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current study only examined the application of surface-engineered 
waveguides for room-temperature photodegradation of methylene 
blue, we have previously [4] validated that waveguide-based systems 
could also work for high-temperature applications such as gas-phase 
photocatalytic reduction of CO2. With the incorporation of waveguide 
surface engineering demonstrated here, we envision the photocatalytic 
efficiency can be further increased. Since waveguides are made of quartz 
(SiO2) with a melting point of ~1700 ◦C, those systems can well with
stand harsh operating conditions (pressure and temperature), as long as 
other components (e.g., reactor body, connecting tubes) are made of 
suitable materials that can work under those conditions. 

Here, we used methylene blue photodegradation as a simple case 
study to prove that waveguide surface engineering enabled uniform 
light distribution, leading to improved performance for a photocatalytic 
system. More photocatalytic tests need to be conducted to guide wave
guide engineering. Some future directions include how various factors 
such as light irradiation orientations (e.g., top illumination, side illu
mination) and irradiation methods (e.g., LEDs, direct use of solar) will 
affect the waveguide system design. 

4. Conclusions 

In summary, we successfully built two low-cost linear-slider-based 
platforms for continuous light measurement and controlled chemical 
etching. We applied different etching durations to different waveguide 
locations so that a gradient surface roughness distribution was forged for 
uniform light scattering. The coefficient of variation comparison vali
dated gradient etching as a valid method to increase light distribution 
uniformity, with improved performance compared with state-of-the-art 
approaches (e.g., tip coating, physical carving, engineered pillars, etc.). 
We also evaluated the effect of different waveguide configurations in a 
photocatalytic test for methylene blue degradation. Photodegradation 
activity with gradient-etched waveguides was ~4 times higher than 
uniform-etched designs and ~8 times higher than non-etched ones. This 
study underscores controlled surface etching for waveguides as a viable 
approach for concurrently optimizing light delivery and catalyst avail
ability to maximize photocatalytic reaction rates. 
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