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I. INTRODUCTION

N THIS work, we study a game-theoretic market model

in which users make strategic decisions to trade privacy-
preserved versions of their personal data with a data collector.
We assume that the users are rational, risk-neutral and self-
interested. Our analysis generalizes the existing market models
for private data collection [1] by incorporating the ubiquitous
social interactions among users encountered in many settings
in our everyday life. Specifically, we ask the question of what
are the desired data reporting strategies (from an individ-
ual user perspective) and payment mechanisms (from a data
collector perspective), when users can learn noisy versions
of their friends’ data through social interactions. Intuitively,
social interactions among the users can help them to become
better-informed, which in turn can impact their decision strate-
gies by improving the quality of their data reporting. To the
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best of our knowledge, this article is the first to investigate the
impact of social learning on privacy-preserving data collection
which differentiates our study from the existing work [11-[10],
where the users’ personal data are the only information at their
disposal.

A. Data Collection and Social Learning

Social interactions can affect and introduce further compli-
cations into various data collection efforts including product
ratings, political campaigns, smartphone applications or hotel
and restaurant reviews. Consider a real-world setling where a
group of friends, who are users on an online platform (data
collector), such as IMDB, Flixster or Netflix which aims to
collect audience ratings, walch a movie together. It is plausi-
ble that the raling or review [rom an individual is not formed
solely based on their initial impression (personal signal) about
the movie and it is also influenced by the opinions of her
friends (group signals). Users are not bound 1o truthfully share
their personal opinions with the data colleclor, and may opt
out from data collection. The data collector can utilize a pay-
ment mechanism to incentivize participation and reward the
users who report informative data. Nevertheless, the users are
still not compelled to act truthfully and the data collector is
not equipped with an instrument to directly authenticate their
reported data.

The information is represented by a binary random vari-
able, W, which is called the state. The users receive noisy
individual copies of W. As a result of prevalent social inter-
actions, the users can also obtain noisy observations of their
friends’ individual signals. The social learning among users,
which can take place in many forms, including in face-to-face
meetings and over multiple online social media (e.g., Facebook
and Twitter), is captured by a social learning graph (or social
graph for brevity). Each vertex of this undirected social graph
corresponds (o a user and cach edge of this social graph points
to information exchange between two friends.! The data col-
lector attempts to leamn the underlying state W based on data
collection from the privacy-aware users, by using a payment
mechanism to incentivize user participation. Based on her pri-
vate signal §; and noisy copies of her friends’ signals, C;'s
(when i and j are friends), cach user i reports data X;, which
may incur privacy cosl. As a resull, each user can either
choose to report data or not to participate. Figure 1 depicts
an illustration of the information flow in this market model.

'mmwmummmmmmum
Section V-C, simulations are provided for both dinecied and undireciod neal
world networks.
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(a) Mustration of Social Learning Graph
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(b) Data Reporting with Social Learning

The data collecior is interested in leaming the hinary siale W, Each user | possesses her personal data 5 and her group signals veclor C; whose
(&) If two users | and | are friends, cach of them gets a noisy copy of the olber’s personal

signal. (b) Conditioned on W, 5, 52,..., 5y are Li.d. binary signals. The nolsy coples of 5, which are received by user I"s friends, are |.Ld. binary signals
conditioned on 5;. Taking §; and C; as inputs, user | penerates her reponad dala X;.

B. Challenges

We develop a Bayesian game theoretic framework to study
the impact of social leaming on users' data reporting strate-
gies and devise the payment mechanism for the data collector.
Using a variant of the peer-prediction method.? the data col-
lector scores the reporied data of user i by comparing it o
his estimate of the underlying state W, which is computed
based on the reported data of all other users. In the presence
of social leaming, the quality of the reports can vary across
the users, as different users can have different numbers of
friends and each user is capable of claiming the control of her
privacy level against the data collector. As expected, social
learning among users introduces coupling and heterogeneity
in the reported data and significantly complicate the design.
Under these challenges, we scek to answer the following key
questions: When a user consents to publish her review, what is
the best strategy for her to leverage her friends’ noisy signals
as opposed to her own personal signal in her reported data?
Can the users benefit from social learning, and if yes what
is the corresponding desired data reporting strategy? Can the
data collector design incentive mechanisms to take advantage
of social leaming? Further, what payment mechanism enables
the data collector to minimize the cost in the presence of social
leaming?

C. Relevant Work

Market models where privacy-aware strategic  users
treat their data as a commodity have received much
interest [1]-[18]. Recently, privacy in edge computing
paradigms have been also been studied from various perspec-
tives [19]-[22). In all these studies, the users are regarded
as individual agents but social learning among them is not
accounted for. The market model proposed in [1] can be dil-
ferentiated in this stream of work where each user directly
controls the privacy level of her reported data. Our proposed
model can be regarded as a generalization of the model in [1]
which assumes thal the knowledge of each user is limited 1o
their personal signals. As illustrated in Figure 1, the users
have richer information about the underlying state beyond

?See [4] for & recent and extensive survey of this field

their private signals, thanks to the presence of social learning,
and can therefore use this additional information to conceive
their reporting stralegy which can polentially have significant
impact on the data collection.

User heterogeneity in peer prediction has recently gained
atiention, but there are very few resulis on handling its com-
plications [2], [18], [23]. Furthermore, little attention has been
paid to the cases where the reported data is correlated across
users given the true state. We shall study both these two issues
in the market model in this article. In particular, we will first
consider the users as local data curators, then treat the data
collector as a fusion center, and finally combine them and
design the payment mechanism. This enable us (o scparate the
convoluted dependence among the personal and group signals,
and make the study tractable.

We also revisit the notion of truthful data reporting and
informative user strategies in the framework of data privacy
games where the users report their data using randomized
response stralegies to achieve privacy protection. We show
that, in the presence of social learning, this conventional notion
of “informative strategy™ would not encompass some desired
equilibria where each user reports informative data based on
her friends’ signals only. Building on this new insight, we
introduce informative non-disclosive strategies which allows a
user to formulate stralegies based on only her leamed group
signals if there is strong concurrence. We caution that informa-
tive non-disclosive strategies does nol create situations akin to
herding [24] or information cascades [25]. In the proposed
market model, the users take their actions in parallel, not
sequentially, and the reported data in this study, are only
revealed to the data collector not to the other participants.

D. Summary of Main Results

The primary objective of the data collector is the estimation
of the underlying state W, The data collector does not have any
observation about W and he relies on users’ reported data X.
Since the users are strategic and they incur privacy costs, the
data collector employs a payment mechanism to incentivize
informative dala reporting. In general, the payment each user
receives also depend on the reported data of other users. Thus,
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Fig. 2. at Bayesian Nash Equilibria (BNE): The data report-

Strategy profile
ing strategy at BNE is in the form of either a non-disclosive strategy or a
symmetric mndomization . Using Fj. defined as the sum of the social
group signals, each user (with degree ;) determines which strategy 1o follow.

the announcement of payment mechanism actuates a privacy-
preserving data collection game among the users. Our main
contributions can be summarized as follows.

« Our findings reveal that the data reporting strategics at
the Bayesian-Nash equilibria (BNE) can be in the form
of cither symmetric randomized response (SR) strategy
or non-disclosive (ND) sirategy. When a user plays the
ND strategy, her reported data is completely based on
her leamned group signals, independent of her private sig-
nal. Intuitively, albeil having a signal different from the
majority of her friends’ signals, a user might be better
off to pretend in accordance with them and her reported
dala is still informative for the data collector.

