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ABSTRACT
Routinely assessing the stability of molecular crystals with high accuracy remains an open challenge in the computational sciences. The
many-body expansion decomposes computation of the crystal lattice energy into an embarrassingly parallel collection of computations over
molecular dimers, trimers, and so forth, making quantum chemistry techniques tractable for many crystals of small organic molecules. By
examining the range-dependence of different types of energetic contributions to the crystal lattice energy, we can glean qualitative under-
standing of solid-state intermolecular interactions as well as practical, exploitable reductions in the number of computations required
for accurate energies. Here, we assess the range-dependent character of two-body interactions of 24 small organic molecular crystals
by using the physically interpretable components from symmetry-adapted perturbation theory (electrostatics, exchange-repulsion, induc-
tion/polarization, and London dispersion). We also examine correlations between the convergence rates of electrostatics and London
dispersion terms withmolecular dipole moments and polarizabilities, to provide guidance for estimating convergence rates in other molecular
crystals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103644

I. INTRODUCTION

The different possible three-dimensional arrangements of a
crystal lattice, known as polymorphs, can underlie vast changes in
physical properties.1–3 This is especially relevant in pharmaceuticals,
where different polymorphs of the same molecule can impact stabil-
ity in solvent, compressibility, and even pharmacological efficacy.4–6

Since the stability of polymorphs can vary by small amounts,
sometimes less than a kilojoule per mole, predictive rank-ordering
becomes an immense computational challenge.6 Therefore, consis-
tent evaluation of crystal lattice energies (CLEs) often requires the
most accurate available quantum mechanical methods. In practice,
one may opt to generate a bespoke ab initio force field, parameter-
ized to reproduce forces from quantum mechanics, to optimize the
crystal structure and obtain its energy, and even propagate dynam-
ics to estimate entropic contributions to polymorph stability.7,8

Dispersion-corrected plane-wave density functional theory (DFT)
may be used for energy estimates of a particular configuration, or

to estimate the entropic contribution with the harmonic approx-
imation, but this may still be unreliable.9,10 In particular, it has
been shown that dispersion-corrected plane wave DFT (PBE-D3)
was unable to conserve the geometry of a known polymorph of
ROY.11 There, the inclusion of Hartree Fock (HF) exchange allevi-
ated the problem in gas phase, but explicit HF exchange is usually
neglected in plane wave optimizations to reduce computational
expense. Similarly, higher accuracy wavefunction-based methods
are generally too costly to be used in this manner. Therefore,
accurate and tractable approximations of the CLE remain a lucra-
tive target for computational scientists. The many-body expansion
(MBE) represents one attempt to circumvent the computational
complexity of accurate CLE prediction.12–14 In the MBE, one may
decompose the energy of a cluster as a sum of contributions from
molecular monomers, dimers, trimers, tetramers, and so forth,

E =∑
I
ΔEI +∑

I<J
ΔE(2)IJ + ∑

I<J<K
ΔE(3)IJK + ⋅ ⋅ ⋅ , (1)
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where ΔE(N) denotes only the non-additive part of each N-mer
energy. In the case of the dimer, this can be written with the super-
molecular expression ΔE(2)IJ = EIJ − EI − EJ , and the trimer con-
tribution as ΔE(3)IJK = EIJK − EI − EJ − EK − ΔE(2)IJ − ΔE(2)IK − ΔE(2)JK .
Successive terms are constructed analogously. ΔEI is simply the
monomer energy difference from the gas and the cluster, a defor-
mation energy. Explicitly computing this series to include all terms
provides no computational benefit but is rigorously exact. The
key benefit provided by the MBE is the observation that, very
often, high-order contributions become very small after trimers or
tetramers.15

With some minor modifications, the MBE may also be applied
to computing a CLE. Since the CLE is defined as the energy of
assembling the perfect repeating crystal from an infinitely separated
non-interacting gas of monomers, CLEs may be computed on a
per-unit cell basis. When a unit cell only contains a single unique
monomer, a reference monomer I is chosen, and the expansion
thereafter refers to interactions with that monomer,

