenation pathway(s) connecting the molecules can be determined
using RING. In particular, a seed molecule from a molecule database (e.g., the Pubchem or the
GDB database) can be taken and its fully hydrogenated and dehydrogenated forms can be

identified using RING; these two molecules will form the LOHC pair and the reaction network

will contain the pathways connecting them.

Network generation could be applied in a similar way to determine any molecular property that is
dependent on some underlying chemical transformations. For instance, determining the
environmental impact of a molecule may require identifying decomposition pathways and
determining the toxicity or the degradation rates of the intermediates involved; a network generator

can enumerate the decomposition reactions and extract the pathways?.

IV. Vision: Towards a multiscale chemistry-cognizant molecule design

The examples discussed so far clearly indicate that incorporating chemistry information in
molecule design is non-trivial and there may not be single optimization formulation that can be
employed for all problems. However, it can be argued that that with machine learning, availability
of data, and advanced optimization, chemistry information can be well-integrated with the problem

of molecule design. This section lists a couple of directions as envisioned by the author.
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Explicitly evaluating synthesis feasibility, bioprivilege of a molecule, or even the hydrogen
capacity of LOHCs via forward generation or retrosynthesis within rigorous optimization-based
approaches is computationally challenging. However, if surrogate metrics of these properties can
be computed, they could be included as constraints within the optimization problem. As discussed
earlier, such data-driven surrogates are already available for evaluating synthesizeability; similar
scores can be derived for other chemistry-based properties of interest. For instance, the hydrogen
capacity of a molecule can in principle be determined from its structure using a neural network
model that is trained on a large set of hydrogen-rich/lean pairs generated using RING. Similarly,
data-driven models can be developed to determine whether a molecule is bioprivileged or ease of
separation of major and minor products in a synthesis sequence’. Given the nonlinearity of these
properties with respect to structural information, however, these surrogates are likely to be highly
nonlinear, thus rendering the optimization problem challenging to solve. However, the PSE and
the larger optimization community has recently tackled such problems, for instance in the context

of process synthesis and design’®%,

Data-driven surrogate functions of more complex
characteristics can also be included within such optimization problems. As an example, solutions
of RNFA to produce specific molecules based on techoeconomic objectives can be used to train
machine learned models that offer a more process-related metric than synthesis scores.
Formulating such a network optimization problem (within RNFA) though will require surrogate
models relating a reaction with a process metric such as capital or operating cost. Voll and
Marquardt®’, and later Marvin et al.%’, used an empirical relation for cost based on energy loss

across the process (which is roughly related to the reaction enthalpy) to construct the optimization

objective. To be broadly applicable, however, more accurate and reliable data-driven approach
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that takes into consideration a wider array of processes and design parameters, such as models
being trained on a large number of solutions of detailed and optimal design of various chemical

processes, is required.

Alternatively, concepts from reinforcement learning can be combined with forward synthesis to
generate synthetically feasible optimal molecules®!. For instance, rather than create the entire
network of synthesis options and then identify optimal molecules (and routes) within them, the
network generation can be systematically biased to generate molecules with desired properties.
Typical network generation process is comprehensive. However, to generate optimal molecules,
not every intermediate needs to be processed further and not every rule needs to be applied to every
molecule; only some of the intermediates and some of the rules (applied on specific types of
intermediates) may lead to the generation of desired molecules. One could then bias the generation
to only focus on these intermediates and rules by treating the problem as a Markov decision process
(MDP) and adopt reinforcement learning techniques to solve it. Biased generation could directly
lead to optimal molecules, or could instead be used to form a much smaller (and focused) network
of synthesis options and RNFA can subsequently be applied to find optimal chemistries and
molecules. Other complex chemistry-based metrics (e.g., hydrogen capacity of LOHCs) can also

be incorporated by modifying the reward of the MDP appropriately.

Generative models that sample from a latent space could also be modified to incorporate chemistry
information®?. For instance, the training set for the underlying deep neural networks can be biased

by only including synthetically feasible molecules. Alternatively, generative models can be trained
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for the whole reaction pathways so that sampling new pathways (and the associated product) will
always ensure synthetic feasibility. Such techniques could be employed to other characteristics

such as whether or not they can be generated from biomass.