« We design the data collector’s payment mechanism using
peer-prediction to incentivize the users for informative
data reporting. Furthermore, our results demonstrate that,
under the proposed mechanism, the data reporting strai-
egy at the BNE is in the form of either an ND strategy
or an SR strategy. As illustrated in Figure 2, each user
follows a majority voting based data reporting rule o
determine which strategy to employ. In general, as the
noise level of the group signals increases, the ND strat-
egy requires a “higher” majority, and olherwise the user
follows the SR strategy.

« To tackle the technical difficulty that the reported data
is comrelated across users given the underlying state, we
use a Central Limit Theorem for dependence graphs (o
characterize the statistics of the reported data profile,
based on which the data collector can evaluate the esti-
mation error of W. The total expected payment is then
characterized for a given accuracy target. Our analy-
sis pinpoints to the positive impact of social leaming
on the privacy-preserving data collection game, in the
sense that the data collector can lower the total pay-
ment significantly, compared to the case with no social

learning.
¢ Our resulis demonsirates that both the dala collector and
the users can benefit from social learning which drives
down the privacy costs and helps to improve the accu-
racy of the stale estimation. In particular, some users’
privacy cost can be driven to zero when ND strategies
are used. This, in tum, benefits the data collector and
drives down the overall cost, since his data resources are
more informed and can report informative data at lower
privacy costs.
The rest of the article is organized as follows. We introduce
the models for the privacy-preserving data collection market
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Fig. 3.  The parameter &) determines the quality of the personal signals,
The notwe level in social leaming is modeled with crossover probability, o
The parameter 0y, defined as 6) = fy(1 — @)+ (1 —fylar, mnn
quality of the group signals.

and the social learning graph in Section IL. We formalize the
Bayesian game under this market model in Section Ill. We
present the main results on the data reporling strategies and
the payment mechanism design in Section 1V. We discuss the
impact of social learning on the payment and accuracy in
Section V. Finally, we summarize and discuss possible exten-
sions and open problems in Section V1. The key nolation used
in this article is shown in Table L

Il. SyYsTEM MODEL
A. Personal Signals

Consider a market model where the data collector is
interested in leaming the underying state W from a set
I={,2,..., N} of N = 2 users. For ease of exposition, W
is assumed 1o be a binary random variable (r.v.), for example,
representing the product quality as good or bad.* 'We assume
that the prior distribution Pw(-) is common knowledge and
both Py (1), Pw(0) = 0. As illustrated in Figure 1, each user
i possesses a binary signal §;, which is her personal data, rep-
resenting her knowledge about W. The personal signal profile
of the entire population is denoted as § = [S) Sy --- Syl
Given W, it is assumed that the binary signals S;'s are inde-
pendent and identically distributed and the parameter fp with
0.5 < 6 < 1 determines the guality of the personal signals
for every user:

PiSi=1—-wiW=w=1-i
PiSi=wiW=w)=6&, forwel0,1).

(1

B. Group Signals

The social learning graph G = (I, £) is used to model
the social coupling among the users. The vertex set is the
set of individuals 7 and the edge set is given as £ = {(i, ) €
IxI:&;= 1) where £ = 1 if and only if there is a social tie
between i and j where i # j. User i's social group G; is defined
as the set of her friends: G; = {j € T : & = 1}. The number
of friends i has is called the degree d; of that user. We assume

?Binary leedback and review systems are prevalent, e.g.. Youlube [26) and
Neflix [27) swapped out their five star rating systems for a binary system.

On many platforms, it is observed that the vast majority of ratings ane either
the besl or the worst option [28]. [29).
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TABLE |

NOMENCLATURE
w Underlying state T The type of user +
N Number of users X The reporied data of user i
S The personal signal of user i o The strategy of user 1
By Quality of the personal signals  f,(x) The payment user i receives
(e The social group of user i Ciloi, &)  The privacy level of strategy oy
d, The degree of user 1 alg) Privacy cost function
P Degree distribution Fi The sum of the group signals C,
C; The group signals of user & of The majority voting dala reporting
a Crossover probability R Proposed PP payment mechamsm
8 Quality of the group signals R* The genic-aided mechamism

that the social leaming graph is a sparse® random® graph with
node degrees lollowing a distribution g with maximal degree
Dgx. The degree distribution py is common knowledge for
the data collector and the users. However, the data collector
does not have any further knowledge about the social graph (.
The users know who their friends are, but they do not possess
any further knowledge about their friends’ social groups.

Each user i has noisy copies of her friends’ personal signals.
hmimmﬂmﬂi.lﬂvmt denote the vec-
tor of her group signals: C; = [C;, Gy, |, where Cy's
mbhurjnlmd.Thcqlmllumhcmu:Ial Iﬂnun;uf
group signals, it is assumed that friends’ personal signals are
“flipped” with crossover probability a: P(Cyj = 1|5; =0) =
P(Cyj = 0JS; = 1) = @, 0 < & < 0.5. Note that these “flips”
are statistically i i.c., given ji and j, are friends
with i, P(Cjyi = 5i|Cpi, 8i = 51) = P(Cjyi = ¢;,lSi = 5) =
| —a. The parameter ) = fy(1 — ) + (1 —fg)a points to the
quality of group signals:

PCij=1-wiW=w)=1-6,
PCj=wlW=w) =6, forwe(0,1).

C. Data Reporting Strategies

The type of a user is defined as T; = [§; C;]. Respectively,
the type space T can be defined as T = UL Ti where
Ti = [0, 1)F+1, Themdnnutmwumwhdgeofm
users' type vectors. The reported data of user i is denoted with
X;. It follows that X = [X) X2 ... Xy] is the reporied data
profile, where X; ¢ & = [0,1, L) and L represents “non-
participation™. User i's stralegy o; is a mapping from the type
space T 10 A(X)® and it specifies the probabilities Py, (X; ©
47he average number of friends users have is much smaller than the tolal

number of users.

’urmummmmmmmmm:r_l
are independent and identically distribuled random integers drawn [rom gy,
Pairs of users are chosen at random and edges ane formed hetween them wntil
complete paining scconding bo the drewn degree sequence. If complete pairing
is mot possible, one oy can always he discanded and redrawn from gy

BA(X) being the set of sll probabilily distributions over Y.

2)

FIT; = 1;) for all F € X. The data reporting strategies can be
considered as a contingent plan of actions for different private
type realizations.

D. Data Privacy Model

Based on the celebrated notion of differential privacy [31],
we define the privacy loss inflicted on the users as the level of
local differential privacy when using the strtegy o;. Given her
group signal C; = ¢;, user i"s privacy loss decreases as her data
reporting makes her personal signal 5; more indistinguishable,
The privacy level of strategy oj, given C; = ¢;, is defined as

iloi, @) =

Py (Xi € F|Ci =i, i = 51) )

* h(P,,(I;c.F’IC;=w.S;=|—Ii} » O
where the convention 0/0 = 1 is followed. The privacy cost
of the user is determined by g(i(oy, ¢;)). We assume that,
g(-) is homogeneous across the users, convex, continuously
differentiable, strictly increasing, nonnegative and g(0) = 0.

Intuitively, given her group signal C; = c¢;, user i"s privacy
cost decreases as her data reporting makes her private sig-
nal more indistinguishable. Notice that this function is defined
for every possible group signal realization, offering a stronger
privacy guarantee than an alternative definition

max ( )
FSl0.1.1), sis(0.1)

Py, (Xi € FISi = 5)

Py (X; € FIS; =1 —15)
since il assumed the worsl case of the adversary already know-
ing C;. Figure 4 presents an example where the user i has
two friends j; and j;. In this example, (o, ¢;) measures
the indistinguishability of the private signal bit §; for each
cj € |0, 1} x |0, 1}. Consider an extreme case where the user's
reported data is her private signal, X; = §; given C; = ¢;.
In this case, {(a, ¢;) is equal o oo, the maximum possible
privacy leakage for her. Consider another case where the indi-
vidual report X; is independent from the personal signal §;
given C; = ¢;. In this case, (a3, ¢;) is equal to 0, the minimum
possible privacy leakage for her.

max
Fel0.1.1). wsf0.1)

Siloi) =
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Gi = i) G=IC, Gl

Fig 4. {jloy. o) measures (he indistinguishability of personal signal 5;, given
group signal C;, with respect 10 the user’s strategy.