ECLE
I = ΔEI + 1

2∑J
ΔE(2)IJ +

1
3∑J<K

ΔE(3)IJK + ⋅ ⋅ ⋅ . (2)

To obtain a CLE on a per-molecule basis, we need to divide
the contribution of each N-mer by N, as in Eq. (2). The origin of
this prefactor is elaborated upon in Sec. S1 of the supplementary
material. This form is easily extended to unit cells with Z′ > 1. Due
to the regularity of crystal-packing, many N-mers are identical by
symmetry so their contributions can be computed once and mul-
tiplied by the number of replicas. It is notable that this approach
does not attempt to reduce the complexity of the underlying energy
approximation method, but rather partition the computation into
many smaller computations.

Unlike the supermolecular method used to compute two-body
interaction energies ΔE(2)IJ described above, symmetry adapted per-
turbation theory (SAPT) is a quantum mechanical method to
compute interaction energies directly.16,17 SAPT naturally yields
energies decomposed into physically interpretable components:
electrostatics, exchange-repulsion, induction/polarization, and Lon-
don dispersion. These components have been used to characterize
intermolecular interactions in protein-ligand systems, to enumer-
ate interactions between amino acid sidechains, and to parameterize
force fields and machine learning potentials, among many other
applications.18–24 While previous studies have used other energy
decomposition analyses to understand local interactions in the
crystalline environment,25–28 this work seeks to probe the range-
dependence of two-body interactions in the crystal and elucidate
practical advice on their treatment in estimations of CLEs of new
organic molecular crystals.

II. METHODS
In this study, we seek to draw generalizable conclusions on

small organic molecular crystals without formal charges. The well-
studied X23 dataset contains experimental structures for 23 com-
mon small molecules encoded as Crystallographic Information Files
(CIFs),29,30 which we additionally supplemented with one structure
for ice for this study. We believe this to be a representative set for
our purposes since it contains molecules of various crystallographic

space groups, size, and electronic structure. Figure 1 shows a repre-
sentation of the crystalline supercell in the many-body framework,
where the yellow molecule is used as the reference monomer from
which all dimers are formed. Color differences indicate ranges where
different interaction types may be dominant. Component domi-
nance is defined by the largest contribution to the CLE as a function
of distance from the reference monomer.

To deduce range-dependent two-body effects, one must gener-
ate all pairs of monomers in the larger crystal from the simple unit
cell provided by the CIF. We used the CrystaLattE program pre-
viously developed by this group to tessellate each asymmetric unit
according to its crystallographic space group, copy the unit cell by
translation, remove redundant particles, identify all monomers, and
generate a set of symmetry-unique dimers with their corresponding
replica factors.12

The Psi4 quantum chemistry program was used to compute
SAPT components of each dimer as well as the molecular dipoles
and polarizabilities.31 Specific computational details for the usage of
CrystaLattE and Psi4 can be found below. All structures and results
reside in the supplementary material.

A. CrystaLattE for dimer generation
As input, CrystaLattE requires a valid CIF for a molecular crys-

tal containing its crystallographic space group, (fractional or Carte-
sian) atomic coordinates, and unit cell side lengths and angles. The
user additionally must specify the desired cutoff distances, specifi-
cally the dimer cutoff for this study, which determines which dimers
to include in the MBE based on closest-contact proximity. We used
a large dimer cutoff of 60 Å to unambiguously determine converged
two-body CLEs for all crystals at our chosen level of theory. With
this information, CrystaLattE automatically determines a sufficiently
large supercell of molecules and generates the set of symmetry-
unique dimers within the supercell in the form of Psi4 input files
with the user’s choice of level of theory and basis set superposition
error correction. The input file includes the number of symmetry-
equivalent replicas of the dimer within the supercell for CLE com-
putation and the closest-contact distance between the monomers for

