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ABSTRACT

We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory [SAPT(DFT)]
description of monomers. The implementation adopts a density-fitting treatment of hybrid exchange-correlation kernels to enable the
description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111
(2005)]. We have improved the algorithm by increasing numerical stability with QR factorization and optimized the computation of the
exchange—correlation kernel with its 2-index density-fitted representation. The algorithm scales as O(N”) formally and is usable for systems
with up to ~3000 basis functions, as demonstrated for the Cso—buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-
based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials
obtained from the local Hartree-Fock (LHF) method while avoiding the lower-scaling [O(N*)] but iterative and sometimes hard-to-converge
LHF process. The hybrid-kernel algorithm outperforms Hartree-Fock-based SAPT (SAPTO) for the S66 test set, and its accuracy is compa-
rable to the many-body perturbation theory based SAPT2+ approach, which scales as O(N”), although SAPT2+ exhibits a more narrow
distribution of errors.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION mechanical models, SAPTO completely neglects the electron corre-

lation within each monomer, which could lead to inaccurate com-

Symmetry Adapted Perturbation Theory (SAPT) ~ is known
as one of the most powerful methods for studying intermolecular
interactions. A key advantage of SAPT is its clear physical interpre-
tation; each term in SAPT can be attributed to a certain type of inter-
molecular force. This provides additional physical insight, especially
when investigating systems with more complex interactions, such
as m-m interactions, which feature important contributions from
both electrostatics and London dispersion interactions.” Perhaps the
most commonly used variant of SAPT, SAPTO, uses a Hartree-Fock
description of monomers, and the interaction between monomers
is modeled as a perturbation to the non-interacting system. While
being computationally inexpensive compared to many quantum

ponent energies and total interaction energies. The conventional
many-body SAPT methods address this shortcoming by employing
a triple-perturbation theory with the intermolecular interaction
and intramolecular fluctuation potentials as different perturbations.
Unfortunately, this approach is computationally costly, with the
formal scaling of O(N®) and higher, and would not be afford-
able for larger systems, particularly many systems of biological
interest.

Alternatively, a mixture of density functional theory (DFT) and
SAPT has been developed, known as SAPT(DFT) or DFT-SAPT
by different groups of developers. The original idea of SAPT(DFT)
was proposed in 2001 by Williams and Chabalowski’ by replacing
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the Hartree-Fock description of monomers with Kohn-Sham DFT,
expecting that the effect of the exchange-correlation (xc) potential in
DFT would go into the Kohn-Sham orbitals and that these modified
orbitals would allow some approximate accounting of intramolecu-
lar correlation effects in the SAPT terms. This scheme was extremely
appealing in that the intramolecular correlation could be included
in SAPT with a drastic reduction in computational time, compared
to the conventional many-body SAPT method. However, while
this approach correctly predicted binding for many typical dimer
systems (as opposed to supermolecular HF and DFT), it failed to
outperform SAPTO quantitatively, especially in second-order terms.
Williams and Chabalowski attributed the failure for second-order
terms to the underestimation of the occupied-virtual orbital energy
gap in most contemporary DFT functionals.” They also noticed the
trend that the first-order energies were more likely to fail for large
intermolecular distances and nonpolar systems, but the main cause
of this problem was not immediately apparent.

Based on these drawbacks of the original SAPT(DFT) scheme,
later referred to as SAPT(KS) after SAPT(DFT) was further devel-
oped into a more sophisticated theory, Jansen and Hesselmann
published an insightful comment’ pointing out two crucial facts.
First, the SAPT(KS) method is not potentially exact, i.e., it would
not be exact even if the exact exchange-correlation potential was

available for all terms except for Esllsz This is because the zeroth-
order wavefunction in SAPT(KS) is the so-called Kohn-Sham
wavefunction under the Kohn-Sham DFT framework. The
Kohn-Sham system would generate the same density as the
electronic system and thus the correct electrostatic energy, which
solely depends on the electronic density. However, Egc)h depends
on density matrices, and the Kohn-Sham wavefunction is not

guaranteed to describe the density matrices of the system correctly,

and therefore, Egc)h is not potentially exact. Likewise, this also
applies to other higher order terms that have dependencies on
density matrices. Furthermore, the second-order energies in
SAPT(KS) were calculated using sum-over-state formulas, which
corresponds to using what is referred to in SAPT as an “uncoupled”
approximation that neglects orbital relaxation effects, i.e., the
changes in Coulomb and exchange-correlation potentials in
response to the perturbation-induced change in the electron
density. In SAPTO and other higher-order HF-based SAPT theories,
“coupled” induction terms have generally been used,”’ and
Patkowski et al. justified this by writing induction energy as the
minimum of a functional of the orbitals.”

It is worth pointing out that although Esllsz is potentially exact,
the quantitative accuracy of it was not satisfactory in the original
work of Williams and Chabalowski,” and they conjectured that the
poor accuracy could be due to the poor description of electronic
density of DFT in the asymptotic area. This conjecture was
confirmed by Hesselmann and Jansen (HJ),'’ and they applied an
asymptotic correction to the PBEO functional of Perdew et al.'""’
by splicing it with the asymptotically correct LB94 functional
of van Leeuwen and Baerends'’ through the gradient-regulation
asymptotic correction (GRAC) scheme.'’ The use of PBEO together
with LB94 and the GRAC scheme is referred to as PBEOAC by
HJ. Misquitta and Szalewicz (MS) independently confirmed the
above conjecture,'” and they proposed to use the Fermi-Amaldi'®
function in the asymptotic range, together with the splicing scheme
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of Tozer and Handy."” Both asymptotic correction schemes cor-
rect the wrong asymptotic behavior of the GGA functionals, which
decay exponentially, while the exact xc-potential should decay as
1/r. This allowed the accurate reproduction of electron density in
a long range'® and thus produced more accurate first-order and
induction energies.‘\“ 1015 To include the orbital relaxation effects, HJ
and MS independently reformulated the equations for induction™"’
and dispersion”””' energies in terms of frequency-dependent
density-density response functions or frequency-dependent density
susceptibilities (FDDS). MS and co-workers also pointed out that
the “uncoupled” sum-over-state formulas for induction and disper-
sion energies are equivalent to using the Kohn-Sham wavefunction
as an approximation to the exact electronic wavefunction,”' i.e., the
uncoupled FDDS is equivalent to that of the Kohn-Sham system,
and the coupled FDDS is equivalent to that of the true electronic
system. With the coupled FDDS that is available from coupled-
perturbed time-dependent density functional theory (TDDFT), the
induction and dispersion energies could be potentially exact. On
the other hand, HJ have shown that for SAPT(DFT), the cor-
rect long-range behavior (and thus physically correct virtual orbital
eigenvalues from an asymptotically corrected xc-potential) is not
sufficient for computing the dispersion energy accurately without
using the coupled FDDS, i.e., the virtual orbital eigenvalue issue is
not the only reason for the failure of SAPT(KS) in second-order
terms.

In the above SAPT(DFT) scheme, the most expensive part
would be solving for the coupled FDDS from the TDDFT equa-
tions and computing the dispersion energy from the coupled FDDS,
both of which scale as O(N2.N>;), where No. and N repre-
sent the number of occupied and virtual orbitals, respectively. The
density-fitting technique””*’ has been used by both groups devel-
oping SAPT(DFT). In both approaches, the adiabatic local-density
approximation (ALDA) of the xc kernel has been employed, and it
has been shown that such an approximation is satisfactory for com-
puting response properties and dispersion energies,”"** but a hybrid
ALDA kernel (i.e., linear combination of HF and ALDA kernels)
would be required for hybrid xc-potentials in order to reproduce
accurate dispersion energies.z“‘lg

With the density-fitting technique, the scaling of solving
the TDDFT equation with the pure ALDA kernel for FDDS is
O(Ngchvi,N,fux),35 and computing the dispersion energy from the
FDDS scales as O(N;,,),”® where Nuux is the number of density-
fitting auxiliary functions. Bukowski et al. developed an approach
to compute the coupled FDDS with the hybrid ALDA kernel using
the density-fitting approximation.”” This algorithm has to handle
the Hartree-Fock-like exchange terms in the hybrid ALDA kernel
and thus scales as O(N2..N2;Nayx ). On the other hand, Hesselmann
and Jansen developed a scheme” replacing the Hartree-Fock-like
exchange part in the xc-potential by a local effective exact exchange
potential, which is obtained using the local Hartree-Fock (LHF)
method by Della Sala and Gorling.”® They have also shown in
the same work that combining this localized xc-potential, named
LPBEOAC, and the pure ALDA kernel generates nearly identical
dispersion energies as the non-localized PBEOAC potential com-
bined with a hybrid ALDA kernel. Both approaches have enabled
the use of a hybrid functional in SAPT(DFT), with one nomi-
nally scaling as O(N’) and another as O(N*), but the latter has a
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larger prefactor due to the self-consistent LHF calculation. It is also
worth pointing out that even if the LHF approach has an O(N*)
scaling for the coupled dispersion term with density-fitting, the
exchange-dispersion term, whether uncoupled or coupled, would
not benefit significantly from density-fitting and still scales as O(N”)
nominally.