Two final remarks end this section. First, one can note that the organic material space extends
beyond single “OD” molecular space. Indeed, 1D chains (e.g. polymers), 2D sheets, and 3D
molecular structures (e.g. covalent organic frameworks) can also be designed and synthesized
usually by first constructing the building blocks (organic monomers) that can then polymerize to
form larger, more complex structures. The need for chemistry informed molecule design
approaches also arises in this context; for instance, while the space of COFs is large, not all of
them are synthetically feasible or bioprivileged and incorporating such information while
designing the building blocks requires the tools and approaches discussed above. Second, like any
other molecular property, determining synthesizeability or any other property related to chemical
transformations has an associated prediction error and uncertainty. It is important, therefore, to
also consider these while quantifying the reliability of the solutions identified using a chosen

design approach.

V. Conclusions

This opinion article discusses the concept of including chemistry information, including but
beyond synthetic feasibility, while designing organic molecules. Multiple approaches have been
considered in the literature, primarily in the context of synthesis, that explicitly (forward synthesis

or retrosynthesis) or implicitly (synthetic feasibility scores) incorporate chemistry information
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during or after molecular screening or performance-based optimization. However, no
comprehensive framework exists for chemistry cognizant molecule design. This article envisions
that a combination cheminformatics and graph theory, optimization, and machine learning

(including reinforcement learning) can provide this framework.

Acknowledgements: SR acknowledges support from Lehigh University. This work was partially

supported by the National Science Foundation (Award # 1953245).

The author declares no conflict of interest.

References
1. Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A., Estimation of the size of drug-like chemical space
based on GDB-17 data. Journal of Computer-Aided Molecular Design 2013, 27 (8), 675-679.
2. Austin, N. D.; Sahinidis, N. V.; Trahan, D. W., Computer-aided molecular design: An introduction

and review of tools, applications, and solution techniques. Chemical Engineering Research & Design 2016,
116, 2-26.

3. Ng, K. M.; Gani, R., Chemical product design: Advances in and proposed directions for research
and teaching. Computers & Chemical Engineering 2019, 126, 147-156.
4, Gertig, C.; Leonhard, K.; Bardow, A., Computer-aided molecular and processes design based on

quantum chemistry: current status and future prospects. Current Opinion in Chemical Engineering 2020,
27, 89-97.

* A discussion of how quantum chemistry methods, including COSMO approaches, can be used in molecule
design, in particular, design of solvents and molecular catalysts

5. Pyzer-Knapp, E. O.; Suh, C.; Goémez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Aspuru-Guzik,
A., What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annual
Review of Materials Research 2015, 45 (1), 195-216.

6. Sundaram, A.; Ghosh, P.; Caruthers, J. M.; Venkatasubramanian, V., Design of fuel additives
using neural networks and evolutionary algorithms. Aiche Journal 2001, 47 (6), 1387-1406.

7. Henault, E. S.; Rasmussen, M. H.; Jensen, J. H., Chemical space exploration: how genetic
algorithms find the needle in the haystack. 2020; Vol. 2, p el 1.

8. Samudra, A. P.; Sahinidis, N. V., Optimization-Based Framework for Computer-Aided Molecular
Design. Aiche Journal 2013, 59 (10), 3686-3701.

9. Conte, E.; Gani, R.; Ng, K. M., Design of Formulated Products: A Systematic Methodology. Aiche

Journal 2011, 57 (9), 2431-2449.

20



10. Liu, Q. L.; Zhang, L.; Liu, L. L.; Du, J.; Tula, A. K.; Eden, M.; Gani, R., OptCAMD: An
optimization-based framework and tool for molecular and mixture product design. Computers & Chemical
Engineering 2019, 124, 285-301.

* Presents a rigorous and generic MINLP formulation and solution for product and mixture design

11. Sun, Y. J.; Sahinidis, N. V.; Sundaram, A.; Cheon, M. S., Derivative-free optimization for
chemical product design. Current Opinion in Chemical Engineering 2020, 27, 98-106.

