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Abstract: Molecular mimicry between viral antigens and host proteins can produce cross-reacting
antibodies leading to autoimmunity. The coronavirus SARS-CoV-2 causes COVID-19, a disease
curiously resulting in varied symptoms and outcomes, ranging from asymptomatic to fatal. Autoim-
munity due to cross-reacting antibodies resulting from molecular mimicry between viral antigens and
host proteins may provide an explanation. Thus, we computationally investigated molecular mimicry
between SARS-CoV-2 Spike and known epitopes. We discovered molecular mimicry hotspots in
Spike and highlight two examples with tentative high autoimmune potential and implications for
understanding COVID-19 complications. We show that a TQLPP motif in Spike and thrombopoietin
shares similar antibody binding properties. Antibodies cross-reacting with thrombopoietin may
induce thrombocytopenia, a condition observed in COVID-19 patients. Another motif, ELDKY, is
shared in multiple human proteins, such as PRKG1 involved in platelet activation and calcium regu-
lation, and tropomyosin, which is linked to cardiac disease. Antibodies cross-reacting with PRKG1
and tropomyosin may cause known COVID-19 complications such as blood-clotting disorders and
cardiac disease, respectively. Our findings illuminate COVID-19 pathogenesis and highlight the
importance of considering autoimmune potential when developing therapeutic interventions to
reduce adverse reactions.

Keywords: vaccine design; AlphaFold2; coronavirus; molecular dynamics; machine learning; protein
structure comparison; COVID-19 complications; variant; omicron; tropomyosin

1. Introduction

The coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic.
COVID-19 is an infectious disease whose typical symptoms include fever, cough, shortness
of breath [1,2], and loss of taste or smell [3]. Curiously, despite over half a billion confirmed
cases worldwide [4], roughly one-third are estimated to be asymptomatic [5]. Yet, other
SARS-CoV-2 infected individuals may also experience a variety of disease-related com-
plications including liver injury [6], kidney injury [7], and cardiovascular complications
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including myocarditis, heart failure, thrombosis [8], and thrombocytopenia [9]. COVID-19
can trigger a range of antibody response levels [10] and an enrichment in autoantibodies
that react with human proteins has been found for patients with severe disease [11]. While
the reason for the variety of disease severity affecting people with COVID-19 is not well
understood, molecular mimicry may provide an avenue for explanations.

Molecular mimicry occurs when unrelated proteins share regions of high molecular
similarity, such that they can perform similar and unexpected interactions with other
proteins. When molecular mimicry involves antigens to which antibodies are produced,
cross-reactive antibodies can result. Molecular mimicry between pathogen antigens and
human proteins can cause an autoimmune response, where antibodies against the pathogen
erroneously interact with human proteins, sometimes leading to transient or chronic
autoimmune disorders [12]. Alternatively, molecular mimicry could be viewed through
the lens of heterologous immunity, where previous exposure to one pathogen antigen can
result in short- or long-term complete or partial immunity to another pathogen with a
similar antigen [13]. Moreover, antigen-driven molecular mimicry can also lead to cross-
reactive antibody immunity which has been reported against SARS-CoV-2 for uninfected
individuals [14].

The SARS-CoV-2 Spike protein is responsible for enabling SARS-CoV-2 entry into
host cells [15]. Spike protrudes from the virus surface and is one of the main antigenic
proteins for this virus [16]. Additionally, Spike is the primary component in the vaccines
against SARS-CoV-2. Consequently, molecular mimicry between Spike and human proteins
or Spike and other human pathogens can result in cross-reactive antibodies in response
to SARS-CoV-2 infection or vaccination. Cross-reactive antibodies may yield complex
outcomes such as diverse symptoms with varying severity across populations and devel-
opmental stages as observed for COVID-19. It must be noted that there are a variety of
genetic and environmental factors that contribute to an individual’s likelihood to develop
an autoimmune response [17]. 5till, identifying autoimmune potential and heterologous
immunity through instances of molecular mimicry between Spike and proteins from hu-
mans or human pathogens can serve to better understand disease pathogenesis, improve
therapeutic treatments, and inform vaccine design as they relate to SARS-CoV-2 infection.
Previous studies have predicted molecular mimicry between SARS-CoV-2 Spike and hu-
man proteins using sequence similarity [18] to known epitopes in the Immune Epitope
Database (IEBD) [19] and sequence and structural similarity in general [20,21]. We combine
these approaches and investigate molecular mimicry between Spike and human proteins
by considering both sequence and structural similarity and searching against known epi-
topes from IEDB [19]. We define molecular mimicry as a match of at least five identical
consecutive amino acids that appear in both Spike and in a known epitope, where at least
three amino acids are surface accessible on Spike and the match from the epitope has high
structural similarity to the corresponding sequence from Spike. In light of our findings,
we discuss the autoimmune potential and heterologous immunity with implications for
vaccine design and the side effects of SARS-CoV-2 infection.

2. Methods
2.1. Identifying Epitopes with Molecular Mimicry

To identify known epitopes with positive assays from IEBD, we used Epitopedia [22]
with a full-length Cryo-EM structure of Spike from SARS-CoV-2 (PDB id: 6XR8, chain
A, RBD: Oup3down (solved residues: 14-69, 77-244, 254-618, 633-676, 689-1162) [23])
as input. Hits containing 5 or more consecutive residues with 100% sequence identity
where at least 3 of the input residues are surface accessible are considered sequence-
based molecular mimics (termed as “1D-mimics”). For all 1D-mimics with corresponding
structural representation from either the Protein Data Bank (PDB) [24] or AlphaFold2 [25]
3D models of human proteins, TM-align [26] was used to generate a structural alignment
and Root Mean Square Deviation (RMSD) for all input-hit (1D-mimic) alignment pairs
using only the structural regions corresponding to the hit for the source antigenic protein
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containing the epitope and the input. Epitopes with an RMSD < 1 A to Spike were
considered structure-based molecular mimics (termed as “3D-mimics”).

