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We review recent progress in the computation of leading quantum corrections to the ener-
gies of classical solitons with topological structure, including multi-soliton models in one
space dimension and string configurations in three space dimensions. Taking advantage
of analytic continuation techniques to efficiently organize the calculations, we show how
quantum corrections affect the stability of solitons in the Shifman—Voloshin model, sta-
bilize charged electroweak strings coupled to a heavy fermion doublet, and bind Nielsen—
Olesen vortices at the classical transition between type I and type II superconductors.

Keywords: Soliton; vacuum polarization energy; spectal method.

1. Introduction

The existence of degenerate vacuum configurations in a classical field theory allows
for the possibility of topological soliton, or, more precisely, solitary wave solutions,!
which are solutions to the field equations with localized energy densities. Because
such solitons are stabilized by global properties of the classical solution, one expects
them to remain stable when quantum effects are included. However, in a variety of
situations, quantum corrections can alter the classical results in a significant way.
These effects can be formulated as the shift in the zero-point (vacuum) energies
of the fluctuations when subjected to the potential induced by the soliton. This
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vacuum polarization energy (VPE) is®

1
AE = 3 Zk: (wk - UJ,(CO)) + Ecr, (1)

where wy and w,(co) are the energy eigenvalues of the fluctuations in the background
of the soliton and the translationally invariant vacuum, respectively, and Fcr is
the counterterm contribution, described below. The formal sum in Eq. (1) can
be expressed as a discrete sum over bound states plus a continuum integral over
scattering states. We note that Eq. (1) may also be taken as the starting point for
studies of the Casimir force on conductors due to the exchange of virtual photons,? 3
and so the VPE is often also called the Casimir energy. For a charged soliton,
one can include effects of occupied levels, but such contributions must always be
considered together with the VPE since they appear at the same order in A.

Even when taking the difference of energy levels as in Eq. (1), the sum over
zero-point energies diverges, so the theory must be regularized, and counterterm
contributions Ecr must be added to render the VPE finite. In renormalizable theo-
ries, the counterterms are linear combinations of terms already present in the local
Lagrangian before quantization. The coefficients of these terms are determined from
conditions on Green’s functions that do not depend on the field configuration under
consideration. These renormalization conditions define masses and couplings in the
quantum theory that are fixed from experimental data. Based on these inputs, one
then obtains unambiguous predictions from calculations in the renormalized theory.

Particularly because most applications in four space—time dimensions ultimately
require numerical analysis, additional tools are required to pass from these for-
mal expressions to tractable calculations with no cancellations of large or cutoff-
dependent quantities. Without such tools, early calculations required extremely

5.6 gcat-

high precision.? As was already recognized in the earliest VPE calculations,
tering theory methods can play an invaluable role in improving this situation. In
this approach, the continuum part of the sum in Eq. (1) is rewritten as an integral
over the change of the density of states, which in turn is related to the scattering
phase shift. The VPE calculation is then connected with standard renormaliza-
tion procedures by identifying contributions from the Born approximation of the
phase shift with the corresponding terms in the Feynman diagram expansion for the
VPE.":8

Even with these tools, however, the sums and integrals over the entire spectrum
of quantum fluctuations are still challenging numerically for phenomenologically
relevant models. As in other numerical computations in quantum field theory, it
is helpful to use contour integration to shift the integral over the density of states
to the imaginary momentum axis. One immediate benefit of this approach is that
bound states no longer need to be identified explicitly, since their contributions are

2Unless noted otherwise, we write formulas for boson fluctuations. Fermion fluctuations require
an overall minus sign.
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exactly canceled by those from poles in the contour integral.” Furthermore, careful
extension of the variable phase approach to scattering theory'® can enable one
to replace oscillating functions with decaying exponential functions (while avoid-
ing growing exponential functions),® 1! significantly improving the efficiency of the
numerical computation.

Owing to its fundamental importance in quantum field theory, there is an exten-
sive literature covering many approaches to and applications of VPE calculations.
A necessarily incomplete summary includes Green’s function methods,'? *® which
allow for a similar Born approximation identification of the divergent diagrams and
counterterms; heat kernel techniques, based on the proper-time representation of the
determinant, which can be used to provide long-wavelength approximations,'¢18
for sufficiently smooth background configurations, as well as exact results,” 1923
although the comparison to standard renormalization conditions is more difficult in

d724730

this approach; the Gel’fand—Yaglom metho which obtains the energy sum in

Eq. (1) from the solution to a differential equation; the world-line formalism,3!~3
which uses more extensive numerical computation and as a result can accommo-
date configurations without sufficient symmetry for a partial wave expansion; and
generalized derivative expansion methods, which can yield both exact results when

35-37

summed to all orders and simpler approximate results for slowly varying back-

grounds.3% 41

In this review, we begin in Sec. 2 by recapitulating the spectral methods
approach for computing the VPE, with emphasis on the effectiveness of the imagi-
nary momentum integration. We then discuss three situations where quantum cor-
rections can qualitatively affect the properties of classical solitons with topological
charge arising from a winding number. In Sec. 3, we summarize how the VPE can
destabilize multi-soliton solutions in one space dimension. In Sec. 4, we show how
coupling to a heavy fermion can stabilize electroweak strings by allowing the energy
of fermions bound to the string to be lower than that of the same number of free
fermions. Finally, in Sec. 5, we discuss quantum corrections to Nielsen—Olesen vor-
tices as a function of winding number, and show that in the BPS case of equal gauge
and Higgs masses, quantum corrections favor higher winding over a corresponding
number of isolated vortices with unit winding, while in the classical model these
energies are equal.

2. Spectral Methods

Spectral methods are the main tool to compute the VPE of static, extended field
configurations. These configurations induce a potential for small amplitude fluctu-
ations, which are treated by standard techniques of scattering theory in quantum
mechanics. They provide the bound state energies, w;, which directly enter the
VPE, as well as the phase shifts §(k) (or more generally the scattering matrix) as
a function of the wave-number k for single-particle energies above threshold given
by the mass m of the fluctuating field. Those phase shifts parameterize the change
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in the density of continuum modes via the Friedel-Krein formula*?

1dsu(k)
Ap[ - T dk 5 (2)

where we assume that the scattering potential has sufficient symmetry to allow a
partial wave expansion, represented by the £ index.
In turn, that change determines the continuum contribution to the VPE

b.s.
1 1 [
AE:igj w]'+§/0 dk EZ \/k2+m2Apz+ECT

b.s.
1 > dk doe(k
:55 wj+/0 %E \/k2+m2%+E0T. (3)
J ¢

Here the partial wave sum includes any associated degeneracy factors, e.g. 2¢ + 1
for angular momentum in three space dimensions.

Eventually the analytic properties of scattering data allow for a more efficient
computation of the VPE by introducing imaginary momenta k = it with ¢t > 0.
Details of that approach have been reviewed elsewhere,® so here we will focus on
the main features for completeness.

2.1. Scattering data

To compute the scattering data that enter Eq. (3), we first write down the
Schrédinger type equation for the radial part of the fluctuation wave functions

V(@) = =k p(x) + %LQW,k(l‘) + o (x) e r (), (4)

where a prime indicates the derivative with respect to the radial coordinate x and
L? is square of the angular momentum eigenvalue. In one space dimension z is posi-
tion on the real axis with L? = 0, while in three dimensions z > 0 and L? = ¢({+1),
for example. If the induced potential o(x) is attractive, there are discrete bound

2 _ n?
for k2 = —K)? < 0. In general we consider a multi-channel problem, so that o(x)
is matrix valued while v, x(z) is an array of n wave functions, where n is the
number of channels. We can then define an n x n matrix ¥, ;(z), whose differ-
ent columns represent independent boundary conditions. In particular, introducing
He i (x) as the diagonal matrix containing the free outgoing solutions, we parame-

terize Wy i (z) = For(x) - Hex(z) and obtain the wave-equation

Fip(w) = =2k Fop(x) - Hy g () - Hyp(@) + o(x) - Fop(a). (5)

state solutions with [ dz|¢y(z)]* < oo and energy eigenvalues w; = ,/m

Imposing the boundary condition lim,_,., F = 1 and observing that the original
wave-equation (4) is real, we get the physical scattering solution as the combination

U (@) = Fp (@) - Hip(2) — Foale) - Honl(e) - S(k), (6)
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since sz(aﬁ) asymptotically describes incoming waves. The scattering matrix, S,

is extracted from the regularity condition® lim,_,o \Iléb,? () = 0. Finally, the phase
shift entering Eq. (3) is

So(k) = %ln[deth(k:)] _ %m Vi [det(F () F, ()] (7)

2.2. Renormalization

So far, our expression for the VPE has been quite formal since in Eq. (3) we still have
to combine the infinities in the momentum integral and the counterterms to obtain
a finite result. Conventionally the counterterm coefficients are determined from
the perturbative expansion of Green’s functions via the computation of Feynman
diagrams. We can incorporate that scheme by first noting that there is a Feynman
diagram expansion for the quantum action in the presence of the potential o(z).
The leading quantum correction is the sum of all one-loop diagrams

w2590 - O = o

where D5 denotes the (covariant) second-order differential operator associated with
the free wave-equation. The double lines represent insertions of the Fourier trans-
form of o(x), so that the Feynman diagrams are given as integrals over those Fourier
momenta and the loop momentum. Dividing by D> on the left-hand side represents
the subtraction of w,(go) in Eq. (1). Since the potential is static, the energy is just the
negative action per unit time. Hence it is straightforward to associate the energy
E(n) with the Feynman diagrams containing n insertions of o(z).

On the other hand, we can expand the Jost solutions according to increasing
orders in the potential by writing F = 1+ F®) + F®) 4 ... (omitting labels for
brevity). The F (") are subject to the differential equations'®

FO— oFMWr q y =t p o, FO = 9F@ oy oy 4o F D (9)

with boundary conditions limg_, o F™ () = 0. In turn this Born expansion yields
the n*® order contribution to the phase shift 5§n) (k) by collecting terms of order n in
Eq. (7). Using Eq. (3), each order can be associated with an energy computed from
scattering data. Hence we have two expansions with respect to the same quantity.
They are equal order by order and we can write

Z% / dkz\/kzi{dée } +§:E§3+ECT, (10)

N n=1

bThe symmetric channel is one space dimension has lim;_,o ¥ (SC)(x) = 0 and a positive relative
sign in Eq. (6).
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where the subscript indicates that the first N terms of the expansions are sub-
tracted: [0¢(k)|n = de(k) — ZN_ 5;”)(/@. Integrating by parts and using Levinson’s

n=1
theorem?? yields the VPE in terms of binding energies as

b.s. N

1
aE=g3 e -m- 75 §:¢ﬁ¢af vt (B

j n=1

+ Ecr).