* Presents methods and opportunities to employ derivative free methods to solve the challenging
optimization problems in molecule design where first principle property prediction is required.

12. Sanchez-Lengeling, B.; Aspuru-Guzik, A., Inverse molecular design using machine learning:
Generative models for matter engineering. Science 2018, 361 (6400), 360-365.

13. Gomez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernandez-Lobato, J. M.; Sanchez-Lengeling,
B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic
Chemical Design Using a Data-Driven Continuous Representation of Molecules. Acs Central Science 2018,
4(2),268-276.

14. Zhou, Z. P.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P., Optimization of Molecules via Deep
Reinforcement Learning. Scientific Reports 2019, 9.

15. Popova, M.; Isayev, O.; Tropsha, A., Deep reinforcement learning for de novo drug design. Science
Advances 2018, 4 (7).

16. Adjiman, C. S.; Galindo, A.; Jackson, G., Molecules matter: The expanding envelope of process
design. Computer Aided Chemical Engineering 2014, 34, 55-64.

17. Schilling, J.; Tillmanns, D.; Lampe, M.; Hopp, M.; Gross, J.; Bardow, A., From molecules to
dollars: integrating molecular design into thermo-economic process design using consistent thermodynamic
modeling. Molecular Systems Design & Engineering 2017, 2 (3), 301-320.

18. Adjiman, C. S.; Sahinidis, N. V.; Vlachos, D. G.; Bakshi, B.; Maravelias, C. T.; Georgakis, C.,
Process Systems Engineering Perspective on the Design of Materials and Molecules. Industrial &
Engineering Chemistry Research 2021, 60 (14), 5194-5206.

* Provides a PSE thinking to problems involving molecule and material (including catalyst) design

19. Gao, W. H.; Coley, C. W., The Synthesizability of Molecules Proposed by Generative Models.
Journal of Chemical Information and Modeling 2020, 60 (12), 5714-5723.

*+ Presents how recent Al based generative models may not result in synthesizeable molecules and
discusses strategies to improve synthesizeability in generative Al models.

20. Shanks, B. H.; Keeling, P. L., Bioprivileged molecules: creating value from biomass. Green
Chemistry 2017, 19 (14), 3177-3185.

21. Moity, L.; Molinier, V.; Benazzouz, A.; Barone, R.; Marion, P.; Aubry, J.-M., In silico design
of bio-based commodity chemicals: application to itaconic acid based solvents. Green Chemistry 2014, 16
(1), 146-160.

22. Sheldon, R. A., The E factor 25 years on: the rise of green chemistry and sustainability. Green
Chemistry 2017, 19 (1), 18-43.

23. Paragian, K.; Li, B. W.; Massino, M.; Rangarajan, S., A computational workflow to discover
novel liquid organic hydrogen carriers and their dehydrogenation routes. Molecular Systems Design &
Engineering 2020, 5 (10), 1658-1670.

21



** Proposes and demonstrates a workflow that is able to identify promising LOHC pairs that are connected
by a sequence of dehydrogenation steps.

24, Mayeno, A. N.; Yang, R. S. H.; Reisfeld, B., Biochemical reaction network modeling: Predicting
metabolism of organic chemical mixtures. Environmental Science & Technology 2005, 39 (14), 5363-5371.
25. Wei, C. Y.; Rogers, W.J.; Mannan, M. S., Application of runaway reaction mechanism generation
to predict and control reactive hazards. Computers & Chemical Engineering 2007, 31 (3), 121-126.

26. Finley, S. D.; Broadbelt, L. J.; Hatzimanikatis, V., Computational Framework for Predictive
Biodegradation. Biotechnology and Bioengineering 2009, 104 (6), 1086-1097.

27. Struebing, H.; Ganase, Z.; Karamertzanis, P. G.; Siougkrou, E.; Haycock, P.; Piccione, P. M.;
Armstrong, A.; Galindo, A.; Adjiman, C. S., Computer-aided molecular design of solvents for accelerated
reaction kinetics. Nature Chemistry 2013, 5 (11), 952-957.

