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Parametric amplification—injecting energy into waves via periodic modulation of system
parameters—is typically restricted to specific multiples of the modulation frequency. However,
broadband parametric amplification can be achieved in active metamaterials which allow local pa-
rameters to be modulated both in space and in time. Inspired by the concept of luminal meta-
materials in optics, we describe a mechanism for one-way amplification of sound waves across an
entire frequency band using spacetime-periodic modulation of local stiffnesses in the form of a trav-
eling wave. When the speed of the modulation wave approaches that of the speed of sound in the
metamaterial—a regime called the sonic limit—nearly all modes in the forward-propagating acoustic
band are amplified, whereas no amplification occurs in the reverse-propagating band. To eliminate
divergences that are inherent to the sonic limit in continuum materials, we use an exact Floquet-
Bloch approach to compute the dynamic excitation bands of discrete periodic systems. We find wide
ranges of parameters for which the amplification is nearly uniform across the lowest-frequency band,
enabling amplification of wavepackets while preserving their speed, shape, and spectral content. Our
mechanism provides a route to designing acoustic metamaterials which can propagate wave pulses
without losses or distortion across a wide range of frequencies.

I. INTRODUCTION

Parametric amplification—feeding energy into oscilla-
tory modes through a periodic modulation of the un-
derlying stiffness or coupling parameters—provides a
technologically-relevant route to boosting signals and
overcoming losses in electromagnetic [1, 2], optical [3]
and mechanical [4] systems. Typically, parametric am-
plification occurs only for a discrete set of modes which
satisfy specific frequency relationships with the modu-
lation frequency [5], which obstructs its use to amplify
propagating signals with multiple frequency components
such as localized wavepackets. However, when the pa-
rameter modulation is itself a traveling wave through the
medium, interference effects enable amplification over a
wide range of signal frequencies with a single modula-
tion frequency [6, 7], opening up possibilities for amplifi-
cation and loss-compensation of multispectral signals as
long as the desired spacetime parameter modulation can
be achieved.

Active metamaterials—artificial structures whose
properties can be modulated using external fields [8–
10]—provide a promising platform for broadband para-
metric amplification using traveling waves [11]. In the
realm of acoustics, traveling-wave modulation of elastic
stiffnesses has primarily been used to achieve nonrecip-
rocal transport [12–18], although parametric amplifica-
tion has also been observed albeit in narrow frequency
ranges [13]. Despite rapid developments in active acous-
tic metamaterial platforms which enable on-demand spa-
tiotemporal modulation of acoustic parameters across
a wide range of length and frequency scales [9, 19],
traveling-wave parametric amplification remains unex-
ploited as a mechanism to boost multispectral signals in
active acoustic metamaterials.

Here, we show that a traveling-wave stiffness modu-
lation can generate broadband parametric amplification

in acoustic systems as a consequence of instabilities that
arise when the speed of the traveling-wave modulation is
close to the speed of sound in the medium [20–22]—a sit-
uation termed the sonic limit [6]. In the sonic limit, ap-
proximate techniques such as coupled-mode theory and
plane-wave expansions, commonly used to compute the
response of time-modulated metamaterials [23–26], are
known to break down [6, 22]. Instead, we develop a
Floquet-Bloch technique to calculate the exact disper-
sion relation of a discrete system of masses connected by
springs with spacetime-modulated stiffnesses. We find
that the acoustic gain (the imaginary part of the com-
plex frequency) can be made nearly constant over a broad
range of frequencies and quasimomenta, allowing coher-
ent amplification and loss-mitigation of acoustic signals
with a broad spectral content. The gain is controlled by
the modulation strength, which allows our technique to
be dynamically tuned to produce the desired amplifica-
tion, or to finely balance losses for unattenuated sound
transmission. It is also strongly directional, allowing
highly non-reciprocal response with amplified transport
of signals in one direction and strong attenuation in the
opposite direction. As a technologically-relevant illus-
tration of our approach, we demonstrate dispersion-free
amplification and loss-compensation of propagating wave
pulses in modulated spring-mass chains.