Data Collector Data Collector

X;
p= K "|.i R
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The objective of the data collector is to estimale the under-
lying state W from users' reported data X = [X; Xz ... Xyl
with minimum total payment subject to an accuracy constraint.
The dala collector does nol have any observation aboul W and
he relies on users’ reported data X. Since the users are strategic
and they incur privacy costs, they may not provide informa-
tive reported data unless they are sufficiently incentivized. In
this study, we assume that the data collector cannol impose
penalties on the users. Therefore, positive rewards are the
only options at his disposal to incentivize informative reporting
as depicted on Fig. 5. We define the payment mechanism as
R: XY — RV, where Ri(x) specifies the amount of payment
for user i given X = x and R(x) = [Ry(x) Ra(x) ... Rw(x)].
In general, the payment user i receives Rj(x) also depend
on the reported data of other users. Thus, the announcement
of the payment mechanism instigates a strategic form game
among the users where the utility of cach user is the dilTer-
ence between her payment and her privacy cost. In the next
section, we formalize the Bayesian game under this market
model.

II. CHARACTERIZATION OF BAYESIAN-NASH EQUILIBRIA

The Bayesian game under this market model is oullined as
follows: The data collector announces a payment mechanism,
which actuates a strategic form game where the users are the
players aiming to maximize their expected utility, which is
the difference between their rewards and their privacy costs.
In this game, the common knowledge includes the prior state

distribution Py, the signal quality parameter f, the crossover
probability «, the degree distribution’ py, the privacy cost
function g and the payment mechanism R. Furthermore, it
is assumed that the data collector and the users know how
the personal signals (S;’s) and group signals (C;'s) are gener-
ated, according to (1) and (2). In this game with incomplete
information, we focus on Bayesian-Nash equilibria where each
user has no incentive 1o unilaterally change her strategy given
other users” stralegies. Formally, a Bayesian-Nash equilibrium
(BNE) is defined in the following.®

Definition 1 (BNE): A  stralegy profile o -
{e1,02,...,00) is a Bayesian-Nash equilibrium (BNE)
if, for cach user i € T,

oi(-) € ag max Eg,r p [Ri(X) — g(¢(0], Ci))]  (4a)
o/ (-)ea(X)
Because each type has positive probability, this ex ante formu-
lation is equivalent to user i maximizing her expected wtility
conditional on T; = I; for each 1;:

2 P(T-i = t|Tj = t)E(g,0-)
—

x [RiX) — g€ (07, €Ty = 1, T = 1]
= Y PO =t = 10)Eq,

L

x [Ri(X) — g(¢ (o), €))ITi = 1;, T_; =1t_;]. (4b)

In equation (4), the randomized generation of the social graph
is part of this probability space since the users’ knowledge
about the social graph is limited to their own social groups
and they do not possess any knowledge about their friends’
social groups.

We show that users’ data reporting strategies at the
Bayesian-Nash equilibria are in the form of either symme-
ric randomized responses or non-disclosive sirategies. Firstly,
we formally define the non-disclosive strategies as follows.

"We remark that many different types of real-world social networks and
thair statistical including their degree distributions are well-sadied
in the litersture and svailable. In [30], [32}-{34]. with a primary focus on
their degree distributions. an exiensive review of empirical studics of sockal
networks is presented.

¥Given a strategy profile o (), and a o] & A(X), (0](-), @ _;(-)) denoles
the profile where user § plays o(-) and the other users follow o(-).
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Definition 2 (ND Strategy): If S; and X; are independent
conditioned on W and C;, then oi([ - ¢;]) is a non-disclosive
(ND) strategy; thal is to say, for every F < {0,1, 1} and
5; € {0, 1} we have

Px(X; € F|5; = 5i, Ci = ¢j) = Pg(X; € F|C; = ;).

When the user employs an ND strategy, the reporied data X is
independent from her personal signal 5. This stralegy does not
disclose her private information and sets her privacy cost to 0,
ie., &log, ¢;) = 0. In general, her reported data still depends
on her group signals C; and is correlated with the underlying
state W. Next we define the symmetric randomized response
strategies as follows.

Definition 3 (SR Strategy): Given C; = ¢, oi([ - ¢]) is
called a symmelric randomized response (SR) stralegy, if il
satisfies the following conditions:

(1) Po(X; = L|Si=1,C; =¢;)
=Py(Xi = LIS =0,Ci=¢) =0,
(2) Po(Xi=1I5;=1,Ci=0q)
= Py (X; = 0|5; = 0, C; = ¢;).

When an SR strategy is played by the user, both the pri-
vate signal §; and the group signal C; are correlated with the
reporied data X;. We have the following lemma characteriz-
ing the Bayesian-Nash equilibria strategies (the proof can be
found in Appendix A).

Lemma I: For any non-negative payment mechanism, in
every Bayesian-Nash equilibrium, the data reporting stralegics
are in the form of either a symmetric randomized response
strategy or a non-disclosive strategy.

Note that if a user plays with a strategy where her reported
data X; is independent from both her personal data §; and
her group signal C;, then X; is pure noise. As a result, it
is uninformative for the data collector, and it is a degen-
eraled form of ND stralegies. We remark that Lemma |
is a generalization of [1, Lemma 1). When a user i does
not have any friends (d; = 0), ND stralegies reduce o
be uninformative. On the other hand, in the presence of
social learning (d; = 0), ND strategies can be informative
and positively contribute to the data collector's information
elicitation.

IV. DaTa COLLECTOR'S PAYMENT MECHANISM

The primary objective of the data collector is to estimate the
state W from users’ reported data X. The hypothesis testing
problem of the data collector can be staled as

Ho :W=0, H :W= (5)

The estimation of W from wsers’ reported data X is viable
only il there exists BNE strategies in which X is informative
about W. The purpose of this section is to design the payment
mechanism R in which each user can form her data reporting
strategies, and the data collector can estimate W based on the
reported data with minimum payment while achieving a given
accuracy targel.

In the presence of social learning, in addition to her per-
sonal signal, each user oblains noisy group signals through

m

social inleractions. Therefore, il is plausible (o view each user
as a local data curator who processes the data available to
her and reports it to the data collector who acts as a fusion
center. When users i and j are friends, Cjj, a noisy version of
J's personal signal, is a component of T; (and Cj; is a compo-
nent of 7;). Further, if i and j are not friends but they have a
common friend £, then both i and j have noisy copies of S¢ in
their type vectors. Consequently, given W, X; and X; can be
correlated if i and j are friends or they have a common friend.
To sum up, the optimal design hinges heavily upon the user
types which are correlaled across users given the true stale
and involves combinatorial optimization, and hence is very
challenging to attain for the general case with finite N. To
tackle this diflicult task, firstly, we will focus on the problem
at the local level by considering a hypothetical genie-aided
payment mechanism and then study the optimal data report-
ing stralegy in the asymptolic regime of N (for the sake of
tractability). We present in Sections 1V-C and IV-D the desired
payment mechanism using peer prediction and the BNE strate-
gies accordingly. Finally, in Section IV-E, we evaluate the total
expected payment.