FIG. 1. A cross-section of the triazine crystal with the many-body reference
monomer in yellow. Approximate regimes of dominant exchange-repulsion,
electrostatic, and London dispersion energies are indicated by green, red, and
orange, respectively. In triazine crystal, dispersion is surprisingly prominent at
ranges beyond the convergence of electrostatics.
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simplified analysis. Replica identification becomes increasingly chal-
lenging as the number of monomers and the distances between them
increases. We use an approach for replica identification inspired
by techniques from chemical machine learning, as described in the
CrystaLattE paper,12 which we believe is an improvement over some
other possibilities. Nevertheless, empirically, we found that identify-
ing replicas of ammonia dimers at closest-contact distances greater
than 30 Å is especially difficult (the eigenvalues of the Coulomb
matrix become very similar between symmetry-equivalent and non-
symmetry-equivalent dimers at long range). Since even the longest-
range energetic contributions for ammonia converge well before this
point, we use a 30 Å cutoff for ammonia and 60 Å for the remaining
23 molecules.

B. Symmetry-adapted perturbation theory (SAPT)
For the analysis in this work, we used the lowest truncation

of SAPT, SAPT0, which employs zeroth-order intramonomer cor-
relation (i.e., none) and second-order intermonomer interaction,

based on a reference obtained by using Hartree–Fock for sepa-
rated monomers. Previous studies have shown that SAPT0 paired
with the augmented correlation-consistent polarized valence dou-
ble zeta (aug-cc-pVDZ)32 basis set achieves low errors relative to
reference coupled cluster computations, at least in part due to can-
celation between basis set incompleteness error and the lack of
more extensive treatment of electron correlation.33 We do expect
SAPT0 to yield reasonable component energies, which will enable
an interpretable range-dependent analysis of the two-body contribu-
tion to the CLE. We specifically examine the electrostatic, exchange,
induction, and dispersion energies from SAPT0. All computations
employ the density fitting approximation, and the self-consistent
field routine is tightly converged in energy to 10−10 Eh and density
to 10−10.

C. Monomer properties
We computed molecular dipoles and static polarizabilities for

use in predicting convergence behavior. For molecular dipoles, we
used the Hartree–Fock wavefunction in the same aug-cc-pVDZ

TABLE I. A summary of molecular and two-body crystalline characteristics of X23 and ice.

Cumulative two-body
energy (kJ mol−1)

Molecule Dimers Unique dimers Elst. Exch. Ind. Disp. Tot.

Trioxane 10 380 1 740 −39.2 53.9 −10.8 −65.2 −61.3
Ethyl carbamate 8 797 6 594 −72.1 73.3 −22.3 −65.0 −86.1
Oxalic acid α 13 326 4 167 −124.5 122.5 −38.3 −85.0 −125.3
Uracil 9 284 5 800 −120.2 108.7 −38.0 −99.8 −149.4
Pyrazine 10 280 2 070 −41.0 54.2 −9.6 −80.1 −76.5
Triazine 10 616 1 246 −36.8 38.8 −6.8 −65.3 −70.2
Oxalic acid β 13 302 4 987 −155.9 168.0 −67.3 −89.9 −144.9
Imidazole 12 001 7 495 −99.0 122.2 −44.3 −85.1 −106.2
Adamantane 5 714 756 −9.1 29.3 −2.1 −79.7 −61.5
Cyanamide 19 077 10 733 −72.9 66.0 −25.4 −51.5 −83.9
Pyrazole 11 923 8 940 −66.3 80.2 −19.4 −72.2 −77.7
Benzene 9 100 2 841 −30.6 59.0 −8.4 −90.9 −70.9
Naphthalene 6 668 2 504 −39.5 79.2 −10.8 −140.8 −111.9
Formamide 17 835 11 145 −81.4 68.4 −27.1 −44.5 −84.6
Ice 28 943 11 153 −69.3 69.2 −16.9 −18.3 −35.3
Ammoniaa 3 750 627 −39.9 39.0 −9.7 −24.0 −34.6
Carbon dioxide 21 528 1 775 −23.5 23.5 −3.5 −30.9 −34.5
Succinic acid 9 228 3 461 −156.2 182.1 −64.4 −111.4 −149.8
Hexamine 6 470 206 −48.2 66.5 −10.4 −101.6 −93.7
Cytosine 9 248 4 624 −160.5 150.8 −62.7 −118.9 −191.4
Urea 14 112 1 988 −126.7 111.7 −46.3 −65.9 −127.2
1,4-Cyclohexanedione 7 852 3 926 −72.9 85.9 −25.0 −102.2 −114.1
Acetic acid 13 190 6 595 −91.8 101.1 −39.8 −55.0 −85.4
Anthracene 5 272 1 973 −50.1 101.2 −14.3 −190.7 −153.9
Total 277 896 107 346