The physical mechanism underlying the sonic limit is
illustrated in Fig. 1 for a continuum one-dimensional
(1D) system which admits a linear dispersion relation
ω(q) = ±vq between the inverse wavelength, or quasi-
momentum, q of traveling waves and their oscillation
frequency ω when the underlying stiffness constants are
uniform [6, 11]. If the stiffness is perturbed by a pe-
riodic traveling-wave modulation with quasimomentum
g and frequency Ω, Floquet-Bloch theory dictates that
the original normal modes become strongly coupled with
harmonics that are displaced by integer multiples of
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IV. INTERPLAY OF PARAMETRIC

AMPLIFICATION AND DAMPING

The existence of modes with positive gain factors
points to the presence of instabilities—even the slightest
perturbation to the system, if it overlapped with one of
the amplified modes, would lead to displacements which
grow exponentially in time and ultimately overcome the
system. However, if the amplification can be controlled—
for instance, by turning the stiffness modulation on for fi-
nite periods of time—the positive gain factors can be used
to amplify modes in the system. Furthermore, in sys-
tems with damping, positive gain factors can be used to
compensate for losses and propagate signals over longer
distances.
We first review the effect of damping on the phonon

band structure of a static spring lattice with uniform
spring constants. Upon adding a drag force of the form
−γẋ to the equation of motion (Eq. (1)), the frequency
bands become complex-valued:

ω(q) = ±
√

ω2
s (q)−

( γ

2m

)2

. (4)

Modes whose undamped frequency was large compared
to the damping frequency scale γ/m experience a small
shift in their oscillatory frequency, and acquire a nega-
tive gain factor α = −γ/(2m). At low frequencies, how-
ever, the frequencies become purely imaginary, and the
two overdamped modes decay exponentially with rate
α = −γ/(2m) ±

√

(γ/(2m))2 − ω2
s . At q = 0, a zero-

frequency mode is guaranteed to exist, which corresponds
to a displacement of all masses by the same amount at
zero speed, which does not deform any springs and in-
duces no drag forces. This mode is accompanied by an-
other mode with α = −γ/m, corresponding to all masses
initially moving at the same speed.
The effect of damping on modulated structures is read-

ily incorporated in the Floquet-Bloch eigenvalue compu-
tation, and leads to similar results to the static case.
Figure 4 shows the effect of damping on the sonic meta-
material with n = 8 reported in Fig. 2(b). The damp-
ing strength is quantified by the dimensionless damp-
ing factor ζ ≡ γ/(2mω0). In the presence of drag
forces, the symmetries between complex quasifrequences
ν(q) and ν(−q) are no longer obeyed. Instead, we find
that modes with large oscillation frequencies compared
to γ/m have their gain factors shifted down by roughly
γ/(2m), whereas modes near q = 0 in the lowest band
become purely imaginary. However, the near-constant
value of the gain factor away from q = 0 is maintained,
showing that the broadband aspect of parametric am-
plification near the sonic limit is preserved in damped
systems. At ζ = 0.01, the largest gain factor is close to
zero across the entire acoustic band, signifying a balance
point between the broadband parametric amplification
and the drag. We will further investigate this balance,
and its consequences for signal propagation, in the next
section.

V. DISPERSION-FREE AMPLIFICATION AND

LOSS MITIGATION OF SOUND PULSES

To illustrate the utility of the broadband amplification
mechanism for boosting signals and overcoming losses, we
study the propagation of localized sound pulses (Gaus-
sian wavepackets) along a chain of springs. Specifically,
the system is initialized with a linear superposition of
eigenmodes φq from the acoustic band with a linear
frequency-momentum relationship. The mode weights
are Gaussian-distributed with spread ∆q about the mean
quasimomentum q0:

u(n) =
∑

q

e−[(q−q0)/∆q]2φqe
i(qn−ωqt), (5)

