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Epidemiological data often include characteristics such as spatial and/or temporal dependencies and excess zero
counts, which pose modeling challenges. Excess zeros in such data may arise from imperfect detection and/or
relative rareness of the disease in a given location. Here, we studied the spatio-temporal variation in annual Lyme
disease cases in Virginia from 2001-2016 and modeled the disease with a spatio-temporal hierarchical Bayesian
model. Using observed ecological and environmental covariates, we constructed a predictive model for the
disease spread over space and time, including spatial and temporal random effects. We considered several
different models and found that the negative binomial hurdle model performs the best for such epidemiological
data. Among the various ecological predictors, the North-South (V component) of winds and relative humidity
significantly contributed to predicting the Lyme cases. Our model results provide important insights on the
spread of the disease in Virginia and the proposed modeling framework offers epidemiologists and health pol-

icymakers a useful tool for improving disease preparedness and control plans for the future.

1. Introduction

Spatio-temporal count data, such as cases of infectious and/or rare
diseases, often contain a large number of zeros. In reality, these zeros
could be true zero counts (also called structural zeros) or they could be
generated due to the data collection process and imperfect detection of
cases (also called sampling zeros). When modeling such data, therefore,
these zeros should not be ignored. Previous studies have shown that
standard probability models (e.g., Poisson, Binomial, and Negative-
Binomial) do not accurately model such data (Arab, 2015; Fang et al.,
2016). The class of zero-modified models designed to handle such cases
of excess zeros include hurdle models (Cragg, 1971; Mullahy, 1986;
Hilbe, 2014) and zero-inflated models (e.g., zero-inflated Poisson;
Lambert, 1992; Welsh et al., 1996). The main difference between hurdle
and zero-inflated models is in the process that generates zeros; a hurdle
model assumes that all the zeros are generated from a zero-generating
process and all remaining observations (non-zero counts) are gener-
ated from a counting process, while the zero-inflated model assumes a
mixture of two processes where one generates zeros only and the other
generates both zeros and non-zeros. More specifically, zero-inflated
models consider zeros to be originated from two sources: structural
zeros (generated due to structural reasons, e.g., absence of a disease in
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an area) and sampling zeros (may arise due to chance or perhaps as a
function of sampling procedures such as inability to perfectly detect a
phenomenon), while hurdle models only consider structural zeros and
assume a structural difference between zero and non-zero values (e.g.,
zeros correspond to non-prevalence of Lyme disease in an area while
non-zero values represent the count of Lyme cases where and when
present). Considering both of these approaches to modeling data with
excess zeros, here we develop a Bayesian hierarchical model to model
the confirmed cases of Lyme disease.

In recent decades, Lyme disease has been on the rise in the U.S.
(Piesman, 2006; Hoen et al., 2009; Khatchikian et al., 2015), and Vir-
ginia has not been an exception. In 2001, there were a total of 100 Lyme
cases in Loudoun and Fairfax counties (two highly populated counties in
Northern Virginia), whereas the number of cases increased to 294 in
2016. Fig. 1 displays maps of the confirmed cases of Lyme disease in
2001 (Fig. 1a) and 2016 (Fig. 1b). This disease has also become preva-
lent in parts of Virginia where it used to be rare (Lantos et al., 2015). The
number of reported cases in southwestern regions of the state (as in
Wythe, Pulaski, Montgomery, Carroll, and Floyd counties) increased
from zero in 2001 to 200 in 2016. Given the complex nature of this data,
we consider the zero-modified modeling framework to model the spatial
and temporal expansion of the disease. We test both hurdle and
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zero-inflated models also because the increases in the disease cases may
be due to improvements in diagnosis or reporting of the disease (Bor-
germans et al., 2015; Waddell et al., 2016; Sadilek et al., 2020).

Chen et al., 2006 modeled the distribution of Lyme disease in New
York from 1990-2000 using a Bayesian hierarchical framework. They
compared the fit of various probability models (Poisson, zero-inflated
Poisson, and negative binomial). The negative binomial model pro-
vided the best . Patterns of the disease distribution were found not to be
random but clustered. Likewise, several other studies arrived at similar
conclusions for disease distributions in Virginia (Li et al., 2014 studied
data for 1998-2011; Lantos et al., 2015a and b studied data for
2000-2014).