2.2. Conformational Ensemble of TQLPP Structural Mimicry

To gather all structures of the TQLPP motif in Spike, an NCBI BLASTP search against
PDB was performed with the SARS-CoV-2 Spike reference sequence as the query and a
SARS-CoV-2 taxa filter. Of 75, close to full-length, hits (>88% query cover), 20 included a
solved structure for the TQLPP motif. The TQLPP region of the PDB structure was extracted
for all chains in the 20 structures (all were trimers, as in Spike’s biological state) resulting
in a TQLPP Spike ensemble of 60 different chains from SARS-CoV-2. Each sequence in
the TQLPP Spike ensemble was superimposed with chain X of the two PDB structures of
human thrombopoietin (hTPO, PDB ids: 1V7M and 1V7N) to generate an RMSD value
distribution for Spike’s conformational ensemble vs. hTPO for the structural mimicry
region (Table S1).

2.3. Modeling Spike-Antibody Complexes

We constructed a composite model of the Spike-TN1 complex using the hTPO-TN1
complex (PDB id: 1V7M) as a template. For this, we first aligned the TQLPP segment of
hTPO in the hTPO-TN1 complex with the TQLPP segment of the fully glycosylated model
of Spike (PDB id: 6VSB [27]) retrieved from the CHARMM-GUI Archive [28]. We then
removed hTPO, leaving TN1 complexed with Spike. For the Spike-TN1 simulations, only
the TN1 interacting N-terminal domain of Spike (residues 1-272) was considered. Similarly,
a composite model of the Spike-52P6 complex was modeled by using the stem helix-52P6
complex (PDB id: 7RN]J [29]) as a template. As with the TQLPP segment, we aligned ELDKY
in the stem helix-52P6 complex with ELDKY in the stem helix segment of Spike (PDB id:
6XR8) retrieved from the Protein Data Bank. We then removed the stem helix segment
from the stem helix-52P6 complex, leaving S2P6 complexed with Spike. For the Spike-S2P6
simulations, only the S2P6 interacting stem helix segment of Spike (residues 1146-1159)
was considered. Geometrical alignments, as well as visualization, were performed with
PyMOL version 2.5.0 [30] and Visual Molecular Dynamics (VMD 1.9.3 [31]).

To confirm that the modeled Spike TQLPP region is in agreement with the TQLPP
region of solved Spike structures, these regions were extracted. TM-align was used to
superimpose the TQLPP regions from the different structures, including the modeled
TQLPP region from the Spike-TN1 complex, and to calculate the respective RMSD val-
ues. Three states of the model were included (before and after equilibration, and after
molecular dynamics (described in the following paragraph)) together with the 60 experi-
mentally determined Spike structures in Table 51 and compared in an all-against-all manner
(Figure S1, Table 52). A Mann-Whitney U test was used to compare the TQLPP region
from 60 experimentally determined Spike structures based on RBD state: (1) both down,
(2) 1 down and 1 up, (3) both up. (Figure S2). Further, TM-align was used to calculate
RMSD between wild-type TQLPP (PBD id: 6XR8, chain A) and the corresponding region in
known variants of concern with available structures (Table S3).

2.4. Molecular Dynamics Simulation

A simulation system for the modeled Spike-antibody systems were prepared using
CHARMM-GUI [32-34]. The complexes were solvated using a TIP3P water model and
0.15 M concentration of KCl and equilibrated for 1 ns at 303 K. All-atom simulations
were performed with NAMD 2.14 [35] using CHARMM36m force-field. The production
runs were performed under the constant pressure of 1 atm, controlled by a Nose—Hoover
Langevin piston [36] with a piston period of 50 fs and a decay of 25 fs to control the
pressure. The temperature was set to 303 K and controlled by Langevin temperature
coupling with a damping coefficient of 1/ps. The Particle Mesh Ewald method (PME) [37]
was used for long-range electrostatic interactions with periodic boundary conditions and
all covalent bonds with hydrogen atoms were constrained by Shake [38]. The contact area
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of the interface was calculated as (S; + S; — S12)/2, where S; and S; represent the solvent
accessible surface areas of the antigen and antibody and Sy represents that for the complex
(Figure S3). We performed MD simulations of the hTPO-TN1 complexes (PDB ids: 1V7M
and 1V7N) as well as the Spike-TN1 complexes modeled from PDB ids: 1V7M and 1V7N to
generate interaction matrices of protein-antibody hydrogen bonds during the last 50 ns of
200 ns MD simulation for each run.

2.5. Binding Affinity

The PRODIGY webserver [39] was used to calculate the binding affinity and inter-
molecular contacts for Spike-TN1 (described above) and hTPO-TN1 complexes (PDB ids:
1V7M and 1V7N) at the TQLPP region. We retrieved five intermediate structures from
200 ns MD simulations of each of these complexes at an interval of 40 ns. Similarly,
PRODIGY was used to calculate the binding affinity and intermolecular contacts for the
modeled Spike-52P6 complex (from PDB id 7RN] [29]) at the EDLKY region. We retrieved
five intermediate structures from a 50 ns MD simulation at an interval of 10 ns. The average
binding affinity for each complex is reported (Table S4).

2.6. Antibody Interface Complementarity

We used the MaSIF-search geometric deep learning tool designed to uncover and
learn from complementary patterns on the surfaces of interacting proteins [40]. The surface
properties of proteins are captured using radial patches. A radial patch is a fixed-sized
geodesic around a potential contact point on a solvent-excluded protein surface [41]. In
MaSIF-search, the properties include both geometric and physicochemical properties char-
acterizing the protein surface [40]. This tool exploits that a pair of patches from the surfaces
of interacting proteins exhibit interface complementarity in terms of their geometric shape
(e.g., convex regions would match with concave surfaces) and their physicochemical prop-
erties. The data structure of the patch is a grid of 80 bins with 5 angular and 16 radial
coordinates and ensures that its description is rotation invariant. Each bin is associated
with 5 geometric and chemical features: shape index, distance-dependent curvature, elec-
trostatics, hydropathy, and propensity for hydrogen bonding. The model converts patches
into 80-dimensional descriptor vectors, such that the Euclidian distance between interact-
ing patches is minimized. Here, we define the binding confidence score as a measure of
distance between the descriptor vectors of the two patches. Thus, lower “MaSIF binding
confidence scores” represent better complementarity and therefore better matches. The
pre-trained MaSIF-search model “sc05” with a patch radius of 12 A was used.