One main restriction in applying SAPT(DFT) to larger
systems is the need to generate intermediate tensors that are too
large to store in main memory, so they must be stored on disk. In the
SAPT2020 code developed by Szalewicz and co-workers,”’ the disk
space requirement is O(N*) for hybrid functionals, which should
limit the size of the system to roughly 1000 basis functions, although
the user has the choice to use non-hybrid functionals to avoid this
limitation. Another major improvement on the SAPT(DFT) disper-
sion algorithm was the use of a 2-index representation (P|fx|Q)
for the xc kernel by Pitondk and Hesselmann,” instead of the
3-index representation (ialfy|P) used in earlier work.”"”" In addi-
tion to the 2-index representation, Pitondk and Hesselmann also
introduced a grid-free algorithm™ identical to grid-free DFT meth-
ods of Almlof and co-workers,”’ * reducing the cost computing
(P|fx|Q) significantly by avoiding computations on a grid, which
typically has a size of 10°~10° for larger systems.

In this work, we introduce and implement an algorithm for
SAPT(DFT) based on the algorithms by Jansen and Szalewicz, with
substantial improvements for the dispersion terms. Our algorithm
is capable of computations with hybrid functionals without the use
of LHF approximations while reducing the disk requirement to
O(N?) by careful handling of 4-index integrals and 4-index ten-
sors, allowing the code to work for larger systems with up to 3000
basis functions. We have also integrated Pitonak and Hesselmann’s
2-index xc kernel representation®” into our code with support for
hybrid ALDA kernels. In addition, while Ref. 34 suggested an effec-
tive method for estimating coupled exchange-dispersion energies
by scaling the uncoupled energies by a fixed factor, we noticed
that the factor would be accurate only for uncoupled exchange-
dispersion energies computed from Kohn-Sham orbitals with the
LHF approximation; therefore, we have also estimated and tested
a new scaling factor for non-LHF orbitals using the S22 x 5 and
S66 x 8 datasets.””

In this work, we report details of our implementation and the
aforementioned new scaling factor to estimate coupled exchange-
dispersion energies from uncoupled ones, test the accuracy of
the interaction energies and their components, and examine the
computational efficiency of the code. Our SAPT(DFT) code is
publicly available as part of the open-source PS4 quantum chem-
istry program package.””’

Il. THEORY
A. JK-based terms

In our SAPT(DFT) code, the first-order (electrostatics and
exchange) and induction terms can be computed from the molecu-
lar orbital (MO) coefficients and generalized coulomb and exchange
(J and K) matrices, in addition to the coupled-perturbed
Kohn-Sham (CPKS) amplitudes for coupled induction energies.
As opposed to the usual JK matrices that are functionals of the
density matrix, generalized JK matrices are the functions of arbitrary
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matrices D of size Nao X Nao, where Nao is the number of atomic
orbitals,

), = ;Dm(wllo), (1)
(K[D]),,, = AZDAU(MIVU)- )

Details are given in Refs. 1 and 40. Here, we follow the equa-
tions of Ref. 25 for electrostatics, exchange, and induction terms.
We do not repeat the derivation of these equations here, but we
refer the reader to Refs. 1, 25, and 40 for more details on the origins
of the working equations for these JK-based terms. We will be using
the element-wise dot products in the following equations. The dot
product between square matrices A and B is defined as

A-B= ZA,,-B,-,- = Tr(AB). (3)
Ly

The electrostatic energy is given by

ED —2p . vE £ 2PP VA 4 4PP A 4 Vi, 4)

elst

where P*(X = monomers A and B) is the one-particle density
matrix, constructed from the occupied-orbital columns of each
isolated-monomer SCF coefficient matrix,

PX _ CX,OCC(CX,OCC)T’ (5)

where VX is the nuclear potential, ]X is the Coulomb matrix, and
Vuue is the (intermolecular) nuclear repulsion energy. The first two
terms of Eq. (4) provide electron-nuclear attraction, and the third
term provides electron—electron repulsion (P* - J¥ = P® . J*, so we
have combined these terms).

The exchange energy in the $* approximation (i.e., linear
approximation in terms of permutation operator in the antisym-
metrizer) is given by

Egzh(sz) = _Z(PASAOPBSAOPA,vir) of
-2 (PBSAOPASAOPB,Uir ) . (UA
_ 2(pA,mrsAopB) .K[PASAOPB;uir]) ©)
where PX?T isa density-like matrix but constructed from the virtual-

orbital columns of the SCF coefficient matrices,
PX,vir _ CX,vir(CX,vir)T (7)

w” represents the electrostatic potential generated by the electrons
and nuclei of monomer X,

o™ = 2% + V5, (8)

and $*° is the overlap matrix under the atomic orbital basis.

J. Chem. Phys. 157, 024801 (2022); doi: 10.1063/5.0090688
Published under an exclusive license by AIP Publishing

157, 024801-3


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

The full S exchange energy (without the S* approximation) is
given by

EQ) = 2P KP4 21 (" +1%) + 21 B 1 21 0
+2r? . WA Lot WAB Lo WA oA WA

)
where
= v 4 of - K, (10)
TXY _ CX,accTﬁ%(CY,OCC)T’ (11)
w =[] - K[T], (12)
-1

oo 1 §Mo 1 0 13

(s"HT 1 0 1|

where T, is the block of T corresponding to molecular orbitals of
X in rows and Y in columns and $M° is the overlap matrix under the
molecular orbital basis.

The induction energy, which consists of the interaction aris-
ing from the perturbation of monomer A by the (unperturbed)
static electric field of monomer B (El(nzg (A < B)), and vice versa

(El(jd) (A - B)), is given by

EQ (A< B)=2"-0" (14)
E? (A~ B)=2"-a%, (15)

where x* represents the response of monomer X to the electric
potential of the other monomer, solved for using coupled-perturbed
Kohn-Sham as described below, and expressed in the basis of occu-
pied and virtual molecular orbitals of monomer X. @ is the electric
potential of monomer X [Eq. (8), originally expressed in the atomic
orbital basis] transformed into the occupied-virtual MO product
space of monomer Y so that it can be dotted against x” in the above
expressions for the induction energy,

d)X _ (CY,OCC)TwXCY,vir. (16)
The exchange-induction term under the S* approximation is

@

exch—ind

(8)(a < B) = 2x* - ((€**)'(-K" - 2J[0]
+K[0] +2J[P’s*°0] + §*°P°
x (-h* + 8P " + 0" PP$"°
- K[0]") + (-h” + &"P*s™

_ K[O])PBSAO)CA,UH)’ (17)
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E®

exch—ind

(8)(A - B) = 2x" - (") T(-K" - 25[0]

+K[0] +2J[P*s"°0] + s"P*

x (-h” + §*°PP0” + 0"P$*

- K[0]") + (-h" + &"P"s"°

- K[0])P*s"°)cP), (18)
where
0 = P*s*9p8. (19)

For uncoupled induction and exchange-induction energies, the
amplitudes are
. Y\a
@
() - 20

r €r — €q

where a and r run over all occupied and virtual molecular orbitals,
respectively, of monomer X.

For coupled induction, the amplitudes are solved from the
CPKS equations, where x and w are treated as (NocNuyir)-
dimensional vectors. The CPKS equations can be expressed as the
following linear system of equations:

HOVx = o, 21)

HOx® - w?, (22)

and the CPKS Hessian H" can be constructed from

HY =d+4H" +HY, (23)
(d)ar,a’r’ = (er - ea)(sau’é\rr’x (24)
6 Xxc
(B) = (arlas) + [ 6untuge 5 @9
(Hfl)) o= ~&[(ad'|rr") + (arla’r)]. (26)

The CPKS equations can be solved using the conjugate gradi-
ent solver in PS14 designed for CPHF, with a slight modification by
adding a vy matrix to the ] matrix and scaling K by &, where vy, is the
exchange-correlation potential and £ is the fraction of Hartree-Fock
exchange in the DFT xc potential.

