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Abstract 

Computational design of molecules for optimal performance is of interest in many fields, including 

chemical engineering. Often, however, these methods, in particular those based on rigorous 

mathematical optimization, do not explicitly take into consideration chemistry information, such 

as (but not limited to) synthesis feasibility. This opinion article discusses traditional and current 

approaches through examples from the literature where properties that depend on chemical 

transformations of the molecule are incorporated in the design process. Through these examples, 

the article highlights the importance of cheminformatics, graph theory, and machine learning in: 

(1) representation of the molecules, (2) reaction prediction and generation, and (3) property 

estimation. The article finally presents a vision of including information about chemical 

transformations in molecule design procedures, highlighting rigorous optimization and machine 

learning approaches such as generative modeling and reinforcement learning.  
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I. Introduction 

Design of molecules for a chemical process is of tremendous interest to chemical engineers and 

chemists. The sheer size of the molecule universe, often estimated1 to be on the order of 1020-60, 

implies that experimental approaches are likely insufficient to explore this space comprehensively. 

Computational approaches broadly termed computer-aided molecule design (CAMD)2-4, are 

therefore more tractable in discovering promising molecular candidates for a target application. 

Such approaches have been pursued for decades and include: (1) explicit enumeration of  

molecules (either queried from a database such as PubChem or constructed from fragments) and 

subsequent screening based on a chosen property metric5; (2) evolutionary optimization based 

techniques to search the space using expert heuristics6, 7; (3) rigorous mathematical optimization 

including derivative-free optimization, to construct molecules from building blocks such that one 

or more properties are optimized8-11; and (4) more recently, machine learning and artificial 

intelligence based approaches that include generative modeling to sample molecules12,  continuous 

optimization over a reduced-dimensional learned latent space13, and reinforcement learning to 

dynamically optimize the molecular structure to maximize rewards (e.g. a chosen property 

metric)14, 15. Furthermore, the process systems engineering (PSE) community has correctly 

identified the multiscale nature of molecule design by integrating this step with process-level 

information16-18.  

 

These approaches enable identifying a molecule (or a set of molecules) that can be further 

examined experimentally, thereby rendering the problem of molecule design substantially more 

tractable, however, they are often not cognizant of the underlying chemistry-specific constraints. 

Chemistry information can be pertinent to molecule design for at least three reasons. First, 
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molecules identified by the chosen approach should be synthetically feasible (or synthesizeable), 

i.e., they should be synthesized using available raw materials (feedstocks) and well-established 

and selective chemistries. Mathematically rigorous methods such as optimization-based design or 

artificial intelligence may identify molecules with superior properties than the reference (or 

benchmark) molecules; however, these methods also often identify unrealistic structures that may 

be too energetically unstable or require several synthesis steps to be produced cost-effectively in 

an industrial setting19. Second, in addition to requiring synthetic feasibility, plausible chemistry-

based restrictions may arise from a sustainability standpoint. For instance, there may be a desire 

to produce the molecule from renewable sources and/or using benign chemistries. Concepts such 

as “bioprivileged” 20 molecules, i.e., whether or not a molecule can be made from biomass21, and 

the popular metrics such as E-factor22 and atom economy, that can be used to determine the 

greenness of a molecule synthesis procedure, require ascertaining the synthesis routes to make the 

target molecule from specific set of building blocks and chemistries. Third, in several cases such 

as the design of fuels, energy carriers, solvents, and molecular catalysts, the underlying process 

chemistry may be integral to the performance of the molecule and cannot be easily delinked. 

Specific examples include: (1) being aware of the charging/discharging chemistry while designing 

liquid organic hydrogen carriers (LOHCs)23; (2) tracking the decomposition chemistry to 

determine the environmental impact of molecules24-26; and (3) taking into account how 

intermediates and transition states of the reaction network interact with the molecular catalyst or 

solvent27. Finally, rather than designing a molecule for a specific target, chemistry information is 

also relevant in charting and analyzing the synthesis landscape for product portfolio design. 

Specifically, mapping out the whole network of synthesis options available, starting from a given 

set of reactants and using known chemistries, provides a wholistic (or “systems”) understanding 
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of “what can be made?” and “how can they be made?”. For instance, one could address questions 

such as: what are the molecules that can be made from lignin monomers using heterogeneous 

catalysis? Which of them are feasible candidates as fuels?  