Using the MaSIF protocol, we evaluated complexes of the TN1 antibody bound to
Spike in the TQLPP region. The antibody-antigen patch pairs were extracted using scripts
from the molecular mimicry search pipeline EMoMiS [42]. To accommodate multiple Spike
configurations, we extracted patches from 40 SARS-CoV-2 Spike-antibody complexes from
the SabDab structural antibody database [43]. Patches centered at Q23 from Spike and W33
from TN1 were selected as representative pairs for the Spike-TN1 interaction type because
this potential contact point has the most hydrogen bonds in the modeled Spike-TN1 TQLPP
region. Binding confidence scores of randomly formed complexes (Random), complexes
between Spike and its native antibodies (Spike-Ab), and complexes between hTPO and TN1
(hTPO-TN1) were extracted and tabulated (Table S5). The distribution of binding confidence
scores from randomly formed complexes was obtained by pairing patches from random
locations on Spike with patches from its antibodies. For native antibody-antigen Spike-Ab
and hTPO-TN1 complexes, we obtained patch pairs from known interface regions using
the MaSIF-search strategy for the selection of interacting patches [40]. Columns “Contact
AB” and “Contact AG” in Table S6 indicate the residue used as the center of the patch from
the antibody and the corresponding antigen.
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2.7. Evaluating Further Cross-Reactivity

All 3D-mimics and AlphaFold2-3D-mimics (termed as “AF-3D-mimics”) were split
into pentapeptides (if mimicry motif exceeded 5 residues) which were used as queries
for NCBI BLASTP searches against the RefSeq Select [44] set of proteins from the human
proteome. Results for the BLAST searches can be found in Table S7.

For the TQLPP sequence motif, 10 representative isoforms in proteins containing the
complete motif were found, including hTPO. The other 9 proteins lacked a solved structure
containing TQLPP. However, AlphaFold2 3D models were available for all 10 of these
RefSeq Select sequences [25,45], allowing us to extract the region corresponding to TQLPP
in these hits and structurally superimpose this region with Spike TQLPP (from PDB id
6XR8) with TM-align as described above.

TN1-protein complexes were generated for three of the remaining 9 proteins
(Fc receptor-like protein 4 (residues 190-282), serine/threonine-protein kinase NEK10
(residues 1029-1146), ALG12 (Mannosyltransferase ALG12 homolog (residues 1-488)). The
TQLPP segment in hTPO was structurally aligned with each of the TQLPP segments of the
modeled proteins, after which, hTPO was removed resulting in the complex of TN1 with
the modeled proteins following the methods mentioned for Spike above. The equilibrated
structures of these complexes show that TN1 stays firmly with these proteins without any
structural clash. Further, to evaluate the shape complementarity of these three proteins and
TIN1, MaSIF was used to calculate binding confidence scores as described above (Table S8).

It should also be noted that two additional human genes (GenelDs 8028 and 57110) also
have one TQLPP motif, but not in the RefSeq Select isoforms. Since no structure or structural
prediction was available for these proteins, they were excluded from further analysis.

For the ELDKY sequence motif, 6 additional representative isoforms containing the
complete motif were found, in addition to the human proteins identified by Epitopedia to
contain 3D-mimics of the motif. Solved structures of the ELDKY motif were available for
3 of the proteins, while the others had AlphaFold2 3D models available. In all instances, the
region corresponding to the ELDKY motif was extracted and structurally superimposed
with Spike ELDKY (from PDB id 6XR8) with TM-align as previously described.

2.8. Statistical Analysis

Distributions were visualized as violin plots with ggpubr (Version 0.40) and ggplot2
(Version 3.3.6) from R (Version 4.2.1). Following Shapiro-Wilk normality testing, a statistical
analysis comparing the different distributions was performed using Mann-Whitney U with
SciPy [46] (Version 1.7.1) from Python (Version 3), followed by a simplified Bonferroni
correction (alpha/n comparisons) when appropriate.

3. Results and Discussion

We used Epitopedia [22] to predict molecular mimicry for the structure of the SARS-
CoV-2 Spike protein (PDB id: 6XR8, chain A, RBD: Oup3down [23]) against all linear
epitopes in IEDB, excluding those from Coronaviruses. Epitopedia returned 789 sequence-
based molecular mimics (termed as “1D-mimics”). One-dimensional-mimics are pro-
tein regions from epitopes that share at least five consecutive amino acids with 100% se-
quence identity to a pentapeptide in SARS-CoV-2 Spike, where at least three of the amino
acids are surface accessible on Spike. Most 1D-mimics (627 epitopes) were found in
humans. Additionally, 1D-mimics were found in non-human vertebrates (65 epitopes,
7 species), viruses (58 epitopes, 17 species), bacteria (18 epitopes, 7 species), parasitic protists
(12 epitopes, 2 species), plants (5 epitopes, 2 species), and invertebrates (4 epitopes,
2 species). Seemingly redundant 1D-mimics from the same protein may represent dif-
ferent epitopes and, thus, all 789 1D-mimics were kept at this step.