where u(n) is the vector of initial displacements of the
nth unit cell, φq is the Floquet-Bloch eigenvector of the
amplified band at quasimomentum q, and ωq is the real
component of the eigenfrequency. In the unmodulated
and undamped static system, the resulting sound pulse
propagates at a constant speed given by the slope of the
linear dispersion relation, ∂ω/∂k = v (Appendix D). In
the presence of damping, however, all modes decay expo-
nentially in time as ∼ e−γt/(2m), leading to an overall ex-
ponential decay in the pulse amplitude. When the broad-
band amplification is turned on, the near-constant gain
compensates for the damping across most of the band,
shifting the negative gain factors towards or above zero
as the modulation strength is increased. Upon turning
on the broadband modulation at increasing strengths, the
pulse attenuation can be slowed down or even reversed
to amplify the pulse as it propagates along the chain, as
shown in Fig. 5. At a particular modulation strength, the
net gain factors are zero across most of the acoustic band
(Fig. 4(b)), and we expect the sound pulse to travel at
constant amplitude with little dispersion, demonstrating
near-ideal loss compensation through stiffness modula-
tion.
We test this mechanism in classical dynamics simula-

tions of a finite one-dimensional spring-mass system (see
Appendix C for details) at the sonic limit, with different
damping levels (Fig. 5). The spring constants were mod-
ulated according to the parameters used in Fig. 2(b), and
M = 201 unit cells were used. A Gaussian pulse was ini-
tialized using Eq. (5) with q0 = 0.25/a and ∆q = 0.1q0;
the sum was evaluated over a discrete set of quasimo-
menta determined by the system size and the boundary
conditions, q = 2πj/(Mna) with j taking on integer val-
ues in the range −M/2 < j < M/2. The subsequent
dynamics of the chain were simulated over thousands of
stiffness modulation cycles. We find that the wavepacket
travels at a constant speed, and its amplitude shows
different dynamics depending on the damping strength
but with minimal distortion of the pulse width or shape
(Fig. 5(a–c)). In particular, at a specific value of the
damping relative to the modulation, the pulse maintained
a near-constant amplitude over long times as shown in
Fig. 5(b).
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Appendix A: Floquet-Bloch band structures of

spacetime-modulated spring lattices

Prior studies of spring networks with modulated stiff-
nesses have relied on various approximations to analyze
the eigenmode structure. In the time domain, the Mag-
nus expansion has been used [42] which relies on a sep-
aration of slow and fast frequency scales in the system.
This assumption breaks down at the sonic limit, where
the modulation frequency is comparable to the normal
mode frequencies of the unperturbed system. Alterna-
tively, many studies use plane-wave expansions of the
spatial eigenmodes [12, 13, 23–25, 32, 43–50] which must
be truncated at some high quasimomentum to carry out
actual computations. However, these approaches have
been shown to be liable to inaccuracies at the sonic limit
where an ever-larger number of plane waves must be in-
cluded in the expansion to avoid divergences in the per-
turbative calculations [6, 7, 22].
To accurately predict the vibrational modes of

spacetime-modulated spring lattices, we use an exact
Floquet-Bloch approach which avoids perturbative ex-
pansions, albeit at the cost of requiring a numerical inte-
gration of the underlying dynamical equations over one
time period. Our approach is similar to those used for
driven electronic systems [51, 52], but adapted to the
second-order equations of mechanics [30]. We are inter-
ested in the normal modes of a spring-mass chain of N
masses, whose displacements are arranged into an N -
vector x. When the springs are harmonic, the equation
of motion is

mẍ+ ΓN ẋ+K(t)x = 0, (A1)

where ΓN = γ × 1N is an N × N diagonal matrix of
drag coefficients (assumed uniform), and K is an N ×N
matrix of spring stiffnesses which encodes the coupling
of adjacent degrees of freedom. For the 1D chain, the
stiffness matrix takes the tridiagonal form

K =







... ... ... ... ... ... ... ...

... 0 −kj kj + kj+1 −kj+1 0 ... ...

... 0 0 −kj+1 kj+1 + kj+2 −kj+2 0 ...

... ... ... ... ... ... ... ...