B. Asymptotic correction

As introduced before, H] performed asymptotic correc-
tion on PBEO by splicing it with LB94 using the gradient-
regulated asymptotic correction (GRAC) scheme reported by
Griining et al'® Another common correction scheme, the
Fermi-Amaldi-Tozer-Handy correction, mainly adopted by MS
and co-workers is not yet implemented in Ps14.
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In the framework of GRAC, the general form of the asymptoti-
cally corrected xc potential can be written as a linear combination of

the bulk region potential v%. and the asymptotic correction potential

a
UXC >

v M) = [1- F(0)]oke(x) + f(x)vic(x). (27)

In the instance of PBEOAC, vﬁc is PBEO, which is the base func-
tional, and v§. is LB94, a functional that is asymptotically correct
but behaves poorly in the bulk region. In the GRAC scheme, the
switching function f(r) takes the following form:

1

flx(r)] = 15 o a1 (28)
L Ivp()
x(r) = pi3(r) (29)

With the form given, the switching function f(r) approaches
to unity in the asymptotic region and vanishes in the bulk region.
As a result, the combined functional behaves similarly to PBEO at
short intermolecular distances r and to LB94 at large r, thus being
able to combine the advantages of both functionals and reproduce
accurate electron densities over all distances. One example can be
found in Fig. 2 of Ref. 18, where the radial density of the neon atom
is computed with HF, PBEO, LB94, and PBEOAC and compared with
coupled-cluster single, double, and perturbative triple [CCSD(T)]*
densities as a benchmark.'*"*

As a consequence of the discontinuity of the exact xc potential
as the number of electrons increases,"’ the exact potential should not
vanish asymptotically but converge to, according to the generalized
Koopmans’ theorem,'

vxco(00) = enomo.e + Io» (30)

where enomo,s is the highest occupied Kohn-Sham orbital eigen-
value and I, is the ionization potential for removing the highest
occupied electron of spin o. Therefore, the value vxce(o0), also
known as the asymptotic shift, becomes an essential parameter for
the GRAC scheme to determine the proper asymptotic behavior of
the corrected potential. In practice, eromo,s is easily obtained from
a conventional KS-DFT calculation (without the asymptotic shift),
and the ionization potential is obtained either experimentally or
computationally by explicitly computing the energy of the ionized
state (e.g., M™ cation for a neutral molecule M).

C. Dispersion terms

In the traditional SAPT theory, the second-order dispersion
term is written in a sum-over-state form, as introduced before,

£ __ysolarlbs)

31
disp €ar + ebs G

abrs

As mentioned before, the sum-over-state expression of the
dispersion term corresponds to the uncoupled approximation of
the dispersion energy of the system. With the Casimir-Polder
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identity, the dispersion term can be rewritten in terms of the
uncoupled FDDS"**” as follows:
1

EQ® - _1 dwfdrAdrAdrBdrB _
ra — x| 1} —rp|

disp 2T

x Xé(rA,rA|iw)X0 (rs, rpliw), (32)

Xo(l', r'|iw) 42 2

ar ar

T S AMe(0ei(F) (). (33)

In Eq. (33), the FDDS is represented in the position space, and
this gives it a clear physical interpretation: the linear response of den-
sity at the coordinate r’ with respect to a perturbation of density at
the coordinate r at the frequency iw in the frequency domain. As
mentioned above, the uncoupled FDDS yxq (r, r'\w) describes the lin-
ear response property of the Kohn-Sham wavefunction, and Eq. (32)
would also give the dispersion energy of the Kohn-Sham system.”’
The results in Ref. 20 show that such an approximation would result
in an overestimation of dispersion energies by more than 30% on
average. To compute the coupled dispersion energy, one would need
to solve for the coupled FDDS from the TDDFT equation. In the
response function formalism, the equation is written as

X(r,r'|w) :Xo(r,r'|w) + f dwdridroyo (1, 11|w)
1
x [r— +fxc(rl,rz,w)]x(rz,r'\w). (34)
12

With the density fitting technique, the FDDS can be expressed
in the auxiliary basis set representation with matrix elements
(P|x|Q). For non-hybrid xc potential and kernel, the solution of the
coupled FDDS with the matrix representation is

X=Xo + %S W(S—xo8™ W) "y, (35)
where § is the Coulomb metric in the auxiliary basis set

1
Spq = (P —
T2

Q), (36)

and the operator W denotes the interelectronic interactions, includ-
ing Coulomb, exchange, and correlation effects,

Wi = Hi‘Q) + (PLfulQ). (37)

The xc kernel can be computed with a grid-free DFT algo-
rithm proposed by Almlof and co-workers,”’*” where the xc kernel
functional is imposed on the electron density operator (P|p|Q)
diagonalized in the DF auxiliary basis representation.

The dispersion energy may be computed by integrating over the
FDDS,

B = [ TdesTs T, (38)

For a hybrid xc kernel, we have derived a set of equations based
on the algorithm by Bukowski and co-workers in 2005.”” Without
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the density fitting approximation, the FDDS [expressed in the orbital
representation C,, . (iw)] can be solved from the following matrix
equation from coupled Kohn-Sham theory:

(H(Z)H(l) + wZI>C(iw) = —4HY, (39)

where I denotes the unit matrix of dimension NocNuir, HY is

defined by Eq. (23), and H® is written as follows:

H® =a+HY, (40)

(HSZ))m,wr’ = —f[(au'|rr') - (ur'\a'r)], (41)

and d is given in Eq. (24).

In the work of Bukowski et al.,”” they proposed an algorithm
to solve the above equation utilizing the density fitting technique.
The algorithm lowers the O(N®) scaling of the non-DF version to
O(N?), but it has several downsides: first, their algorithm is iterative,
and we later discovered that this would not be necessary. Second,
the xc kernel is represented as a 3-index tensor in this algorithm,
and the evaluation of the kernel is also not as cheap as the grid-
free DFT algorithm mentioned above. After utilizing the grid-free
DFT algorithm and the 2-index DF auxiliary basis representation of
the xc kernel and FDDS, along with the proper arrangement of the
procedures of storing 3-index intermediates on the disk, we rewrite
the results of Bukowski et al. into the following form, which is a
modification of Eq. (35):

X=X+ (xS W+K®R)'S)[S - (x;8'W +K(R")'S)] s
(42)

All quantities here are expressed in the density fitting auxil-
iary basis and have dimension Ngux X Naux. The matrix K includes
the effect of Hartree-Fock type exchange integrals in the TDDFT
Hessian,

K = —¢[K; (Ad) + Ky (Ad)] + EKa (1), (43)

which K can be further divided into K; contributed by Hi, K,
contributed by H, and Ky, contributed by their product,

[(Ki(Ad)]po = 37 (Plar)dardar[(ad'|rr") + (ar'la’r)](a'r'|QIQ),

ar,a’r’

(44)

[Ka(Ad)Jpo = 3 (Plar)Aardar[(ad|rt") = (ar'|a’r)](a'r|QIQ),

ar,a’r’

(45)

KaWlro= Y (Plar)Aarl(aa”[rr") - (ar”]a"r)]

ar,a’r’,a"r"”

% [(u'a"|r'r”) _ (a'r"|a"r')](u'r'|Q|Q), (46)

and y, is the uncoupled FDDS “corrected” by removing the portion
of ALDA exchange that is replaced by Hartree-Fock type exchange,
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Xo = Xo - EK5 (1), (47)

[(Kx(M)ro = Y (Plar)dar[(ad|rt") = (ar'la’r)](a'r|Q),  (48)

ar,a'r’
dar = € — €4, (49)

4
Aar = ——5——, 50
N (50)

where the 3-index tensor (ar|Q|Q) and matrix R come from a QR
factorization of the tensor (ar|Q) (as an NoceNyir X Nayy matrix). QR
factorization decomposes any matrix into a product of an orthog-
onal matrix Q and an upper triangular matrix R. We needed the
QR factorization here because the above equations originally include
the pseudoinverse of (ar|Q), which has a relatively large condition
number, and QR factorization of such a matrix helps avoid further
condition problems when trying to invert it. In the above formu-
las, what actually appears is the pseudo-inverse of the transposed
3-index tensor (Qar),

(Qlar) = (QR)" =R’ Q’, (51)

[(Qar)]" = Q®R") ™. (52)

For hybrid functionals (£ #0), the most expensive part of
the algorithm is computing the matrices with Hartree-Fock type
exchange, i.e., K1, K, K5, K1, with a scaling of O(Ngchfj,»,Naux). For
non-hybrid functionals, all these matrices vanish, and the scaling
of the algorithm reduces to O(NoeeNyirNZy ). While Egs. (44)—(46)
seem to be very complicated, the above scaling can be achieved by
storing the following intermediate 3-index tensors on the disk:

(arY|Q) = [(a'rlar) - (ad|r")])(a'r|Q), (53)

(ar1Qx|Q) = [(a'rlar") + (ad'|rr")](a'r'|QIQ), (54)