Arab (2015) developed a spatio-temporal model for the confirmed
cases of Lyme in Illinois from 2007-2011. The study used Poisson and
negative binomial models as well as their zero-modified versions and
concluded that the zero-Inflated Poisson and Poisson hurdle with a
regression model for the zero-inflation probability provided the best fit
for the data. Here, following the hierarchical Bayesian modeling
approach proposed by Arab (2015), we develop a spatio-temporal model
for the confirmed cases of Lyme in Virginia. We focus on the choice of
the probability distribution that best describes the data. Finally, we
conduct a model comparison among various possible models to find the
“best” model.

Lyme disease is caused by the bite of nymphal or adult ticks (genus
Ixodes) that carry bacteria, Borrelia burgdorferi sensu lato (Tugwell et al.,
1997). Green vegetation is considered the primary habitat of such ticks.
As a proxy to the habitat availability, researchers often use the
Normalized Difference Vegetation Index (NDVI, Estrada-Pena, 2002;
Brownstein et al., 2005; Kalluri et al., 2007; Barrios et al., 2012).
Following these findings, we included the effect of green vegetation in
our model as a potential predictor that may explain the disease vari-
ability. In addition to NDVI, we included several environmental vari-
ables, described in the next section, that are often related to the disease.

2. Data

We used the annual confirmed cases of Lyme disease in Virginia
counties and cities from 2001-2016. This data is available at the county/
city level from the Centers for Disease Control and Prevention (CDC,
2018). We eliminated four counties (Arlington, Bedford, Bland, and
Highland) that did not have enough data related to one of our predictors
(the deer population index). We considered 3 cities (Chesapeake, Suf-
folk, and Virginia Beach) and 91 counties, with a total of 1504 obser-
vations. The data reported by the CDC only includes confirmed cases of
Lyme (there is no data available for unreported and unconfirmed cases).
Consequently, the results of our analysis should be interpreted accord-
ingly and, therefore, it could be inherently impacted by the data
collection mechanism including any issues of diseases diagnosis and
reporting (i.e., access to healthcare, socio-economic factors, variability
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in the quality of care and diagnostics, among others).

Across all 94 cities/counties, there are 781 observations (out of a
total of 1504) with non-zero confirmed cases of Lyme diseases from
2001-2016. Fig. 2 (a, b) displays the frequency and map of the disease
distributions over the study period. The excessive zero counts contained
in the data are evident in Fig. 2. There were 723 observations with zero
cases of Lyme, and this may contain the absence of the disease and
possibly unreported/unconfirmed cases, too. Likewise, there were 682
cases between 1 and 25 counts and frequency abruptly tapers down to
one for intervals between 275 and 300. A few counties/cities display
relatively high cases. Some northern counties (Loudoun, Fairfax, and
Prince William) display a total of up to 3000 cases during the study
period. These counties are also the top three most densely populated
counties in Virginia. Similarly, there is another cluster of counties in the
southwestern region that includes Montgomery, Pulaski, and Floyd
counties, which showed up to 1000 cases over the period. In general,
counties with a large number of cases are located in the northern re-
gions. Southern counties have relatively low or zero counts (e.g., Lee and
Scott counties in the southwest, and Southampton and Greenville
counties in the southeast).

In order to develop a useful and ecologically meaningful modeling
framework, we considered the effect of several different environmental
variables (summarized in Table 1). Previous studies have shown that the
disease-causing bacteria’s activity increases with the increase in atmo-
spheric humidity (Vail and Smith, 2002; Perret et al., 2003; Moore et al.,
2014; Bennet et al., 2006). Following this, we incorporated relative
humidity in our model. Studies have also shown that various species of
deer serve as hosts of the disease-carrying ticks. The incidence of Lyme
was relatively higher in regions with higher deer population (Shapiro
et al., 1992; Goldstein et al., 2001; Yabsley et al., 2005; El Khoury et al.,
2012; Levi et al., 2012). While deer population density is an important
predictor of Lyme incidence (Shapiro et al., 1992), a deer population
index is not available at an appropriate scale in Virginia. Therefore, we
used data on antlered buck kill per square mile of estimated deer habitat
provided by Virginia’s Department of Game & Inland Fisheries as a
proxy for the deer population. Several other studies have shown that the
background wind circulation plays a major role in transporting
vector-borne diseases (Olsen et al., 1995; Scott and Durden, 2009).
Taking this into consideration, we incorporated wind as a predictor in
our model. In addition, we also included precipitation and temperature
as predictor variables.