Structural representatives from the Protein Data Bank (PDB) were identified for 284 1D-
mimics based on their source sequence using the minimum cutoffs of 90% for sequence
identity and 20% for query cover. The 284 1D-mimics are represented by 7992 redundant
structures from 1514 unique PDB chains. From these, structure-based molecular mimics
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(termed as “3D-mimics”) were identified. Three-dimensional-mimics are 1D-mimics that
share structural similarity with SARS-CoV-2 Spike as determined by an RMSD of at most 1 A.
We found 20 3D-mimics for Spike. Unsurprisingly, as with the 1D-mimics, most 3D-mimics
were found for human proteins. Additionally, one 3D-mimic was found for Mus musculus
(mouse), Mycobacterium tuberculosis, Phleum pratense (Timothy grass), and respiratory syncytial
virus, respectively (Table 1). For each 3D-mimic, Epitopedia computes a Z-score based on
the distribution of RMSD values for all resulting hits for the input structure. This allows for
a comparative assessment of the quality of a hit, with respect to RMSD, to other hits for a
given run. Epitopedia also computes an EpiScore for each hit. EpiScore, calculated as (motif
length/RMSD), favors longer motifs over shorter ones with the same RMSD values.

Table 1. 3D-mimics found for SARS-CoV-2 Spike.

Motif Protein Species RMSD (A) Z-Score EpiScore = PDB_Chain
TQLPP Thrombopoietin Human 0.46 —1.34 10.87 1V7ZN_X
QLPPA SMYD3 protein Human 0.38 —1.42 13.16 5CCL_A
KNLRE Toll-like receptor 8 Human 0.87 —0.92 5.75 6WML_D
FITVEKG  Pollen allergen Phl p2 Phleum pratense 0.76 —1.03 7.89 1WHP_A
GEVEN Integrin beta 1 Human 0.63 —1.16 7.94 7NWL_B
HAPAT Activator of 90 kDa heat shock protein Human 0.74 ~1.05 6.76 7DME_A
ATPase homolog 1
YSTGS Argininosuccinate lyase Human 0.48 —1.31 10.42 1K62_B
EHVNN Casein kinase 2 alpha isoform Human 0.29 —151 17.24 2ZJW_A
NLLLQ DNA polymerase subunit gamma 1 Human 0.57 —1.22 8.77 5C51_A
LLQYG Ankyrin 1 Human 0.20 —1.60 25.00 IN11_A
LPDPS BRCA1-A complex subunit BRE Human 0.32 —1.48 15.62 6GVW_C
LPDPS Semaphorin 7a Human 0.84 —-091 5.95 3NVQ_A
DPSKP 60S ribosomal protein L3 Human 0.10 —1.70 50.00 6LU8_B
DPSKP Alanine and proline-rich secreted Mycobacterium 0.21 159 23.81 5ZXA_A
protem apa precursor tuberculosis
IAARD Talin Mus musculus 0.74 —1.05 6.76 6RIT_A
GNCDV  Tryptophan-tRNA ligase Human 0.91 —0.88 5.49 105T_A
SFKEE g?ﬁgfﬁ‘;‘l’g‘;t HPEEEREEEI I e 0.32 148 15.62 7MQA_SP
EELDK Kynureninase Human 022 —1.58 22.73 2HZP_A
ELDKY  Fusion glycoprotein FO Respiratory 0.12 —1.68 41.67 6EAE_F
syncytial virus
DKYFK Cytoplasmic FMR1-interacting protein 1 uman 0.14 —1.66 35.71 4N78_A
For the 402 human 1D-mimics where no PDB structural representative could be
identified for their source sequence, AlphaFold2 3D models were used. Three-dimensional
model representatives were found for 102 human 1D-mimics. Of these, 10 are predicted to
be AlphaFold2-3D-mimics (termed as “AF-3D-mimics”) based on the RMSD (Table 2).
Table 2. Human AF-3D-mimics for SARS-CoV-2 Spike.
Motif Protein RMSD (A) Z-Score EpiScore AlphaFold2 ID
NLLLQ Ankyrin 3 0.61 -1.18 820 ﬁ%zgir‘ SE.F T
LLQYG Olfactory receptor 10Q1 0.66 ~1.13 7.58 AF-QENGQL-F1-
TGIAV Phosphofructokinase 0.17 ~1.63 29.41 S
TGIAV Low affinity immunoglobulin gamma Fc region 017 -1.63 2041 AF-P31995-F1-
receptor II-b model_v1_A
KIQDSL Phosphorylase b kinase regulatory subunit beta 0.19 —1.61 31.58 31;;1%?333 O;fl_
KIQDSL  Long-chain-fatty-acid-CoA ligase 5 0.37 ~143 16.22 AF-QULCE-FI-
VYDPL Actin-binding protein IPP 0.17 ~1.63 29.41 AE-QOYS73 F1-
EELDK Tight junction-associated protein 1 0.20 —1.60 25.00 ﬁl;h%?] E?q&m_
EELDKY  Keratin, type I cytoskeletal 18 0.22 ~1.58 27.27 AR E
ELDKY Tropomyosin alpha-3 chain 0.18 ~1.62 27.78 AF-P06753-F1-

model_v1_A
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The 3D- and AF-3D-mimics (hereinafter referred to as “molecular mimics”) mapped to
a few clusters on Spike. Ten molecular mimics were singletons, six overlapping molecular
mimics were found as pairs in three small clusters, and the remaining 14 were found in
three larger clusters with at least four overlapping molecular mimics (Figure 1a). The
largest cluster, with six molecular mimics, was also adjacent to three additional molecular
mimics. All mimics are displayed on the surface of Spike’s functional trimer, but the large
cluster centered around LLLQY is in a deep pocket and is an unlikely antibody binding
epitope in this conformation (Figure 1b). Only one molecular mimic is predicted for the
RBD, despite RBD being an immunodominant region in Spike to which many antibodies
naturally bind [47]. This molecular mimic (HAPAT) corresponds to the activator of 90-0kDa
heat shock protein ATPase homolog 1 (AHA1). Two molecular mimics are predicted near
the 51/S52 boundary that is a site for proteolytic cleavage [48]. The first is YSTGS from
argininosuccinate lyase. The second is EHVNN from casein kinase 2 alpha (CK2). CK2
has been found to play an important role in SARS-CoV-2 infection [49]. Activation of
CK2 is promoted by SARS-CoV-2 infection [50] and inhibiting CK2 has been suggested as
a therapeutic strategy against both SARS-CoV and SARS-CoV-2 [49]. If a cross-reactive
antibody intended for SARS-CoV-2 can interact with CK2, it may impact its activity and
perhaps the antibody can stabilize conformations that makes CK2 more active, but these
are speculations and more work along these lines is needed.