A. Users as Local Daia Curalors

We first study a hypothetical scenario where the data col-
lector has access to the realization of the underlying state
W and we discuss how we can design a genie-aided pay-
menl mechanism, to incentivize the users for informative data
reporting. While it may sound vacuous as the data collector's
main purpose of rewarding users for their reporied data is
o estimate the stale W, it will become clear that this hypo-
thetical scenario gives insight into the payment mechanism
design where the data collector utilizes his estimation about
the underlying state to determine the amount of reward for

each user.
We consider a genie-aided

R® : AY0,1) — RY, such that
RE((xi, x_i), w) = R¥(x;, w).

Observe thal the payments users receive do not depend on
reporied data of other users and they receive the same payment
if their reported data is the same, ie., Ri(x, w) = Rj(xj, w)
il x; = x;. The expected payment of user i al stralegy o; is
given by
By [RE X, W)IT; = 1] = ) RE(xi, w)P(W = wiT; = 1)
W
x Po(X; = x|T; = 1),

where we have used the fact that X; is independent from W
given T;. When R#(0,0) > R%(1,0) and R%(1, 1) = R*(0, 1),
the expected payment of the user is maximized if X; is selected
a5 follows:

PTi=5IW=1)

payment mechanism

PT;=6W=1) *C' Pw(0)R*0,0) — R%(1,0)
PT=4W=0 <, Pw()R(1,1)—RO,1)

Let RE(1,0) = RE(0, 1) = 0. Further, setting the lefl-hand side
of the above inequality to | renders the genic-aided payment
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mechanism, where ZF > 0 is a design parameter:

ZEPwi(0) il =w=0,

ZEPy(l) il =w=1, (6)
0 otherwise

Consequently, in R¥, the expected payment of the user is
maximized when their data reporting strategy is the maximum-
likelihood (ML) decision rule:

WML(L) = arg max P(T; = (|W =w)
wal0.1)

RE(x;, w) =

=arg maxP(§; = 5, Ci = ¢;|W =w)
w0, 1)

For the data collector, the advantage of the ML rule is that
the users do not use the prior distribution Py () information,
which is already common knowledge. Thus, in this genie-aided
scenario, the mechanism design problem reduces to a decen-
tralized detection problem in which each user acts as a local
decision maker.

Next, we explicitly state the ML rule as a function of §;
and C;. For convenience, denote the sum of the group signals
by r.v. F; and its realization by fi:

F;=EC',§ and _,I';=Zr.',".
ieGy G
Afler some algebra, we have that

B (1 — )" &1 —gyydAi W=

= 1
01 — )" 0{ (1 — 0y )f ﬁf‘fm-u

and
L1 ) _
oz %o na Mmd:%%.
WML 1 ) log
(M
It follows from (7) that
1, iffi> ydi+A,
WMo =10, iff, < ﬁ —A,
5;, otherwise.

When |f; — %| > A, the ML rule reduces to reporting the
majority bit of the group signals. This is an ND strategy and
it incurs 0 privacy cost on the user. Therefore, the ML rule
is a BNE stralegy for the user when |f; — %| > A. When
Ifi — %1 < A, the ML rule is directly reporting the personal
signal which cannot be a BNE strategy because ils privacy
level is infinity. Consequenily, the user has two oplions: 1.
The user can send the majority bit of the group signals. 2. The
user can employ an SR strategy and send a privacy-preserved
version of §;. Next, we define the majority voling-based data
reporting strategies, denoted by o',

Definition 4: The majority voting (MV)-based data report-
ing, o has the following form:

P'l- (xi = .In = l.ll}
1 iffi>%+n, (ND)
0 iffi<d -, (ND)
“\iow e[ -ng+n| s=1 6B

ﬁm. iffi e ?—m.%+n . 5i=0, (SR)
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Po'f"{xi =0Ti==1- F’r- Xi= 1T = 1),

where 0 < 19, 7 < A and £(f)) > 0.

With a little abuse of notation, {(o.f;) and [(s},c;)
are used interchangeably for the privacy level of strat-
egy of. When fi € [4/2 — w,4/?2 + n], user i employs
the SR siralegy and we have Gia'.f)) = £(f). When
fi ¢ l"ﬁ-w.*ﬁ+ﬂl-ﬂiﬂ'fwwﬂl¢“nm‘
egy and we have Gi(ol,fi) = 0. The privacy level
of the SR strategy, £(f;), and the thresholds mp and 7,
depend on ZF from (6) and the system model parame-
lers.

The majority voting-based data reporting strategy profile is
denoted by o* = |o, ..., o). Our next result states that o*
is a BNE in the genie-aided payment mechanism RE. Its proof
is relegated to Appendix B.

Theorem I: In the genie-aided payment mechanism RE (6),
the majority voting-based data reporting strategy profile o* is
a BNE.

In the next subsection, we analyze how Lhe data collector
can estimate the underlying state from users’ reported data
X. In Section TV-C, building on the genie-aided mechanism
RE, we devise a peer-prediction-based payment mechanism R
where the data collector obtains the estimate of W from the
users’ reported data. In Section TV-D, we present the exact
details of the BNE o*, and in particular, 1o, ) and £(f}), are
determined accordingly.

B. Data Collector as Fusion Cenler

Recall that the objective of the data collector is to estimate
the underlying state W from the users’ reported data X. The
conditional distributions of the reporied data profile X, given
the underlying state W, are dictated by the user data reporting
strategies. For a given strategy profile o, we can restate the
binary hypothesis testing problem (5) as follows:

Ho: X~Pa(X=x|W=0), H: X~Pu(X =x|W=1).

The data collector employs the maximum a posteriori (MAP)
decision rule, denoted by W, (x), in order to minimize the
probability of error of the hypothesis lesting problem:

Po (X =xiW=1) %3 Py0)
Pe(X =x|W =0) w‘:._n Pw(l)

Ag(x) := (8)

In general, X; and X; are correlated given W, if user i/ and
j are friends or they have common friends owing to the
social learning among the users. The closed-form evalua-
tion of A4 (X) is oflen intractable for dependent observations.
Therefore, in this study, we concentrate on symmetric data
reporting strategies such that o;(-) = o;(-) if the realizations
of the type veclors of i and j are equal. For example, the
majority voting-based data reporting strategy profile, o*(-), is
a symmetric data reporting strategy profile. In what follows,
we present two lemmas (o study A, (x) in the asymplotic
regime of N. For convenience, let Iy be the collection
of all permutations on the set indices T = (1,2,...,N].
Then, for ¥ & Ty, %x = [xj...xx]y denoles the per-
muled sequence [Xy(y) . . . Xxgv ). Our next result shows that the
order of the reported data is irrelevant for the data collector's
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Innujrhypothcmmmgpmhm lts proof is relegated to
Appendix C

mez For every symmetric strategy profile o, w €
[0, 1) and = & Ty, we have

PoX =x|W=w) =P (X = x5 |W =w).

From Lemma 2, it follows that W,(x) in (8) depends on
Z’;.:;whma is a symmetric strategy profile. To char-
aclerize (he asymplotic statistics of Y, X;, we employ a
Central Limit Theorem (CLT) for dependence graphs [35].

For any symmetric strategy profile o, we define u.. (o) as the
conditional mean of X; given W = w with w € [0, 1}

me) =P, X;=1W=1),

palo) = Pa(X; = 1|W =0). (9)
Recall that £ = 1 if there is a social tic between i and j,
nlhuwi:ct’.'#:ﬂ.Sinﬁlrljr.B,,-: 1 il'fmdjlmcammm

friend, otherwise Bj; = 0. For convenience, we define ¢, and
Gw for w € [0, 1), as follows:

cwlo) =P (Xi=w, Xj=w|W=w,B; =0, =1),
(10a)

Sulo) =Py (Xi=w, Xj=w|W=wB;=1E;=0),
(10b)

In the rest of the article, for purposes of brevity, we drop
the dependency of uw(o), cwlo), and Swlo) on o when it is
clear from the context. To use the CLT for dependence graphs,
the degree distribution py must meet the following sparsity
criteria:

Assumption 1: Maximal degree Dy
E[0?*2] <0 for some A = 0.