We extracted environmental predictor variables from available ob-
servations or reanalysis based on the following procedure: first, we ob-
tained the centroid of each county. Next, we created averaging regions
centered at the county centroid. Rather than extracting a value that
corresponds to the county centroid, we chose to average the values that
lie in the enclosed region between centroid longitude + 0.1° and latitude
=+ 0.1°. With an approximation of 1-degree latitude/longitude to equal
about 100 km within the latitudes that span Virginia (~ around 38°N,

(b) 2016

Fig. 1. Confirmed cases of Lyme disease in Virginia in (a) 2001 and (b) 2016.
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Fig. 2. (a) Confirmed cases of Lyme disease in Virginia across all years (2001 — 2016). (b) Map of total number of confirmed Lyme cases in Virginia from 2001-2016.

Table 1
Summary of predictor variables.

Variables Source Spatio-temporal scale
Precipitation NARR* Monthly, Centroid box
Temperature “ “

Relative Humidity

East-West wind(U)

North-South wind (V)

Greenness index (NDVI) MODIS**

Deer population index CDC*** Monthly, County/city average

" NARR, North American Regional Reanalysis.
" MODIS, Moderate Resolution Imaging Spectroradiometer.
" Centers for Disease Control .

https://www.usgs.gov/fags), 0.2 ° equals to about 20 km (We selected
this area as a county representative because most counties have land
areas greater than 400 km?; these regions were well within county ge-
ographies and avoid the problem of overlapping especially for the
smaller counties/ cities). Then, for these regions, we averaged and
extracted the environmental covariates on a monthly timescale.

Surface temperatures (T, °C), relative humidity (RH, %), precipita-
tion (P, mm/day), and winds were obtained from the North American
Regional Reanalysis (NARR, Mesinger et al., 2006). NARR is available
from 1979 to present at 32 km spatial and 3-hourly temporal resolutions,
and 3-hourly values are interpolated to monthly mean. The reanalysis
precipitation values are assimilated using observations. We included
both Meridional (V-component, wind component along latitude, m/s)
and zonal (U-component, wind component along longitude, m/s) wind
components in the model to separately model the potential effects of the
latitudinal and longitudinal components of wind. These 5 types of
environmental variables were averaged for each month, providing 60
predictor variables.

We used MODIS (Moderate Resolution Imaging Spectroradiometer)
Aqua (Instrument: MOD13Q1)/ Terra (Instrument: MYD13Q1 product)
satellite Normalized Difference Vegetation Index (NDVI) to estimate the
monthly surface greenness index (Huete et al., 1999). NDVI is available
at 250-m spatial and 16-day temporal resolutions from 2000 to present.
This index ranges from 0 (no vegetation) to 1 (green vegetation); values
are atmospherically corrected, cloud-free, continuous, and calculated
from surface reflectance values. We extracted this index for each of the
county/city centroids, or the nearest land point in cases where the
centroid is over water. Monthly average NDVI indices provided 12
predictor variables.

Deer population index, defined as antlered buck kill per square mile
of estimated deer habitat, is used as a proxy for relative deer abundance.
This (obtained from Virginia’s Department of Game & Inland Fisheries)
is based on reports of bucks killed during the deer hunting seasons for
major deer management units, collected at the county level from 2001-
2016. Many cities in Virginia as well as Arlington County do not have

deer management units; therefore, there is not enough data to calculate
this deer population index in these areas. Consequently, we eliminate
these counties/cities from our analysis.

3. Model
3.1. Model selection

Many counties had zero counts, which poses a modeling challenge in
choosing an appropriate and realistic probability distribution for the
data. We considered the popular probability model choices for count
data namely, the Poisson, the negative binomial models, and their zero-
modified versions. In particular, we compared the fit of the following
probability models to the data: negative binomial, Poisson, hurdle
Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-
inflated negative binomial. Below, we briefly review the negative
binomial and hurdle negative binomial models that are commonly used
for modeling over-dispersed data with excess zeros.