a
Py i
! I e B
4 } R | H e b v 4
FI NTD H rBD  Herob—1- s2
I Al | I |
129 337 348 526 536 594 S1/S2 710 1233 1273
b c

Occurrence of Pentapeptides in Reference Human Isoforms

Occurrences

EELDKYK

Figure 1. Molecular mimicry with autoimmune potential across SARS-CoV-2 Spike. (a) Overview
of molecular mimics (solid arrow: 3D-mimic, dashed arrow: AF-3D-mimic) for Spike in the linear
sequence showing Spike domains (NTD: N-terminus domain of 51 subunit (green), RBD: receptor
binding domain of S1 subunit (orange), CTD: C-terminus domain of 51 subunit (cyan), 52: 52 domain
(purple)) as predicted by Pfam [51] based on the NCBI reference sequence (YP:009724390.1). The
boundary between the 51 and S2 subunits is indicated at S1/S2. (b) Surface representation of Spike
(PDB id: 6XR8 [23]) colored by subunit (pink, beige, light blue) with residues colored by number
of occurrences in a molecular mimic (blue: 1, green: 2, purple: 3, orange: 4 or more). Structural
visualization generated with PyMOL 2.5.0 [30]. (c) The number of occurrences of the sequence motif
in human RefSeq Select isoforms arranged in order from the N-terminus to the C-terminus and
colored by predominant secondary structure element (magenta: x-helix, yellow: -sheet, blue: coil)
based on Spike PDB id 6XR8 chain A.

To further evaluate the autoimmune potential of the human mimics, we identified all
occurrences of the motifs in the human RefSeq Select proteome [44]. The pentapeptides
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from the molecular mimicry regions are found from four to 33 times in human proteins
(Figure 1c, Table 57). The human protein thrombopoietin that includes the 3D-mimic TQLPP
(Table 1) also has an occurrence of the sequence mimic LPDPS (Table S7). Further, another
protein family that occurs twice for the same pentapeptide is tropomyosin. Tropomyosin
alpha-3 is an AF-3D-mimic (Table 2), and tropomyosin alpha-1 has one occurrence of
the same pentapeptide (ELDKY). The same motif, ELDKY, is a 3D-mimic in the fusion
FO glycoprotein of respiratory syncytial virus (Table 1). Altogether, based on the known
epitopes in IEDB, heterologous immunity is rare with Spike while regions of autoimmune
potential form hotspots.

To further evaluate molecular mimicry and, indirectly, autoimmune potential, we per-
formed a deeper investigation of two motifs, TQLPP and ELDKY, that mapped to positions
22-26 (small cluster) and 1151-1155 (largest cluster) in Spike, respectively. For TQLPP, a 3D-
mimic with human thrombopoietin was identified. The only structure in our dataset where
a 3D-mimic was located at an antibody interface was for human thrombopoietin (hTPO).
Thrombopoietin is a cytokine that regulates platelet production [52] (Figure 2). Interestingly,
COVID-19 patients often suffer from thrombocytopenia, characterized by low platelet lev-
els [53], which correlates with an almost 5-fold increase in mortality [54]. Thrombocytopenia
in COVID-19 patients resembles immune thrombocytopenia (ITP), where hTPO and/or its
receptor are mistakenly targeted by autoantibodies leading to reduced platelet count [55].
Treatments with hTPO Receptor Agonists improve thrombocytopenia in both general [56]
and COVID-19 [57] patients, suggesting the mistaken targeting occurs before hTPO activates
the hTPO receptor. ITP is a heterogenous disease caused by numerous mechanisms. In ITP
patients, about half have antibodies against the major platelet glycoproteins while 28.1%
have autoantibodies against hTPO, 21.8% against the hTPO receptor, and 6.8% against the
hTPO-hTPO receptor complex. While autoantibodies often seem to play a role in ITP, other
mechanisms are possible [55]. It has been suggested that autoimmunity is a likely mechanism
for ITP in COVID-19 patients [58]. For ELDKY, we identified one 3D-mimic in the fusion
FO glycoprotein of respiratory syncytial virus (Table 1) and two AF-3D-mimics from keratin
type I cytoskeletal 18 and tropomyosin alpha-3 (Table 2). Additional 3D-mimics partially over-
lapping with ELDKY were identified. The ELDKY motif in Spike is part of a highly reactive
epitope [59] found in an o-helix located towards the C-terminus. This motif is conserved
across beta-coronaviruses and can bind an 52P6 antibody effective against all human-infecting
beta-coronaviruses [29]. Altogether, the numerous molecular mimics of the ELDKY motif
suggest a potential for both protective and autoimmune cross-reactivity.
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Figure 2. The hTPO pathway to induce platelet production. Simplified JAK-STAT signaling pathway
in megakaryocytes where hTPO activates the TPO receptor and triggers signaling cascades that
stimulate platelet production [60,61]. Created with BioRender.com (accessed on 12 August 2021).
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3.1. Molecular Mimicry between Spike and Thrombopoietin Mediated through TQLPP

The shared five-amino acid motif, TQLPP (Figure 3a), is located on the surface of
Spike’s N-terminal Domain (NTD) (Figure 3b,c), whereas it is found at the interface with a
neutralizing antibody in hTPO [62] (Figure 3d). The TQLPP motifs from the two proteins
are found in coil conformations but exhibit high structural similarity (Figure 3e,f). On Spike,
the motif is adjacent to the NTD supersite that is known to be targeted by neutralizing
antibodies [63]. We hypothesized that COVID-19 may trigger the production of TQLPP-
specific antibodies against this epitope that can cross-react with hTPO. In the absence of
Spike TQLPP antibodies, we used molecular modeling and machine learning to investigate
the binding of the neutralizing mouse Fab antibody (TN1) from the hTPO structure [64] to
the Spike TQLPP epitope.