28. Trinajstic, N., Chemical graph theory. Routledge: 2018.

29. Ghosh, S.; Das, N.; Goncalves, T.; Quaresma, P.; Kundu, M., The journey of graph kernels
through two decades. Computer Science Review 2018, 27, 88-111.

30. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P., Molecular graph convolutions:
moving beyond fingerprints. Journal of Computer-Aided Molecular Design 2016, 30 (8), 595-608.

31. Hukkerikar, A. S.; Sarup, B.; Ten Kate, A.; Abildskov, J.; Sin, G.; Gani, R., Group-
contribution(+) (GC(+)) based estimation of properties of pure components: Improved property estimation
and uncertainty analysis. Fluid Phase Equilibria 2012, 321, 25-43.

32. Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A.,
Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for
Prediction. Chemical Reviews 2010, 110 (10), 5714-5789.

33. Li, B.; Rangarajan, S., Designing compact training sets for data-driven molecular property
prediction. Molecular Systems Design & Engineering, 2019, 4(5), 1048-1057.

* Discusses how to design training sets for data-driven molecular property prediction

34, Gu, G. H.; Plechac, P.; Vlachos, D. G., Thermochemistry of gas-phase and surface species via
LASSO-assisted subgraph selection. Reaction Chemistry & Engineering 2018, 10.1039/C7RE00210F.

35. Wieder, O.; Kohlbacher, S.; Kuenemann, M.; Garon, A.; Ducrot, P.; Seidel, T.; Langer, T., A
compact review of molecular property prediction with graph neural networks. Drug Discovery Today:
Technologies 2020.

36. Alshehri, A. S.; Gani, R.; You, F. Q., Deep learning and knowledge-based methods for computer-
aided molecular design-toward a unified approach: State-of-the-art and future directions. Computers &
Chemical Engineering 2020, 141.

* Presents a detailed comparative analysis of knowledge-based (traditional) and machine learning methods
(modern) for molecule design.

37. Liu, Q. L.; Zhang, L.; Tang, K.; Liu, L. L.; Du, J.; Meng, Q. W.; Gani, R., Machine learning-
based atom contribution method for the prediction of surface charge density profiles and solvent design.
Aiche Journal 2021, 67 (2).

38. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. In Neural message passing
for quantum chemistry, International Conference on Machine Learning, PMLR: 2017; pp 1263-1272.

39. Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Goémez-Bombarelli, R.; Hirzel, T.;
Aspuru-Guzik, A.; Adams, R. P., Convolutional networks on graphs for learning molecular fingerprints.
arXiv preprint arXiv:1509.09292 2015.

40. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. In 4 Survey on Deep Transfer Learning,
Cham, Springer International Publishing: Cham, 2018; pp 270-279.

22



41. Ruder, S., An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098 2017.

42, Sener, O.; Savarese, S., Active learning for convolutional neural networks: A core-set approach.
arXiv preprint arXiv:1708.00489 2017.

43, Todd, M. H., Computer-aided organic synthesis. Chemical Society Reviews 2005, 34 (3), 247-266.
44, Szymku¢, S.; Gajewska Ewa, P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk,
M.; Grzybowski Bartosz, A., Computer-Assisted Synthetic Planning: The End of the Beginning.
Angewandte Chemie International Edition 2016, 55 (20), 5904-5937.

45. Broadbelt, L. J.; Pfaendtner, J., Lexicography of kinetic modeling of complex reaction networks.
Aiche Journal 2005, 51 (8),2112-2121.

46. Rangarajan, S.; Bhan, A.; Daoutidis, P., Language-oriented rule-based reaction network generation
and analysis: Applications of RING. Computers & Chemical Engineering 2012, 46, 141-152.

47. Rangarajan, S.; Bhan, A.; Daoutidis, P., Language-oriented rule-based reaction network generation
and analysis: Description of RING. Computers & Chemical Engineering 2012, 45, 114-123.

48. Rangarajan, S.; Bhan, A.; Daoutidis, P., Rule-Based Generation of Thermochemical Routes to

Biomass Conversion. Industrial & Engineering Chemistry Research 2010, 49 (21), 10459-10470.