 

Incorporating chemistry information, beyond synthetic feasibility, in the overall process of 

designing molecules is well-recognized. While there are specific examples in the literature that 

accomplish this, there are no systematic and rigorous frameworks that have been pursued to 

integrate molecular characteristics related to underlying chemical transformations within the 

problem of molecule design. Even synthesis feasibility is arguably often treated as a secondary 

requirement with primacy given to molecular performance metrics. This opinion article focuses 

on current chemistry-informed approaches to molecule design. The next section introduces general 

concepts useful in molecule design and tracking chemistry while the subsequent section discusses 

specific examples from the literature where chemistry information has been incorporated at 

different stages of the design process. This opinion will skip the detailed discussion of property-

based molecule design methods in view of other comprehensive works on that topic. Finally, this 

article ends with an outlook for seamlessly imbuing molecule design procedures with chemistry 

cognizance.  

 

II. General concepts  

Chemical graph theory: Fundamental to automated processing of chemical information is the 

representation of molecules as graphs, wherein atoms represent the nodes and the bonds represent 

the edges28 (Figure 1). The nodes and edges are further annotated with atom-specific and bond-
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specific information such as atom type, charge, unpaired electron count, bond order, etc. 

Consequently, many concepts from algorithmic graph theory, such as breadth- and depth-first 

graph traversal, automorphism and subgraph isomorphism, cycle detection, etc., and from spectral 

graph theory, such as graph Laplacian, adjacency matrix, eigenvalues and eigenspectrum, etc., 

have been employed to represent, characterize, and manipulate molecular structures. More 

recently, graph kernels29 and graph convolutional networks30 find place in the context of machine 

learning for molecules.  

 

Figure 1: Graph theoretic representation of acetaldehyde. Atom and bond attributes are 

included. 

 

Molecular property prediction: CAMD, per se, requires the prediction of relevant properties using 

a reliable method. While ab initio methods including quantum chemistry and molecular 

simulations offer robust predictive framework to compute electronic to bulk properties, the 

associated computational cost often render them as intractable options. Data-driven methods, 

trained on experimental or computational data (or both) offer a more tractable solution particularly 

if a large number of property evaluations are necessary for identifying suitable candidates. 

Traditionally, such models included group additivity31 (Figure 2a) and quantitative structure 

property relations32 while more recently the use of machine learning, ranging from generalized 
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sparse additive models33, 34 to deep neural networks35-37, has gained significant attention due to 

data availability in many cases and advances in computational methods and theories to represent 

discrete data structures such as graphs. In particular, graph convolutional neural networks to 

identify latent spaces as well as predict molecular properties38, 39 (Figure 2b) have gained 

significant attention. In cases where data is limited or hard to acquire, the emerging ideas include 

transfer40 and multitask learning41 whereby correlated data-rich and data-lean properties (tasks) 

can be learned together (sequentially as in the case of transfer learning and concurrently in the case 

of multitask learning). Further, a judicious design of the training set using concepts such as active 

learning42 can also minimize the cost of building reliable data-driven models.   

 

Figure 2 (a) An illustrative schematic of group contribution: Butane-1,2,3-triol is decomposed 

into first (solid), second (dashed), and third (dotted) order groups (the formula for group 

contribution is also shown); (b) A schematic of a graph convolutional neural network to compute 

properties from molecular structure as input. The group contribution formula shown in (a) is an 

easy-to-interpret linear model involving the summation of a regressed contribution, 𝛽, 

corresponding to each group (fragment) 𝑖, times the occurrence of the fragment, 𝑥𝑖.  

 

Generation of synthesis routes: Synthesis pathways can be generated either in the forward 

direction, i.e., starting from the reactants and proceeding forward until target molecules are 

reached, or in the reverse direction (retrosynthesis) wherein the formation of a given molecule is 

traced backwards until easily available molecules are reached. In both approaches, the traditional 
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way to generate reactions and intermediates is through the use of expert-determined reaction 

templates (or reaction rules) as shown in Figure 3. These templates contain information about the 

plausible set of chemical transformations that can occur; for instance, double bond hydrogenation, 

Friedel-Crafts alkylation, and the Suzuki coupling can all be considered as generic reaction rules. 