3.1.1. Hurdle models

A hurdle model (Hilbe, 2014) consists of two components: the first
component is a binary component that models the presence/absence
using a logistic regression model for the probability of a zero count. Note
that we follow a parameterization that considers a non-zero value as a
failure (0) whereas a zero count is treated as a success (1). The second
component is a zero-truncated component, which generates non-zero
values. In this component, using a generalized linear model approach,
the observed counts that are greater than zero are modeled. All the zero
values are removed in the truncated component of the model.

Therefore, a hurdle count model may be described as a mixture of a
count generating distribution and a zero-generating process. All the
zeros are generated via just one process that assumes the zeros are
“structural”, in our case, it means that Lyme disease is absent and,
therefore, the case count is zero. For example, a Poisson hurdle model
for the Y; (with i=1, ..., n) observations can be described as a mixture of
a point mass at zero with probability p;, and a zero-truncated Poisson
distribution with probability (1 — p;). In our case, we consider the
observed number of cases in a county at each time period is assumed to
follow a Poisson hurdle distribution with parameters y; and p; : Y; ~
PoissonHurdle(u;, p;) where

P(Y;=0)=p, 0<p;: <1

Hitet
yil(1—e™#)
The choice of the data model may be evaluated using a model se-

lection exercise to arrive at the “best” model among Poisson, negative
binomial, and their zero-modified versions.

P(Yi=y)=(1-p) yi=1, 2, i=1,n; u;>0.
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3.1.2. Negative binomial hurdle models

The negative binomial model addresses the issue of overdispersion if
present in the data and is considered as an alternative to the Poisson
model when the assumption of equi-dispersion (equal mean and vari-
ance) does not hold true. Suppose variable Y; is distributed as negative
binomial, Y; ~ NegBinHurdle(u;,a, pi),

PY;=0)=p;, 0<p <1

Iy +1 : o\
om0

where o the dispersion level (@ > 0), mean E (Y;) = p and variance Var
Y)=p+a “2. See Hilbe (2014) and Arab (2015) for more details on
zero-modified models and their properties.

3.2. Model Implementation

Following Arab (2015), we used a hierarchical Bayesian framework,
and computations were implemented in R, using the Integrated Nested
Laplace Approximation (INLA, http://www.r-inla.org) package (Rue
et al., 2017). The INLA method is a variational Bayes approach and is
often used for conducting Bayesian inference as an alternative technique
to Markov Chain Monte Carlo methods (MCMC). INLA approximates the
posterior distribution as opposed to the MCMC methods where they
attempt to draw from the unknown posterior distribution, and thus INLA
is computationally efficient (Arab, 2015; Blangiardo and Cameletti,
2015; Brown, 2015; Khana et al., 2018). In addition, INLA is efficient in
handling skewed continuous positive data with excess zeros, and this
also allows us for model selection criteria using Deviance Information
Criterion (Spiegelhalter et al., 2002; Quiroz et al., 2015; Rue et al.,
2017). Therefore, we fit our models using INLA and the Matérn
covariance function as discrete indexed Gaussian Markov Random Field
(GMREF), based on Stochastic Partial Differential Equations, SPDE (Rue
et al., 2017). GMRF matrix is based on a finite combination of piecewise
linear functions in a triangular mesh in the model domain. GMRF defines
the basis weights depending upon the Matérn parameters. The INLA
implementation also allows accounting for spatial effect/spatial auto-
correlations, which allows spatial predictions for all missing locations
within the spatial domain (Lindgren and Rue, 2015). We used the
binomial link function (i.e., the logit function) and weakly informative
Gaussian priors with 0 mean and 0.001 precision. We considered a
Matérn covariance function to model the spatial random effects based on
the distances between the centroid of counties and an autoregressive AR
(1) model for the temporal effects (i.e., Year). Fig. 3 demonstrates the
INLA/SPDE mesh that approximates the spatial fields. To avoid edge
effect and in order to increase accuracy in calculation, the mesh is
extended well outside of the Virginia state boundary. We modeled
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Fig. 3. INLA mesh for the study region. Blue line indicates the Virginia’s state
border, and the red dots indicate the county/city centroids.
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spatio-temporal patterns using different models (zero-inflated Poisson,
Poisson hurdle, Poisson hurdle with probability, negative binomial,
zero-inflated negative binomial, negative binomial hurdle, and negative
binomial hurdle with probability). Full models incorporated precipita-
tion, temperature, meridional winds, zonal winds, relative humidity,
NDVI, and deer population index as predictor variables. We identified
the best data model using Deviance Information Criterion (DIC, Spie-
gelhalter et al., 2002) and Watanabe Akaike information criterion
(WAIC, Quiroz et al., 2015; Vehtari et al., 2017).