a
Spike 20 TREQLPPAYTNSFTRGVYY
hTPO 129 LGEQLPPQGRTTAHKDPNA
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.
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Figure 3. Structural mimicry between a TQLPP motif in SARS-CoV-2 Spike and an antibody binding
epitope in thrombopoietin. (a) Pairwise sequence alignment for the TQLPP motif in the epitope for
human thrombopoietin (hTPO, IEDB Epitope ID: 920946) and Spike, amino acids colored by Taylor [65]
for sites with >50% conservation in the amino acid property [66]. The region of molecular mimicry is
highlighted in the red dashed box. Surface representation of Spike from (b) the top and (c) the side,
with Spike trimer (PDB id: 6XR8 [23]) colored by subunit (pink, beige, light blue) and red indicating the
location of the TQLPP epitope fragment, illustrating the surface accessibility of TQLPP and highlighting
the location of RDB (dashed oval) and NTD (dashed circle). (d) Surface representation shown for hTPO
(gray, PDBid: 1V7M [62]) and its TN1 antibody (blue) with the TQLPP motif (red) at the interface. (e) TM-
align generated structural alignment for TQLPP in Spike (beige) and hTPO (gray), with RMSD = 0.61 A.
(f) Violin plots of RMSD values resulting from the comparison of the TQLPP region in 20 Spike trimer
structures (60 chains) vs. TQLPP in two hTPO structures (PDB ids: 1V7M and 1V7N, chain X for
both [62]). Statistical analysis with Mann-Whitney U reveals no statistical significance between the
sets. Box plots, bounded by the 1st and 3rd quartiles, show median value (horizontal solid bold line),
vertical lines (whiskers) represent 1.5 x IQR, while outliers are marked as black points. For further
details, see methods. Alignment representations were generated with Jalview 2.11.2.2 [66] and structural
visualizations were generated with PyMOL 2.5.0 [30].
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To construct a composite model of Spike and TN1 Fab, a full-length glycosylated
model of the Spike trimer, based on PDB id 6VSB [27] with the first 26 residues (includ-
ing the TQLPP motif) reconstructed [67], was coupled to three copies of TN1 Fab from
the structure of hTPO complexed with TN1 Fab [62]. The Spike-TN1 complex was en-
ergy minimized and equilibrated with molecular dynamics (MD) simulation. The final
model of the Spike trimer complexed with three TN1 Fab antibodies (Figure 4a,b) shows
that the TQLPP epitope is accessible to the antibody and the adjacent glycan chains do
not shield the antibody-binding site (Figures 4c and S4). To confirm the conformation
of TQLPP, we calculated the RMSD for TQLPP regions from 20 Spike trimer structures
(60 chains) from PDB, plus the modeled states (before and after equilibration, and upon
200 ns MD simulation) in an all-vs-all manner (Figure S1, Table S2), paying particular
attention to the orientation (up or down) of the RBD. For 1953 pairwise comparisons,
1306 had an RMSD < 1 A and 32 had an RMSD > 2 A. Three groups were compared using
a Mann-Whitney U test based on RBD state: (1) both down (N = 666, mean = 0.78 A,
median = 0.66 A), (2) 1down 1 up (N =962, mean = 0.81 A, median = 0.73 A), and (3) both
up (N = 325, mean = 0.85 A, median = 0.78 A). Here, comparisons between groups 1
and 2 (p-value = 0.030) and 1 and 3 (p-value = 0.003) were significantly different, while
that between groups 2 and 3 (p-value = 0.055) was not (Figure 52). The reconstructed
TQLPP region falls within the conformational ensemble from PDB, suggesting that the
modeled representation of TQLPP is valid. Furthermore, the Spike-TN1 complexes (with
TN1 from PDB ids 1V7M and 1V7N) and hTPO-TN1 complexes (PDB ids 1V7M and 1V7N)
are all stable and have comparable binding affinities, with averages ranging from —9.2
to —9.56 kcal/mol (Table S4). The predominant intermolecular contacts for these four
complexes are between polar-apolar and apolar-apolar residues (Table 54).

To evaluate the molecular mimicry between the antibody interface areas, we performed
MD simulations of hTPO and Spike NTD with TQLPP complexed with the TN1 antibody.
The hydrogen bonds were calculated between the TN1 antibody with hTPO and Spike,
respectively, from the last 50 ns of both trajectories (Figure S3). Both the Spike-TN1 and the
hTPO-TN1 complexes showed similar contact areas (Figure 53). Notably, critical hydrogen
bonds were observed for residues Q and L in the TQLPP motif with TN1 for both Spike
and hTPO (Figures 4d,e and S3).

To further support our findings, we evaluated the antibody-antigen interface comple-
mentarity with MaSIF-search, a recent tool that uses deep learning techniques [40], on a
pair of circular surface regions (patches) from an antibody-antigen complex. MaSIF-search
produces a score associated with the confidence of binding when forming a stable complex.
We refer to this score here as the binding confidence score, where lower scores indicate a
higher probability of protein-protein binding. The results show that Spike-TN1 complexes
have a better (lower) binding confidence score than random complexes and that complexes
including Spike from PDB id 7LQV [63] have three of the four best binding confidence
scores (0.86, 1.05, 1.42) and may bind to TN1 as well as, or better than, hTPO (Figure 4f,
Tables S5 and S6). Notably, in 7LQV, COVID-19 antibodies bind to Spike at the NTD
supersite [63]. These results strongly argue for the possibility of cross-reactivity between
Spike and hTPO driven by the molecular mimicry of TQLPP (Figure 4).