We have the following result on the asymptotics of ¥ , X;
as N — o0,

Lemma 3: Under Assumption 1, conditioned on W = w,
for a symmetric data reporting strategy profile o, esLiN
minmmmm:ﬂnﬂuﬂmmm
as N — oo, with

k(o) = py — pu} + EIDI(g) — &) + E[Dz](ﬁ - #?)-
(11a)

= o(N") and

xolo) = po(l — po) + E[D)(co — o)
+ B[0?](d0 - (1 - wor?)-
The proof of this lemma is relegated to Appendix D.

Appealing to Lemmas 2 and 3, for large N, the MAP
Decision rule W,-{:jmhewmﬂndu follows:

L (w-B2) - L B2y *2”
Tr)

o,
W, (x)=0
EIn(
N «p Pw(l) )

The data collector aims o minimize the total payment under
the budget of MAP detector error rale constraint. Let Rio)
denote the set of non-negative payment mechanisms in which

(11b)

(12)

o is a BNE. Then, the mechanism design problem for the data
collector can be formulated as follows:

Quin ZEuer{x"

st E.[P(ﬂ'.m #w)| <.,

where the maximum allowable error is represenied by P,.
Next, we design the peer-prediction-based payment mecha-
nism. In Section TV-D, we determine the informative BNE
siralegics in the designed mechanism. In Seclion IV-E, we
evaluate the total expected payment. In Section V, we will
revisit the mechanism design problem and derive bounds on
the minimum total payment required o achieve a given level
of state estimation accuracy.

(13)

C. Payment Mechanism Design

Building on the genic-aided mechanism RF, next we tum
our attention to the design of a peer-prediction-based payment
mechanism R, where the data collector obtains the estimate of
W from the users’ reporied data. In particular, we use majority
voting as an effective aggregation method [1], [8], [36], [37]
to obtain informative reported data from the users. By reward-
ing the users whose reported data is in agreement with the
other users” reporied dala, this paymenl mechanism incen-
tivizes the users to participate and report informatively using
their personal and group signals. More specifically, we have
the following payment mechanism R(X):

1) Each user reports her data, and the data collector
counts the number of participants n excluding the users
wilh “non-participation™. For non-participaling users, the
payment is zero.

2) If n = 1, the dala collector pays zero to this participant.
Otherwise, for each participating user i, the data collec-
tor computes the majority bit of the other participanis’
reported data:

s, 2 | D e > |_=§lJ +1;
0 otherwise.

3) Compute the payment for user i:
Ril,x_) =ZiM_;, Ri(0,x_)) = Zo(l — M_;),

where Zp and Z; are design parameters to be determined by
the data collector.

In the genic-aided scenario, the payment mechanism RF is
designed based on the hypothetical case where the underlying
state W is given. The rationale behind the proposed payment
mechanism R in (15) above is thal the data collector obtains
the estimate of W from the noisy user reports and utilizes
it in the payment mechanism. Along the same line as in the
genie-aided mechanism, each user first estimates the underly-
ing state W based on her type f;. The next key siep lies in the
computation of the probability of a user being consistent with
the majority at the BNE strategy profile o*:

Be=

(14)

PII"{H—I - wl'll"' = W}. {15}
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where w & {0, 1}. Clearly, when the number of users is
large, the asymptotic statistics of } ; X; is the same as the
asymplotic statistics of 3 .. _; X;. Therefore, fo and §) can be
approximated using Lemma 3.

Based on the hypothetical genie-aided payment mechanism
R¥ defined in (6), we obtain the design parameters for the
payment mechanism defined in (14) as follows:

Pwi(1)g1 + Pw(0)(1 — fo)

%= B = P (DPw ()’
Pw(1)(1 — B1) + Py (D) By
2= T B = DPw(DPw ()’ (16)

where Z = 0 is a design parameter. For the degencrale case
in which the data collector oblains the estimate of W with no

error, we have that §; = fy = 1, indicating that R reduces
to the genic-aided mechanism introduced in (6). Theorem 2
reveals thal there exisis a MV-based BNE when the data
collector employs the payment mechanism R.

Theorem 2: In the peer-prediction-based payment mecha-
nism R (16), the majority voting-based data reporting strategy
profile o* is a BNE.

The proof of Theorem 2 is given in Appendix E.° For
brevity, we define p(s;, f;) and g(s;, /i) as follows:

PGifi) = Por (Xi = 11S; = 50, Fi = fi),

qGsi, fi) = Por (X = OIS; = 5, Fi = fi).
Theorem 2 establishes the existence of a MV-based BNE under
the payment mechanism R. To complete the design of the
payment mechanism, it remains to characterize p(s;,fi) and
q(s;, f;) with respect to the mechanism design parameter Z. For

this purpose, we express Z in terms of an auxiliary parameter
& > 0 as follows:

(a7

(@ +1)7°
2¢ (260 — 1)
It is clear that Z is continuously differentiable, increasing
and nonnegative in € which corresponds to the privacy level
of strategy o* when there is a tie in the group signal, iec.,

E(df2) =¢:
5 d; _ 1
q("_Z)-_l+f'l

d; &
p(s03) = roe om0
By increasing €, the dala collector can increase the accu-
racy of the reported data at o* albeit the higher total
payment.

"It is worth noting that in the payment mechanism R, o* is not the only
Al %, no user can gain by playing uninformative when olber

users employ the MV rule. However, in R, uninformative equilibria also exist,
o it s the case in many pecr- and information elicitation mocha-
nisms [11], [12]. [15], [38]. Indeed, the equilibria of cutput agreement based
peer-prediction mechanisns cannol avold having an undnformative equilib-
ria [12]. [17]. Imterected readers can find detailed discussions for different
colluding scenarios in the information elicitation mechanism in [13]. One sat
of such equilibria is that the wsers form lying coalitions and collude to repor
the same uninformative data, ¢.g.. eninformalive pure-stralegy equilibria such
that all agents coordinate o simply repor Xj = | o Xj = 0. One set of such
equilibria is that the users form lying coalitions and collude to report the same
uninformative dats. However, we castion thal the social leaming model does

not imply any conperation and communication among friends.

Z=g'(¢) (18)
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D. Data Reporting Stralegies at BNE

In this subsection, we put forward an algorithm to find
pUs;, ;) and g(s;, f;). Recall that, £(f;) comresponds to the pri-
vacy level of o whmj’.-:l%—m.?+r|l.ﬁivcncmdﬁ.
user i can determine £(f;) as follows:

E(f) = e + (Pw(l) — Pw{m}( (19)

e+ 1
L&' Pw@ ¥ + Py ()1 -0, ﬁ'*‘)"
g€ o8 =F (1 — gy

Next, user i needs to compare the expected utilities of play-
ing the ND and the SR strategies in order to decide upon
between them. For this purpose, user i evaluates Tgl£(f;)] and
TilE¢D:

if A;ru.-; <0

o, =0,
Te[e] = Iéc[ﬂﬁl]- if Ac[E(0)] € (0.4),
A, if Ac§(f)] = A,

o e
mﬂld-im‘

(20)

and
Acl&n)] =

2 1
—n
2in(r%)
o (£P0 - &) + 6 + PuB[s (]
* e +1- 0 — Pw(l - OBER])’

. g (P +1)
where B¢ ()] = @ — 12¢ g e+
If f; = 4f2 — YolE(fi)], then the user plays the ND strat-
egy and the reported data X; = 0. Similarly, if fj = dif2 —
Tol€(f;)). then the user plays the ND strategy and X; = 1.
Otherwise, the user plays the SR stralegy wilh privacy level
E(fi). We detail the procedure to find the MV-based BNE
strategy o* in Algorithm 1. The following result formalizes
this argument. The proof of Proposition 1 can be found in
Appendix F.
Proposition 1: The BNE strategy profile o* can be found
by using Algorithm 1.