49. Hoffmann, R. W., Computer-Aided Synthesis Planning. In Elements of Synthesis Planning,
Hoffmann, R. W., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 145-148.

50. Coley, C. W.; Green, W. H.; Jensen, K. F., Machine Learning in Computer-Aided Synthesis
Planning. Accounts of Chemical Research 2018, 51 (5), 1281-1289.

51. Segler, M. H. S.; Preuss, M.; Waller, M. P., Planning chemical syntheses with deep neural networks
and symbolic Al. Nature 2018, 555, 604.

52. Boda, K.; Seidel, T.; Gasteiger, J., Structure and reaction based evaluation of synthetic
accessibility. Journal of Computer-Aided Molecular Design 2007, 21 (6), 311-325.
53. Ertl, P.; Schuffenhauer, A., Estimation of synthetic accessibility score of drug-like molecules based

on molecular complexity and fragment contributions. Journal of Cheminformatics 2009, 1.

54. Bottcher, T., An Additive Definition of Molecular Complexity. Journal of Chemical Information
and Modeling 2016, 56 (3), 462-470.

55. Li, J.; Eastgate, M. D., Current complexity: a tool for assessing the complexity of organic
molecules. Organic & Biomolecular Chemistry 2015, 13 (26), 7164-7176.

56. Kim, S.; Chen, J.; Cheng, T. J.; Gindulyte, A.; He, J.; He, S. Q.; Li, Q. L.; Shoemaker, B. A.;
Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E., PubChem in 2021: new data content and
improved web interfaces. Nucleic Acids Research 2021, 49 (D1), D1388-D1395.

57. Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F., SCScore: Synthetic Complexity Learned
from a Reaction Corpus. Journal of Chemical Information and Modeling 2018, 58 (2), 252-261.

58. Thakkar, A.; Chadimova, V.; Bjerrum, E. J.; Engkvist, O.; Reymond, J. L., Retrosynthetic
accessibility score (RAscore) - rapid machine learned synthesizability classification from Al driven
retrosynthetic planning. Chemical Science 2021, 12 (9), 3339-3349.

» This work develops an Al classifier to predict the synthesizeability of a molecule trained on retrosynthetic
pathways predicted by a synthesis planning tool.

59. Hartenfeller, M.; Eberle, M.; Meier, P.; Nieto-Oberhuber, C.; Altmann, K. H.; Schneider, G.;
Jacoby, E.; Renner, S., A Collection of Robust Organic Synthesis Reactions for In Silico Molecule Design.
Journal of Chemical Information and Modeling 2011, 51 (12), 3093-3098.

60. Chevillard, F.; Kolb, P., SCUBIDOQO: A Large yet Screenable and Easily Searchable Database of
Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic
Tractability. Journal of Chemical Information and Modeling 2015, 55 (9), 1824-1835.

23



61. Cramer, R. D.; Soltanshahi, F.; Jilek, R.; Campbell, B., AlIChem: Generating, searching, and
manipulating 1020 synthetically accessible structures. Abstracts of Papers of the American Chemical
Society 2007, 233, 238-238.

62. Nicolaou, C. A.; Watson, I. A.; Hu, H.; Wang, J. B., The Proximal Lilly Collection: Mapping,
Exploring and Exploiting Feasible Chemical Space. Journal of Chemical Information and Modeling 2016,
56 (7), 1253-1266.

63. Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries
for Drug Discovery with Recurrent Neural Networks. Acs Central Science 2018, 4 (1), 120-131.

64. You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J., Graph convolutional policy network for goal-
directed molecular graph generation. arXiv preprint arXiv:1806.02473 2018.

65. Zhou, X. W.; Brentzel, Z. J.; Kraus, G. A.; Keeling, P. L.; Dumesic, J. A.; Shanks, B. H.;
Broadbelt, L. J., Computational Framework for the Identification of Bioprivileged Molecules. Acs
Sustainable Chemistry & Engineering 2019, 7 (2), 2414-2428.

*« This paper discusses a workflow that uses a network generator, NETGEN, to identify molecules that can
be made from easily available biomass-derived platform molecules and well-established chemistries.