(ar|Qy|Q) = [(a'rlar") ~ (ad'|rr")](a''|QIQ) (55)

and the K matrices can be obtained from these intermediates,

[Ki(Ad)]pq = —f;(PIaf)lardar(arleIQ), (56)
[Kz(Ad)]pq = —f;(Plar)lmdm(arlelQ% (57)
(Ko ()]pq = fzg(P\Ylar)lar(arlelQ), (58)

[Ka(V)]pq = —f;(Plaf)lar(ale\Q) (59)
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D. Exchange-dispersion scaling

The computation of exchange-dispersion energy has been a
challenge in SAPT(DFT). The uncoupled approximation has been
unsatisfactory, and although Garcia et al."® resolved the problem of
the requirement of the storage of 4-index TDDFT amplitudes on
the disk when computing the coupled exchange-dispersion energy
explicitly,” the coupled exchange-dispersion energy with hybrid
kernel might be considerably more computationally demanding
than the pure ALDA kernel case implemented by Garcia et al
Nevertheless, the solution provided by Garcia et al. is valuable, and
we should pursue the implementation of the coupled exchange-
dispersion term with hybrid kernel in the future. One way to avoid
the explicit computation of coupled exchange-dispersion energy,
proposed by Bukowski et al.,”” is to estimate its value by scaling its
uncoupled counterpart,

@ @ Eaiy

=(2 _ 2 isp, r

Eexch—disp,r ~ Fexch—disp,u E(Z) (60)
disp,u

This scaling scheme is straightforward but was shown by
Hesselmann and Korona™ to strongly underestimate the coupled
exchange-dispersion energies for larger values according to results
on the S22 x 5 test set.”” In the same paper, they proposed to scale the
uncoupled exchange-dispersion energy by a fixed factor from linear
fitting instead,

(2)

exch—disp, r

e o)

=@ EQ) g o (@ = 0.686361).

(61)
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From the results on S22 x 5, the fixed factor scheme was
shown extremely successful for estimating the coupled exchange-
dispersion energies, with a mean absolute error of merely 0.03 kcal
mol ™" as opposed to 0.19 kcal mol™" for the conventional scaling
scheme. However, these results are based on the local Hartree-Fock
approximation for DFT calculations as proposed in Ref. 25. As
we will demonstrate later, the uncoupled dispersion and exchange-
dispersion energies would be heavily affected by the occupied-
virtual orbital energy gap that appears in the denominator of the
uncoupled dispersion amplitudes and differs between LHF and
non-LHF algorithms significantly. Fortunately, the linear correla-
tion between exact coupled exchange-dispersion energies and the
non-LHF uncoupled values is still satisfactory, and thus, we are able
to obtain a new scaling factor from linear fitting.

lll. RESULTS
A. Exchange-dispersion scaling

As mentioned above, it is computationally costly to evaluate
coupled exchange-dispersion energies with hybrid kernels, and so,
we wish to estimate these terms by scaling the uncoupled exchange-
dispersion energies. However, we cannot use existing scaling factors
from the literature using LHF approaches because the difference in
the occupied-virtual orbital energy gap between LHF and non-LHF
approaches affects the uncoupled exchange-dispersion energies. We
have plotted each SAPT(DFT) energy term calculated from LHF and
non-LHF orbitals in Fig. 1 for the S66 test set.”® In all SAPT(DFT)
calculations in this section, we use the PBEOAC xc potential to

40 16 °
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S s S ® 3
X O =
< = 3 o
- < 20 > £
v % ° 2 -15 5
o 0] - X 6
w w1 w )
T T
3 -5 5 -~ L
10 -20 5
-30 s 2
=25
® [
=30 =25 =20 =15 -10 =5 o 5 10 15 20 25 30 35 40 =25 =20 =15 -10 =5 0 [ 2 4 6 8 10 12 14 16
Hybrid elst (kcal/mol) Hybrid exch (kcal/mol) Hybrid ind (kcal/mol) Hybrid exchind (kcal/mol)
.
-2 4.0
s .
o - ga.s
S [ =
£ E -10 S 30
£ =
© -6 © >
%] ™ = 25
g = &
2 - 5
% -8 % 15 £ 2.0
e <
w uj_ g 15
5 -1 5 -20 w
I 10
-l
Cl
121 4 05
. 251 e

-12 -10 -8 -6 -4 -2

Hybrid disp (kcal/mol)

=20.0 -17.5 -15.0 -12.5 -10.0 -7.5 -5.0

Hybrid udisp (kcal/mol)

-2.5

0.5 10 15 2.0 25 3.0
Hybrid uexchdisp (kcal/mol)

35

FIG. 1. LHF orbital/pure ALDA kernel (y-axis) vs non-LHF orbital/hybrid ALDA kernel (x-axis) SAPT(DFT) components for S66 dimers with the aug-cc-pVTZ basis set. All
energies are in units of kcal mol=". The components plotted are from top-left to bottom-right: electrostatics, exchange, induction, exchange-induction, coupled dispersion,

uncoupled dispersion, and uncoupled exchange-dispersion.
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generate the Kohn-Sham orbitals, except for calculations adopting
the LHF approach, where the exact exchange of PBEOAC would
be localized with LHF as described in Ref. 25, and we use the
augmented version of the correlation-consistent basis sets of
Dunning and co-workers, aug-cc-pVDZ and aug-cc-pVTZ.""*

The plots show that while the first-order and induction terms
are almost unaffected by the LHF orbitals, the uncoupled disper-
sion and exchange-dispersion energies are substantially affected.
Nevertheless, it is fortunate that the uncoupled terms between
LHF and non-LHF orbitals seem to approximately follow a linear
relationship, which would be very helpful for us to build up
our scaling scheme for the exchange-dispersion energy. It is also
worth mentioning that although computed from totally different
algorithms, the coupled dispersion energies from the non-LHF
potential combined with a hybrid ALDA kernel turn out to be almost
identical to their LHF potential/pure ALDA kernel counterparts.
From these results, we can safely conclude that we can perform
another linear fitting to obtain a new scaling factor appropriate
for scaling uncoupled exchange energies computed with non-LHF
orbitals.

We perform a linear fit between LHF orbital/pure ALDA kernel
coupled exchange-dispersion energies and non-LHF orbital/hybrid
ALDA kernel uncoupled exchange-dispersion energies for the
S22 x 5 test set. As expected, we are able to establish a linear
correlation here, given by the following expression:

@

exch_disp(coupled) ~a-EP (uncoupled) (a = 0.770). (62)

exch—disp

R2 = 0.9985
101 MAE = 0.048 kcal/mol

Estimated Hybrid exch-disp (kcal/mol)

0 2 4 6 8 10
LHF exch-disp (kcal/mol)

FIG. 2. Exchange-dispersion fitting results for the S22 x 5 complexes with the
aug-cc-pVTZ basis set. The estimated coupled, non-LHF orbital/hybrid ALDA ker-
nel exchange-dispersion energies from Eq. (62) (y-axis) are plotted against the
coupled, LHF orbital/pure ALDA kernel exchange-dispersion energies (x-axis)
computed with Molpro.
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R? = 0.9955
;1 MAE = 0.061 kcal/mol

Estimated Hybrid exch-disp (kcal/mol)
D

0 1 2 3 4 5 6 7 8
LHF exch-disp (kcal/mol)

FIG. 3. Exchange-dispersion fitting results for the S66 x 8 complexes with the
aug-cc-pVTZ basis set. The estimated coupled, non-LHF orbital/hybrid ALDA ker-
nel exchange-dispersion energies from Eq. (62) (y-axis) are plotted against the
coupled, LHF orbital/pure ALDA kernel exchange-dispersion energies (x-axis)
computed with Molpro.

The mean absolute error of the estimated coupled exchange-
dispersion energy is 0.048 kcal mol ™", and the correlation coefficient
of the linear fitting is 0.9985 (Fig. 2). While not quite as good as the
results (0.03 kcal mol™! and 0.9993) in Ref. 34, this fit is still satisfac-
tory for the purpose of estimating the exchange-dispersion energy
in SAPT(DFT). In order to validate the scaling scheme, we scale the
uncoupled exchange-dispersion energies of S66 x 8 with the fitted
scaling factor of 0.770 from S22 x 5 and compare with the refer-
ence values from the LHF approach. This estimation has a mean
absolute error of 0.061 kcal mol™" and a correlation coefficient of
0.9955 (Fig. 3). These results suggest that this scaling scheme should
suffice for estimating exchange-dispersion energies in SAPT(DFT)
with hybrid functionals when LHF is not used.