E. A Closer Look at Data Reporting Strategies: Two Special
Cases

To get a more concrele sense, in what follows we
study two special cases where Algorithm | can be further

1) The Case With Noiseless Group Signals: In general,
there is a discrepancy between the quality of §; and C;:
8 = #y. We first consider the extreme case in which the
group signals are noiscless, & = 0 and &y = 6. In this case,
A = 0.5 and Algorithm | reduces to a simple majority rule:
A simple majority in C; suffices to determine whether to play
the ND strategy or the SR strategy.

Corollary 1: For the case with noiscless group signals, the
BNE strategy profile a* has the following form:
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Algorithm 1: MV-Based BNE Strategy o*

l.lpul:‘f}fperf. number of friends dj.
w: Pﬂit.ﬁ} and #{‘i-ﬁ}

Determine £(f;), Tol€(f;)] and T [£(f)] using Equations 19 and 20.
If f; = d,/2 — TolE(fi)] then p(0, ;) = p(l.f;) = 0 and §(0, f;}) = q(1,f;) = 1 (ND)

else If f; = di/2 + T1[§(fi)] then p(0,f;) = p(1,f;) = 1 and g(1,f})

= (0, i) = 0 (ND)

else p(l,f;) = q(0,f;) = W /(1 + &) and p(0, f;) = g(1,f;) = 1/(1 + &%) (SR)

P{ﬂ.ﬁ-} = P,,-(x;. = 1|5;=35;, F; -ﬁ]

if fi >

iffi <

*f.’:‘T"t if f; =
According to Corollary 1, il d; is even, the user plays the
SR strategy with privacy level ¢ if fi = 4/2. Note that, by
increasing €, the data collector rises the payment per user
in order 1o collect more accurate from the users who
play the SR strategy. If f; # 4/2 the user plays the ND strategy
and the reported data X; is equal to the majority bit within the
group signal C. Il 4; is odd, the user never plays the SR

z and g(si, fi) = 1 — p(si. fi)-

strategy.

2) The Case With Equal Priors: When Py (1) = Pw(0) =
0.5, it is clear from (19) that &(f;) = €, for every f; €
{0, 1, ....d:}. It directly follows from Algorithm 1 that the
thresholds of o* have the same value and can be found as
follows:

0, ifA<0
(€)= { A, if A €(0,A),
A ifA=A
(fuﬂ 1= (28— D)gle )/ (€] |41 - )
1 (1—fg)+ 1+ — Digte ) /5 (0) |+
(21)
21n(1£js,l-)

Consequently, our next result defermines the MV-based dala
reporting stralegies.

Corollary 2: For the case with equal priors, the BNE
strategy profile o* has the following form:

PG fi) = Por(X; = 1|S; = 5, Fi = fi)

! if fi> %+ 1),
|f f - _'{f}t

!ﬂiw_’i if fic %—r{c}.§+rlﬂ]-

q(si fi) = Pop(Xi = 0IS; = 5, Fi = fi) = 1 — p(si. fi)-

The MV-based data reporting strategies depend heavily
on the crossover probability o and the payment mechanism
parameter €, Recall that the quality of group signals is defined
as ) = g —a(26 — 1). It is clear from (21) thal r increases
with a, the noise level in the group signals: The user plays
the SR strategy more often at the BNE as « increases since
the group signals become less informative. Nole thal o is a
system model parameter and it is not under the control of the
users and the data collector. By choosing the payment mech-
anism parameler ¢, the data collector can control the privacy
level of the users who play the SR stralegy. As ¢ increases,

the users play the SR stralegy more often and inject less
noise on the reporied data at the BNE. For concisencss, in the
remainder of this section, we suppress the explicit dependence
of * on €,

Next we study the computation of fig and ) defined in (15),
under equal priors assumption. We first need to define several
terms. Define y(k; d, p) and T'(k, £; d, p) comresponding 1o a
Binomial distribution with parameters m (number of trials) and
n (probability of success) as follows:

yik; m, n) = I tl'iﬂll‘u — ny™-t

LE)
Pk, &mn) =Y y(im,n),
imk]
where [k] := minjm € Z : m > k} and |£] := maxin
Z : n = €]. Recall that, py is the degree distribution of the
social learning graph. We define 5 as follows:

ifd=0;
M), else.

ifke {0,1,..., nj,
otherwise; '

(22)

- 0,
pd.-P{D,-dlﬂ,:ﬂi'[p,ﬂI— (23)
Noie that, g is well defined unless py = | which cormresponds
to the case there is no social leaming among the users. In
the rest of the article, we use the subscript notation E; when
we use / for the expectation of the user degrees. The follow-
ing results determines p,. and iy, which are defined in (9)
and (11), at the MV BNE o,

Proposition 2: For the case with equal priors, &, (a*) and
jglo®) for w e {0, 1} are found as follows:

mi(e*) =1—-po(o*) =E[r(|4+r+1).0:D.6)]

+ M (3 -1, 8+ 1:d,0), (24)
x1(0*) = xo(0*) = p1 — i + EE[DZ]
+ a(E[D’] ~EIDJ), (25)

where A, A and A are defined as

o (1)1 —2a)
A= -+

x Ez[(e(1—80) + @)y (|2 +7);iD—1.8)
+ (B +1 - )y ([§ - —1]:0-1.8)]
fhe” + 1 — 6y

e +1

- M 2 _ _ 2
ﬁ__m(#lﬂ M) — 2 ile) + poi {-F]')- (26)

The proof of Proposition 2 is relegated 1o Appendix G.

Ag) =

L]
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Appealing to Lemma 3 and Proposition 2, we can compulte
B = Por(M_; = w|W = w), for w [0, 1] as follows:

Bi=fo=pr = m(m(m{a'l - %)) @)

where @ denoles the cumulative distribution function of the
standard normal distribution. Consequently, for the case with

equal priors, the payment mechanism parameters Zo and Z)
can be found as follows:
gle)e + n’

B=2 = am -1 -
Ilmdurmup—-luﬂpnmmuwpmpmadpuynm
mechanism R (14) boils down to the genie-aided payment
mechanism RF (6).

Our next result determines the expected payment of the
proposed payment mechanism R:

Theorem 3: For the case with equal priors, the total
expected payment al the BNE is the following:

iﬂu-[iﬂ?]- g +1’N ( ﬂ+mla‘})
=]

(200 - 12— 1) 2p

The proof of Theorem 3 is relegated to Appendix H. In
Section V, we will revisit the mechanism design problem and
the payment vs. accuracy trade-off is further analyzed based
on Theorem 3.

F. The Privacy of the Group Signals

In majorily voling-based data reporting siralegics, each user
locally estimates the underlying state from the sum of the
group signal. Any altack atlempt which targets to leam a
user's personal signal from her friends’ reported data would
require the exact knowledge of social leaming graph, which
is assumed to be not available to the data collector and users.
This is a sensible assumption, because the social learning
among privacy-aware users can take place in many differ-
ent forms, including face-to-face meetings and over multiple
online social media, and hence it is difficult for the adversary
to obtain the social leaming graph.