When these templates are applied to the molecular graph of the reactant (or the product in the case 

of retrosynthesis), new graphs are generated corresponding to the product (or the reactant in the 

case of retrosynthesis), thereby leading to the generation of new reactions. The templates can be 

applied iteratively to generate a sequence of steps that relate the initial reactant and the final 

product. Computer-aided synthesis planning (CASP), or computer-aided organic synthesis 

(CAOS), has largely revolved around retrosynthesis43, 44 because the goal is to produce a specific 

molecule (the target drug, for instance). On the other hand, forward synthesis is more relevant 

when the synthesis landscape needs to be explored or pathways to a class of molecules (e.g., 

alcohols) needs to be identified.  
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Figure 3: A schematic of graph-based generation of reactions using reaction templates (rules). I. 

shows a carbonyl hydrogenation rule; II. shows the graph representation of this rule; III. shows 

the application of graph transformation rule to the reactant graph (Figure 1) to produce product 

graph (ethanol); IV. shows the resulting hydrogenation reaction.  

 

Forward synthesis is usually carried out using rule-based reaction network generators45. A recent 

example of such tools is Rule Input Network Generator (RING) developed by Rangarajan et al46-

48. As shown in Figure 4, RING accepts as input initial reactants and reaction rules, written in the 

form of a program in a domain-specific chemistry specification language. These instructions are 

then used by a network generator that iteratively applies the rules to the reactants and products 
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generated thereof to construct a comprehensive reaction network that is complete and correct with 

respect to the inputs. RING also accepts instructions and queries to extract information from the 

reaction network, such as identifying pathways connecting the reactants with the products.  

 

Figure 4: Schematic of inputs, outputs, and components of RING, an example of a rule-based 

network generator for forward generation of synthesis network and routes.   

 

III. Approaches and examples of chemistry cognizant molecule selection 

This section sketches a few approaches that directly or indirectly use chemistry information while 

designing molecules. Most of the applications in the literature focus on synthesizeability (or 

synthesis routes) either during or after molecule design; applications involving chemistry 

information other than synthesis (forward or reverse) are relatively scarce but are also discussed 

to highlight the different types of chemistry information that may need to be tracked.  

Synthesizeability check as a postprocessing step: A straight-forward way to account for 

synthesizeability in design approaches is to use it as a secondary screening criterion once 

molecules have been designed/selected based on performance criteria. Such an evaluation can be 

via: (1) explicit identification of the retrosynthetic pathway so that potential bottlenecks can be 

determined a priori, or (2) computation of synthesis or molecular complexity scores as relatively 
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inexpensive surrogate indicators of how easy it is to synthesize the target molecule.  Retrosynthesis 

tools (CASP) can be used to identify the synthesis routes in the first method; as mentioned earlier, 

traditionally these tools utilized reaction templates and expert heuristics to identify promising 

pathways49; more recently, machine learned tools for reaction prediction have been effectively 

used for the same50, 51. For the second method, either traditional additive, fragment-based models 

can be used as surrogate scores for ease of synthesis and molecular complexity52-55. In particular, 

these models were usually trained on sets of molecules whose ease of synthesis was determined 

by organic synthetic chemists, whether or not they are available commercially or present in 

databases such as PubChem56. More recently, machine learned models have been used to evaluate 

synthetic feasibility. For instance, in one study, a neural network was trained on a reaction corpus 

to compute the synthesis scores of molecules with the constraint that the score of the product in a 

reaction in the corpus is greater than or equal to that of the reactants57. This ensures that the score 

is roughly correlated to the number of steps required to produce the molecule. In another study, a 

retrosynthesis tool was used on a collection of molecules to determine whether or not synthetic 

pathways could be found; subsequently, a machine learned classifier was trained to predict the 

result (i.e., success or failure) of the retrosynthetic tool58. While both approaches offer a means to 

incorporate synthetic feasibility into the overall workflow of molecule design, the drawback is that 

it is plausible that all of the solutions from the molecule design step, or at least a large fraction of 

them, may be deemed synthetically infeasible; from a computational cost standpoint, such a 

workflow would be inefficient.  

 

Incorporating synthetic feasibility checks during molecule screening: High-throughput virtual 

screening, i.e., the approach of explicit enumeration of large number of molecules and their 
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subsequent evaluation one-by-one, can be modified so that the library of molecules that is screened 

is generated in a focused manner. For instance, well-documented synthesis reaction templates59 

can be systematically applied to easily available starting materials (and their products) to generate 

a large number of synthetically feasible molecules60-62. More recently, it has been shown that 

generative models63, 64, e.g., using recurrent neural networks or autoencoders, can be used to 

sample new molecules that are similar in properties to a set of known molecules; these methods 

can then be employed to identify more synthesizeable molecules if the known molecules 

themselves are easily synthesized. Generation and evaluation of focused libraries are particularly 

popular in drug design to create lead libraries for virtual screening; however, they do not guarantee 

solutions with performance as good as optimization-based approaches.  