(11)
The power of this expression is that it is a combination of finite terms. The momen-
tum integral has become finite because sufficiently many 515")(k) are subtracted
from the exact phase shift. The Feynman diagram and counterterm energies are
computed with a common regularization scheme such that the regulator disappears.
Eventually we will use dimensional regularization with on-shell renormalization
conditions; i.e. poles and residues of propagators do not have quantum corrections.
These conditions are augmented by the “no-tadpole” condition that quantum cor-
rections to the vacuum expectation values of the fields vanish.

We stress that for the formalism to be valid, the convergence of the expansion
in Eq. (8) is not necessary because we only consider a finite number of terms. It is
also important to stress that, though the Born series features prominently in the
approach, the phase shifts are not obtained by any kind of approximation.

We have obtained Eq. (11) by relating the change in the density of states to
the phase shift. The quantum field theory derivation that integrates the vacuum
expectation value of the energy density can be found in Ref. 11.

2.3. Imaginary momenta

It will be helpful in our calculations to make use of the analytic properties of
scattering data. Note that Fpi(x) - Hex(z) is the Jost solution to the scattering
problem, while Fy(k) = lim,_,o detFy () is the Jost function, which is analytic for
Im(k) > 0. For the definition in terms of outgoing waves, the elements of H, 1 (z)
are Hankel functions with asymptotic behavior proportional to e**. It is therefore
clear that F_j(x) = Fj{(x) for real k. We then observe that the phase shift

(k) = 5 (I Fy (k) — In Fo(—F) (12)

is an odd function of k. We thus write

foa e [T = [ v (B

N
(13)

To evaluate the right-hand side by analytic continuation and contour integration,
we recall that

e with the subtraction of the Born terms, there is no contribution from the semi-
circles at |k| — oo;
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e the Jost function has simple zeros at the bound state wave numbers while the

Born terms have no zeros (otherwise bound states would be perturbative effects):
dinFy(k)] 1

dk N k- ik

+ .-+ for k~ikj;

e the square root induces a branch cut along the imaginary axis k = it:
Vit + 62 +m? — (it — €)2 + m2 = 2iV/12 — m?

for t > m and € — 0.

Collecting pieces we have

/ dkz\/ﬁ{d& }

N

Z\/m/moo Z\/i{dlanzt}N’ (14)

where the sum on the right-hand side cancels the explicit bound state contribution
in Eq. (10).% Again integrating by parts yields for the VPE

o dt t (n)
ap- [ v N+ZE + Eer. (15)

where v(t) = InFy(it) = lim,_,oIndetFy i (x). We obtain Fy i (x) and its Born
expansion by integrating Eqs. (5) and (9) with Hyx(x) — Heu(z). It is worth
noting that detFy i (x) is a real quantity.

In certain cases the limit £ — 0 needs specific treatment. In two space dimen-
sions, the regular solution approaches a constant while the irregular one diverges
logarithmically in the zero angular momentum channel. Numerically these solutions
are cumbersome to disentangle and it is not sufficient simply to read off Fy i (x)
at some very small z; rather a sophisticated extrapolation is required.** Further-
more singular background potentials may require additional subtractions because
the Born expansion reflects that singularity, for example in the case of vortices
in scalar electrodynamics.*® Also, fermion masses explicitly enter the spinor wave
functions and the effective masses at spatial infinity and  — 0 may differ. This
effect must be incorporated when extracting v(t) from Fy i (x) as well.** We will
return to these issues in Secs. 4 and 5.

2.4. Interface configurations

A problem that often arises in contexts such as the Casimir force!! is that of
computing the VPE originating from (idealized) boundary conditions of infinitely
large plates. In such a problem, the plate acts like a domain wall, with transla-
tional invariance along a plane, while there is a localized structure in the orthogo-
nal dimension. Similarly, strings stretch along an axis with translational invariance

2241004-7
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while having a soliton-like configuration in the plane orthogonal to that axis. The
scattering problem in the translationally invariant subspace is trivial, which intro-
duces subtleties in the computation of the VPE and in particular its regularization
and renormalization.

We consider a general scenario with a localized (classical) configuration con-
tained in the n-dimensional subspace R™. It is embedded in a higher-dimensional
space such that there is translational invariance in an m-dimensional subspace R™.
The combined fluctuation wave function is then

90<$>y) =PV (,Z?(CL‘), (16)

where p € R™ is the transverse momentum conjugate to the extra dimensions
y. The reduced wave function @(x) is subject to a wave-equation in n spatial
dimensions with a background potential o(x) similar to Eq. (4). Then the dispersion
relations for the scattering and bound states of the (n + m)-dimensional problem
are (p = [p| and k = [k|)

w(k,p) =vm?+k2+p? and w;(p) = \/ﬂT?_,{?7

respectively. Here, k and x; are the (imaginary) momenta conjugate to € R™. We
get the corresponding densities of states by simply multiplying the free density of
states of the m-dimensional transverse space

1dog(k) Vi Vin
k)= — —_— d pi(p) == 1
pl(pv ) T~ dk (271-)711 al Pj (p) (27T)m ( 7)
This in turn yields the VPE per unit transverse volume
AE d™p °° dk dd, (k)
Em n = T, = - k’, —
== o | [ et ) T

1 Ecr
+5 > (wi(p) = ulp) | + v (18)

j m

where the mass coefficient p(p) = v/m? 4+ p? must be taken to depend on the trans-
verse momentum. In this form the subtlety mentioned above emerges immediately:
The p integral is divergent but the phase shift does not involve p and thus there is
no Born subtraction that can render this integral finite. To see this more clearly,
we integrate over p in dimensional regularization:

r(—Litm) > dk d
Em n= N 2 7 - E m—+1 _ m+1\
(V)
m m E ECT
+ Ej (w; (0)™ T — ™y | + 7‘2]3 + Vo (19)
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where we have subtracted N Born terms from the phase shift and added them
back as the Feynman diagrams Egg). Regardless of the number of subtractions, the
coefficient produces a divergence for any odd integer m. Let us specifically consider
the case m = 1, which applies to string configurations. Then the expression in
square brackets simplifies to

/0 dkk2 Z“ / 7w2(k:)%[6z(k)]fv+zwaz"

where the energies refer to those in the n-dimensional subspace. The equality above

is a consequence of Levinson’s theorem. More importantly, this combination van-

ishes by one of the sum rules that generalize that theorem.6 Hence the residue of

1+m )
2

the pole from I'(— is zero and we can analytically continue to m =1

—L| [T dk w?(k) d Wi ESY | Eor
EL”:gTT/O — ) (k) n 2 *[5e(k)]N+Zw§1nﬂ—; +=ED g 2

(20)

The arbitrary energy scale & has been introduced for dimensional reasons. It has
no effect by the sum rule mentioned above. Making use of the relation between the
phase shift and the Jost function and its analytic properties allows us to write the
integral for imaginary momenta as in Subsec. 2.3. While the bound states energies
will no longer appear explicitly, we pick up a contribution from the discontinuity
of the logarithm and integrate by parts:

>t YY) E
Eun= [ Gty + 2+ T, (21)

where v(t) =), v(t) is the channel sum of the logarithms of the partial wave Jost
functions in the n dimensions that contain the soliton.

2.5. Fake boson subtraction

In many cases the logarithmically divergent Feynman diagrams are cumbersome to
compute. An example is the fermion loop in D = 3 + 1 dimensions, which requires
considering diagrams with up to four insertions of the background potential. It is
thus desirable to have available a simpler treatment of the logarithmic divergences.
The key observation is that the sole purpose of introducing the Born terms and
the equivalent Feynman diagrams is to move the ultraviolet divergences out of the
momentum integral and combine them with the counterterms, Fcr. Hence we can
use any other subtraction under the momentum integral that can be combined with
the same counterterms, Fcr. In dimensional regularization, D = 34+1 — 4 —2¢, the
logarithmic divergence emerges as % where C7, is a local integral over (powers
of) the potential in the wave equation. We also note that the Feynman diagram
with a scalar loop and two insertions of a potential Vg leads to a logarithmic
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(2 ) . This divergence is proportional to the spatial integral of Viz. In

this boson theory we can compute 1/}(32)(1?), the channel sum of the second-order (in
Vg) contribution to the (summed) logarithm of the Jost function. Next, we take
v(t) to be the logarithm of the Jost function in the original theory with all Born
terms removed that lead to divergences higher than logarithmic. This also subtracts

the underlying logarithmic divergences in the corresponding Feynman diagrams,

divergence in Ey

so we only need to consider Feynman diagrams that have superficial logarithmic
divergences. We add back these subtractions as Feynman diagrams and combine
them with the counterterms to Ect. We then consider

o dt t — 2 - 2

| s PO - Cor ()] + Bro + CoBB + Eor. (22

where Frp are the Feynman diagrams compensating the subtractions in v/(t). Set-

ting Cp = W moves the logarithmic divergence from the momentum integral
B

to the Feynman diagram such that Epp + C’BEIE?]% + Ecr is finite.

As a corollary to this prescription we can consider the finite differences between
second-order terms in boson theories with different potentials V; and V5, that are
related by the integrals [d®z V2 = [ d3z V2. They have second-order phase shifts
5;21) (k) and 6&2 (k), respectively. The procedure in Eq. (22) implies the relation (with
no discrete contributions since Born terms do not account for the nonperturbative
bound states),

/ Z \/m[ é 1)(k) 62,22)(16)] = EFDJ - EFD72’

which has been numerically verified for particular examples.*”

Finally, we note that this simple fake boson subtraction does not work for
quadratic divergences, because then the underlying logarithmic divergences must
also be accounted for.

3. Applications in One Space Dimension

In this section, we demonstrate the effectiveness of the imaginary momentum
formulation by computing the VPE of sine-Gordon and kink solitons. We also
summarize some recent computations of the VPEs for other solitons in one
dimension.