The human proteome contains nine additional occurrences of the TQLPP motif. Two
of these motifs, found in Hermansky-Pudlak syndrome 4 protein and ALG12 (Manno-
syltransferase ALG12 homolog), have been associated with thrombosis and hemostasis
disorder [68]. To evaluate structural mimicry between Spike-TQLPP and all human-TQLPP
motifs, we utilized AlphaFold2 3D models [25,45] (Figure S5). The closest structural
mimicry region is in hTPO (RMSD = 0.39 A), followed by coiled-coil domain-containing
protein 185, Fc receptor-like protein 4 (FCRL4), and far upstream element-binding pro-
tein 1 (Figure S5). These results indicate that TQLPP motifs have similar conformations
(Figure S1), strengthening the notion of structural mimicry. We investigated the potential
cross-reactivity of an antibody targeting TQLPP in these proteins, after discarding six that
display the TQLPP motif in low confidence or unstructured regions. The remaining three
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proteins, NEK10 (ciliated cell-specific kinase), FCRL4, and ALG12 were complexed with
TN1 (Figure 5). The binding confidence score for NEK10-TN1 (1.44) is comparable to the
hTPO-TN1 complex (Figure 5). NEK10 regulates motile ciliary function responsible for
expelling pathogens from the respiratory tract [69]. Dysfunction of NEK10 can impact
mucociliary clearance and lead to respiratory disorders such as bronchiectasis [69]. Based
on our results, it is plausible that the function of NEK10 and thus mucociliary clearance
can be affected by cross-reactive Spike antibodies targeting TQLPP.

-
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Figure 4. Binding of SARS-CoV-2 Spike to TN1 Fab antibody. Equilibrated structure (1 ns) of the
modeled TN1 Fab antibody (blue, PDB id: 1V7M) complexed with Spike trimer model (pink, beige,
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i



Viruses 2022, 14, 1415

12 0f 20

light blue) shown from (a) the side and (b) the top, with TQLPP shown as red spheres. (c) The
Spike NTD (beige) and TIN1 Fab complex used for MD simulations (200 ns), with adjacent glycans
at N17 and N74 highlighted in purple. The representative amino acids contributing to hydrogen
bonds (dashed lines) during the last 50 ns of simulations for the (d) hTPO-TN1 and (e) Spike-TN1
complexes are highlighted as cyan sticks. (f) Violin plot showing the distribution of the MaSIF binding
confidence scores for randomly selected patch pairs (blue), the interacting region of Spike-antibody
(yellow) and hTPO-TN1 (gray) complexes, and for modeled Spike-TN1 complexes across 40 Spike
configurations (red). Statistical analysis with Mann-Whitney U shows that all pairwise comparisons
except for Spike-Ab and hTPO-TN1 are significantly different after Bonferroni correction (Table S6).
Box plots, bounded by the 1st and 3rd quartiles, show median value (horizontal solid bold line),
vertical lines (whiskers) represent 1.5 x IQR, while outliers are marked as black points. For further
details, see methods. Structural visualizations were generated with PyMOL 2.5.0 [30] and VMD
1.9.3 [31].

2.5

ALG12
20 -

1.6

Binding Confidence Score
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(11 7
8se patch B TQLPP-motif

Figure 5. Predicted interaction patches between TN1 Fab antibody (PDB id: 1V7N) and the TQLPP
motif. The best (lowest) binding confidence score is shown for Spike (PDB id: 7LQV, chain A, beige),
hTPO (PDB id: 1V7N, chain X, gray), NEK10 (Uniprot: Q6ZWHS5, pink), ALG12 (Uniprot: Q9BV10,
purple), and FCRL4 (Uniprot: Q96P]5, light blue). For all, red indicates the TQLPP motif and dark
blue dots represent the surface points included in the predicted MaSIF patches.

3.2. Molecular Mimicry between Spike, RSV, and Many Human Proteins Mediated through ELDKY

Another motif, ELDKY, is in a region with several partially overlapping pentamer
motifs including three 3D-mimics and three AF-3D-mimics (Figure 6a). For the 3D-mimics,
two are from the human proteins kynureninase (hKYNU; motif: EELDK) and cytoplasmic
FMRI1-interacting protein 1 (hCYFIP1; motif: DKYFK), while the last is found in the
fusion FO glycoprotein of respiratory syncytial virus (RSV; motif: ELDKY). For the AF-
3D-mimics, the motif is found in human tight junction-associated protein 1 (hTJAP1;
motif: EELDK), keratin type I cytoskeletal 18 (hkRT18; motif: EELDKY), and tropomyosin
alpha-3 (hTPM3; motif: ELDKY). In Spike, the ELDKY motif is in a stem helix region
near the C-terminus. This motif is well-conserved across beta-coronaviruses and is found
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in a highly reactive epitope [59] that has been shown to bind to a broadly neutralizing
antibody (S2P6) effective against all human-infecting beta-coronaviruses [29]. The S2P6
antibody (from PDB id 7RN]J [29]) forms a stable complex with the Spike helix, with
an average binding affinity of —9.52 + 0.26 kcal/mol (Table S4). Here, the predominant
intermolecular contacts are formed between charged-apolar, polar-apolar, and apolar-apolar
residues (Table 54). In COVID-19, stronger antibody responses to the epitope containing
the ELDKY motif have been recorded for severe (requiring hospitalization) vs. moderate
cases, while fatal cases had a weaker response than surviving cases [16]. A synthetic
epitope containing the ELDKY motif has also been shown to elicit antibody production
following COVID-19 immunization [70]. Together with the 3D mimics identified here,
these results suggest interesting possibilities for the ELDKY motif from the perspective of
both protective immunity and an autoimmune response. First, while not an example of
molecular mimicry but evolutionary conservation across beta-coronaviruses, prior exposure
to an endemic cold-causing coronavirus (ex. HCoV-OC43) could result in the production of
a broadly neutralizing antibody against an epitope containing the ELDKY motif that would
be effective against SARS-CoV-2 infection, which could result in milder or asymptomatic
infection. Further, a protective effect due to molecular mimicry is suggested by the 3D-
mimic identified for the fusion F0 glycoprotein of RSV, a common virus that infects most
children in the United States by the time they are 2 years old [71], where antibodies against
the ELDKY-containing epitope in RSV may be effective in combatting SARS-CoV-2 infection.
In contrast, the potential for an autoimmune response against this motif is suggested by its
presence in both two human 3D- and AF-3D-mimics (Figure 6).