B. Accuracy of SAPT(DFT) interaction energy

To assess the accuracy of term-wise and total interac-
tion energies of SAPT(DFT), we compare to benchmark results.
For energy components (exchange, electrostatics, induction, and
dispersion), SAPT based on CCSD monomer wavefunctions, i.e.,
SAPT(CCSD), should provide good reference values.”” Compared to
many-body perturbation theory based SAPT, this approach avoids
potential poor or oscillatory convergence with respect to the per-
turbation order of the intramolecular correlation. Unfortunately,
SAPT(CCSD) is very computationally costly, and the published
SAPT(CCSD) results are only available for a limited set of
systems containing no more than 10 atoms.”” We compare
SAPT(DFT) energy components to the available SAPT(CCSD)
energy components below.
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In order to examine a larger test set that is more inclusive
of common types of intermolecular interactions, we also compare
SAPT(DFT) energy components to those from the more compu-
tationally tractable SAPT2+3(CCD)éMP2 approach®® for the S66
set of van der Waals dimers.””® This method is a many-body
perturbation theory approach to SAPT although it utilizes coupled-
cluster theory for dispersion [in particular, the CCSD+ST(CCD)
approach of Williams et al.].°! It has the potential advantage over
SAPT(CCSD) that certain terms are included through the third
order in the intermolecular perturbation V, and certain higher-order
terms (mainly induction-like) are implicitly included through the
“6MP2” correction, which is a generalization of the SHF correction
commonly used in SAPT.”” Total energies computed with this
approach have been found to be quite accurate in comparison with
CCSD(T).™

1. SAPT(CCSD) reference

In order to assess the performance of our hybrid-kernel
SAPT(DFT) scheme, we compare the results of several SAPT
schemes using SAPT(CCSD) as the reference for each component.
As mentioned above, SAPT(CCSD) results are only available
for a limited set of small systems; here, we use published
SAPT(CCSD)/aug-cc-pVTZ results for a set of 14 dimers named
S2 by Korona.” Our comparison includes our implementation of
hybrid-kernel SAPT(DFT) in Ps14 and LHF-orbital SAPT(DFT) as
implemented in Molpro,”” both using the aug-cc-pVTZ basis set,
and SAPTO with the aug-cc-pVDZ basis set (SAPTO has better
error cancellation for total interaction energies when used with basis
sets of this size™). Direct comparison against SAPTO in the same
aug-cc-pVTZ basis is provided in the supplementary material for the
interested reader.

In addition, in order to apply the GRAC scheme, one needs
to know the highest occupied orbital eigenvalue and the ionization
potential of both monomers in each dimer. In our work, the HOMO
eigenvalues are obtained by running a DFT calculation with the
plain PBEO functional and aug-cc-pVTZ basis set, and the ioniza-
tion potentials for Korona S2 systems are obtained from the original
work of Korona.”

The results for the S2 test set are presented in Table I. Both the
mean absolute error (MAE) and the mean unsigned error (MURE)
with respect to SAPT(CCSD) are presented because of the existence
of strongly interacting systems in S2 (e.g., HF dimer) that might
skew the statistics of absolute errors. In addition to the statistics,
strip charts are included in this table as a visual representation of
errors from all database members. Each vertical line in the chart
represents the error (in kcal mol™) of the SAPT term of interest for
a dimer in S2 with respect to SAPT(CCSD)/aug-cc-pVTZ on either
the overbound (-) or the underbound (+) side, and a black rect-
angular marker (always on the overbound side) is used to indicate
the mean absolute error over S2 of the given SAPT term and theory
level.

The mean absolute error of the total interaction energy
and every SAPT term is below 0.2 kcal mol™" for hybrid-kernel
SAPT(DFT) and LHF-orbital SAPT(DFT), with the exception of
exchange energies. The mean unsigned relative errors for these two
approaches are also below 5% for the total interaction energy and
all components, with the exception of the exchange-dispersion term
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of hybrid-kernel SAPT(DFT), which has a mean unsigned relative
error of 12.47%. Nevertheless, because of the small magnitude of the
exchange-dispersion term, the mean absolute error of hybrid-kernel
SAPT(DFT) for this term remains only 0.062 kcal mol™*, meaning
that this error has only a very small effect on the overall dispersion
interaction or the total interaction energy.

For the S2 test set, hybrid-kernel SAPT(DFT)/aug-cc-pVTZ
and LHF-orbital SAPT(DFT)/aug-cc-pVITZ show significantly
improved accuracy vs SAPT0/aug-cc-pVDZ when compared to
SAPT(CCSD)/aug-cc-pVTZ benchmark components and total
energies. This is consistent with our previous findings for
SAPT(DFT)/aug-cc-pVTZ vs SAPT0/aug-cc-pVDZ for total inter-
action energies for the S22, NBC10, HBC6, and HSG test sets.”’ The
mean absolute errors for the exchange, induction, and exchange-
induction terms for SAPTO are larger than 1 kcal mol~L, ie., larger
than “chemical accuracy.” The mean absolute error in the total inter-
action energy is also slightly over 1 kcal mol™, which is comparable
to its mean absolute errors for some other test sets.”

The results for dispersion in Table I show a drawback of what
we have labeled the “non-hybrid” SAPT(DFT) approach, i.e., com-
puting the dispersion energy using a hybrid functional and pure
ALDA kernel directly (as if one would do with a non-hybrid func-
tional); this approach has a mean absolute error of 0.326 kcal mol ™
and a mean unsigned relative error of 9.58% in the dispersion term,
which is less satisfactory compared to 0.175 kcal mol™" and 3.68%
for hybrid-kernel SAPT(DFT) and 0.141 kcal mol™ and 2.77% for
LHF SAPT(DFT). From the strip chart, we can observe that all
SAPT(DFT) approaches underbind the dispersion interactions in S2,
and the “non-hybrid” approach underbinds them to a larger extent.
This systematic error introduced by the combination of hybrid xc
potential and pure ALDA xc kernel was discussed in Ref. 25, which
points out that the hybrid xc potential broadens the occupied-virtual
orbital energy gaps and thus lowers the magnitude of dispersion
energies. In general, the SAPT(CCSD) results of Korona S2 are fairly
accurately reproduced with both SAPT(DFT) approaches that have
a proper treatment for the hybrid DFT functional, namely, a hybrid
ALDA kernel or a LHF variation in the xc potential. The mean
absolute error for the dispersion term is roughly doubled for “non-
hybrid” SAPT(DFT) although it remains modest at a third of one
kcal mol ™}, and error cancellation for this test set leaves the MAE for
total interaction energies only slightly elevated (0.244 kcal mol™") vs
hybrid-kernel SAPT(DFT) and LHF-orbital SAPT(DFT) (0.155 and
0.189 kcal mol ™, respectively). “Non-hybrid” SAPT(DFT) remains
a significant improvement over SAPTO/aug-cc-pVDZ for this
test set.

For the interested reader, Table SI in the supplementary
material provides a comparison of SAPT2+3(CCD)SMP2 vs
SAPT(CCSD), both in the aug-cc-pVTZ basis, for the Korona S2 test
set. Differences between these two high-level SAPT treatments can
be taken as a measure of the approximate accuracy of each approach.
As mentioned above, SAPT(CCSD) and SAPT2+3(CCD)éMP2
have accuracy advantages and disadvantages relative to each other.
Table S1 shows that across all energy components, and the total
interaction energy, the great majority of the S2 systems show dif-
ferences of less than 0.3 kcal mol™!, with occasional outliers. Mean
absolute deviations between the methods are 0.1-0.2 kcal mol ™" for
components and slightly larger for the overall interaction energy
(0.32 kecal mol™). Compared to these differences, the SAPT(DFT)

J. Chem. Phys. 157, 024801 (2022); doi: 10.1063/5.0090688
Published under an exclusive license by AIP Publishing

157, 024801-9


https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0090688
https://www.scitation.org/doi/suppl/10.1063/5.0090688
https://www.scitation.org/doi/suppl/10.1063/5.0090688

The Journal
of Chemical Physics ARTICLE scitation.org/journalljcp

TABLE 1. Mean absolute errors (kcal mol~) and mean unsigned relative errors (%) of the interaction energy components for the Korona S2 test set with various SAPT methods.

Error distribution”

Method" MAE MURE 4 OB 1 0 1 UB 4

Electrostatics

SAPT(DFT) hybrid 0.112 2.39 N .

SAPT(DFT) LHF 0.114 3.69 [

SAPTO 0.520 8.61 [
Exchange

SAPT(DFT) hybrid 0.251 3.38 (I U .

SAPT(DFT) LHF 0.258 3.09 T |

SAPTO 1.757 12.88 [ I S L

Induction

SAPT(DFT) hybrid 0.148 2.79 [

SAPT(DFT) LHF 0.192 2.97 [ Wl

SAPTO 1.993 16.83 [ [ R

Exchange-induction

SAPT(DFT) hybrid 0.144 4,03 [

SAPT(DFT) LHF 0.165 4.76 [ Wi

SAPTO 1.551 26.80 [ RN .