3.1. Ezxactly solvable examples

In Subsec. 2.3, we have emphasized the convenience of the imaginary momentum
formalism. Let us briefly demonstrate this in the case of the sine-Gordon and ¢*
kink solitons, for which the typical textbook calculations of the VPE are carried
out using real momenta.™8 First, we note that for boson theories there is only one

2241004-10
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divergent Feynman diagram in D = 141, which is the tadpole with a single insertion
of the background potential (first diagram in Eq. (8)). This diagram can be fully
canceled by a counterterm such that El% + Ect = 0. Accordingly we only have a
single Born subtraction under the momentum integral. The background potentials
are of the Poschl-Teller form*®

n+1 M?

n coshZ(%)

on(x) = (23)

with n = 1 and n = 2 for the sine-Gordon and ¢* kink solitons, respectively. In both
cases M is the mass parameter for the quantum fluctuations, and the scattering
solutions are known:

W (z) o [k + 1M tanh(Mz)], (24)

(0 o [gran (M) g WGk (M
w(z) o< e {3tanh ( 3 ) 1 e Mtanh 3 , (25)

where the superscript is the Poschl-Teller index n. The exponential factor indicates
that we have only a right-moving plane wave. Hence the potentials are reflectionless
and the phase shifts in the symmetric and anti-symmetric channels are equal. The
Jost solution (f = FH) is constructed from the above wave functions by introducing
constant factors such that
: (n) —ikx _
C’:hﬁnolo i (x)e =1.
Since the wave-equation is real, both fi(z) and f;(z) are solutions and the Jost
functions are the expansion coefficients of f and f* for the physical scattering
solution .. In the antisymmetric channel the boundary conditions read
dipse ()

l. = d 1. _— = 1

2y Yeele) =0 end g
Equating the Wronskian W [t)sc(z), ,En) (z)] at spatial infinity and at  — 0 imme-
diately yields the Jost function F_(k) = lim, o fr(x) as denoted at the end of
Subsec. 2.1. For the above potentials this gives

(1) k ®) k—iM/2
(k)= ——— d (k)= ——+—. 2
— =g R =Ty (26)
As mentioned in footnote b, the boundary condition in the symmetric channel
requires the derivative of the Jost solution such that F(k) = ilimwﬁo df(’}'—g(f),
yielding

(1) k—iM (2) k—iM

(k)= — d F.7 (k)= ———. 27

(k) and PR = s 27)
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We note that FJ(rl’Z)(iM ) = 0 reflects the existence of zero modes. The analytic
continuation for Fj_l’Q)Fﬁl’Q) is straightforward, leading to the VPE

AEU):/ ¢t m( =AM oM :7%,
v 2TV M2 \t+M t ™

<dt ot t-Mot—M\ _M] M 18
AE(2):/ — 1 3—|=={(v3-=).
v oavE | M\ixMasa) T T 12 Vi- o

(28)

In the above we have identified the Born subtraction as the leading term of the
logarithm for large ¢. From the wave-equation we can show that it is indeed a single
inverse power in t. We factorize fy,(z) = Fo r(2)e™* with the imaginary momentum
wave-equation (primes are derivatives with respect to the spatial coordinate x)

it () = 2tF(x) + o (x)Feie()

and obtain the full Jost function (argument of the logarithms in Eqs. (28)) as the
limit

. 1
FUOF-(0) = 1y | Fralo) (Frale) - 170 | (29)
To identify the Born approximation we expand Fyi(x) = 1+ Fi(x,t) +--- in
powers of the potential o. Integrating the differential equation for Fi(z,t) from the

center to infinity shows that

1

In[Fy ()F (1) = 1 /O " dro(@) + 0(0?). (30)

3.2. Mass gap and thresholds

The imaginary momentum formulation is even more advantageous when there are
multiple quantum fields with different masses. In the real momentum formulation,
three different energy regimes must be considered: (1) bound states with energies
below the smallest mass; (2) intermediate energy regime(s) between the lowest and
largest masses where some modes are bound while others scatter; (3) energies above
the largest mass, where all modes scatter and extend to spatial infinity.

The continuation to imaginary momenta, however, is not without obstacles.
Let us explore the case with two masses m; < mo that have momenta k; = k
and ko, respectively. In the binding regime(s) they may be imaginary. For static
potentials, energy is conserved and the (relativistic) dispersion relation yields k3 =
k? + m? — m3. This may induce further branch cuts in the complex momentum
plane. Within the mass gap, 0 < k? < m3 — m?, either sign of k should produce
an exponentially decaying wave function parameterized by the imaginary part of
ko. This suggests writing ko = \/k2 + m? — m2. In the scattering regime, k* >
m3 —m?, the analytic continuation uses the fact that the imaginary part of the
Jost function is odd for real momenta, as shown in Eq. (4). In particular, ko should
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2_ 2
my—my

change sign when £ does. So we would write ko = k41/1 4+ —5—=. In Ref. 49, it has
been shown that these two seemingly contradictory relations can be consistently

2 _ 2
kgsz(k)zk,/HH with € — 0% (31)
€

This prescription leads to additional singularities, but they occur only for momenta

combined as

with negative imaginary parts, and it passes numerous consistency checks.*® Hence
it is straightforwardly permissible to analytically continue within the upper half
plane with k& = it and ke = ita(t) = i\/t2 +m2 — m?. We then get the matrix
differential equation

Filiu(x) = 2F, 3 (2)D(t) + [M3, Fre ()] + V(@) Feie(2), (32)

with M = ("' %) and D(t) = (§ ).
If the potential matrix is symmetric, V(—z) = V(z), the relevant logarithm of

the Jost functions is
v(t) = Indet[Fs(t)Fa(t)], (33)
where Fg(t) = limg o[Fri(z) — Fpy(2) D71 (1)) and Fa(t) = limg o[Fri(z)].

In many applications the potential matrix has a skewed symmetry V(—z) =
(é Vi) (é _Y), in which case®5
v(t) = Indet[F,.(t) F_(t)], (34)

where the combinations Fi (t) = [Py Fs(t)D+(t) + P+ Fa(t)D1'(t)] are found using
00

the projectors Py = ((1) 8) and P_ = (, ;) as well as the factor matrices D (t) =
(Bt (1)) and D_(t) = ((1) 722). The Born approximation,
u(l)(t) :/ dx [Vll(x) + M , (35)
0 t to
is then subtracted from Eq. (34) to implement the no-tadpole scheme.

3.3. Instability of Shifman—Voloshin soliton

The Shifman-Voloshin soliton model extends the ¢* model by adding a second
scalar field y. Its Lagrangian reads
1 v v )\2M2M22)‘222
£—§[8u¢a ¢+8VX8X]_4[¢ —§+§X —ZMX¢~ (36)
The Lagrangian contains a coupling constant A\ and mass scale M similar to the
conventional ¢* model. We will discuss the meaning of the dimensionless coupling
constant p > 0 shortly.
After appropriate redefinition of the fields, (¢, x) — (M/vV2X)(#,x) and the
coordinates, x,, — 2z, /M, the rescaled Lagrangian, £ — (M*/8)\)L has a vacuum
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configuration at ¢ = +1 and y = 0. We call these two possibilities the primary
vacua. There are also secondary vacua at ¢ =0 and xy = + %
For static fields the model allows a BPS construction for the classical energy of

static fields

1 [ 2
Ech*/ dx[¢’2+x’2+(¢2—1+#x2) +H2¢2X2]

2/ 5

1 [ 9 . .
5 e (# 145w d) s o [0 - 300 - o] R
(37)

where primes denote derivatives with respect to the (dimensionless) space coor-
dinate x. The extremal points in field space are determined from the first-order
differential equations

di(iigf) = —u¢(z)x(z) and = 1—¢*(x) — %XQ(Z')' (38)

These coupled differential equations have been studied in detail in Refs. 51 and 52.
Field configurations that approach the secondary vacuum at spatial infinity have
E. = 0, and we thus cannot have a soliton with this asymptotic behavior. Adopting
the convention that lim, ,+. ¢(x) = £1, we see that ¢(x) is an increasing (pre-
sumably monotonically) odd function of the coordinate and x is even, where we
take the soliton center at x = 0. We are free to choose x(0) > 0. If x(0) > /2/p,
¢’'(0) < 0 and x”(0) > 0, implying that x(0) would be a minimum. Furthermore,
¢’ would turn even more negative and not approach +1 at spatial infinity. By con-
tradiction we thus conclude that \/2/7 is an upper bound for x(0) and we param-
eterize x(0) = a\/2/7 with 0 < a < 1, for which solitons have been constructed
numerically.?® Observe that ¢ is in its secondary vacuum at = = 0. The closer a is

de(x)

to unity, the larger the region in which both fields approximately equal their cor-
responding expectation values from the secondary vacuum. Restoring units we see
from Eq. (37) that E; = %Z\gf—f = Igf—; for all solitons, independent of a.

Linearizing the time-dependent wave-equations around this soliton defines the
potential and mass matrices

Vie) = n(1+ p)(e® — 1) + ;/fxz 2u(1 + p)xo
2u(1 + p)xo 6¢? — 6 + p(p+ 1)x>

0
MQ_ " )
0 2

respectively. Obviously V() is skew-symmetric and for ;1 < 2 we can directly apply
the formalism of Subsec. 3.2, while for g > 2 we first need to swap the diagonal
elements of both V' (z) and Ms. Selected results for the VPE from Ref. 50 are listed
in Table 1. Except for 1 = 2, where the model is equivalent to two identical ¢* kinks,

and
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Table 1. Numerical results for the vacuum polarization energy of the Shifman—Voloshin
soliton, measured in units of M.

g 0.5 1.6 2.0 2.8 3.6 4.0 4.4

a

0.0 —0.830 —1.186 —1.333 —1.661 —2.039 —2.246 —2.467
0.1 —0.833 —1.186 —1.333 —1.661 —2.038 —2.246 —2.467
0.5 —0.906 —1.195 —1.333 —1.654 —2.036 —2.249 —2.477
0.9 —1.229 —1.217 —1.333 —1.666 —2.112 —2.372 —2.656
0.99 —1.661 —1.235 —1.333 —1.714 —2.284 —2.628 —3.008
0.999 —2.076 —1.251 —1.333 —1.764 —2.459 —2.888 —3.364
0.9999 —2.488 —1.268 —1.333 —1.813 —2.634 —3.147 —3.720
0.99999 —2.900 —1.284 —1.333 —1.863 —2.809 —3.406 —4.076

. 1 . 1 . ! . ! . 25E 1 l I

1
0 25 5 75 10 [l 2 4 O
-Ini1-a) -In{ce)

Fig. 1. VPE of the Shifman—Voloshin soliton for various model parameters p as functions of the
variational parameter a (left panel) and the $® model soliton as a function of the model parameter
o (right panel).

the VPE is unbounded from below as a — 1. A numerical fit exhibits a logarithmic
divergence: AE~Ey+ F1In(1 —a), with E; o approximately independent of a. This
behavior is shown in the left panel of Fig. 1.

Hence for any given A, there will be an a close to unity such that the total energy
is negative. By extending into the secondary vacuum the soliton is destabilized at
the one-loop quantum level. For this to happen, the curvatures of the field potential
at the primary and the (degenerate) secondary vacua must be different; recall that
for p = 2 they are equal, and then there is no instability.