 

Reaction network generators can also be used to generate these focused molecular libraries; the 

inputs (reactants and reaction rules) to these tools can be selected in such a way that the molecules 

generated by the network (or a specific subset of it) will constitute the library; if the reaction rules 

are derived from known chemistries, the molecules are in principle synthesizeable. For instance, 

Broadbelt and coworkers recently showed that, using biomass-derived molecules as reactants and 

common catalytic steps as reaction rules, network generation using their in-house software 

NETGEN can identify biopriviledged compounds65. Several of the generated compounds were 

already in databases such as PubChem database indicating that many of the industrially useful 

molecules have alternative pathways that may be more sustainable. Similarly, Rangarajan et al. 

used RING to generate the space of fatty alcohols that can be derived from biomass-based platform 

chemicals and known catalysis rules66. Such an approach could enable applying complex chemical 
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characteristics (or information, in general), e.g., being biomass-derived or derived from 

biochemical routes, as constraints in molecule design.  

 

Network flux analysis to optimally select synthesis routes and molecules: A number of molecules 

may satisfy property specifications for an application, multiple routes may exist to make each 

molecule, and a given raw material can be plausibly used to make many of the desired molecules. 

One therefore encounters two questions while designing molecules: what to make? and how? 

Reaction network flux analysis (RNFA), proposed by Marquardt and coworkers67, 68, is quite 

valuable in addressing this. A reaction network of synthesis options comprising a set of potential 

products is first assembled in any suitable way (as will be further discussed). A flux-balance based 

optimization problem is then solved to select initial reactants, reactions (and thereby one or more 

pathways), and end products that satisfy user-specified criteria and objective. The problem can be 

set up as a linear program with the variables being material flow for each molecule and fluxes for 

each reaction  as generically shown in Scheme 1; binary variables can be added (to determine if a 

reaction is selected or not) to prevent reaction cycles and find alternative solutions. The objective 

is usually a pathway-based technoeconomic metric, such as: (1) minimizing a cost function that 

depends on the selected reactions and their fluxes or (2) minimizing the largest reaction enthalpy 

barrier in the selected pathway. The flux balance shown in scheme 1 is a constraint to ensure that 

there is an uninterrupted pathway between initial reactants and end product. One or more products 

can be selected by the problem, e.g., a specific product or a blend of multiple products satisfies 

boiling point or heating value requirements).  

Scheme 1. A simplified problem formulation for simultaneous product and synthesis route selection. 𝚽 is 

the objective of choice and is a function of ‘𝒇, the molecular flows (input, output) for each compound 

and the flux through each reaction. 𝑨 is the stoichiometry matrix of the synthesis reaction network and 𝑰 
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In the original work, the reaction network was manually assembled from the literature; Marvin et 

al.69, on the other hand, used RING to generate a more comprehensive network of biomass-derived 

molecules and corresponding reactions. In particular, as schematized in Figure 5, carefully curated 

set of reaction rules based on proven heterogeneous catalytic transformations and the top DOE-

determined biomass-based platform chemicals were input into RING to generate a network of 

several thousand reactions and species (which, in principle, are also bioavailable). This network 

contained several compounds that could be blended with gasoline.  The network was then fed into 

a mixed-integer linear program that identified product portfolio (i.e., mixture of molecules) that 

could be blended with representative gasoline samples such that all of ASTM fuel standards could 

be satisfied. Concurrently, the synthesis routes to make each of the molecules from biomass were 

also identified. Multiple optimal solutions can be identified and analyzed further in terms of 

thermochemistry or process considerations (such as reaction or phase coupling) in a post-

processing step70.  The network, in principle, can also include a comprehensive set of reported 

represents a set of compounds. The problem is formulated to identify pathways to one or more output 

compounds. The waste flux is set to be defined  
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reactions in the literature, e.g., the reaxys database. Lakpin and coworkers used this database to 

identify strategic molecules (via graph theory and network traversal, not RNFA) that could play a 

role in upcycling waste streams71. Arguably, one could apply RNFA to such a network although 

techniques such as reinforcement learning72 can also be pursued in view of the sheer size of the 

network (and, consequently, of the optimization problem in RNFA). Finally, the network of 

synthesis options can also be generated using retrosynthesis pathways for a collection of target 

molecules73.  