aUsing a reference convergence distance of 30 Å, not 60 Å.
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basis set to remain consistent with SAPT0 electrostatics. For our
analysis, we used only the magnitudes of these vectors as to iso-
late the monomeric property dependence from the relative dipole
orientations observed in the larger crystal. Polarizabilities were com-
puted with coupled cluster singles and doubles (CCSD) in the same
aug-cc-pVDZ basis.

We draw a simple connection between mean static polariz-
abilities and the convergence rate of London dispersion in these
crystal systems. An empirical dispersion estimate between all pairs
of molecules (or atoms) in a crystal may be given by

Edisp =∑
AB
∑
n=6,8
∑
T

CAB
n

(∣rAB + T∣)n , (3)

where AB denotes pairs of molecules (or atoms), CAB
n is the isotropic

dispersion coefficient of order n, T is the unit cell translation vec-
tors, and rAB are the intermolecular displacement vectors. There
have been several proposals for close range damping to eliminate the
non-physical divergence at rAB,T = [0, 0, 0],34–38 which we ignore
for simplicity of analysis and because our estimates are constructed
for distances where damping is negligible. This energy may instead
be approximated as an energy of the reference unit cell with an
external homogeneous continuum of mutually polarizable electron
density, with higher-order dispersion coefficients truncated,

Edisp ≈ ∫
∞

∣rA ∣>0

4π𝒞A
6

∣rA∣4 drA, (4)

where 𝒞A
6 represents the continuum analog of the isotropic disper-

sion coefficient, and the integral is convergent for ∣rA∣ > 0 but only
applicable at ranges where damping is negligible.

For homocrystals that are approximately packed with the same
efficiency, one would expect a linear relationship between the
monomeric mean static polarizability ᾱ and the continuum disper-
sion coefficient:𝒞A

6 ≈ mᾱA for a given molecule A. Therefore, fitting
the single parameter m for some molecular crystals should provide
accurate cutoff and energy information on others.39,40 The work-
ing equation to deduce cutoff distances for a given energy tolerance
Etol
disp is, thus, given by

rcutA ≈ (Etol
disp)

−1/3(4π
3
𝒞A

6 )
1/3

, (5)

a simple manipulation of Eq. (4) where rcutA represents r at which the
remaining (neglected) dispersion energy is equal to Etol

disp. We fit a
value form and demonstrate transferability acrossmolecular crystals
in the dataset.

III. RESULTS AND DISCUSSION
Total values of each SAPT component given in Table I illus-

trate the components most responsible for binding in each system.
Computed molecular dipoles and polarizabilities can be found in
the supplementary material. The number of unique dimers in the
60 Å cutoff sphere is typically a small fraction of the total number
of dimers in the sphere. Overall, over 60% of explicit SAPT com-
putations could be discarded in this study by identifying symmetry-
unique replicas. In total, this study of 24 molecular crystals entailed
107 346 SAPT computations on symmetry-unique dimers.

A. Component convergence
To illustrate the convergence of the SAPT0 interaction energy

components in the crystalline setting, we determine the distance at
which each component has converged to within 1 and 0.5 kJ mol−1

of the asymptotic total defined by the 60 Å dimer cutoff distance.
For example, Fig. 2 shows the cumulative SAPT0 component and
total energies of the cyanamide and oxalic acid α crystals as the
dimer cutoff increases. Different molecules can exhibit drastically
different convergence character, both in magnitude and the relative
contributions and rate of each component.