3.4. Further quantum instabilities: Higher power field potentials

Models with higher than quartic powers in the field potential may also pos-
sess primary and secondary vacua for certain parameters. An example is the
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Fig. 2. The soliton profiles of the % model. Note that a = 0 in the right panel.
Lagrangian
11, _ 1
L=1153000"¢ —U(p)| withU(p) = 5(¢* = 1)*(¢” +a?). (40)

For nonzero values of the model parameter «, only primary vacua at ¢ = =+1
exist. As shown in Fig. 2, solitons mediate between these two values as the spatial
coordinate varies between negative and positive infinity.?3®* The potential for the
harmonic fluctuations around this soliton is invariant under spatial reflection and
the VPE can be straightforwardly computed using the methods described above,
via Eq. (29). The right panel in Fig. 1 shows that for a — 0, the VPE approaches
negative infinity like Ina.%®%% On the other hand, the classical energy is always
finite and positive. Classical and quantum energies contribute with different powers
of the loop counting parameter A, which appears as an overall factor in £. Hence
there will always be a value of A such that the total energy is positive and the
soliton is stable. The situation changes drastically for a = 0. Then a secondary
vacuum emerges at ¢ = 0 and two soliton solutions ¢4 exist that link ¢ = 0 with
p=1and ¢ = —1 with ¢ = 0, respectively. Actually for a tiny but nonzero «, the
soliton from above can be viewed as a combination of these two solutions whose
separation increases as a — 0. This may also be inferred from the profile functions
shown in Fig. 2.

Obviously the curvatures of the field potential at ¢ = 0 and ¢ = £1 differ.
Hence the masses of the quantum fluctuations at positive and negative infinity are
also different. Even though an imaginary momentum formalism has not (yet) been
developed for this scenario, the reflection and transmission coefficients as well as the
bound state energies have been computed both analytically®® and numerically®® so
that the VPE can be obtained from Eq. (11). That simulation reveals a translational
dependence. With x( being the center of the soliton, the VPE is observed to change
by approximately 0.101 per unit of zy. The same variation is found for the VPE of a
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background potential built from a barrier of width zy and a height determined from
the difference of the two curvatures. In contrast to «, ¢ is a variational parameter
that describes the shape of the soliton and for any given A we can choose zy such
that the total energy is negative. Hence the o = 0 soliton is unstable at one-loop
order. Of course, this picture is consistent with the o — 0 divergence of the VPE
discussed above, when the soliton configuration exhibits two well-separated o = 0
structures. The same kind of instability has been observed in the ¢® model.?”

4. Fermions and Cosmic Strings

In contrast to the Abelian vortices that we will discuss in Sec. 5, string configura-
tions that are embedded in SU(2) Higgs-gauge theory are not stable by their topo-
logical structure, so it is of interest to explore whether quantum effects may lead
to stabilization. For large N (the number of internal fermion degrees of freedom in
the field theory) the fermion contribution will be dominant.

For the current investigation the fermion doublet will be assumed degenerate,
so that the introduction of a matrix notation for the Higgs field is appropriate. In
general the isospin group SU(2) is described by three Euler angles. One angle picks
up the winding of the string in azimuthal direction. So we are left with two angles
& and & that parameterize the isospin orientation.’® They will later be treated as
variational parameters. For notational simplicity, we introduce the abbreviations
s; = sin(&;) and ¢; = cos(;). Then the string configuration reads

o < @5 ¢+> — ofu(p) < S180€7 " —jcy — 8162> (41)

—¢% o —ic1 + s1c2 s182€"7
for the Higgs field and
S189 —(ic1 + s1c9)e?
W =nsq S fa(p) @ ) ( 1¢2) (42)
ap (iCl — 8162)671n¢ —81892

for the gauge boson (in temporal gauge with Wy = 0). The variables p and ¢ are
polar coordinates in the plane perpendicular to the string, while the gauge coupling
constant g and the Higgs vacuum expectation value v are model parameters. The
profile functions fy and fg are subject to the boundary conditions

fea, fu =0 forp—0 and fg,fg—1 for p— oo (43)

In the numerical simulations the winding number of the string will be taken as
n = 1.

Since the Weinberg angle vanishes in this model, the gauge symmetry is SU(2),
while the U(1) hypercharge decouples and the three gauge bosons are degenerate.
The boson part of the Lagrangian reads

Lios = —%tr(G“”Gw) + %tr(Dﬂcb)TD,@ - %tr(CI)J“I) —0?)% (44)

2241004-17



Int. J. Mod. Phys. A Downloaded from www.worldscientific.com

by MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) on 05/04/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

N. Graham & H. Weigel

with the covariant derivative D, = 0,, — igW,, and the SU(2) field strength tensor
G =0, W, —0,W, —ig[W,,W,]. (45)

The boson masses are determined from ¢ and v and the Higgs self-coupling A as
mw = gv/v/2 and my = 2v+/X for the gauge and Higgs bosons, respectively. The
interaction with the degenerate fermion doublet is described by the Lagrangian

Liee = iU(PLP+ Prp)¥ — fU(PPr + @1 PL)V, (46)

with the right/left-handed projectors Pr . = (14 v5)/2. Upon spontaneous sym-
metry breaking, the Yukawa coupling f induces a fermion mass m = vf. Assuming
a heavy fermion doublet with the mass of the top quark, the Standard Model sug-
gests the parameters

g=0.72, v=177 GeV, my = 140 GeV, [ =0.99. (47)

In the numerical search for a stable string, later other values for the Yukawa coupling
will be considered as well.
The classical energy per unit length of the string is determined by Lo

EC [e%e] 2 / 2 2 2 2
m21:27r/ pdp{n%%s%[gg(ff;) + i gy +H+‘”’<1f§1>2},
0

p f?0? oA

(48)

where the dimensionless radial integration variable is related to the physical radius
by pphys = p/m, and we have introduced the mass ratio pg = my/m.

4.1. Choice of Gauge and the Dirac equation

An additional problem arising for string configurations with winding in gauge the-
ories is that the string does not induce a well-behaved Born series when expand-
ing in powers of the interaction term, Hip, from Eq. (46); see also Eq. (51). Even
though the full Hamiltonian is gauge invariant, Hj,; is not and does not van-
ish at spatial infinity. This obstacle appears because the Dirac Hamiltonian that
is obtained by straightforward substitution of the string background, Eqs. (41)
and (42), does not turn into the free Dirac Hamiltonian at p — oo. Instead it
becomes H — UT(¢)HyeoU (), where U(yp) is a local gauge transformation reflect-
ing the string winding. It acts only on the left-handed fermions

89 cos(ny)
U(p) = Prexp(in(y) - 7& )+ Pr with n(p) = | —sasin(ngp) | . (49)
C2
Unfortunately, making the obvious gauge transformation H — U(¢)HUT () does
not solve the problem: Although it would generate vanishing interactions at infinity,

it will also induce a 1/p? potential at the core of the string, p — 0. This choice might
still yield well-defined phase shifts, though they would likely be difficult to compute

2241004-18



Int. J. Mod. Phys. A Downloaded from www.worldscientific.com

by MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) on 05/04/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Quantum corrections to soliton energies

numerically, and the conditions underlying the analyticity of the scattering data
could be violated by this singular behavior; see, however, Subsec. 5.3. As we saw at
the end of the previous section, analyticity is central for numerical feasibility of our
approach. As a solution, we can define a radially extended gauge transformation

Up, ) = Prexplin - 7 £(p)) + Pr. (50)

This transformation fixes the gauge and gives the interaction part of the Dirac
Hamiltonian as

Hiyy =m |:(chA - 1) <(1) (1)> +ify sa <(1) (1)> n- T:|

+ﬁ —o-p o-p PO o9 o-@
200\ o-p —0o-p 20\ o-p —0o-@
x [fasala(D)+ (fa — 1) s¢ Ia(=§)], (51)

where, as above, we abbreviate sa = sin(A(p)), s¢ = sin(£(p)), etc. The new gauge
function &(p) appears via the difference A(p) = & —£(p) while the isospin matrices

are
) Co s9e'm¥
n-T= . and
Soe ¥ —Cy

Ig(z) = <( —528, (e84 — icy) em@).

CoSy + ic,) €7 595y

(52)

Imposing the boundary conditions £(0) = 0 and £(co) = &; for the new gauge
function £(p) defines a well-behaved scattering problem. The specific form of £(p)
is irrelevant (apart from its boundary conditions) and must not have any influence
on the quantum energy, since it merely parameterizes a gauge transformation.

Note that the gauge transformation is single-valued at spatial infinity,
U(o0, ) = U(oo, ¢ + 2m). In this respect it differs from the analogous problem of
fractional magnetic fluxes in QED. In that case a similar choice of gauge would
not be a remedy; rather the calculation of the vacuum polarization energy requires
the introduction of a return fluz.>® This approach can also be used for the present
calculation, but it is much more laborious numerically.6%:6!

We introduce grand-spin type states that couple spin and isospin to account for
the angular dependence. For fixed angular momentum ¢ there are four of them,

<¢;SI|€++>=6“”W<1) ®<1> <%0;SI|€+_>:—16W<1> ®<0> :
0 S 0 I 0 S 1 I

(g SI|E — +) = ie'lrnte <0> ® (1) (03 SI¢ — —) = &' (tHD? <0> ® (0> :
1 S 0 I 1 S 1 I
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where S and I refer to the spin and isospin subspaces, respectively. These grand-
spin states serve to construct four-component Dirac spinors in coordinate space

(Rl (Rl

<”++>‘<g1<p>|f—+>> ol + ) <2<p>|e >>
(54)

(ol — +) = (fa(p)lf—ﬂ) (ol — =) = ( Fa(p)le = >>

ga(p)]€++) (D)l +-)

where we have suppressed the angular momentum index of the radial functions
because the Dirac equation is diagonal in this quantum number. We combine these
eight radial functions into two vectors f = Z?:l filp)é; and g = Z?:l gi(p)eé;
to write the Dirac equation as a set of eight coupled first-order linear differential
equations in the matrix form

(E—=m)f=Viuf+ (Dy+ Vi) &,

(55)
(E+m)g=(Dg+ Vau)f+Vaag.
The derivative operators are fully contained in the diagonal matrices
14 1 41 L ¢
u:diag(@,,—i— tnt .0, + + 7_5p+ﬂ —9, + >
P P p p
(56)

1 1
Dd:diag( dp +£+Tn ~d, +p d, +€+n+,6p+€+>.