66. Rangarajan, S.; Bhan, A.; Daoutidis, P., Identification and analysis of synthesis routes in complex
catalytic reaction networks for biomass upgrading. Applied Catalysis B-Environmental 2014, 145, 149-160.
67. Voll, A.; Marquardt, W., Reaction network flux analysis: Optimization-based evaluation of

reaction pathways for biorenewables processing. AIChE Journal 2011, 58 (6), 1788-1801.

68. Dahmen, M.; Marquardt, W., Model-Based Formulation of Biofuel Blends by Simultaneous
Product and Pathway Design. Energy & Fuels 2017, 31 (4), 4096-4121.

69. Marvin, W. A.; Rangarajan, S.; Daoutidis, P., Automated Generation and Optimal Selection of
Biofuel-Gasoline Blends and Their Synthesis Routes. Energy & Fuels 2013, 27 (6), 3585-3594.

70. Allan, D.; Marvin, W. A.; Rangarajan, S.; Daoutidis, P., Optimization and Analysis of Chemical
Synthesis Routes for the Production of Biofuels. In Computer Aided Chemical Engineering, Elsevier: 2015;
Vol. 37, pp 1103-1108.

71. Weber, J. M.; Lio, P.; Lapkin, A. A., Identification of strategic molecules for future circular supply
chains using large reaction networks. Reaction Chemistry & Engineering 2019, 4 (11), 1969-1981.

72. Khan, A.; Lapkin, A., Searching for optimal process routes: A reinforcement learning approach.
Computers & Chemical Engineering 2020, 141.

* A reinforcement learning approach to identify optimal reaction pathways in a reaction network, in contrast
to MILP type approaches.

73. Gao, H. Y.; Pauphilet, J.; Struble, T. J.; Coley, C. W.; Jensen, K. F., Direct Optimization across
Computer-Generated Reaction Networks Balances Materials Use and Feasibility of Synthesis Plans for
Molecule Libraries. Journal of Chemical Information and Modeling 2021, 61 (1), 493-504.

74. Kleinekorte, J.; Kroger, L.; Leonhard, K.; Bardow, A., A neural network-based framework to
predict process-specific environmental impacts. In Computer Aided Chemical Engineering, Elsevier: 2019;
Vol. 46, pp 1447-1452.

75. Kuznetsov, A.; Sahinidis, N. V., ExtractionScore: A Quantitative Framework for Evaluating
Synthetic Routes on Predicted Liquid-Liquid Extraction Performance. Journal of Chemical Information
and Modeling 2021, 61 (5), 2274-2282.

* Provides a method to compute the ease of separation of major and side products in a synthesis pathway

76. Ryu, J.; Kong, L. X.; de Lima, A. E. P.; Maravelias, C. T., A generalized superstructure-based
framework for process synthesis. Computers & Chemical Engineering 2020, 133.

24



77. Belotti, P.; Kirches, C.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Mahajan, A., Mixed-integer
nonlinear optimization. Acta Numerica 2013, 22, 1.

78. Floudas, C. A.; Gounaris, C. E., A review of recent advances in global optimization. Journal of
Global Optimization 2009, 45 (1), 3-38.
79. Mencarelli, L.; Chen, Q.; Pagot, A.; Grossmann, I. E., A review on superstructure optimization

approaches in process system engineering. Computers & Chemical Engineering 2020, 136.

80. Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; Wachter, A., Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods & Software 2009, 24 (4-5), 597-634.

81. Gottipati, S. K.; Sattarov, B.; Niu, S.; Pathak, Y.; Wei, H.; Liu, S.; Blackburn, S.; Thomas, K_;
Coley, C.; Tang, J. In Learning to navigate the synthetically accessible chemical space using reinforcement
learning, International Conference on Machine Learning, PMLR: 2020; pp 3668-3679.

*« Discuses preliminary efforts to incorporate reinforcement learning to bias forward synthesis

82. Bradshaw, J.; Paige, B.; Kusner, M. J.; Segler, M. H.; Herndndez-Lobato, J. M., A model to
search for synthesizable molecules. arXiv preprint arXiv:1906.05221 2019.

*+ Discusses preliminary efforts to incorporate synthesizeability within generative models

25