(A2)
When the spring constants kj are modulated in time and
space according to the traveling-wave modulation

kj(t) = k0

[

1 + δ cos

(

2π

n
j − Ωt

)]

, (A3)

the eigenmodes of the dynamical system can be written
in terms of an n-vector uq(t) and a quasimomentum q,
where the displacements of the pth unit cell at position

x = pna are given by uq(t)e
iqx. The uq(t) solve the

equation

müq + Γnu̇q + K̃(q, t)uq = 0, (A4)

where the Fourier-transformed stiffness matrix K̃(q, t)
has dimensions n× n, and includes phase factors e±iqna

for springs that extend to neighboring unit cells. For an
infinite periodic lattice, the periodicity defines a unique
set of quasimomenta −π < qna ≤ π, which define the
reduced Brillouin zone.
We now exploit the time-periodicity of the stiffness ma-

trix, K̃(q, t + T ) = K̃(q, t) where T = 2π/Ω. To apply
the Floquet theory of first-order differential equations,
we rewrite Eq. (A4) as a first-order equation involving
the doubled vector yq = (uq, u̇q)

⊤,

ẏq = Gq(t)yq, (A5)

where

Gq(t) =

(

0 1n

−K̃(q, t) −Γn

)

inherits the time-periodicity of the stiffness matrix. Any
solution to the differential equation can be written in
terms of the matrix of solutions, X(t), which satisfies

Ẋ = Gq(t)X, (A6)

starting from the initial condition X(0) = 12n. Any so-
lution of Eq. (A5) then can be written in terms of the
initial condition as

x(t) = X(t)x(0).

When G is T -periodic, the matrix of solutions has the
property

X(t+ T ) = X(t)X(T ). (A7)

The solution matrix evaluated over one period, X(T ), is
called the monodromy matrix. The eigenvalues ρj (with
j = 1, ..., 2n) and corresponding eigenvectors aj of the
monodromy matrix have the following useful property: a
solution xj(t) of Eq. (A5) with initial value xj(0) = aj
satisfies

xj(t+ T ) = ρjxi(t). (A8)

The eigenvalues ρj are called the Floquet multipliers of
the system. Equation (A8) implies the form

xj(t) = e−iνjtfj(t), (A9)

where νj ≡ i(ln ρj)/T is the ith Floquet quasifrequency,
and

fj(t) = X(t)e−
t
T lnX(T )aj

is T -periodic by the periodicity of the matrix of solutions:

fj(t+ T ) = fj(t).
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The 2n vectors xj(t) are linearly independent and form
a fundamental set of solutions of the system.
At each quasimomentum q, the Floquet calculation

gives us 2n quasifrequencies νj(q) = ωj(q)+ iαj(q); these
are the Floquet-Bloch bands of the system. The calcu-
lation involves a numerical integration of Eq. (A6) over
one time period. Provided the numerical integration can
be carried out to the desired precision, the calculation of
the bands is exact as it does not rely on any truncated
expansion of the solutions in terms of plane waves. The
corresponding normal mode displacements and velocities
of the pth unit cell at position x = pna are written in
terms of the Floquet-Bloch eigenvectors fj(q, t) as

yj(q, t) = fj(q, t)e
i[qx−νj(q)t]. (A10)

This form is similar to that of the normal modes of a
static spring chain, with the differences that: i. the vec-
tor multiplying the plane-wave itself has an additional
time dependence (albeit one that is T -periodic in time);
ii. the Floquet exponents which take the place of the
frequencies are in general complex-valued; iii. the oscil-
lation frequencies ωj = Re(νj) are defined modulo the
modulation frequency Ω.
The correspondence of the Floquet-Bloch eigenmodes

with normal modes of static systems is even stronger if we
consider strobed measurements, i.e. when displacements
are recorded only at integer multiples of the time period
T . At these time intervals, we have

yj(q, t) = fj(q, 0)e
i[qx−νj(t)];

i.e. the strobed spacetime-dependence is obtained by
multiplying a constant eigenvector with a plane wave.
When measurements are strobed, therefore, the Floquet
eigenvectors and exponents are completely analogous to
the normal modes and eigenfrequencies of a static spring
network. The group and phase velocities of waves in the
jth band are determined by the dispersion relation ωj(q).
When the gain factor is nonzero, a positive gain factor
corresponds to an exponentially growing wave amplitude
∝ eαjt whereas a negative gain factor corresponds to an
exponentially decaying wave.
In the absence of damping, the block form of the ma-