We will give the explicit form of the real 4 x 4 matrices V; in terms of the radial
functions when we set up the Born series for the scattering data. Here it suffices to
note that these matrices vanish at spatial infinity, so the asymptotic solutions are
cylindrical Bessel and Hankel functions. In particular, the Hankel functions

Ha = diag(H}, |\ (kp), HY, (kp), HY, (kp), HY (kp)),

that parameterize the outgoing asymptotic fields with (radial) momentum k can be

(57)

used to set up the scattering problem via the matrix generalization

f—F - H, and g— kG- Hy, (58)

where Kk = E_FLm = % For simplicity we have not written out that the matrices F,
G and H,, 4 are functions of both the radial coordinate p and the momentum k. The
boundary conditions for the 4 x4 complex matrices 7 and G are simply lim, o, F =
1and lim,—,o G = 1, so the various columns of the above products refer to outgoing
waves in different grand spin channels.

The interaction Hamiltonian, Eq. (51), anti-commutes with the Dirac matrix azg.

Hence the spectrum is symmetric and we only need to consider the case with
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E = +Vk? +m? after analytic continuation to k& = it. This continuation turns the
Hankel functions into modified Hankel functions K;(z) and we define

Kogn(tp)  Ko(tp)  Keynii(tp) _Ke+1(tp)>

) ) ) = - Yd _1~
Revnar(tp) Kealtp) Kepnltp) * Feltp) )~ 0

Y. = diag(

Furthermore, we rewrite the kinematic coefficient kK — z, as

o — m;’”, with 7 = V2 — m2, (60)

so that z, is a pure phase.
The coupled first-order differential equations take the form

0,F =[Qpr +04] - F+ F-QY) —[Qpy +C- G- Ya,

(61)
0,0 =[Qgg +0u] -G+ G- Q) —t{Qy; — C]- F - Yy,
where the purely kinematical matrices are also straightforwardly expressed as
Q) =tC-Yy(k) - Oq and Q) = —tC- Y, (k) — O,.. (62)

The first set of matrices reads
0 -F— (¢ T ) and oy -my,- () (e
= = an = = ,
99 99 _p _of If If P
while the matrices involving the energy are

0, — 1 —-H Gt d O 1 H G 6
fg_m—i—iT ¢ H an 9 = i —at _g) (64)

In the above we have conveniently introduced 2 x 2 sub-matrices

—icg —s
HZO(H<1 0), P:Oép 2 . 2 :—PT, and
0 1 S icy

S9SA CA +1icoSA —898 ce —icos
G_CJLG( 2 2 >+a§< 25¢ 3 25) (65)

CcA —icaSA —S9SA ce +icose S95¢

7102 —S82
+ o . :
S9 1Co
The « factors contain the profile functions

1 9¢(p) NSy nsy

a(p) = 5 op ag(p) = TPfG(p)SA’ ag(p) [fa(p) — 1]s¢,

2 (66)
arg(p) =m[fu(p)ea —1] and  ap(p) =mfu(p)sa.
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We are not yet at the point to compute the Jost function as the logarithm of the
determinant of F (or G). These determinants are in general not real, but rather are
complex conjugate to each other. This is related to the fact that the (free) spinors
explicitly contain mass factors that differ at p = 0 and p — oo. For real momentum,
a typical solution in the vicinity of p = 0 looks like%?

<f4) . (k)l VE +mefu(0) Ji(gp)
g4 q VE —mefu(0) Jipa(qp)

with ¢ = \/E? — (mcfp(0))2, and similar dependencies hold for the other six radial

functions. These square-root coefficients lead to a definition of the Jost function
60

as

(67)

explp(t)] = (M)Q Ty det(F) = (M)Q lin det(G).
(68)

The power of two occurs because we compute the determinant of a 4 x 4 matrix.
Note that this redefinition not only cancels the imaginary parts, but also modifies
the real part. Furthermore, it cancels the logarithmic singularity in Inlim,_,o det(F)
observed numerically at t~m. Since fy is part of the interaction, this correction
factor also undergoes expansion in the framework of the Born series. The Born
series for det(F) is constructed by iterating the differential equations of Eq. (61) in
M;; see Ref. 44 for more details.

4.2. Numerical set-up

Thus far we have addressed the technical obstacles related to the singular structure
of the string at the origin. Despite the additional simplification due to the use of
a fake boson subtraction as in Eq. (22) for the subleading logarithmic divergences,
the numerical computation is still expensive. The scattering data are extracted from
a multi-channel problem and, for the final result to be reliable, several hundred
partial wave channels must be included. Furthermore, channels that contain orbital
angular momentum ¢ = 0 require disentangling a constant from a logarithm for
the regular and irregular solutions when p = pnin — 0. This is only possible by
extrapolating a fit of the form
a az

In(pmin) * In® (punin)

for the Jost function in these channels. These numerical efforts restrict the number

det(F) = ap +

- — ao, (69)

of variational parameters that can be used to characterize the profile functions. In
addition to &; and &>, we introduce three scale parameters wg, wyw and wg via the
ansatze

fu(p) =1—eP/vn fo(p) =1—e W/wel  ¢(p) = &1 —e @] (70)
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Table 2. Numerical results for the fermion vacuum polarization energy AE adapted
from Ref. 61 for wg = wy = 2.0 and & = 0.4w. The second row shows the contri-
bution from the renormalized Feynman diagrams in the minimal subtraction scheme
(including the fake boson piece) while Escqt denotes the scattering momentum inte-
gral. The last two lines originate from an adjusted large t treatment of the integral
for Fscat, see text.

we 1.0 2.0 3.0 4.0
Epp —0.0623 ~0.0320 —0.0264 —0.0222
Egcat,a = 2.0 0.1606 0.1204 0.1235 0.1193
AE 0.0983 0.0974 0.0971 0.0971
Escat,a = 2.4 0.1588 0.1280 0.1222 0.1188
AE 0.0964 0.0960 0.0958 0.0959

The scale we parameterizes the shape of the gauge profile, which should not be
observable as discussed above. The radial dependencies of the profiles are chosen
to keep E. regular. In Ref. 44 other parameterizations for fg(p) have also been
considered. No substantial differences for the VPE were observed.

In what follows, we write the VPE as the sum

AFE = Escat + EFD; (71)

where Egcat is the momentum integral as in Eq. (22) and Egp is the combination
of all Feynman diagrams with the counterterms.

4.3. Gauge invariance

We check gauge invariance by varying the shape of the gauge profile, £(p). Typ-
ical results are shown in Table 2. As expected, the individual contributions to
AFE depend strongly on w¢. However, these changes cancel out almost completely.
Numerically the most cumbersome part of the calculation is Fgeat. From various
numerical considerations (change of extrapolation scheme for the partial wave sum,
modification of the momentum integration grid, etc.), its numerical accuracy is esti-
mated to be at the 1% level. An example for the accuracy test is presented in the
last two lines of Table 2. The large ¢ contribution to the integral in Eq. (21) is com-
puted by fitting an inverse power to the integrand: t% The large mass expansion
of the Feynman diagrams yields o = 2.0, while a numerical fit has a slightly larger
value a = 2.4, most likely because subleading powers are not fully negligible. Within
that range of numerical uncertainty of Egcat, AE is indeed independent of we.

4.4. Results for on-shell renormalization

The results in Table 2 were obtained in the MS renormalization scheme, which
essentially omits finite terms introduced with renormalizing the Feynman diagrams.
Any other scheme merely differs by manifestly gauge invariant, finite counterterms.
To obtain physically meaningful results, we need to impose renormalization condi-
tions that correspond to a particle interpretation. To be specific, we consider the
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so-called on-shell scheme, in which the coefficients of the four allowed counterterms
are determined such that

e the tadpole graph vanishes

e the Higgs mass remains unchanged

e the normalization of Higgs particle remains unchanged

e and the normalization of vector meson remains unchanged

in the presence of fermionic quantum corrections. Explicit expressions for the cor-
responding counterterms are listed in Ref. 44, and a similar calculation is sketched
in Subsec. 5.4. Note that the vector meson mass My, is not fixed by these condi-
tions and thus will be a prediction that includes quantum corrections. Hence, we
tune the gauge coupling to reproduce the physical value My, =~ 90 GeV.

44.1. & =1

In a first step we consider the particular case {2 = 7, for which the Dirac Hamilto-
nian not only is Hermitian but also yields real matrix elements in Eq. (65).

In Fig. 3, we show results for the vacuum polarization energy per unit length.
The wider the background fields, the weaker the dependence on the angle &;. The
vacuum polarization per unit length is quite small. Even for large widths, it does
not exceed a fraction of the fermion mass squared. With the exception of very
small widths, the vacuum polarization turns out to be positive. Hence there is no
indication that the fermion vacuum polarization energy alone can stabilize cosmic
strings, since the classical energy is larger by orders of magnitude unless the coupling

020 T — T T 200 T T T T T T T
AR Wy, =05 w, =035 | é% WH:WG:4.U
P W, =05 w;=20 m | ————- Wy =W, =60
05t e WH=2,D WG=0,5 e wH:wG:S_D
w =20 w_ =20 150 7
_____ - ow, =20 w =2 e Wy =W =100
------- w,y=1.62w, =381 -
I P [, T e it
1.0 —
- e . - FITTT - + 4
0_50:__4___* _______ P e 4T
. e -
4
L | L 1 L 1 L 1 L
0'000 01 0.2 03 04 05

Fig. 3.  Vacuum polarization energy as a function of the angle &; for different values of the width
parameters wy and wg in the on-shell renormalization scheme. The physically motivated model
parameters, Eq. (47), are used. The dots refer to actual computations, while the lines stem from
a cubic spline. These results do not include the combinatoric color factor N.
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constants are f, g~O(10), which would bring the dominating Fourier components of
the profiles into the vicinity of the Landau ghost pole. Hence any such binding would
be obscured by the existence of the Landau ghost, which arises when including
quantum corrections in a manner that does not reflect asymptotic freedom. Here it
is due to the omission of quantum corrections from fluctuating gauge boson fields.
The estimate for the Landau ghost contribution discussed in Ref. 44 suggests that
the issue can be safely ignored for f,g < 5.

4.4.2. Isospin invariance

Alternatively, the field configuration in Egs. (41) and (42) can be written as

(m(p» w)) = fa(P)U(&1, &2, ¢) (2) .