Applications may have variable error tolerance, so both 1.0 and
0.5 kJ mol−1 are shown as our recommendations differ depend-
ing on the value of this metric. The tighter convergence criterion

FIG. 2. The cumulative two-body SAPT0 crystal lattice energies of cyanamide
(top) oxalic acid α (bottom). Vertical dotted lines indicate convergence to the
60 Å reference CLE at a tolerance of 1.0 kJ mol−1.
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TABLE II. The distance to convergence of each SAPT component and the total two-body interaction energy for X23 and ice. Convergence is defined as within 1 kJ mol−1 of the
CLE at the 60 Å reference cutoff. Parenthetical values use a convergence criterion of 0.5 kJ mol−1. Bold typeface indicates the slowest-converging component for each system.

Distance to component convergence (Å)

Molecule Electrostatics Exchange Induction Dispersion Total

Trioxane 12.3 (23.0) 2.6 (2.6) 2.6 (2.6) 8.5 (11.1) 13.8 (23.1)
Ethyl carbamate 8.3 (11.4) 2.9 (2.9) 2.9 (3.5) 8.2 (10.8) 10.4 (15.9)
Oxalic acid α 5.8 (10.4) 3.0 (3.0) 3.0 (4.4) 8.7 (11.1) 11.1 (13.1)
Uracil 15.4 (27.6) 3.3 (3.5) 5.9 (7.4) 10.0 (13.0) 15.5 (28.9)
Pyrazine 3.5 (7.7) 3.5 (3.5) 3.5 (3.5) 9.7 (12.6) 10.8 (16.1)
Triazine 3.6 (6.4) 3.6 (3.6) 3.0 (3.6) 9.5 (12.2) 9.8 (13.6)
Oxalic acid β 8.8 (10.9) 3.4 (3.4) 3.4 (4.2) 8.7 (11.0) 10.9 (16.0)
Imidazole 12.3 (24.5) 3.4 (3.4) 4.9 (6.4) 9.3 (12.3) 13.9 (22.0)
Adamantane 2.7 (2.7) 2.7 (2.7) 2.5 (2.7) 10.1 (13.1) 12.6 (19.3)
Cyanamide 18.7 (33.1) 3.4 (3.4) 5.8 (7.7) 7.8 (9.9) 18.7 (33.1)
Pyrazole 5.0 (10.0) 3.0 (3.0) 3.0 (4.3) 9.1 (11.9) 11.2 (14.1)
Benzene 4.7 (10.0) 2.7 (2.7) 2.7 (2.7) 10.4 (13.7) 12.5 (20.8)
Naphthalene 2.9 (6.7) 2.9 (2.9) 2.9 (2.9) 12.0 (16.4) 12.3 (17.7)
Formamide 17.1 (29.5) 3.4 (3.4) 5.3 (6.7) 6.9 (9.1) 15.9 (29.5)
Ice 7.0 (13.2) 1.9 (1.9) 1.9 (3.8) 4.5 (5.7) 7.6 (13.2)
Ammoniaa 6.7 (16.8) 2.6 (2.6) 2.6 (2.6) 5.6 (7.1) 10.5 (17.4)
Carbon dioxide 4.7 (4.7) 3.1 (3.1) 3.1 (3.1) 6.4 (8.8) 6.2 (10.1)
Succinic acid 6.4 (10.0) 3.1 (3.1) 3.1 (3.1) 9.2 (12.1) 11.3 (14.9)
Hexamine 2.9 (8.7) 2.9 (2.9) 2.9 (2.9) 11.1 (13.6) 13.1 (22.3)
Cytosine 28.6 (48.0) 3.2 (3.2) 8.0 (10.3) 10.3 (13.6) 28.9 (48.0)
Urea 26.5 (45.2) 2.5 (4.0) 5.5 (7.9) 8.1 (9.9) 24.1 (45.2)
1,4-Cyclohexanedione 10.5 (14.7) 2.7 (2.7) 3.3 (4.0) 9.7 (12.8) 11.4 (16.9)
Acetic acid 10.4 (17.4) 3.2 (3.2) 3.2 (4.1) 7.3 (9.6) 11.1 (17.9)
Anthracene 6.2 (8.5) 2.7 (2.7) 2.7 (2.7) 14.1 (18.8) 14.0 (19.3)

aComputed with respect to a reference convergence distance of 30 Å, not 60 Å.