trixGq(t) and the Hermiticity of the Fourier-transformed
stiffness matrix Kq(t) at every point in time lead to addi-
tional constraints on the Floquet-Bloch band structures.
First, the set of Floquet multipliers {ρj} must coincide
with the set {(ρ∗j )−1} at each quasimomentum q [30].
Therefore, any mode with a complex Floquet quasifre-
quency ν = ω + iα, α 6= 0, is accompanied by a mode
with the same oscillation frequency and opposite gain
factor ν = ω − iα at the same quasimomentum. Second,
the Fourier-transformed stiffness matrix at q and −q are
conjugate transposes of each other: K−q = K†

q. Cor-
respondingly, the Floquet multipliers are also complex
conjugates of each other. Combined with the previous
property, this implies that the bands at −q are obtained
by reversing the signs of the oscillation frequencies of

the bands at q and keeping the gain factors αj(q) un-
changed: ωj(−q) = −ωj(q) and αj(−q) = αj(q). These
symmetries are visible in the undamped Floquet-Bloch
band structures in the main text.
As with passive phonons, the band structures and as-

sociated Floquet-Bloch eigenmodes can be used to com-
pute the response of finite systems consisting of an inte-
ger number of repetitions of the time-modulated unit cell.
While the dispersion relation is unchanged, the finite sys-
tem admits a discrete set of quasimomenta which satisfies
the applied boundary conditions and ensures that the to-
tal number of independent eigenmodes matches the num-
ber of degrees of freedom available to the system [27]. For
instance, in the main text we describe how a wave packet
for a finite periodic system with M unit cells is con-
structed from M relevant quasimomentum values that
describe the allowed wavelike modes of the system.

Appendix B: Sonic limit at larger modulation

strengths

The accumulation of resonances which defines the sonic
limit extends over a finite range of modulation frequen-
cies on either side of the value Ωs = 2πv/(na), defined
by [6, 22]

1√
1 + δ

<
Ω

Ωs
<

1√
1− δ

. (B1)

In the main text, we focused on modulation frequen-
cies at the center of this range, which is appropriate
when δ ≪ 1. However, if larger modulation strengths
are accessible, the modulation frequency that generates
near-uniform gain factors across the reduced Brillouin
zone can deviate from the strict sonic limit defined in
Eq. (3) of the main text. In this case, modulation pa-
rameters which allow stronger broadband amplification
can be found by numerically exploring Floquet-Bloch
band structures within the range of values dictated by
Eq. (B1). As an example, Fig. A2 shows near-constant
gain factors across the rBZ for Ω = 0.89Ωs when δ = 0.4
and Ω = 0.74Ωs when δ = 0.6, for the same unit cell size
(n = 8) discussed in Fig. 3(a). In both cases, the larger
modulation also enables higher gain factors to be realized
compared to the case of Ω = Ωs.

Appendix C: Simulation methods

Wave pulse propagation in 1D spring-mass chains was
studied using classical dynamic simulations implemented
in the HOOMD-Blue software package [53]. The sys-
tem examined was a 1D spring-mass chain of N particle-
masses of mass m possessing a unit cell of n different
dynamic springs with equilibrium length l0 in a damped
environment with damping constant γ. To implement
dynamic springs following Eq. (2), the spring constant of
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tors. For simplicity, we work with continuum plane waves
of the form ei[kx−ν(k)t] with momentum k and a disper-
sion relation ν(k) = ω(k)+iα(k) relating the complex fre-
quencies to the quasimomenta. We expect the behavior
of the amplitude envelope to be similar for a wavepacket
built from Floquet-Bloch eigenmodes of the amplified
band in the discrete system with time-modulated springs.
First, we review the effect of a nonlinear disper-

sion relation ω(k) on the time dynamics of a Gaussian
wavepacket in the absence of gain, α(k) = 0. The
wavepacket is a superposition of plane waves with weights

f̃(k) = A0
σ√
2π

e−
σ2

2 (k−k0)
2

, (D1)

which leads to a real-space pulse at time t = 0 of

f(x, 0) = A0e
ik0xe−

x2

2σ2 , (D2)

where A0 is the initial amplitude, and σ is the width of
the Gaussian envelope centered at x = 0 of a sinusoidally
varying wave with dominant quasimomentum k0. The
subsequent time-evolution is given by

f(x, t) =

∫ ∞

−∞

dkei[kx−ω(k)t]f̃(k).