¢o(p, ) (72)
16
W(p.0) = 2 fa(p) UEr, &,9)0,U" (61,60, )
This formulation has introduced the SU(2) matrix
siné; sinés cosp
) L cosé;
U(&1,82,9) = nol —im -7 with n4(&1, 82, 9) = - (1)

sin&; cosés
siné; sinés sing
A global rotation within the plane of the second and third component by the angle «
with tana = s1¢2/¢y transforms the four-component unit vector 74 into

$182 COSp

ﬁ4 (617 527 80) = 1 ;) 5%5% . (74)

S182 sing

Hence observables (which are, by definition, gauge invariant) will not depend on
the two angles ¢; and &; individually but only on the product s;ss. Said another
way, all observables must remain invariant along paths of constant s;s, in isospin
space.%? This invariance is not manifest for our calculation of the VPE. For example,
the local gauge transformation, Eq. (50), does not exhibit that invariance. Neither
the individual Feynman diagrams that are added back for the subtraction of Born
terms nor the fake boson method are subject to that symmetry. We therefore have
to verify that invariance from the numerical simulation of the full VPE.

From the sample calculations listed in Table 3 we see that the variation in AF
along a path with constant s;ss is as small as a quarter of a percent, while the
absolute values of the various contributions vary on the order of 20%.

The simplest check of two configurations with the same s;so is just to swap the
two angles. Results of that operation are shown in the left panel of Fig. 4 for several
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Table 3.  Contributions to Eq. (71) and their variation with the isospin angles. In
all cases we have s1s2 ~ 0.29389. The width parameters of the boson profiles are
wg = wy = 3.5. The results were obtained with various values for the widths of the
gauge function and fake boson profiles.

51/77 52/77 FEscat EFD AFE |Escat| + |EFD|
0.1 0.4 0.1504 0.0014 0.1518 0.1518
0.4 0.1 0.1702 —0.0180 0.1521 0.1882
0.3 0.11834 0.1496 0.0021 0.1517 0.1517
0.2 1/6 0.1639 —0.0117 0.1522 0.1758
——T T T —T— ' T — T I
[+ £,=03m £ =0.11834n
A—EZ sl o £=03m &-05% | é% s o o =2 s
E L E o A1
m £ =05, £,=0.3x m ST S
L . i F ® 1
[ @
1 @ | 1= & ,
® -1
- o3 i
L ® | o
@ s & e 051 ¢ e F R -
o @ q,a? Q@"Q ] o % ﬁﬁw
2 o L @ @ o |
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Fig. 4. The vacuum polarization energy for different background profiles for two sets of angles.
Each set has the same product s;sa. The profile counting on the horizontal axis goes by different
values of the width parameters wg and wg .4

dozen profile functions characterized by different wg and wy. Of course, swapping
the two angles would not change the VPE if it were a function of their sum. We
therefore also present in the right panel of Fig. 4 the results from an alternative set
of angles with identical s1s,. Reference 64 verifies the isospin invariance for more
sets of angles. With the confirmation of this invariance, we conclude that & is a
redundant variational parameter and we may without loss of generality simplify to
the case of {3 = 7, for which the Dirac Hamiltonian has real matrix elements.

4.4.3. Stable charged strings

Although the VPE alone does not stabilize classical string configurations, strings
with fermion charge can potentially be stabilized by having lower energy than the
same number of free fermions. Wide strings in particular generate many fermion
bound states. Their energy eigenvalues are of the same order in the semi-classical &
expansion as the VPE, however, so the inclusion of these levels ultimately requires
consideration of the VPE as well.

We want to compute the binding energy per unit length for a prescribed charge
per unit length Q. Let 0 < w; < m be a bound state eigenvalue of the Dirac
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Hamiltonian whose interaction part is given in Eq. (51). Then a state has energy
[w? + p?]'/2, where p is the conserved momentum along the symmetry axis. To count
the populated states, we introduce a chemical potential p such that min{w;} < p <
m. States with [w? + p?]*/? < p are filled while states with [w? 4 p*]'/? > u remain
empty. For each bound state, this defines the Fermi momentum P;(u) = [u?—w?]'/?,
and the charge (per unit length) is

Pz(ll«)
=Dl BT 1) (75)

wi<p —Pilw) wiSu

The sum runs over all bound states available for a given chemical potential. This
relation can be inverted to give p = p(Q): For prescribed @, we increase p from
min{w;} until the right-hand side of Eq. (75) matches. The same number of nonin-
teracting fermions has energy of at least @m, giving the binding energy® per unit

length
N P(u(Q)) -
_ N 2 2
Ey(Q) = B+ NAE+ =) /0 dp[\Jw? + p* —m]. (76)

(]
For a prescribed charge @, we find an upper bound on FE},(Q) by scanning several
hundred configurations, parameterized by different values of wy, wg and &;.

This model is similar to the Standard Model of particle physics and we thus
adopt the parameters from Eq. (47) together with N = 3 (for color). Eventually
we will allow for a heavy (fourth) generation of fermions and thus vary the Yukawa
coupling f.

The left panel of Fig. 5 shows the fermion contribution to the energy Ey, as
a function of the charge. As mentioned in Subsec. 4.4.1, for wide profiles there
is only very mild dependence on £; and the specific value is not essential. Those
graphs terminate at the charge when all bound states are occupied. The energy
E}, is smaller the wider the string configuration because the number of available
bound states increases with the width, in particular with the width of the scalar
component of the Higgs field.

The right panel of Fig. 5 gives the final result for the binding energy. When mea-
sured in units of the fermion mass m?, the fermion contribution does not scale with
the Yukawa coupling f while the Higgs contribution to the classical energy, Eq. (48),
scales like = . Hence for a large enough coupling constant, E}, will dominate. From
that ﬁgure we find that the critical value above which binding is observed is about
fe & 1.7, corresponding to a fermion with mass of approximately 300 MeV. The
larger the Yukawa coupling, the smaller the charge of the bound configuration.

We have not included the interaction among the fermions that build the charge.
This is similar to the description of atomic levels from the hydrogen spectrum. Also,
the full back-reaction on the meson profiles is not included. However, we stress that

“Here, we define the binding energy such that a negative value indicates binding.
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Fig. 5. For the model parameters of Eq. (47) the left panel shows the fermion energy when Q
levels are occupied for selected variational parameters at £&1 = 0.4w. The optimal value follows a
straight line (dashed). The right panel gives the optimal binding energy as function of the charge
for several Yukawa constants. All other model parameters are from Eq. (47).

since we are using a variational approach, such a modification can only lower the
total energy.

5. Vortices

In this section, we compute the VPE of Abrikosov—Nielsen-Olesen (ANO) vor-
tices®> 67 for different topological charges. There are multiple applications of such
vortices in physics: In condensed matter physics, the dependence of the energy
on the topological charge is essential for distinguishing superconductors of type I,
where the energy increases weaker than linearly with charge and multiple vortices
coalesce, from type II, where energy increases stronger than linearly and single,
isolated vortices emerge. In particle physics applications the topological charge is
often identified as the particle number; therefore these studies provide important
insight for binding energies beyond the classical level.

These vortices consist of a scalar Higgs field with spontaneous symmetry break-
ing and an Abelian gauge field. For simplicity we consider the BPS case with equal
masses, which classically represents the transition between type I and type II super-
conductors.

5.1. Classical fields

Classical vortices are constructed from the Lagrangian of scalar electrodynamics
with spontaneous symmetry breaking

1 A
L= —ZFWF“”+|DH<I>|2— Z(\<I>|2 —v?)? (77)
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where F),,, = 0,4, — 0, A, is the field strength tensor and D,® = (9, —ieA,)® is
the covariant derivative of the complex Higgs field.

We will need to consider fluctuations about vortex backgrounds that approach
free cylindrical waves as p — oo. This requires the so-called singular gauge, which
is characterized by two profile functions h and ¢ in

bs =vh(p) and Ag=nve gfj), (78)

where p = evr is dimensionless while r is the physical distance from the vortex,
and furthermore ¢ is the azimuthal unit vector for the vortex axis. The temporal
and longitudinal components of the gauge field vanish classically, A% = A% = 0.
The winding number n is the essential topological quantity. In the BPS case with
A = 2¢2, the energy functional is minimized when the profile functions obey the
first-order differential equations

¢d=Lm?-1) and K ="gn, (79)
n P
with the singular gauge boundary conditions
h(0)=1—-g¢(0)=0 and lim h(p)=1— lim g(p) = 1. (80)
p—00 p—>00

The resulting energy per unit length is linear in the winding number, E; = 27mnv?.

The differential equations (79) can be solved numerically, but for later use in the
scattering problem an approximate expression in terms of elementary functions is
very helpful. It turns out that for 1 < n < 4 the correlation coefficients for the fit

h(p) = ag tanh” (ayp) + [1 — ag] tanh™ (agp),

1 — tanh?(Byp)
tanh(fB1p)

with the fit parameters o; and 3; listed in Table 4 deviate from unity by 10~* or
less from the numerical solutions to Eq. (79).

g(p) = Bip

5.2. Quantum theory

To quantize the theory, we introduce fluctuations about the vortex via

¢ =05+n and A* = AL +a" (81)

Table 4. Fit parameters for vortex profiles.

n ap a1 a2 B1 B2

1 0.8980 0.6621 0.1890 0.5361 0.7689
2 0.9072 0.8288 2.6479 1.0949 0.8042
3 0.8290 0.7882 5.1953 1.1328 0.7425
4 0.7755 0.7350 5.2009 1.1034 0.6853
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and extract the harmonic terms in the fluctuations n and a*. Their gauge is fixed
by adding an R type Lagrangian that cancels the nd,a" and n*0,a" terms

1 1
Lof = —§G2 = —5[(%@“ +ie(®gn* — ®En)]>. (82)

We still have to account for the ghost contribution to the VPE associated with this
gauge fixing. The infinitesimal gauge transformations read

Al — A 01X, Ps+n = Ps+n+iex(Ps+1) (83)
so that a* — a* + 9*x and n — n + iex(®s + n). Then
oG 0L 2 2 X «
— = 8M6 +e (2|(I)S| + ®gn* + ‘1)377) (84)
ox =0

induces the ghost Lagrangian%® 6°

Lan = ¢(0,0" + 2¢?|®g|?)c + nonharmonic terms. (85)

The corresponding VPE is that of a Klein—-Gordon field with mass V2ev in the
background potential 2(|®g|* — v?) = 2v?(h? — 1), which must be multiplied by a
factor of negative two, corresponding to a complex scalar ghost field, and combined
with the VPE obtained for the gauge and scalar fields. Since Dg®g = 0 and D3®g =
0, the temporal and longitudinal components a® and a? fully decouple, contributing

1
—5[8Ma08“a0 + 8Ha38“a3} + |®5|*[aoa’ + aza®]

to the Lagrangian. These fluctuations are both subject solely to the background
potential 2(|®5|? —v?), which is exactly the same as that of the ghosts. As a result,
the nontransverse and ghost contributions to the VPE cancel each other. Of course,
this just reflects the fact that the free electromagnetic field only has two physical
degrees of freedom. Thus, we end up with the truncated Lagrangian for the relevant
quantum fluctuations