Our data (cases of confirmed Lyme diseases in Virginia from 2001-
2016) contains about 48% zeros (Fig. 2a). With a mean of 7.36, the
expected percentage of zero counts given a standard Poisson distribution
would be about 0.063%. This implies that the Poisson distribution would
not provide a reasonable fit for the data given its inability to account for
the excess zero counts. One reason for this discrepancy is that there are a
few counties (e.g., Loudon and Fairfax Counties) with consistently large
numbers of confirmed Lyme cases that have a significant effect on the
mean. Furthermore, Lyme disease is relatively rare in Virginia and it is
imperfectly detected, which may result in excess zero counts.

First, we extract the predictor variables on a monthly timescale, as
mentioned in Section 2. The extracted variables include precipitation,
temperature, meridional winds, zonal winds, relative humidity, NDVI,
and deer population index.

After identifying the best data model, we also conducted variable
selection (as the best subset of predictor variables) for this model.
Starting with the full set of predictor variables, we eliminated the var-
iables that were not statistically significant (i.e., 95% CI included zero)
at each round until we reached the final model where all the predictor
variables are significant. Finally, for the resulting best model, we con-
ducted statistical inference and reported the results.

4. Results and discussion

Table 2 summarizes the model selection results based on DIC and
WAIC. The lower the DIC and WAIC values, the better the model is (both
criteria assume a combination of rewarding the best fit while penalizing
the least parsimonious model). All the models were run with a full set of
predictor variables, and we selected the model that has the lowest DIC/
WAIC (see supplementary Table 3-9). Here, the negative binomial hur-
dle with regression for zero-inflation probability had the lowest DIC and
WAIC values. In this case, the negative binomial model is also better
than the Poisson model, which indicates the presence of overdispersion
in data (See Fig. 2a). This result corroborates with Chen et al., 2006,
where they found that the negative binomial performed better than the
Poisson in modeling the spatio-temporal distributions of Lyme disease in
the state of New York from 1990-2000.

We chose the negative binomial hurdle with the regression model for
the zero-inflation probability as the best model. Two other models from
the negative binomial family, the negative binomial and the zero-
inflated negative binomial, had similar performances (with differences
in DIC and WAIC equal to 1.87 and 1.49, less than 10%). Among these
three, the simplest one, negative binomial, is more tractable for infer-
ential purposes.

In contrast to the final model (negative binomial family) selected

Table 2

Model selection criteria results.
Spatio-Temporal Model Type DIC WAIC
Poisson 5586.13 5873.99
Zero-inflated Poisson 5478.36 5726.97
Poisson Hurdle 6178.77 6427.43
Poisson Hurdle with Probability 5342.98 5588.97
Negative Binomial 5040.58 5044.64
Zero-inflated Negative Binomial 5042.45 5046.13
Negative Binomial Hurdle 5847.52 5848.71
Negative Binomial Hurdle with Probability 5011.77 5010.21
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here, Arab (2015) selected the Poisson family models based on DIC for
Lyme diseases in Illinois. It should be noted that there are several
important differences between the current study and the one conducted
by Arab (2015). This study includes 17 years of data, whereas Arab
(2015) used only 5 years of data and different predictor variables.
Further, there are differences in the prevalence of Lyme disease between
Illinois and Virginia, and the location/size of counties.

For our best model, among all the 72 predictor variables considered,
only 19 variables were found to be significant. Table 3 provides a
summary of all the monthly covariates that were significant in the
negative binomial model. From the variable selection procedure
(described in section 2), most models selected V-wind and relative hu-
midity, and both of these predictors were significant in May. Five of the
monthly V-wind variables corresponding to February, April, May,
September, and December, and the relative humidity for January,
February, May, June, and July were selected (see supplementary Tables
1-7 for a full list of models and variables selected). Our results corrob-
orate results from past studies which have shown that relative humidity
is positively associated with confirmed Lyme cases (Estrada-Pena, 2002;
Bennet et al., 2006), and wind plays an important role in transporting
disease vectors (Harrus and Baneth, 2005). Indirectly wind affects the
disease’s transportation via migrating birds and animals (Moen, 1976;
Weisbord and Johnson, 1989; Smith et al., 1996; Jenkins et al., 2001;
Brinkerhoff et al., 2011).