To get a more concrete sense, we consider a worst case sce-
nario where there is an attacker who has the exact knowledge
of the entire social leaming graph and the altacker can observe
the group signals the users receive from their friends. For this
worst case scenario, we formally quantify the privacy leakage
of the personal signal §;, when the data reporting strategy o;
is used by user i and i £ j, as follows:

nilo;) =

max
FClo,1,L).5a(0,1),wal0,1]
P.,,{.X,- E.Fl.s‘f:Jj, W=w}
. m(P.,,{X.'E.FI-S}- | -5, W=w)) (28)

where the convention 0/0 = 1 is followed.'® Intitively, the
smaller n(o;) is, the more indistinguishable x; from s;, and

01y this delinition, we how much the change of only user ['s
personal signal allers the probability of any reported data output of user [
If we do not condition on the underlying state W, the fip of 5; changes
the posierior probabilities of other group signals since the personal signals
are cormelated through the underlying state W,

hence the less privacy leakage is. For any data reporting siralegy
oj, if users i and j are not friends, X; is conditionally independent
from S; given W and hence 5;j(07) = 0. Next, we focus on the
privacy leakage of group signals at the BNE strategy profile
a*. For case of exposition, we consider the case with equal
priors. If users i and j are friends, it follows that

ng(of’) = In
l[|. @)Pos (X = 1Cy = 1, W = 1) 'I-H'F,t{x' = 1Cy =0, W= 1)
T — )Py (Xi = 1|y = O, W = 1) +aPys (X; = 1/Cy = 1, W = 1)

For convenience, define F;_; = F; — Cj. In general,
PopXi = 1Cyj = 1, W= 1,D; =d) = Pop(X; = 1]
Cij = 0, W =1,D = dJmlmﬂ.,-Lé—rJor
F;.,-I_§+t] Only in these two cases, the group signal Cj;
can be considered as the “tlie-breaking vole™ and the allacker
can gain some information about user j's personal signal. It is
clear that the probability of this event decreases as the social
learning among the users strengthens, i.e., d; increases. The
following result determines nj(a)') as

nglo’) = in
E;[{I-u](kr{l-q-l-t-lﬂ Do )+0-2y(| 247 )i0.0))
AT (B —v. Bl +e; 0,00 )+ (L8401, 0:0.0) |
[l{l.r(rg}l -t]ﬂ ﬂﬁ)ﬂl-”r{ EI'LHi D.ﬂl))
+iI( 88—, B4 0,00 )+T(| 2t +¢ DD, 01) |

(29)

where I'(-) and y (), E;l -1 =E,[-|D > 0] and A are defined
in (22), (23), and (26), respectively.

Note that n;;(o;”) is a complicated function. In Section V-C3,
we shall use numerical examples to illustrate the dependency
of njj(e;') on the payment mechanism and the system model
parameters, which corroborate that the privacy leakage is
insignificant in most cases and it can get severe only if the fol-
lowing three conditions hold: 1) The noise level of the group
signals is very low, 2) the users have very few friends and
3) the payment is very low. It is clear from (29) that (o)
decreases when the noise level of the group signals increases.
It is natural for a user to share only a randomized version (with
moderale crossover probability @) of her signal to protect her
personal signals against privacy leakage. In the next section,
we discuss the performance of the MV based data reporting
strategies with a focus on the cases in which @ is moderate or
reasonably high.

V. THE IMPACT OF SOCIAL LEARNING
In this section, we analyze the impact of social leaming on
the trade-off between payment and accuracy and that between
payment and privacy cost. We also present examples, using
social leamning graph models based on synthetic data and/or
real-world data, o evaluaie the performance of our proposed
mechanisms.

A. Paymeni vs. Accuracy

The data collector aims o minimize the total payment while
achieving a given accuracy larget in estimating W. In partic-
ular, the accuracy is measured by the error rate of the MAP
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detector (8). Recall that the mechanism design problem for
the data collector is defined in (13) as

N

Jmin Emn.um. st B [P(W0%) £ W)] <7,
where R(o) denotes the set of non-negative payment mecha-
nisms in which ¢ is a BNE and the maximum allowable error
is represented by P,. Tt is known that in general it is difficult
to characlerize the error rate in closed-form al a given BNE
strategy profile . Therefore, we measure the accuracy based
on an information-theoretic metric which is closely associated
o the error rate of the MAP decision rule as follows [39]:

&, [P(W, %) £ W)| < e 5,
where B(o) denotes the Bhattacharyya distance [40]

Bia)=—In Z VP (X = x|]W = )P (X = x|W = 0).
AN

Thus, the mechanism design problem can be restated as
follows:

N
i E,[R:(X)], st Bio)>-InP. (30)
l:lg?n] § .

Define L(P,) as the minimum total payment while satis-
fying the error rale constraint P,. Appealing to Lemma 2
and 3, we can simplify the expression for B(o), for sym-
metric strategy profiles by approximating Py (X = x|W = w)
as a Gaussian distribution for large N. Thus, B(s) can be
calculated explicitly as follows [39]:

N (o) - uole))?
4 xylo) +wxolo)

B{ﬂ';’l =

B. Bounds on Payment

Our next resull shows that, if the required estimation accu-
racy, in terms of P, is loose, the total payment can be driven
to be arbitrarily small by using the following non-disclosive
strategy, denoted as o™

1 ir fi = 42,
PoulXi=18i=s5i, Fi=fil=1{0 iffi <df2,
0.5 else;
PualX;=0|85; =5, Fi=f)=1—P,m
x (X =0I5; =5, Fi=fi).
If there is a tie within her group the user tosses a fair

coin. Tt is clear that the above o™ is a specific form of MV-

based dala reporting strategies with ry = ro = 0 and E(fi)) = 0.
From (9), il dircctly follows that

w1(0™) = E [T (122 + 1), 0: D6 + 0.5y (22 D, 6],
uo(e™) = By[r(122+1),0:D,1 -6,
+ 0.5y (0/2; D, 1 — &)]. (31)

It is clear that uo(a™) = 1 — ui(e™) and ui(@™) > 1/2.
Thus, appealing to Proposition 2, we can find xy(a™) for
w € {0, 1} as follows:

e (07) = (o) - (o) + 32[0’]
+ a%(e[0’] - =)
where A™ and A™ are found as
A™ = (ﬁf(ﬂr")ﬂ — o) — (ﬂ") +ﬂ-ﬁ)mf (1— po)’,
= (&% - &)05-a)
x E3[y(10f2): D= 1.60) + y([B2—11: D = 1,6)].

After some algebra, we can find B(o™) from (31) and (32)
as follows:

(o) N (1HE[D]A + (E[D] ~ED)AS 1)~
(d ) 3 (2u1 (o) — 1)’ K

Based on the above, we have the next resull thal the data
collector can drive the total payment (o be arbitrarily small
for a given N, provided that P, > ¢~5™) The proof is
relegated to Appendix 1.

mm:!ﬂonj‘ For the case with equal priors, if P, =

), then we have that £(P,) = &N for any & > 0, indi-
caﬁnglhntﬂ:etoﬂlptymlmbedﬂmtobeuhiﬂ’uﬂy
small.

Remarks: Theorem 3 pinpoints to the positive impact of
social learning for all participants of the privacy-preserving
data collection game. For the data collector, it implies that he
can lower the payment significantly when there are sufficiently
many uscrs. From the perspective of the users, cach of them
incurs zero privacy cost.

If the error constraint is tighter, then the data collector can
employ the designed payment mechanism, R. Under the equal
priors assumption, we can find Bic*) from (24) and (25) as
follows:

Bo%) = N (1 EIDIA + (E[2) ~ED)A 1 -
7I=% 2ui(a*) — 1) 4)

Note that B(o*) > B(o™) and the data collector reduces the
error rate of the MAP detector W,+(X) by gathering infor-
mative reporied data from the users who play with the SR
strategies. Based on Theorem 3, our next result reveals that,
when P, < e B™) the expected payment of the payment
mhﬂmﬂmmnwperhmmdonﬂﬁ}

P. 4: For the case with equal priors, when P, <
e B@™) we have that

L(P,) sz( _p e })H.