£0 = 23 (@) (@ a) — Pls” Y a2

n=1,2 n=1,2

+1if? = 1050 + Y (Dan)* (D) — 3|5 | — 7] |n|

n=1,2
+2ie Y an[n(D"®s) — n(D"0s)"]. (86)
n=1,2
Essentially we have simplified the theory to that of four real scalar fields: a1, as,
Re(n) and Im(n).
To formulate the scattering problem, we employ a partial wave decomposition
using the complex combinations in units with ev = 1 (resulting in mass parameters
My = Ma =V/2),

a' +ia® = V2ie Wt Zag(p)eiw and n=e ! Zm(p)eiw, (87)
¢ ¢
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leading to a 4 X 4 scattering problem for the radial functions. For profile functions
obeying Eq. (79), this problem decouples into two 2 X 2 systems, with the one for
a* and n* being the same as that of a and 7. Hence it suffices to compute the VPE
of the latter and double it. The scattering problem is set up in terms of the Jost
solution Fy by introducing

nél) 77§2)

(1) (2)

(1)
H,” (q 0
=Fr-H¢ where Hy = ( ¢ () " ) (88)
Apyly Qpiy 0 Hy\ (ap)

(41

The superscripts on the left-hand side refer to the two possible scattering channels
when imposing the boundary condition lim,_, F¢ = 1. The Hankel functions H, 551)
parameterize outgoing cylindrical waves. In matrix form, the scattering differential
equation in terms of the dimensionless imaginary momentum ¢ = ivw? — 2 reads

P Or 5(2%) .z +i[£ Fo)+Ve- F (89)
202t Tap’t 2" et plbe s (A

where angular momenta enter via the derivative matrix for the analytically contin-
ued Hankel functions

1 Ky+a(tp) 0
Ky (t 2 0
Zy = P () and L, = Nk
0 11+ 1] _tK|z+1|+1(fP) 0 (£+1)
p Kji41/(tp)

(90)

The potential matrix is

n?g%(p) — 2nlg(p)
by 3(h2(p) — 1) + p V2d(p) | (1)

V2d(p) 2(h2(p) — 1)

with d(p) = dz(pp) + 2h(p)g(p). We then use Eq. (89) to compute the Jost function,

which is given by vy (t) = lim,_,o In det[F].

5.3. Remowal of gauge-variant divergence

The Higgs—Higgs component of the potential matrix in Eq. (91) diverges like p% as
p — 0. This singular behavior has neither well-defined Born nor Feynman series.
Hence we need to develop an alternative method to handle the associated ultra-
violet divergences. To study these divergences in more detail, we display all diver-
gent one-loop diagrams arising from Higgs fluctuations in Figs. 6-8. Figure 6 shows
the Feynman diagrams that superficially are quadratically divergent. Due to gauge
invariance, the quadratic divergences of 6(a) and 6(b) cancel. Diagram 6(d) is a total
derivative and vanishes (with a translationally invariant regularization). Indeed all
diagrams with an odd number of gauge field insertions are finite because of Lorentz

2241004-31



Int. J. Mod. Phys. A Downloaded from www.worldscientific.com

by MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) on 05/04/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

N. Graham & H. Weigel

OO OO

Fig. 6. Quadratically divergent one-loop diagrams with a Higgs field in the loop. External lines
represent (Fourier transforms of) the classical Higgs (straight) and gauge (curly) fields.

Fig. 7. Logarithmically divergent one-loop Higgs diagrams with external photon lines only.

Fig. 8. Logarithmically divergent one-loop Higgs diagrams with at least one insertion of the
Higgs potential Vi = 3(h2 — 1).

invariance and the fact that 9, A’ = 0. Hence the only remaining quadratic diver-
gence is the tadpole graph with a single insertion of Vi = 3(h?(p) — 1), as shown
in 6(c). This diagram is local, meaning it is independent of the incoming momen-
tum and thus proportional to [ d?xzVy, so it can be fully removed from the VPE
by an appropriate no-tadpole renormalization condition. Again by gauge invariance,
the logarithmic divergences in 7(a) and 7(d) cancel, as do those of 8(a) and 8(c).
Thus all we need to consider are the divergences associated with the diagrams
of Figs. 6(a)—-6(c) and 8(d). The treatment of 6(c) and 8(d) is straightforward
using the methods we have discussed above, but additional subtleties arise for 6(a)
and 6(b).

When restricting to Higgs fluctuations in the loop, these methods require anal-
ysis of a single second-order differential equation for the factor function of the Jost
solution

1 1
;f%pé‘pm = 2tZy(tp)0,m, + ﬁ[gz(p) — 2Lg(p)]My + Vi (p)7, (92)

with Zy(2) = % - %l Let ﬁ§172) be the solutions for 7, at first- and second-
(1,2

order in Vi (p), but zeroth order in the gauge field. Thus 7, ) relate to the dia-
grams 6(c) and 8(d). The scattering data analog of diagram 6(a) is governed by the
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differential equation

1 2
Yoo, = uziumo )+ (12) (93)

while diagram 6(b) is associated with a set of coupled differential equations

1 _ _ 20
;f%papnf) = 21Z,(tp)d, 7, — ;g(p%

1 20 (54)
(5 _(5 _(4

;@opapné " =22(tp)0,7 - ﬁg(p)vﬁ g

The boundary conditions are such that 1, — 1 while all ﬁgi) — 0 as p — .

Numerical simulations®® for regular profiles, i.e. Eq. (80) replaced by g(p)~0 at the

center of the vortex, verify that for sufficiently large ¢

o0
; — 1 _(2 1 (3 4 _(5 1, 4)\2 1
Z_Z_:ooggrg){ln(w) ()—n§)+2(n§)) —7) = - n()+2(n§))}o<t4.
(95)

This guarantees a finite integral in Eq. (21). More surprisingly, those numerical
experiments also verify that

o0

1 *d
Z lim ( ) —&-7(4) —I—ﬁf) — 7(%4))2 — n2/ lgz(p) ast — oo, (96)
ez_oop*)O 2 0 p

signaling a quadratic divergence. It is exactly the quadratic divergence that would
emerge from diagrams 6(a) and 6(b) if the loop were not regularized in a gauge-
invariant manner. A gauge invariant treatment, however should lead to only a
logarithmic divergence, reflected by an asymptotic t2 behavior. We recall that
Eq. (21) originated from integrating M by parts after the analytic continu-
ation of Eq. (20). Hence the subtractlon of the integral in Eq. (96) from [v(t)]
does not alter the VPE, but rather it restores gauge invariance of the expression
in Eq. (21).

Unfortunately, the integral in Eq. (96) does not exist for the singular vortex
profile. Similarly the (first-order) Born approximation does not exist. However, we

* d
—n2/ W 20,

min P

may consider
L

(O = fim ZL{ln(m) —a =7 + ;(n?))g}

L—oo
¢

P=Pmin

(97)

which subtracts the gauge invariant logarithmic divergence of diagrams 6(a) and
6(b) when pmin — 0, even for singular backgrounds. On the left hand side the H
subscript denotes the Vi subtraction at linear and quadratic orders. The numerical
simulations confirm that indeed [v(¢)]y does not diverge in that limit.
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Using dimensional regularization (D = 4 — 2¢) the logarithmic divergence in the
combination of diagrams 6(a) and 6(b) is

1 1 12di
EM gy, = s /d%: O [/ d?x FWF‘“’] — .
126(47’1’) 96T 0 A /l2 + M2 div.
(98)
Hence we expect that
1 n2 [ / 2
i ol — e = 555 [ odo(T2) w9

To simplify the simulation we employ a one-parameter («) set of trial profile
functions

h(p) = tanh(ap) and g(p) = e~ (@’ (100)

that reflect the singular structure of the vortex appropriately. Numerically we can-
not take the angular momentum sum in Eq. (97) to infinity. Rather we consider
vr(t) as the pmin — 0 limit of the right-hand side evaluated with finite limits
(=L,...,+L) on the sum. In order to reach the asymptotic behavior, these limits
must increase with the (imaginary) momentum ¢. In the left panel of Fig. 9, we dis-
play v (t) for values as large as L = 500. This graph indeed suggests convergence
of the angular momentum sum for moderate values of t. However, there are at least
two problems. First, the asymptotic value seems to be negative, while vy ¢ (t) > 0.
Second, vr,(t) approaches zero approximately like t%, as the middle panel of Fig. 9
suggests. If correct, it would imply that the integral f\(;% dt v (t) is finited and that
the counterterm for the logarithmic divergence from the diagrams 6(a) and 6(b)
would not be compensated. It turns out that for momenta as small as ¢t & 6, v500(t)
has not reached the asymptotic value, as clearly seen in the right panel of Fig. 9.
Numerically L > 600 is difficult to handle and costly in CPU-time because of the

E . T T T T T .
0001 4 v \

vl

L=500
extrapol
v, (0 4

difference

I S IR N R B I I T N 00075 = I
EE 2. 2. 30 3 4

Fig. 9. Asymptotic behavior of vz (t) for o = 0.5 in Eq. (100) and n = 1. Left panel: differ-
ent maximal angular momenta L; center panel: fit showing that vy (t) falls faster than 1/t? for
moderate values of t; right panel: extrapolation L — oo and limiting function from Eq. (99).

dThis has caused confusion in earlier publications, cf. Refs. 70 and 59.
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singular behavior of the modified Bessel functions at small arguments. Instead an
extrapolation from L € [300,600] to infinity is required. Indeed, that infinite L
extrapolation turns positive at large ¢ and the difference from ¢ (¢) is numerically
confirmed to decay faster than t% The results shown in Fig. 9 are for topological
charge n = 1, but the cases n = 2,3,4 have been confirmed to follow the same
behavior.

We have thus shown that both the subtraction of the constant in Eq. (99) and
the extrapolation to infinite angular momentum are necessary to comply with gauge
invariance.