Three monthly variables for June (NDVI, Relative Humidity, and
precipitation) were important for the disease prediction. The deer
population index was not a significant predictor in any of the models we
considered here. This is consistent with some past studies (Ostfeld et al.,
2006; Jordan et al., 2007), however, in contrast, several past studies
have found positive association between deer population density and
tick populations (Wilson et al., 1990; Kitron et al., 1992; Duffy et al.,
1994; Glass et al., 1994; Kilpatrick et al., 2014). This may be due to
biases in our deer population index as it is based on buck kill data during
hunting seasons. Another possibility is that other mammals play a larger
role in disease transportation in Virginia. Studies have shown that this
disease may be transported by small mammals such as mice (Strother
etal., 2007; Caimano et al., 2016) and Lyme disease may be more closely
associated with smaller mammals, such as red fox and coyotes, than
bigger mammals like deer in some areas (Levi et al., 2012). We were
unable to test these alternative ecological predictors due to the un-
availability of data and given that our main focus is on environmental
factors.

Based on DIC and WAIC values, we selected the negative binomial
hurdle with regression for the zero-inflated probability as the best

Table 3
Summary of significant covariates for the log-linear regression part of the
negative binomial model.

Coefficient Mean SD 95% CI
January NDVI -0.20 0.06 (-0.33, -0.08)
March NDVI 0.21 0.08 (0.05, 0.37)
June NDVI -0.40 0.16 (-0.71, -0.09)
February V-wind -0.21 0.08 (-0.38, -0.05)
April V-wind 0.30 0.05 (0.19, 0.41)
May V-wind -0.21 0.047 (-0.30, -0.11)
September V-wind -0.20 0.05 (-0.30, -0.09)
December V-wind 0.47 0.09 (0.29, 0.66)
August U-wind -0.44 0.09 (-0.61, -0.26)
October U-wind 0.35 0.06 (0.23, 0.48)
January Relative Humidity -0.22 0.07 (-0.35, -0.09)
February Relative Humidity 0.13 0.06 (0.01, 0.25)
May Relative Humidity -0.60 0.11 (-0.83, -0.38)
June Relative Humidity 0.73 0.13 (0.46, 0.99)
July Relative Humidity -0.34 0.12 (-0.58, -0.10)
March Precipitation -0.13 0.04 (-0.20, -0.06)
June Precipitation -0.18 0.04 (-0.25, -0.11)
October Precipitation -0.14 0.03 (-0.21, -0.07)
November Precipitation 0.12 0.04 (0.05, 0.19)
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model. This model has two components: logistic regression for the zero-
inflation probability to predict the probability of the binary response
variable (zero vs. non-zero response; regression coefficients as displayed
in Table 4a), and a zero-truncated negative binomial model for the non-
zero cases (as displayed in Table 4b). Of 72 covariates, 65 variables were
dropped from the logistic regression model, whereas 55 variables were
dropped from the truncated model. For the logistic regression model on
the zero-inflation probability, the variable selection procedure selected
V-wind, specifically fall months quite often.

The wind components for months of fall were not significant in the
zero-truncated model. Therefore, fall months V-wind may have different
roles in the disease counts. Relative humidity (January, March, July, and
September) and precipitation, especially for January, June, October,
and November were important predictors. Precipitation and tempera-
ture were both found to be important for the disease prediction. For
example, March temperature and four other months (January, June,
October, and November) precipitation was found to be significant pre-
dictors (See Table 4b). These results are consistent with the past studies
that associate Lyme disease with relative humidity (Berger et al., 2014)
and precipitation (Subak, 2003; McCabe and Bunnell, 2004). The direct
relationship between precipitation and Lyme disease is difficult to un-
derstand. However, there could be an indirect relationship between the
two via vegetation (or greenness index, NDVI in this case). Precipitation
is often positively associated with vegetation greenness (Wang et al.,
2003; Tan, 2007), and vegetation supports ticks by providing habitat
(Estrada-Pena, 2002; Brownstein et al., 2005; Kalluri et al., 2007;
Diuk-Wasser et al., 2010; Barrios et al., 2012).