 

 

Figure 5: Automated workflow for product and synthesis route selection using network generation 

and optimization.  

 

The RNFA approach may also not yield molecules with performance on par with optimization-

based approaches; however, it allows for effectively combining chemistry information and 

molecule selection into a single-step optimization problem. This provides a more systems 

viewpoint in design; a molecule with exquisite properties but that is not easily synthesizeable is, 

from a wholistic view, inferior to a synthesizeable molecule that has relatively poor performance 

but satisfies minimum property specs.  Furthermore, the formulation allows for multiple objectives 

to be explored so that contrasting solutions may be identified. For instance, sustainability metrics 

(measured as the flux of waste CO2 generated as byproduct, the E-factor of the products, or LCA 
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specs74) can be introduced as an alternative objective to cost or thermochemistry and pareto-

optimal solutions can be identified and analyzed. Synthesis network can also be controlled by 

precisely choosing which reactants and reaction rules are allowed; for instance, RING can be used 

to (1) generate molecules derivable from shale gas or carbon dioxide (analogous to bioprivileged) 

or (2) create synthons using electrochemistry, which can then be used as input to the flux balance 

analysis.  

  

Incorporating chemistry characteristics beyond synthesizeability: Reaction network generation 

can also be used to explicitly include chemistry information beyond synthesis into the process of 

molecule selection. Consider the example of 

designing two-way liquid organic hydrogen 

carriers (LOHCs)23. Here, a hydrogen-lean 

molecule, such as toluene, is hydrogenated at 

the energy source using molecular hydrogen; 

the hydrogen-rich product, 

methylcyclohexane, the hydrogen carrier (i.e., the LOHC), can then be stored and transported to 

the point of energy demand where it can be dehydrogenated to produce hydrogen (Figure 6); the 

toluene molecule thus generated is recycled back to the source. One important property of LOHCs 

is the hydrogen storage capacity, i.e., the amount of hydrogen released per gram of the hydrogen-

rich form. Determining this theoretical capacity automatically for any molecule (as is needed for 

molecule design), however, is nontrivial because to quantify the amount of hydrogen released by 

a single molecule, the hydrogen-rich and hydrogen-lean pair connected via a series of 

dehydrogenation reactions has to be identified. Furthermore, the practical storage capacity depends 

Figure 6: A schematic of two-way LOHC with 

discharging and charging chemistries. 
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on the kinetics and thermochemistry of the individual dehydrogenation steps (of which there can 

be multiple, each with varying thermokinetics). Paragian et al.23 showed that the hydrogen- 

rich/lean pair and the dehydrogenation pathway(s) connecting the molecules can be determined 

using RING. In particular, a seed molecule from a molecule database (e.g., the Pubchem or the 

GDB database) can be taken and its fully hydrogenated and dehydrogenated forms can be 

identified using RING; these two molecules will form the LOHC pair and the reaction network 

will contain the pathways connecting them.  

 

Network generation could be applied in a similar way to determine any molecular property that is 

dependent on some underlying chemical transformations. For instance, determining the 

environmental impact of a molecule may require identifying decomposition pathways and 

determining the toxicity or the degradation rates of the intermediates involved; a network generator 

can enumerate the decomposition reactions and extract the pathways25.  

 

 

IV. Vision: Towards a multiscale chemistry-cognizant molecule design  

The examples discussed so far clearly indicate that incorporating chemistry information in 

molecule design is non-trivial and there may not be single optimization formulation that can be 

employed for all problems. However, it can be argued that that with machine learning, availability 

of data, and advanced optimization, chemistry information can be well-integrated with the problem 

of molecule design. This section lists a couple of directions as envisioned by the author.  
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Explicitly evaluating synthesis feasibility, bioprivilege of a molecule, or even the hydrogen 

capacity of LOHCs via forward generation or retrosynthesis within rigorous optimization-based 

approaches is computationally challenging. However, if surrogate metrics of these properties can 

be computed, they could be included as constraints within the optimization problem. As discussed 

earlier, such data-driven surrogates are already available for evaluating synthesizeability; similar 