5.4. VPE for different topological charges
We want to adopt the procedure established above to the VPE of the ANO vortex,

with v(t) = lim,_,¢ Indet[Fy] where F; is matrix solution to Eq. (89). Since we
must separate the singular terms of the Higgs—Higgs component of the potential
matrix, we introduce

v (3(h2(p)—1) v2d(p) ) (101)

“\ VEd) 2p) - 1)

and let Pél)

scattering data analog of the diagrams 6(c), 8(d) and those in Fig. 10. The above
analysis suggests that®

vl = Jim {Z ) -7 0 - 70, - [ d”ﬂm} (102)

L— oo
=—1, min P

Pmin—0

and ?éz) be the first two Born terms originating from V. They are the

2 ’
approaches {2 [© pdp(%

gence using the fake boson method introduced in Subsec. 2.5. Then the scattering
part of the VPE reads

A = 5= [ watlltly = Covf? 0], (103

1) b} )

cl

)2 as t — 0o. We treat the resulting logarithmic diver-

l

Fig. 10. Additional divergent one-loop diagrams in the presence of gauge fluctuations. The double
line indicates the insertion of the off-diagonal interaction d(p).

¢In the numerical analysis an extrapolation as in Eq. (69) is needed for channels with [¢| < n.
This minor (~1%) correction was not included in Ref. 71.
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and for the choice Vg(p) = 3(tanh?(Cp) — 1) the fake boson coefficient becomes

7172 fooo (p) )2
3 [ pdp[3(tanh?(Cp) — 1)]2°

Here ( is a tunable parameter that has no effect once the renormalized Feynman

Cp=—

(104)

diagram, which is obtained from two insertions of Vz and subsequent multiplication
by Cp, is added.
The counterterm Lagrangian reads

Lot =1 F, FM + CQ‘D#q)P — 03(|<I>|2 — 1)2)2 — 04(|<I>|2 — 1)2). (105)

The first three terms are from the original Lagrangian, Eq. (77). The last term can-
cels the tadpole diagrams and is generated from the original Lagrangian by vary-
ing the vacuum expectation value v. Hence the no-tadpole condition fixes ¢, and
ensures that v has no quantum corrections. As in Subsec. 4.4, we impose on-shell
conditions to fix the counterterm coeflicients ci, co, and c3. This requires consider-
ation of the diagrams 6(a), 6(b), 8(d) as well as 10(b) and 10(c). For example, in
momentum space the diagrams 6(a) and 6(b) yield the dimensionally regularized
action (returning to physical units with M = \/§ev)

(-8) () (58) [ nmcn [aa-vent

where X (z,p) =1—z(1— x)ﬁ—zz By gauge invariance the residue at D = 2 vanishes
and we can analytically continue to D = 4 — 2e with the renormalization scale 2

e [1 472 d*p
B S PO 24, (p) Al (—
967'('2 |:€ + ’Y+ n M2 :| / (277)4 p IL( ) ( p)

+ (ij/(;lj&iu( )AH(— / dx X (x,p) In[X (z, p)].

Combining this result with the first term in Eq. (105) and separatmg the divergent

part of the counterterm coefficient via 2¢; = %[% +1- ] + c4 yields!

4 ~ ~
| G A A G,
where

Ga(p?) =ca+ (ej\:) ]%/0 dx X (z,p) In[X (x,p)].

Quantum corrections are eliminated from the residue of the gauge field propagator
by setting G 4(M?) = 0, which determines c4. The condition on the residue of the
Higgs propagator determines co from diagram 10(c), while the combination of the

fNote that for the vortex 8, Al = 0 and thus puAr(p) = 0. Also note that In[X (z,0)] = 0 so that
G A(p?) is regular when p? — 0.
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Table 5. VPE of ANO vortices with different topological charges.
The parameters in the fake boson potential are ¢ = 1,0.9,0.8,0.7 for
n = 1,2, 3,4, respectively.

n=1 n =2 n=3 n=4
AFEscat. —0.0510 —0.1937 —0.3563 —0.5251
ERy 0.0448 0.0558 0.0840 0.1171
AE —0.0063 —0.1379 —0.2722 —0.4080

diagrams 6(c) and 10(b) yields c¢3 by demanding that the Higgs mass is not changed
by quantum effects. It is worth noting that the equality of Higgs and gauge field
masses is maintained when one-loop quantum corrections are included.

With all counterterm coefficients determined, we can write the (renormalized)
Feynman diagram piece of the VPE as

Ep = CpER + EY + Ecr. (106)

The Feynman diagram with two insertions of Vp gives El(f]%, while EIE% originates

from diagrams 6(c), 8(d), 10(b) and 10(c). By construction, CBEg% has the same
ultra-violet divergence as the combination of the diagrams 6(a) and 6(b). Hence all
such divergences cancel in E53-.

We list the numerical results in Table 5. We have also performed simulations
with different values for { and ensured equal results for AE to the given precision.
(Of course, the individual contributions Effy- and AEg.,. vary with ¢.) We observe
a constant increment of AFE with the topological charge. More precisely, the fit
AE(n) = —0.005 — 0.134(n — 1) has very small x? = 4.5 x 1075, Since the classical
energy is linear in n for the case of equal Higgs and gauge field masses, the total
binding energy, Ero = AE(n)—nAE(1) = —0.129(n—1), is negative. This suggests
that these vortices coalesce.

Though this is the first computation of the VPE for soliton-like configurations
with different topological charges in a renormalizable theory, it is merely the begin-
ning for computing the VPE of vortices. The case with two space dimensions will
be next step. Subsequently the case of different Higgs and gauge field masses should
also be considered.

6. Summary

In this short review, we have reported recent progress on the computation of vacuum
polarization energies (VPE) of soliton-like structures in renormalizable quantum
field theories using spectral methods. For earlier applications of these methods we
refer to the lecture notes of Ref. 8.

For static background configurations like solitons, quantum fluctuations obey
wave equations analogous to those in ordinary quantum mechanics, with a potential
induced by the soliton. Spectral methods then determine the bound state energies
and scattering data (S-matrix, phase shifts) for that potential. Formally these data
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yield the VPE as a sum of the bound state energies and a momentum integral over
the phase shift, but it is a subtle problem to unambiguously combine the ultra-
violet divergences with the counterterms of the quantum theory. These countert-
erm coefficients are universal for a prescribed set of renormalization conditions and
not sensitive to the particular soliton configuration. This problem is solved by the
observation that there are two equivalent expansions for the VPE in powers of the
background potential: (i) the sum of Feynman diagrams in the quantum field the-
ory and (ii) the Born series for scattering data. In both cases, the series expansion
approaches the ultra-violet behavior of the full result. To implement the renormal-
ization procedure, the relevant Born terms are then subtracted from the integrand
of the momentum integral and added back in form of the equivalent Feynman dia-
grams, which are then unambiguously combined with the counterterms using stan-
dard techniques.

Here we have focused on the use of the analytic properties of the scattering
data, represented by the Jost function, to evaluate the momentum integral along
the imaginary momentum axis. This approach has, among others, the advantage
that the bound state energies need not be explicitly computed. We have shown that
for popular soliton models in one dimension this approach allows one to compute
the VPE very efficiently. Moreover, with an appropriate treatment of the mass gap
when analytically continuing, the VPE for soliton models with quantum fluctuations
with different masses can be evaluated as well. We stress that the Jost function is
not computed in any approximation and that its Born expansion solely serves to
identify the ultra-violet divergences from the quantum field theory in the scattering
data.

These enhanced spectral methods have made possible the computation of the
VPE of more intricate configurations in particular quantum field theories. In turn,
these studies lead to a number of interesting and novel observations:

e In models with one space dimension we have documented the novel effect of quan-
tum destabilization of solitons. The conjecture is that in theories with multiple
(distinct) vacua in field space that have different curvatures of the field potential,
the soliton may approximately assume either of these vacuum configurations in
separated regions. As the sizes of these regions vary, the VPE, and, as a result,
the total energy, may decrease without a lower bound. We have demonstrated
this scenario explicitly for the Shifman—Voloshin soliton, which has two field com-
ponents with different masses. Models with field potentials of higher polynomial
order also support this conjecture, though there the situation is less stringent
because the two separated regions both extend to spatial infinity (positive and
negative).

e We have also expressed the interface formalism, which was first developed to
describe domain walls or surfaces subject to the Casimir force, in terms of imag-
inary momentum integrals. This approach made possible the computation of the
energy carried by fermions in the background of cosmic strings. At the center of
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the string, the gauge field has singularities. Fortunately, for nonabelian strings
the fields are single-valued and the singularity can be removed by a local gauge
transformation. Neither the components of the Born series nor individual Feyn-
man diagrams are gauge invariant, and hence the individual ingredients of the
spectral method are not manifestly gauge invariant. We have therefore made con-
siderable numerical efforts to confirm gauge invariance of the final results and
thereby corroborate the enhanced spectral methods. These results show that the
total fermion contribution to the energy may be negative for certain string pro-
files, but with magnitude that is too small to overcome the classical bosonic
energy and bind the cosmic string in an SUL(2) gauge theory. However, when
taking the fermion mass as about twice the top quark mass (or larger), the pop-
ulation of bound state levels yields a total energy that is less than the energy of
equally many free fermions. Such a configuration is thus bound and can be viewed
as a new solution in a model similar to the Standard Model of particle physics.
The enhanced spectral methods have furthermore enabled the first computations
of the VPE of solitons with different topological charges in a renormalizable
quantum field theory, for ANO vortices in the BPS version of the Abelian Higgs
model with spontaneous symmetry breaking in four space—time dimensions. Here
additional subtleties arise because the singular structure of the vortex cannot be
removed and hampers the construction of the Born series. An alternative pro-
cedure to extract the ultra-violent divergences is needed: in particular, for the
quadratic divergence that emerges from gauge-variant components that eventu-
ally cancel out in the final result. The correct (subleading) logarithmic divergence
was obtained by subtracting a momentum-independent constant whose net con-
tribution is zero but renders consistency with gauge invariance. Technically that
constant is tricky to identify because it is only defined in the limit as the wave
equations are solved in close vicinity of the vortex. Even after proper subtraction
of that constant, the singular structure causes the angular momentum sum to
converge only very slowly and an additional extrapolation is needed in numerical
simulations. In the BPS case of equal gauge and scalar masses, these calculations
show that the VPE is essentially proportional to a constant plus a linear func-
tion of the topological charge with negative slope. Since the classical energy is
strictly linear in the charge, the vortex with a given charge has less energy than
equally many vortices of unit charge and is thus stable, leading to type I behavior
of superconductors in the BPS case.

Several possible extensions of these results are of interest. The restriction to the

BPS case of equal masses reduces the wave equations to a two-channel problem,
while in general there will be four coupled channels. Also, the case with two space
dimensions differs from the calculation in three space dimensions because it does
not have a complete cancellation between the contributions from the ghost fields
(needed for gauge fixing) and the un-physical gauge field components. It is thus a
five-channel scattering problem. In addition, the divergence structure is modified by
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the lower dimensionality. Though these generalizations are tractable, their imple-

mentation is a worthwhile future project.
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