For the zero-truncated model, NDVI is an important predictor in
three months (January, March, and September), and of those three, only
one is common to both precipitation and NDVI (i.e., January). Past
research has also shown that the herbaceous land cover is positively
correlated with the disease incidence in Virginia (Seukep et al., 2015).

In addition to these environmental factors included above, there
could be many socio-economic, ecological (e.g., birds and mammals),
and demographic (e.g., income level, population density, as in Seukep
et al., 2015) factors that may be important for Lyme disease prediction.
As part of an initial exploratory data analysis, we included several de-
mographic variables in our models (e.g., per capita income, education
level, percentage of high school or college graduates, percentage of se-
nior citizens (above the age of 65), percentage of people without health
insurance, and poverty rate), but none of these variables were found to
be significant for predicting the disease cases (results not shown here).
Consequently, in this paper, we limited our approach to environmental
factors. Also, many of the socio-economic data were available on a
decadal timescale, which was not ideal in this case given the timescale of
our data.

Fig. 4 displays maps for posterior predictive confirmed cases of Lyme
from 2001 — 2016. Values are generally larger in northern Virginia
(around Fairfax and Loudoun counties), which are the most densely
populated counties in the state (USCB, 2017). In some years, mean
counts are much higher in central parts (Fluvanna, Louisa, Albemarle) of
the state (as in 2004, 2006). Also, there is an uptick in cases of the
disease after 2007. While this could be due to the expansion of the
disease or also due to improved surveillance efforts (Li et al., 2014;

Table 4.a
Summary of significant covariates for the logistic regression part of the negative
binomial hurdle model.

Coefficient Mean SD 95% CI
February NDVI 0.48 0.16 (0.17, 0.79)
August V-wind 0.24 0.11 (0.03, 0.45)
October V-wind 0.60 0.16 (0.28, 0.92)
November V-wind 0.57 0.21 (0.16, 0.98)
December V-wind -1.18 0.24 (-1.66, -0.72)
August U-wind 0.67 0.22 (0.24, 1.09)
October Precipitation 0.26 0.09 (0.09, 0.43)




N. Neupane et al.

Table 4.b
Summary of significant covariates for the log-linear regression part of the
negative binomial hurdle model.

Coefficient Mean SD 95% CI
January NDVI -0.16 0.06 (-0.28, -0.03)
March NDVI 0.23 0.09 (0.06, 0.39)
September NDVI -0.27 0.10 (-0.47, -0.07)
April V-wind 0.28 0.06 (0.16, 0.39)
May V-wind -0.20 0.05 (-0.30, -0.11)
September V-wind -0.19 0.05 (-0.29, -0.09)
August U-wind -0.36 0.09 (-0.53,-0.19)
October U-wind 0.23 0.06 (0.11, 0.35)
March Temperature -0.39 0.11 (-0.60, -0.18)
January Relative Humidity -0.17 0.07 (-0.30, -0.04)
March Relative Humidity -0.33 0.11 (-0.53,-0.12)
July Relative Humidity -0.29 0.10 (-0.49, -0.09)
September Relative Humidity 0.35 0.08 (0.19, 0.51)
January Precipitation -0.16 0.04 (-0.25, -0.08)
June Precipitation -0.157 0.036 (-0.23, -0.08)
October Precipitation -0.1558 0.038 (-0.09, -0.24)
November Precipitation 0.09 0.04 (0.01, 0.16)

Lantos et al., 2015; Lantos et al., 2015b). There is another region of high
activity in western Virginia that includes Wythe, Pulaski, Montgomery,
Carroll, and Floyd counties (as in 2008, 2009, 2010, and 2012-2016).
This is consistent with the conclusions reported in the past studies
(Lantos et al., 2015a; Lantos et al., 2015b, 2021). Therefore, this sug-
gests that these regions with high activity levels should be the focus for
raising awareness campaigns and providing necessary health care

2001 2002
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related to the disease. Next, we analyze the wind circulation (that is
selected by both components of the hurdle model) and inference under
the Bayesian framework.