If the pulse is sufficiently broad, the Fourier amplitudes
fall off fast away from k0, and we can approximate the
dispersion relation near k0 as a Taylor series:

ω(k) ≈ vpk0 + vg(k − k0) +
η

2
(k − k0)

2,

where vp = ω(k0)/k0 and vg = ∂ω(k0)/∂k are respec-
tively the phase and group velocity of the wave at k0.
The solution in real space at finite times is then obtained
by taking the inverse Fourier transform, with the result

f(x, t) = A0e
i(vg−vp)k0teik0(x−vgt)e

−
(x−vgt)2

2(σ2
−iηt) . (D3)

When the dispersion relation is strictly linear, η =
0, the finite-time solution has the form f(x, t) =
ei(vg−vp)k0f(x − vgt, 0), which corresponds to a transla-
tion of the Gaussian amplitude profile by vgt along the
x-axis, and an additional phase factor which does not
affect the amplitude (and which is zero for a linear dis-
persion relation ω = vgk = vpk). The wavepacket is
said to be non-dispersive, as it maintains its shape while
propagating at a constant speed.
By contrast, when η 6= 0, the last exponential in

Eq. (D3) can be written as

e
iηt

2(σ4+η2t2) e
−

(x−vgt)2

2σ2(1+η2t2/σ4) .

Besides introducing an additional phase, the nonzero
quadratic dispersion also modifies the Gaussian ampli-
tude profile which, while still moving with the group ve-
locity, is rapidly broadening with time as σ

√

1 + η2t2/σ4.
Such a wavepacket whose amplitude and phase profile are
varying with time is termed dispersive. Deviations from
a linear dispersion involving higher powers of k− k0 also
lead to dispersive pulse propagation. A slight dispersion
is apparent in the simulated time-evolution of pulse width
in a static system (Fig. 5(f)), which grows quadratically
in time because of the deviation of the dispersion relation
ωs(q) from linearity.

We now consider wavepacket dispersion due to non-
zero gain. We consider a linear dispersion relation of the
oscillatory frequency, but assume the gain factor has a
linear quasimomentum dependence near k0,

ω(k) ≈ vk + i [α0 + β(k − k0)] . (D4)

Upon initializing the wavepacket using Eq. (D1) and
computing the inverse Fourier transform, we find the sub-
sequent time evolution

f(x, t) = A0e
i(k0+

βt

σ2 )(x−vt)e−
(x−vt)2

2σ2 eα0t+
β2t2

2σ2 . (D5)

When β = 0, a constant gain factor induces an expo-
nential growth of the wavepacket amplitude with time,
but the relative strengths and phases of various com-
ponents of the wavepacket are unchanged. This situ-
ation corresponds to a non-dispersive amplification of
the overall wavepacket as it propagates. By contrast,
a nonzero slope to the gain-quasimomentum relation
changes the dominant (or carrier) quasimomentum of the
signal, which increases linearly with time as k0 + βt/σ2.
The pulse envelope is still centered at x − vt and grows
with time, but with a additional time-dependence which
grows as exp(t2), much faster than exponentially with
time. This superamplification arises from the modes with
k ≫ k0 when β > 0 (or k ≪ k0 for β < 0) which fall out-
side the regime of validity of the candidate dispersion
relation, Eq. (D4). In practice, the shape and speed of
the wavepacket will depend on the full dispersion relation
ω(k) as the dominant quasimomenta in the wavepacket
are no longer confined to a small range near k0, leading
to ever-increasing distortion of the wavepacket.

In summary, Gaussian wavepackets can be amplified
without affecting their spectral composition provided the
gain factor is constant over the entire range of quasimo-
menta contributing to the wavepacket.
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and Alexander B. Khanikaev, “Topological phases and
nonreciprocal edge states in non-Hermitian Floquet in-
sulators,” Physical Review B 100, 045423 (2019).
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