Dispersion

SAPT(DFT) hybrid 0.175 3.68 e I
SAPT(DFT) LHF 0.141 2.77 | [N

SAPT(DFT) non-hybrid 0.326 9.58 (I (1]

SAPTO 0.811 24.86 | RIRTE

Exchange-dispersion

SAPT(DFT) hybrid 0.062 12.47 ]
SAPT(DFT) LHF 0.039 3.25 [ |
SAPTO 0.265 36.11 [ W
Total

SAPT(DFT) hybrid 0.155 4.98 [ (|l
SAPT(DFT) LHF 0.189 4.17 N [N
SAPT(DFT) non-hybrid 0.244 10.64 [ Bl
SAPTO 1.237 19.63 | | JLER .

*All SAPT(DFT) results use the PBEOAC functional and the aug-cc-pVTZ basis set. Hybrid denotes the use of the hybrid ALDA kernel, non-hybrid denotes the use of the pure ALDA
kernel, and LHF denotes the use of the local Hartree-Fock functional fit to the PBEOAC functional and the pure ALDA kernel. SAPTO results use the aug-cc-pVDZ basis set.

PErrors with respect to SAPT(CCSD)/aug-cc-pVTZ. Each vertical line indicates the error for a member of S2 on either the overbound (+) or the underbound () side of the middle
bar. Errors with an absolute value greater than 4 kcal mol™" are plotted at the edge of the spectrum, separated by an interval of 0.05 kcal mol ™. The mean absolute error of each term
(in keal mol™") over the whole S2 set is marked by a black rectangular marker on the overbound side. Guidelines are at 0, 0.3, and 1.0 kcal mol ™! overbound and underbound.

hybrid and SAPT(DFT) LHF are in extremely good agreement with 2. SAPT2+3(CCD) §MP2 reference
each other for S2, and on average, their errors vs SAPT(CCSD)

are similar to the differences between SAPT(CCSD) and To investigate more completely, we compare to the larger
SAPT2+3(CCD)SMP2. S66 test set;”® here, SAPT2+3(CCD)SMP2 values are used as the
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TABLE II. Mean absolute error (kcal mol~") of the interaction energy for S66 with various SAPT methods.

Error distribution”

Method* Total HB MX DD g on LR L 2
Electrostatics

SAPT(DFT) hybrid 0.374 0.556 0.177 0.331 0T TR
SAPT(DFT) LHF 0.423 0.666 0.196 0.319 oW
SAPTO 0.613 1.034 0.439 0.297 [T gm |
SAPT2+ 0.236 0.270 0.136 0.263 : I\lllll:\: :
SAPT2+(3)8MP2 0.000 0.000 0.000 0.000

Exchange

SAPT(DFT) hybrid 0.866 1.127 0.426 0.926 I N OO TR
SAPT(DFT) LHF 0.866 1.121 0.431 0.928 I ! I
SAPTO 0.675 0.942 0.263 0.658 I 1 1111 T
SAPT2+ 0.337 0.467 0.277 0.277 [ 0w )
SAPT2+(3)8MP2 0.000 0.000 0.000 0.000 LI
Induction

SAPT(DFT) hybrid 0.211 0.201 0.212 0.220 (1o ||
SAPT(DFT) LHF 0.224 0.223 0.223 0.225 [ W |
SAPTO 0.241 0.200 0.261 0.271 LA
SAPT2+ 0.327 0.384 0.250 0.318 | ||| ‘HH: :
SAPT2+(3)8MP2 0.152 0.179 0.121 0.145

Dispersion

SAPT(DFT) hybrid 0.370 0.260 0.219 0.573 | W
SAPT(DFT) LHF 0.308 0.200 0.173 0.499 |
SAPT(DFT) non-hybrid 0635 0.581 0.419 0.822 : Ill:\lll'll\lrll:\l‘l‘:l‘l‘l\:‘ "“‘ ”“ |
SAPTO 0.443 0.862 0.162 0.195 T
SAPT2+ 0.235 0.397 0.169 0.115 [ |
SAPT2+(3)8MP2 0.093 0.129 0.056 0.080

Total

SAPT(DFT) hybrid 0.334 0.588 0.107 0.217 | im0
SAPT(DFT) LHF 0.234 0.382 0.046 0.199 Loy
SAPT(DFT) non-hybrid 0604 0.955 0.389 0.385 o \|||qu| :I”:'”l'"”“':‘ o
SAPTO 0.990 1.197 0.692 0.965 |
SAPT2+ 0.230 0.235 0.138 0.280 I T
SAPT2+(3)8MP2 0.105 0.056 0.082 0.169

*All SAPT(DFT) results use the PBEOAC functional and the aug-cc-pVTZ basis set. Hybrid denotes the use of the hybrid ALDA kernel, non-hybrid denotes the use of the pure ALDA
kernel, and LHF denotes the use of the local Hartree-Fock functional fit to the PBEOAC functional and the pure ALDA kernel. SAPT0 and SAPT2+ results use the aug-cc-pVDZ basis
set; SAPT2+(3)0MP2 results use the aug-cc-pVTZ basis set.

YErrors with respect to SAPT2+3(CCD)6MP2/aug-cc-pVTZ. Each vertical line indicates the error for a member of S66 on either the overbound (+) or the underbound (-) side
of the middle bar. Errors with an absolute value greater than 4 kcal mol~" are plotted at the edge of the spectrum, separated by an interval of 0.05 kcal mol™". The color of the line
indicates the category of the system: hydrogen-bonded (HB, red), mixed-influence (MX, green), or dispersion-dominated (DD, blue). The mean absolute error of each term (in kcal
mol™") over the whole 66 set is marked by a black rectangular marker on the overbound side. Guidelines are at 0, 0.3, and 1.0 kcal mol ™" overbound and underbound.
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reference. As before, we compare three approaches to SAPT(DFT)
and also the least computationally expensive version of SAPT,
SAPTO0. We also include the “silver standard” SAPT2+/aug-cc-
pVDZ and “gold standard” SAPT2+(3)0MP2, which are Pauling
points of SAPT theory as shown in Ref. 50. Direct comparisons
against SAPTO and SAPT2+ in the aug-cc-pVTZ basis, which
generally provide poorer error cancellation for those levels of SAPT,
are provided in the supplementary material. The ionization poten-
tials of molecules needed for SAPT(DFT) calculations are computed
from the energy of each molecule and its +1 cation using the PBEO
functional and the def2-TZVPP basis set.”

In S66, the dimers are divided into 3 subsets by dominating
contributions to the interaction: 23 dimers dominated by electro-
static interactions, typically hydrogen-bonding (HB); 23 dispersion-
dominated interactions (DD); and 20 mixed-influence (MX) dimers.
Mean absolute errors for energy components and total interaction
energies are presented in Table II for S66 overall and also for each
subset (HB, MX, and DD). Similar to Table I, strip charts show error
distributions, and in this case, lines for each error are color coded for
the dominant interaction type in each dimer: red for HB, green for
MX, and blue for DD.

As shown in Table II, the mean absolute errors over S66 for
SAPT(DFT) with the PBEOAC functional and the aug-cc-pVTZ
basis set are 0.334 (hybrid kernel), 0.234 (LHF orbitals with ALDA
kernel), and 0.604 kcal mol™ (non-hybrid pure ALDA kernel). The
close agreement between the hybrid kernel and LHF approaches
mimics that seen for S2 and persists for both for mean absolute
errors and error distributions. The larger error for the non-hybrid
approach is also consistent with the results for S2 although the dif-
ferences are magnified here for the S66 test set, which includes larger
molecules. The non-hybrid SAPT(DFT) dispersion is almost always
underbound (consistent with the S2 results), whereas the hybrid
kernel and LHF approaches are somewhat more balanced in their
error distributions. With the exception of the dispersion-dominated
complexes, mean absolute errors for dispersion are almost twice as
large for non-hybrid SAPT(DFT) vs hybrid kernel or LHF-based
SAPT(DFT).