Our results indicate that the Lyme cases are associated with the di-
rection of the atmospheric flows in the low levels. Years with higher
cases of Lyme in the southwestern regions were also associated with
stronger southwesterly winds in September (Fig. 5), for example, see
years 2010-2012 (Figs. 4, 5). Likewise, larger counts in southwestern/
western parts of the state in 2006 and 2013-2016 were mostly associated
with a stronger westerly flows in November (not shown). Based on these
results one may hypothesize the possibility that the disease vectors may
be advected by the background flows from the south-southwest in the
fall. This hypothesis may be investigated in future work but it is beyond
the scope of this study.

In order to better understand the overall spatial structure in the data,
we fitted spatial models for the data collapsed (aggregated) over time.
Fig. 6 displays the posterior mean and standard deviation of the spatial
fields for both linear and logistic regression models. Based on the
parameterization of the hurdle model, the posterior means for the
spatial random effects for the linear regression model (for non-zero
counts) and the logistic regression model (for the probability of zero
counts) complement each other (see Section 3.1.1). As expected, Lyme
cases were larger in the northeastern region of the state in the log-linear
model which corresponds to lower variability of zeros in these areas (see
posterior means in Fig. 6a and c). Fig. 6b and d show posterior standard
deviations for the spatial fields for the log-linear model and the logistic
regression model, respectively. As discussed in Figs. 4 and 5, regions
with larger cases were mostly associated with westerly flows in

2003

2004

Fig. 4. Posterior means for the spatial random effects (2001-2016).
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Fig. 5. Near surface (10-m above) winds (m/s) in September from the North American Regional Reanalysis for 2001-2016.
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Fig. 6. Bayesian estimates for the spatial random effects (a) posterior mean (b) posterior standard deviation for the log-linear model in the negative binomial hurdle
model. Similarly, (c) and (d) represent the posterior mean and posterior standard deviation for the spatial random effects for the logistic regression model in the
negative binomial hurdle model, respectively.

November, as displayed in Fig. 7.

Fig. 8 (a, b) shows the posterior mean and 95% credible intervals
(2.5% and 97.5% represent the lower and upper limits, respectively) of
the temporal random effects. This shows an overall increasing trend of
Lyme disease in Virginia after accounting for the predictors and spatial
variability in the disease counts for the linear model, while the trend is
decreasing for the logistic regression (probability of zero counts) model
as expected by the nature of the hurdle model (i.e., over time, as the
disease is spreading and increasing, the probability of zeros shows a
declining trend).

5. Conclusions

Fig. 7. Near surface (10-m above) winds (m/s) from the North American

We developed a spatio-temporal hierarchical Bayesian model to Regional Reanalysis for the 2001-2016 mean November climatology.
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Fig. 8. Posterior mean and the 95% CI for the temporal random effects for (a) the log-linear model, (b) for the logistic regression model.

explain the spatio-temporal patterns of confirmed cases of Lyme disease
in Virginia. Our model included several environmental variables such as
precipitation, temperature, vegetation greenness, V-wind (winds along
latitude), U-wind (winds along longitude), relative humidity, and a deer
population index. We modeled the confirmed cases of Lyme using
Poisson and negative binomial and their zero-modified versions (zero-
inflated, hurdle, and hurdle with regression for zero-inflation proba-
bility). Among all the models we fitted, the negative binomial hurdle
with regression for zero-inflation probability performed the best. Our
model results identified several environmental variables (V-wind and
relative humidity) as significant predictors for explaining the distribu-
tion of Lyme disease. Although the negative binomial hurdle model with
logistic regression for the zero-inflation probability did perform better
than the negative binomial model, it is unclear whether the marginal
difference in performance outweighs the benefits of a simple model that
is more tractable for inference and prediction. Our model results iden-
tified spatial “hot spots” of Lyme disease in Virginia mainly in the
northern, western, and southwestern parts of the state. Also, we iden-
tified an overall increasing trend in cases of Lyme in Virginia after ac-
counting for spatial variation in the data.

Our study has several limitations that may be addressed in future
work. Mainly, we assume that the data collection and procedures remain
consistent and follow standard protocols and that the cases are perfectly
detected. This assumption may not be realistic and several previous
studies have identified instances of incorrect diagnosis of the disease
(Lantos et al., 2013, 2015b). Also, due to lack of data availability, we do
not include individual-level data and the proportion of unconfirmed
cases in our model which limits our ability to make inferences about the
spatial and temporal patterns of expansion of Lyme disease to the county
level.
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