highlights large discrepancies between molecules—the electrostat-
ics of some molecules are well converged to under 0.5 kJ mol−1 by
3 Å (essentially the first layer of monomers), while others remain
unconverged at 40 Å. Following is a qualitative analysis of the
component convergence phenomena, which will be supported in
Sec. III B by some quantitative justification. Table II shows the
large variety in convergence distances and interaction types between
crystals.

Consistent with intuition, the electrostatic contribution of the
SAPT0 interaction energy often exhibits convergence distances far
greater than other interaction components. The range of electro-
static interactions is well-studied and understood but is especially
pertinent in the context of crystals where the interactions can
compound due to symmetry and the number of such interac-
tions grows as r3 in dimer cutoff radius. Importantly, none of
the crystals in X23 are cocrystals and, therefore, cannot support
total molecular charges; in fact, X23 additionally lacks zwitterions.
This observation indicates that dipolar and higher-order molec-
ular multipolar interactions, despite their more rapid decay with
distance, are solely responsible for the persistence of electrostatic
CLE fluctuations even at long range. Unlike other terms, electro-
statics can be attractive or repulsive, sometimes causing oscillations
at distances where the other terms smoothly and monotonically

approach an asymptotic result. We note that the many-body expan-
sion about the crystalline unit cell, as opposed to the molecule, is
well-understood and generally converges predictably. Because the
unit cell is neutral and the cell dipole is either zero (due to sym-
metry) or small (for which a surface dipole term exists),41 most
dipole–dipole terms are zero or small and higher-order multipoles
converge absolutely. Evidently, empirical estimates of electrostat-
ics (specifically Ewald sums to incorporate the asymptotic effect)
should be employed for slowly converging systems at long distances
as accurate quantum mechanical computations become intractable,
while simple models should become accurate at sufficiently long
range.

For all systems, exchange-repulsion is fully converged within
the first one or two shells of neighboring molecules, at worst requir-
ing a dimer cutoff of less than 5 Å. This too is consistent with
intuition, as the exponential decay of the exchange energy drastically
outscales the r3 growth in number of dimers.

Induction energies are predominantly quite local for these crys-
tals, with all crystals converging to within 1.0 kJ mol−1 of the
reference by 8 Å and just four systems requiring more than a
7 Å cutoff to achieve 0.5 kJ mol−1 convergence. This is, again, par-
tially a reflection of the lack of full formal charges on any of the
atoms in our dataset. Of the slowly converging systems, cytosine and
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uracil are among the largest and most polar in the dataset. How-
ever, smaller systems can also converge slowly: cyanamide and urea,
with just three and four heavy atoms, respectively, have among the
most gradual two-body induction convergence.We elaborate on this
disparity in Sec. III B.

Finally, London dispersion contributes heavily to the CLE at
surprising ranges: again, the competition between the decay of the
component (roughly r−6) and the r3 enumeration of dimers results
in important contributions to many crystals beyond 10 Å. Large
delocalized systems are the most challenging to converge, with
anthracene requiring a cutoff distance greater than 14 Å to reach
1.0 kJ mol−1 agreement. Unlike induction, however, convergence
distances are more uniformly distributed between 3 and 12 Å.

The total two-body CLE almost always converges at the same
rate as the most slowly converging SAPT component. Some vari-
ability arises due to favorable cancelation of components, yielding a
flat total energy profile, and some compound unfavorably, requiring
slightly longer cutoffs than the slowest component to converge the
CLE, often 1–2 Å longer, but occasionally more.