(32)

26 -1
In the next section, we discuss the impact of social leaming
on the payment and accuracy with numerical examples.

C. Numerical Examples

In this section, we use examples (o examine the impact of
social learning on the trade-off between payment and accuracy
and that between payment and privacy cosl, using social learn-
ing graph models based on synthetic data and/or real-world
dala.
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synthetic social keaming graphs using the Endds-Renyl random graph model with N = 250, éy = 0.7, Pwi(0) =

learning:
Pw (1) = 0.5 and g({) = 2, {a-b) Average payment per puer v average degree. (c-d) Average payment Per NSEr VS aVerage privacy coSt Per user.

1) Synthetic Social Learning Graphs: To illustrate the
impact of different parameters of the social leaming graph
and the payment mechanism on the performance, we first
consider two synthetic models for the social learning graph. In
the simulations, we use the Erdts-Renyi and Walts&Strogatz
Model [41] random graph models. In the Erdds-Renyi model,
each social tie is considered to be present with indepen-
dent probability E[D]/(N — 1). For large N, the degree
distribution can be approximated by the Poisson distribution.
Watts&Strogatz model starts from a ring lattice with N users
and E[D] edges per user, and rewire each edge at random with
probability p. In the simulations, we set N = 250, fy = 0.7 and
Pw(0) = Pw(l) = 0.5 and consider the quadratic cost func-
tion, g(¢) = ¢*. For the Watts&Strogatz model, the rewiring
probability is set as p = 0.1.

For the Erdbs-Renyi model, Fig. 7a depicts the average pay-
ment each user receives in the payment mechanism R with
respect (o the stale estimation accuracy, Pgs (W (X) = W).
It corroborates that the data collector can gel an accurale esli-
mate of the underlying state, with a much smaller payment
compared to the case with no social leaming. When the social
leaming among users strenglhens (equivalently, the average
degree E[D] increases), the privacy cost decreases because
they receive informative social group signals C; more often
and hence they play the SR strategy less often. Fig. 7b demon-
strates the payment vs. accuracy trade-off when the group
signal noise level @ is very high (@ = 0.425). In this case,
o achieve a given accuracy level for the stale estimator, the
data collector needs to gather informative reported data from
the users who play the SR strategy. The higher the payment is,
the less noise the reporied data would have (albeit the higher
privacy cost), and hence the more accurate the state estima-
tor is. As illustrated in Fig. 7c and Fig. 7d when the degree
of a user increases, it is more likely for this user to play the
ND strategy and hence her privacy cost drops. Accordingly,
the total payment decreases. For the Watts&Strogatz model,
Fig. 8 also verifies that the total payment required to achieve a
given estimation accuracy decreases when the social leaming
among users strengthens.

2) Real World Social Learning Graphs: To evaluate the
impact of social leaming in practice, we also use two social
leaming graph models based on real-world data. Firstly,
we study Arxiv GR-QC (General Relativity and Quantum
Cosmology) collaboration network [42]. The graph contains
an edge between authors § and f if they co-authored at least one

o
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average degree. (b) Average payment per user vs. average privacy
T,
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paper. The graph has 5242 nodes and 14496 edges. Secondly,
we use the Gnutella peer-to-peer file sharing network from
August 2002 [42]. Nodes represent hosts in the file sharing
network and edges represent connections between the Gnutella
hosts. It has 6301 nodes and 20777 edges. Fig. 9 depicts the
state estimation accuracy with respect to the payment per user
under the proposed payment mechanism R. These simula-
tion studies also corroborale that the dala collector can oblain
an accurate estimate of W, with small amounts of payments
despite the fact that very high noise is injected into group
signals and private signals.

3) Privacy Leakage of Group Signals: Next, we use numer-
ical examples lo illustrate the dependency of (o) on the
payment mechanism and the system model parameters. Recall
that the peer-prediction-based payment mechanism R is deter-
mined in terms of ¢ > 0 in (18) and the payment is increasing
in €. Fig. 10a depicts the privacy leakage, given in (29),
with respect to @ for different € values, Tt reveals that as
a increases, n;(o) declines in general, with jumps which
occur when |r| changes. When |r ) increases, the user plays
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the SR strategy more oflen and hence the privacy leakage
of the group signals, n;, decreases. Further, Fig. 10b depicts
the privacy leakage with respect to the average degree of the
social graph. If the payment is near zero with € = 0.01, then
a} is effectively reduced to the simple majority rule in the

ply because the privacy leakage occurs only through the
sum signal, F;. By contrasi, il the paymenl is sufficiently

larger than O with ¢ > 0.4, the privacy leakage is always
minimal.

V1. ConcLusiOoN AND FUTURE WORK

In this article, we study a market model in which users
can learn noisy versions of their social friends’ data and make
strategic decisions to report privacy-preserved versions of their
personal data to a data collector. Thanks to the existence of
social leaming, the users have richer information about the
underlying state beyond their personal signals. We develop a
Bayesian game theoretic framework to study the impact of
social learning on users” data reporting strategies and devise
the payment mechanism for the data collector. Our findings
reveal that, in general, the desired data reporting strategy at
the Bayesian-Nash equilibria can be in the form of either
symmetric randomized response or informative non-disclosive
siralegy. In parlicular, when a user plays the non-disclosive
strategy, she reports her data completely based on her social
group signals, independent of her personal signal, which drives
her privacy cost 10 0. As a result, both the data collector and
the users benefit from social learning which lowers the pri-
vacy costs and helps to improve the state estimation at a given
payment budget.

More specifically, our findings reveal that the desired data
reporting stralegy at the BNE is in the form of either a non-
disclosive strategy or a symmetric randomized strategy. We
show that the desired data reporting stralegy is a majority voi-
ing-based data reporting rule which is applied by each user
to her group signals to determine which strategy to follow.
It is worth noting that the payment mechanism is designed
to achieve informative equilibria, because no user can gain
by playing uninformative when other users follow informative
data reporting stralegics. We caution that the social leaming
model does not imply any collusion among friends. We use
a Central Limit Theorem for dependence graphs to evaluate
the estimation error of the underlying state. The total expected
payment is characterized subject to a constraint on the esti-
mation error. Our analysis reveals both the data collector and
users benefit from social leamning: The data collector can get an
accurale estimate of the underlying state, with a much smaller
payment (compared to the case with no learning), thanks to
social learning.

We are currently gencralizing this study to account for the
social learning costs of the users for sending out the noisy
personal signals to their neighbors. To compensate this, the
users might offer rewards to their friends before oblaining their
noisy signals. In this setup, the Bayesian game becomes signif-
icantly more complicated where the users first employ “data
acquisition strategies™ and then dala reporting strategies. In
this study, we focus on the case where the data collector and
users interact only once. Designing mechanisms for iterated
games is also a very promising and important direction for
further work. We also work on the opinion formation dynam-
ics which is based on the fusion of private signals and group
signals across helerogeneous users, ¢.g., diffusion models with
influential and stubborn users. I is also of greal inlerest 1o
investigate the impact of “fake signals” (from fake news), and
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our cffort along this line is underway. In this markel model,
the utility of each user is designed to protect her own privacy
and the “social” privacy cost of group signals is not accounted
for yet. As claborated in Section TV-B, this model makes sense
when the noise level of the group signal is moderate or reason-
ably high (which is often the case in practical scenarios) or the
average degree in the social leaming graph is high and hence
the privacy leakage of their friends’ signals is insignificant.
Alternatively, it is of interest to investigate the market model in
which the users are “socially-aware™ and they provide privacy
guaranice (o her friends” signals; our work along this line is
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