All three SAPT(DFT) approaches considered here provide
an improvement in the MAE compared to 0.990 kcal mol™" for
SAPT0/aug-cc-pVDZ. For S66, SAPTO is nearly always overbound,
whereas the behavior of SAPT(DFT) is somewhat more balanced
(although the majority of the complexes are underbound). Both
the hybrid-kernel and LHF-orbital SAPT(DFT) approaches provide
similar MAEs overall and across subsets compared to the compu-
tationally expensive SAPT2+/aug-cc-pVDZ approach that has an
MAE across S66 of 0.230 kcal mol™!. However, MAEs for the hybrid-
kernel and LHF-based SAPT(DFT) are somewhat worse than those
for SAPT2+ for the hydrogen-bonded subset, and error distributions
across S66 are wider for SAPT(DFT) compared to SAPT2+. Errors
for total interaction energies and their components are much smaller
for high-level SAPT2+(3)6MP2/aug-cc-pVTZ, with an overall MAE
across $66 of only 0.105 kcal mol™'. Our findings for errors in total
interaction energies of S66 for the LHF-orbital SAPT(DFT), SAPTO,
SAPT2+, and SAPT2+(3)0MP2 methods are in qualitative agree-
ment with our previous study of errors in total interaction energies
for the S22, NBC10, HBC6, and HSG test sets.”’

Regarding energy components, SAPT(DFT) and SAPTO
exhibit roughly similar error distributions for electrostatics, with
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hydrogen-bonded systems tending to be overbound and with
dispersion-dominated dimers having their error distribution shifted
a little toward the underbound side. Overall, SAPT(DFT) is
more reliable than SAPTO on average for electrostatics, espe-
cially for H-bonded systems, where there are several significantly
overbound systems with SAPTO. For dispersion-dominated com-
plexes, SAPT(DFT) performs similarly to SAPTO for electrostatics.
Errors for induction are quite similar for SAPT0, SAPT(DFT),
and SAPT2+. For dispersion energies, SAPTO tends to underbind
hydrogen-bonded complexes (sometimes significantly) and slightly
overbinds dispersion-dominated complexes. SAPT(DFT) with the
hybrid kernel or LHF orbitals, by contrast, shows some underbound
dispersion-dominated complexes and a few overbound H-bonded
complexes. On average, hybrid-kernel or LHF-based SAPT(DFT)
is more accurate than SAPTO for dispersion, especially for
H-bonded complexes; the errors for the dispersion-dominated
subset are slightly larger for SAPT(DFT) than for SAPTO (perhaps
due to a favorable error cancellation between the simple treatment
of dispersion in SAPTO and the modest aug-cc-pVDZ basis set used
here for SAPTO0). As pointed out above, the “non-hybrid” approach
to SAPT(DFT) exhibits larger MAEs for dispersion than hybrid
kernel or LHF-based SAPT(DFT), and it is generally worse than
SAPTO except for a slight improvement for the H-bonded subset.
For the exchange term, SAPT(DFT) shows a wide range of errors,
spanning the entire +1 kcal mol™" range, with several larger errors
on the overbound side for dispersion-dominated dimers and several
larger errors on the underbound side, generally hydrogen-bonded.
The SAPTO error distribution is compressed and shifted toward
the overbound side, and it exhibits more strongly overbound out-
liers (now more frequently of the hydrogen-bonding type). The
overall MAE for exchange is somewhat similar for SAPTO and
SAPT(DFT).

In summary, SAPT(DFT) with the PBEOAC functional and the
aug-cc-pVTZ basis set performs similarly across total interaction
energies and their components whether we use the LHF-orbital for-
mulation or the hybrid kernel, and in general, interaction energies
and their components are superior to those from SAPTO, except
for the exchange component. SAPT(DFT) results for total inter-
action energies have similar MAEs as the computationally much
more expensive SAPT2+ wavefunction-based SAPT although the
error distribution is wider for SAPT(DFT). Similarly, energy com-
ponents from SAPT(DFT) are often of roughly similar quality as
SAPT2+ on average (although larger errors are seen for exchange
energies), but the error distributions are wider. Using SAPT(DFT)
with the PBEOAC functional but without either the hybrid kernel
or an LHF-orbital approach creates larger errors in the dispersion
term and the overall interaction energy; this approach remains more
accurate on average than SAPTO but is no longer competitive with
SAPT2+ in accuracy.

C. Timing performance

In order to investigate the efficiency of our hybrid kernel
dispersion algorithm and our overall SAPT(DFT) implementation,
we obtained run-times for the Watson-Crick adenine-thymine
complex (WCAT) and the RDX dimer using different numbers of
cores (1, 2, 4, and 6) on an Intel Core i7-6800K processor (6 cores,
3.4 GHz) with 128 GB RAM. The geometry of adenine-thymine is
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obtained from the S22 test set’* and the RDX dimer from Ref. 40.
The aug-cc-pVDZ and aug-cc-pVTZ basis sets are used for both sys-
tems. Below, we will also discuss timings for the Cgo—buckycatcher
complex using an aug-cc-pVDZ basis set. The testing systems in
this section are shown in Fig. 4, and the number of basis functions
(N hf), occupied orbitals (N ), virtual orbitals (N ), and auxiliary
functions (Naux) of each combination of the dimer system and basis
set is listed in Table ITI.

Timings results of the WCAT and RDX dimer are presented in
Fig. 5, showing the breakdown of the timing data by the module for
the test systems using 6 cores. The entire SAPT(DFT) computation
is divided into 6 modules as follows:

1. “Delta HF” for the computations related to evaluating the
OHF term,” including HF calculations of the dimer and
monomer and a SAPTO calculation of electrostatics, exchange,
and induction terms.

FIG. 4. Dimer systems tested for program runtime performance: (a) Watson—Crick
adenine-thymine complex, (b) RDX dimer, and (c) Cgo—buckycatcher complex.
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TABLE Ill. Number of basis functions (N ), occupied orbitals (Nogc ), virtual orbitals
(Nyir), and auxiliary functions (Naux ) for different systems and basis sets.

Adenine-thymine RDX dimer  Buckycatcher
System size aDZ aTZ aDZ aTZ aDZ
Nys 536 1127 798 1656 3012
Noce.a 35 35 57 57 180
Noyir, 501 1092 741 1599 2832
Nocc,B 33 33 57 57 194
Nuyir, 503 1094 741 1599 2818
Naux 1621 2520 2436 3732 9284

2. “DFT” for the DFT calculation of both monomers in order to
obtain the Kohn-Sham orbitals.

3. “JK terms” for electrostatics, exchange, induction, and
exchange-induction terms, all of which are computed from
certain generalized Coulomb (J) and exchange (K) matrices.
Induction and exchange-induction take nearly all of the time
for the JK terms (more than 90% for these test cases).

4. “N® Disp” for the O(N®) steps in the dispersion term, namely,
the frequency-independent parts of Eqgs. (44)-(48).
5. “N* Disp” for everything in the dispersion term aside from

“N” Disp.” This mainly includes the integration over w as in
Eq. (32) and the integral transformation step that involves the
most disk I/O operations.

6. “Exch-Disp” for the exchange-dispersion term as described in
Subsection 1T D. This module also scales as O(N”) like “N°
Disp.”

For our RDX and WCAT test cases, one would hardly claim
that the O(N°) modules contribute dominantly to the total compu-
tational time. The “Exch-Disp” module takes up less than 10% of the
total wall time, while the percentage of “N° Disp” varies from 8.8% to
23.4% for different system sizes. The timings are distributed some-
what evenly between each module for all test cases; every block, from
“Delta HF” to “N* Disp,” takes a considerable portion of the total
wall time for these test cases. This suggests that the O(N°) scaling
is not a major concern in SAPT(DFT) calculations of systems below
2000 basis functions; the total computational cost is more affected by
iterative steps with lower formal scaling, including SCF calculations,
CPKS calculations in the induction terms, and integration over w.
The fraction taken by the “N° Disp” block of the total wall time also
indicates the computational cost that could be saved if one would
use the “non-hybrid” approach as indicated in Subsection III B 1.
From the results in Subsections I11 B 1 and III B 2, the improvement
in the accuracies of dispersion energies and total interaction energies
introduced the hybrid-kernel algorithm is significant enough to jus-
tify the additional computational cost from the “N° Disp” block. It is
also interesting to note that these O(N”) blocks take a larger fraction
of the total job wall time in the RDX dimer/aug-cc-pVDZ than in
the WCAT/aug-cc-pVTZ even though the former does not have as
many basis functions as the latter; this is partly because the detailed
scaling of the O(N®) terms is O(NZ N2, Nau ), and the number of
occupied orbitals for the RDX dimer/aug-cc-pVDZ is almost twice
of that for the WCAT/aug-cc-pVTZ, while Ny, and Ngaux change by
a smaller ratio.
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(a) Watson-Crick Adenine-Thymine aug-cc-pVDZ
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(c) RDX dimer aug-cc-pVDZ
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(b) Watson-Crick Adenine-Thymine aug-cc-pVTZ
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B
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(d) RDX dimer aug-cc-pVTZ
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24.7%
(4469 s)

FIG. 5. (a)—(d) Distribution of wall time among subroutines for each test system with aug-cc-pVDZ and aug-cc-pVTZ basis sets with 6 cores.