B. Monomer property correlations
In previous sections, we alluded to the understanding of com-

ponent CLE convergence rates based on intuitive chemical concepts

FIG. 3. The distance to convergence of SAPT0 electrostatics, induction, and
dispersion for each X23 crystal and ice. Dark points represent convergence to
1.0 kJ mol−1 for a given system and the corresponding light point represents
convergence to 0.5 kJ mol−1.

and computable quantities. The electrostatic energy decay rate, for
example, is closely related to the static charge distribution of a single
monomer in vacuum. By representing this charge distribution in a
multipole expansion, we can construct a compact (though approxi-
mate) description of the electrostatics while only considering a single
monomer. Although a unit cell cannot generally carry a net charge,
ionic cocrystals and zwitterions present strong charge localization
within the unit cell and represent an edge case to this principle,
which will be reserved for future study.

The first generally non-zero multipole moment in crystals is
then themolecular dipole, which we compute and relate to two-body
SAPT component convergence in the crystal. Indeed, the cutoff dis-
tance required to converge the electrostatic energy is correlated with
the magnitude of the molecular dipole, as shown in the first plot of
Fig. 3. Several factors make this correlation imperfect; as discussed,
the dipole is an inexact representation of the density, higher-order
multipole moments are ignored, and perhaps most importantly,
the relative orientation of multipoles within the crystal is unknown
a priori. For systems with no molecular dipole, the crystalline elec-
trostatic energies are well converged by 20 Å, comparable to the
second slowest-scaling component, dispersion. At larger dipoles,
however, proportionally longer contacts must be considered. Cyto-
sine has the largest dipole of any system considered by over
50% and is able to challenge the very generous 60 Å reference cutoff
used for this study. As electrostatics is an interaction between static
charge distributions, one would not anticipate a correlation between
convergence distances and polarizability, an intuition verified in the
second panel of Fig. 3.

Convergence of induction correlates effectively with themagni-
tude of molecular dipoles. Unlike electrostatics, however, molecules
without a dipole are well converged by the first shell of neighbors.
Cytosine requires a 10 Å shell, the largest of any in the set. Con-
vergence rates should also be related to molecular polarizabilities,

FIG. 4. The SAPT0-predicted continuum dispersion coefficients as a function of
static molecular polarizabilities from coupled-cluster singles and doubles calcula-
tions on monomers. Each line represents a different least-squares fit of the slope
using a random three-point fitting set.
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FIG. 5. Predicted SAPT0 dispersion convergence distances via an isotropic con-
tinuum dispersion model. 1.0 and 0.5 kJ mol−1 energy tolerances are shown for
each crystal in the dataset. Results are shown for each of an ensemble of 500
linear models fit to only three random training points.

but the size of the dipole shows a stronger correlation, as shown in
Fig. 3; even highly polarizable molecules exhibit only local induc-
tion effects if all interactingmolecules are without a dipole. Likewise,
molecules that are only modestly polarizable still do polarize in
the presence of a strong electric field like that induced by large
neighboring dipoles. The upper right regions of the polarizability-
induction and polarizability-electrostatics plots are notably sparse.
We note that one would not generally expect these to be sparse,
but rather it is likely an artifact of a small dataset in the high
polarizability region. Indeed, the two most polarizable molecules in
X23 are naphthalene and anthracene, which coincidentally have no
dipole.

London dispersion interactions can be expressed as inte-
grations over frequency of the products of imaginary-frequency-
dependent polarizabilities of eachmonomer, and so not surprisingly,
Fig. 3 shows a striking correlation with the convergence dis-
tance for dispersion with (static) molecular polarizability. Indeed,
the required distance cutoff scales approximately linearly with
molecular polarizability.