scores can be derived for other chemistry-based properties of interest. For instance, the hydrogen 

capacity of a molecule can in principle be determined from its structure using a neural network 

model that is trained on a large set of hydrogen-rich/lean pairs generated using RING. Similarly, 

data-driven models can be developed to determine whether a molecule is bioprivileged or ease of 

separation of major and minor products in a synthesis sequence75. Given the nonlinearity of these 

properties with respect to structural information, however, these surrogates are likely to be highly 

nonlinear, thus rendering the optimization problem challenging to solve. However, the PSE and 

the larger optimization community has recently tackled such problems, for instance in the context 

of process synthesis and design76-80. Data-driven surrogate functions of more complex 

characteristics can also be included within such optimization problems. As an example, solutions 

of RNFA to produce specific molecules based on techoeconomic objectives can be used to train 

machine learned models that offer a more process-related metric than synthesis scores. 

Formulating such a network optimization problem (within RNFA) though will require surrogate 

models relating a reaction with a process metric such as capital or operating cost. Voll and 

Marquardt67, and later Marvin et al.69, used an empirical relation for cost based on energy loss 

across the process (which is roughly related to the reaction enthalpy) to construct the optimization 

objective. To be broadly applicable, however, more accurate and reliable data-driven approach 



18 
 

that takes into consideration a wider array of processes and design parameters, such as models 

being trained on a large number of solutions of detailed and optimal design of various chemical 

processes, is required.  

 

Alternatively, concepts from reinforcement learning can be combined with forward synthesis to 

generate synthetically feasible optimal molecules81. For instance, rather than create the entire 

network of synthesis options and then identify optimal molecules (and routes) within them, the 

network generation can be systematically biased to generate molecules with desired properties. 

Typical network generation process is comprehensive. However, to generate optimal molecules, 

not every intermediate needs to be processed further and not every rule needs to be applied to every 

molecule; only some of the intermediates and some of the rules (applied on specific types of 

intermediates) may lead to the generation of desired molecules. One could then bias the generation 

to only focus on these intermediates and rules by treating the problem as a Markov decision process 

(MDP) and adopt reinforcement learning techniques to solve it.  Biased generation could directly 

lead to optimal molecules, or could instead be used to form a much smaller (and focused) network 

of synthesis options and RNFA can subsequently be applied to find optimal chemistries and 

molecules. Other complex chemistry-based metrics (e.g., hydrogen capacity of LOHCs) can also 

be incorporated by modifying the reward of the MDP appropriately.  

 

Generative models that sample from a latent space could also be modified to incorporate chemistry 

information82. For instance, the training set for the underlying deep neural networks can be biased 

by only including synthetically feasible molecules. Alternatively, generative models can be trained 
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for the whole reaction pathways so that sampling new pathways (and the associated product) will 

always ensure synthetic feasibility. Such techniques could be employed to other characteristics 

such as whether or not they can be generated from biomass.  

 

Two final remarks end this section. First, one can note that the organic material space extends 

beyond single “0D” molecular space. Indeed, 1D chains (e.g. polymers), 2D sheets, and 3D 

molecular structures (e.g. covalent organic frameworks) can also be designed and synthesized 

usually by first constructing the building blocks (organic monomers) that can then polymerize to 

form larger, more complex structures. The need for chemistry informed molecule design 

approaches also arises in this context; for instance, while the space of COFs is large, not all of 

them are synthetically feasible or bioprivileged and incorporating such information while 

designing the building blocks requires the tools and approaches discussed above. Second, like any 

other molecular property, determining synthesizeability or any other property related to chemical 

transformations has an associated prediction error and uncertainty. It is important, therefore, to 

also consider these while quantifying the reliability of the solutions identified using a chosen 

design approach.  

 

V. Conclusions 

This opinion article discusses the concept of including chemistry information, including but 

beyond synthetic feasibility, while designing organic molecules. Multiple approaches have been 

considered in the literature, primarily in the context of synthesis, that explicitly (forward synthesis 

or retrosynthesis) or implicitly (synthetic feasibility scores) incorporate chemistry information 
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during or after molecular screening or performance-based optimization. However, no 

comprehensive framework exists for chemistry cognizant molecule design. This article envisions 

that a combination cheminformatics and graph theory, optimization, and machine learning 

(including reinforcement learning) can provide this framework.  
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