Our timing results affirm the utility of the hybrid-kernel algo-
rithm as an alternative to the LHF algorithm even though the former
scales formally as O(N°) and the latter as O(N*) because the LHF
algorithm will have a much larger prefactor. Although we have
not implemented the LHF algorithm ourselves, we can obtain a
more detailed comparison by performing test computations with the
current hybrid kernel algorithm and the LHF algorithm imple-
mented in the Molpro program package.”> We present the results
of this comparison for the RDX dimer in the aug-cc-pVTZ basis in

Table V. Here, the LHF algorithm takes 12.80 h with 6 cores, while
the hybrid algorithm implemented in this work only takes a total
wall time of 5.03 h. The DFT calculation with the LHF algorithm
takes 2.29 h, which is about 5x slower than the hybrid algorithm,
where a regular DFT calculation without LHF approximation is
performed. The regular DFT calculation took 13 iterations to con-
verge for both monomers, while the LHF-DFT calculation took
19 and 43 iterations, respectively, and this implies that the LHF
approach might present some hindrance to the convergence of the
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TABLE IV. Wall times (in hours) for SAPT(DFT) computations of the RDX dimer/
aug-cc-pVTZ with hybrid and LHF algorithms.

Subroutine Hybrid LHF

Delta HF 0.96 N/A*
DFT 0.45 2.29
xc kernel 0.08 4.17
FDDS object” 2.35 N/A
Disp time integration 0.37 3.59
Exch-disp 0.41 1.99
Total 5.03 12.80

*The §HF correction, recommended for SAPT(DFT) computations of polar molecules,
is performed by default in Ps14 but not in Molpro.

bInclucling integral transformation, form X/form Y (the O(Ns) part), and QR factor-
ization. In Molpro, the integral transformation is integrated with other terms, and the
other steps are not relevant for LHF.

SCF procedure. In addition, the Molpro program has not imple-
mented a 2-index representation of the xc kernel as of version 2019.2
tested here, and the formation of the xc kernel costs a significant
amount of time with the 3-index representation. The time integra-
tion part involves contractions between the xc kernel and other ten-
sors, so it is also affected by the 3-index representation of the kernel.
For the subroutines that are exclusive to the hybrid kernel algo-
rithm, including the O(N”) part, the total wall time is only 2.35 h,
only slightly longer than the cost introduced in DFT by the LHF
approximation, so we may conclude that even if we do not consider
the difference between 2-index and 3-index representations of the xc
kernel, the O(N”) hybrid kernel algorithm would have an advantage
for systems around the size of the RDX dimer with the aug-cc-pVTZ
basis or smaller.

We also performed PBEOAC SAPT(DFT) computations with
the hybrid kernel on the Cg-buckycatcher complex using the
aug-cc-pVDZ basis set. The numbers of occupied and virtual orbitals
are listed in Table III along with the previous test systems. The
geometry of the complex was taken from Ref. 55 (complex C60@2).
Because of the large size of the system, we used a more powerful
computer for our timings tests, namely, an 18-core Intel Core
i9-10980XE processor at 3.0 GHz, with 256 GB of RAM and a scratch
disk array of three 7200 rpm disk drives in the RAIDO configura-
tion. The wall time of the entire calculation was 4.03 days, and the
detailed timing information is shown in Table V. For this system
with 3012 basis functions, the O(N”) contributions to the dispersion
term become more significant than in the previous test cases, and
overall, the dispersion component is now the most time-consuming
step (although followed closely by the time required to compute
OHF).

The integral transformation procedure in the dispersion term
is quite expensive, comparable to the O(N?) terms, and this can be
attributed to the disk operation required for writing large 3-index
integrals of form (rr'|Q), which are later used to reform the 4-index
MO integral of form (aa’|rr") as in Eqs. (44)-(48).

In fact, this calculation was also performed in Ref. 56 with a
non-hybrid DFT functional (HCTH407) and pure ALDA kernel,
which allows the dispersion term to scale as O(N*) in contrast to
the case of hybrid xc-kernel of O(N®). That work accomplished the
same calculation with less computational cost than that reported
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TABLE V. Wall times (in hours) for PBEOAC SAPT(DFT) computations of the
Cgo—buckycatcher complex using 18 cores of an Intel i9-10980XE processor with the
hybrid algorithm.

Subroutine Wall time
Delta HF 29.1
Dimer HF 6.3
C60 HF 6.2
Buckycatcher HF 6.6
Prepare JK 0.5
Exchange 0.5
Induction 8.9
DFT 14.8
C60 DFT 7.1
Buckycatcher DFT 7.7
JK terms 10.0
Prepare JK 0.5
Exchange 0.5
Induction 8.9
Dispersion 42.7
Transformation 10.5
QR factorization 0.5
Form X 7.0
FormY 13.1
Time integration 43
Exchange-dispersion 6.8

here because of the avoidance of the O(N®) terms with the non-
hybrid functional (and likely also omitting the dxr step). Using a
non-hybrid functional is an effective approach when trying to per-
form SAPT(DFT) calculations for large systems with limited com-
putation resources, but our computation demonstrates that even
the hybrid xc-kernel variant of SAPT(DFT) is now able to handle
systems with around 3000 basis functions.

IV. CONCLUSION

We have reported an implementation of symmetry-adapted
perturbation theory based on a density functional theory description
of the monomers, i.e.,, SAPT(DFT),”*>"" in the Ps14 open-source
quantum chemistry program.” Hybrid functionals have become
preferred for applications of SAPT(DFT), especially the PBEO hybrid
functional (with an asymptotic correction term to achieve correct
long-range behavior of the potential).'””’ However, the use of
hybrid functionals complicates the dispersion and exchange-
dispersion terms, requiring either computational steps that scale as
O(N®) [compared to O(N*) without the use of a hybrid kernel for
dispersion] or else the construction of a local representation of the
Hartree-Fock potential (LHF) that can then be used with a simpler
ALDA kernel in the treatment of dispersion. Although the latter
choice formally scales as only O(N*), in practice, the LHF equa-
tions can be hard to converge and thus may require substantial
time. Here, we have implemented an O(N”) algorithm allowing the
hybrid kernel to be used for dispersion based on the algorithm of
Bukowski et al.”’
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We have improved this algorithm by using a 2-index
representation of the exchange-correlation kernel as proposed
by Pitonidk and Hesselmann®’ and by improving the numerical
stability replacing the “projector” in Bukowski’s work (Ref. 27) with
a pseudoinverse operation based on QR factorization. We have also
optimized the tensor contraction procedures to minimize disk I/O,
which affects the efficiency of the algorithm heavily as the system
size increases.

Our algorithm scales as O(N°) formally in the dispersion
and exchange-dispersion term, but in practice, the iterative O(N*)
induction term usually contributes a non-negligible or even domi-
nating portion to the total computational cost, especially for small or
medium-sized systems with less than 2000 basis functions. Timings
of each step in the algorithm justify our choice of the SAPT(DFT)
algorithm based on hybrid xc-kernel over the LHF approach because
in most systems that are small enough to be computed with
SAPT(DFT), the prefactor is shown to have more influence on the
total computational cost than the formal scaling.

Using the new code, we examined the accuracy of SAPT(DFT)
using the hybrid kernel for dispersion comparing to the LHF-based
treatment and also with the results obtained using PBEOAC with
neither LHF orbitals nor a hybrid kernel for dispersion. The lat-
ter approach is not as accurate as the former two, but LHF-based
SAPT(DFT) and hybrid-kernel-based SAPT(DFT) give very similar
results once we reformulate the scaling factor used to estimate the
coupled exchange-dispersion energy from the uncoupled exchange-
dispersion energy. The appropriate scaling factor is shown here to be
heavily dependent of whether the DFT algorithm used to generate
the molecular orbitals adopts the LHF approximation. Based on
the results for diverse non-covalent interactions in the S66 test
set, the SAPT(DFT) results are generally more accurate than their
SAPTO counterparts, with the exception of the exchange compo-
nent. The mean absolute error of SAPT(DFT) is comparable to
that of SAPT2+, which scales as O(N”) as opposed to O(N”) for
hybrid-kernel SAPT(DFT), for the total interaction energy and all
components except for exchange, although the error distributions
are wider for SAPT(DFT).

SUPPLEMENTARY MATERIAL

See the supplementary material for complete tables of all
energetic quantities reported in this work (SAPT components
and total interaction energies). In addition, a table compar-
ing SAPT2+3(CCD)dMP2/aug-cc-pVTZ to SAPT(CCSD)/aug-cc-
pVTZ for S2 and tables comparing our results for S2 to
SAPTO/aug-cc-pVTZ and our S66 results to SAPTO0/aug-cc-pVTZ
and SAPT2+/aug-cc-pVTZ are provided.
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