We fit a single scaling parameter m to relate the computed
static polarizability ᾱ to the continuum dispersion coefficient analog
𝒞A

6 in Eq. (4), which is evaluated by adding all SAPT0 contribu-
tions from 45 to 60 Å, at that point the underlying assumptions
of anisotropy, homogeneity, and continuity are likely appropriate.
Then, we used m directly for all molecules to predict the cutoff dis-
tance at which the neglected (remaining) dispersion energy is only
1.0 kJ mol−1 according to Eq. (5). This correspondence is shown
in Fig. 4, which illustrates the insensitivity of m to choice of fitting
set and the accuracy with which cutoff distances are predicted, with
access only to the static molecular polarizability of the molecule.
We note that the predicted cutoffs are almost always larger than
the actual required cutoffs, so the model tends to provide a safe
estimate.

Five hundred different models fit to random combinations of
three training points show that the learned coefficient is transferable,
at least among small neutral molecules. Propagating that error to
the prediction of cutoff distances produces the data in Fig. 5, which
illustrates that even the worst choice of training points produces
accurate predictions. Using more training points even allows rea-
sonable predictions of the remaining dispersion energy itself, with
quality growing with the cutoff distance.

The leading sources of error in this model are likely the pack-
ing efficiency and continuum assumptions, but the results indicate
these assumptions are appropriate for this dataset at the distances
required for 1.0 kJ mol−1 convergence. Convergence of dispersion
in crystals of small organic molecules lacking formal charges can
therefore be predicted a priori via static molecular polarizabilities
with near-Ångstrom fidelity. These results may not extend to dis-
persion energies for crystals containing formal charges or whose
packing efficiency may be significantly different from those in this
dataset.

IV. CONCLUSIONS
The delicate interplay of non-covalent forces between pairs

of molecules comprises most of the 0 K crystal lattice energy for
small molecular crystals. To understand how these forces vary by
molecule and range, we computed the SAPT interaction energies of
107 K dimers across 24 molecular crystals. We show the range-
dependent variation of electrostatics, exchange-repulsion, polariza-
tion, and London dispersion in the crystalline setting, with special
focus on the convergence rates of each effect. These results build
intuition about the nature of non-covalent interactions within crys-
tals and can inform future range-dependent hierarchical methods
for CLE prediction.

Although the decay rates of different intermolecular forces
between two molecules are generally understood, how they manifest
themselves in molecular crystals, and the interplay of these decay
rates with the concomitant increase in the number of dimers with
increasing distance r, has not been well explored. Electrostatic inter-
actions, which in the case of static dipole interaction decay as r−3,
can persist in magnitude at surprising ranges in crystals since the
number of such interactions grows as r3. Cytosine is one extreme
example, holding the largest molecular dipole in the X23 dataset
and requiring a nearly 30 Å interacting shell to converge to within
1 kJ mol−1 of reference energies computed using a 60 Å cutoff. This
emphasizes the need for simple empirical forms and infinite-range
corrections such as Ewald summation. By contrast, small molecules
without dipoles need not be treated for electrostatics beyond small
4–10 Å shells.

The rate of convergence of induction/polarization energy is also
highly dependent on the magnitude of the molecular dipole, though
requiring less dramatic distances even in the most extreme cases.
London dispersion, nominally decaying as r−6 per dimer, can, nev-
ertheless, require computing energies of dimers as far separated as
14 Å to reach convergence. By employing a continuum dispersion
model, it is possible to use molecular polarizabilities to accurately
estimate cutoff distances at which dispersion interactions become
negligible in small organic crystals lacking formal charges.

In future work, we will investigate convergence rates of two-
and three-body interactions at higher levels of theory. Additionally,
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we hope to further explore the usage of a range-dependent hierarchy
of methods in CLE prediction to reduce computational expense.

SUPPLEMENTARY MATERIAL

The supplementary material includes all of the requisite .cif
files, geometries of the generated supercells, all dimers, and the cor-
responding computed SAPT0 interaction energy components and
replica numbers. Figures for all X23 systems and ice correspond-
ing to Fig. 2, as well as an experiment on the impact of anisotropy
on the fit in Fig. 5, are contained in the supplementary material.
The CrystaLattE program used for N-mer generation is available at
https://github.com/carlosborca/CrystaLattE.
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