There are six additional occurrences of the ELDKY motif in the human proteome
(Figure S6). Structural similarity between Spike-ELDKY and human-ELDKY was assessed
based on experimentally determined structures (if available) or AlphaFold2 3D models.
RMSDs for the ELDKY motif ranged from 0.12-0.20 A for 5 of the structures, with one
hit being an outlier at an RMSD = 0.46 A. In all instances, the ELDKY motif is found in
an «-helix, resulting in the high degree of structural similarity found for this motif across
proteins and bolstering the possibility for molecular mimicry. The ELDKY occurrence with
the largest RMSD (0.46 A) is found in the leucine-zipper dimerization domain of cGMP-
dependent protein kinase 1 (PRKG1) (Figure S6) whose phosphorylation targets have roles
in the regulation of platelet activation and adhesion [72], smooth muscle contraction [73],
and cardiac function [74]. Additionally, PRKG1 regulates intracellular calcium levels via a
multitude of signaling pathways [75]. The ELDKY motif is also found in tropomyosin alpha-
1 (TPM1), a homolog of the AF-3D-mimic tropomyosin alpha-3 (TPM3). Tropomyosins
(TPMs) are involved in the regulation of the calcium-dependent contraction of striated
muscle [76]. TPM1 is a 1D-mimic but due to a discrepancy in IEDB it was not identified
as a 3D-mimic, although there is a high structural similarity between ELDKY in Spike
and ELDKY in TPM1 (Figure S6). A previous study identified a longer match with 53%
sequence identity between Spike and TPM1 that included the ELDKY motif [77]. However,
in a separate search for structural similarity, Marrama and colleagues were unable to
identify structural mimicry at the ELDKY motif due to using a structure for Spike lacking
the motif, leading to a conclusion against molecular mimicry contributing to myocarditis
in COVID-19 [77], in contrast to our work. These results illustrate the importance of
structural representative selection when performing structural comparisons and in taking
both sequence and structural similarity together into account when performing molecular
mimicry searches, as we have done. For PRKGI, cross-reactive Spike antibodies targeting
ELDKY may react with the motif, affecting PRKG1’s role in the regulation of platelet
activation and adhesion and thus providing another avenue for thrombocytopenia or other
blood clotting disorders. Antibodies that cross-react with PRKG1 may also alter calcium
levels, thus affecting TPM function. For TPM1, cross-reactive Spike antibodies targeting
the ELDKY motif may result in coronary heart disease, as low-level autoantibodies against
this protein have been associated with increased risk for this condition [78] and TPM1
and TPM3 are cardiac disease-linked antigens [77]. Cardiac disease, including myocardial
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injury and arrhythmia, can be induced by SARS-CoV-2 infection [79] and myocarditis has
been found to develop in some individuals following vaccination against SARS-CoV-2 [80].
Furthermore, COVID-19 has been found to increase the risk and long-term burden of
several cardiovascular diseases, with COVID-19 severity being proportionate to increased
risk and incidence [81].
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Figure 6. Structural mimicry between an ELDKY motif in SARS-CoV-2 Spike and epitopes in six
other proteins. (a) Sequence alignment between SARS-CoV-2 Spike and the epitopes containing
the 3D-mimicry motif for human kynureninase (hKYNU, IEDB Epitope ID: 1007556), respiratory
syncytial virus fusion FO glycoprotein (RSV FO, IEDB Epitope ID: 1087776), human cytoplasmic
FMR1-interacting protein 1 (hCYFIP1, IEDB Epitope ID: 1346528), human tight junction-associated
protein 1 (hTJAP1, IEDB Epitope ID: 1016424), human keratin type I cytoskeletal 18 (hKRT18, IEDB
Epitope ID: 1331545), and human tropomyosin alpha-3 (hTPM3, IEDB Epitope ID: 938472). Residues
in the molecular mimicry motifs are colored by Taylor [65]. The extended molecular mimicry region
is highlighted by the orange dashed box. (b) Surface representation of Spike (PDB id: 6XR8) colored
by subunit (beige, pink, light blue) with ELDKY motif indicated in red. Surface representation of
proteins (gray) with full or partial 3D-mimics of the ELDKY motif (red): (c) hKYNU (PDB id: 2HZP),
(d) RSV FO (PDB id: 6EAE), (e) hCYFIP1 (PDB id: 4N78), (f) hTJAP1 (Uniprot: Q5JTD0), (g) hKRT18
(Uniprot: P05783), (h) hTPM3 (Uniprot: P06753). Alignment representations were generated with
Jalview 2.11.2.2 [66] and structural visualizations were generated with PyMOL 2.5.0 [30].

4. Conclusions

We find that molecular mimics with high autoimmune potential are often found in
clusters within Spike. Some clusters have several molecular mimics whose motifs are also
found multiple times in the human proteome. Molecular mimics located in x-helices tend
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to have high structural similarity as can be expected based on the regular conformation
of the helix, but also some molecular mimics in coil regions are remarkably similar. Our
results on the TQLPP motif, located in a coil region, suggest a worrisome potential for
cross-reactivity due to molecular mimicry between Spike and hTPO involving the TQLPP
epitope that may affect platelet production and lead to thrombocytopenia. Further, cross-
reactivity with other TQLPP-containing proteins such as NEK10 cannot be dismissed based
on our in-silico results, but in-vivo validation is required. The presence of neutralizing
antibodies against peptides with TQLPP in COVID-19 patients” convalescent plasma [82],
particularly in severe and fatal cases [16] adds credence to our result. It is also interesting
to note that antibodies against a TQLPP-containing peptide were found in the serum of pre-
pandemic, unexposed individuals [83]. Prior infection with a different human coronavirus
cannot explain the cross-reactivity observed in the unexposed group because TQLPP is
situated in a region with low amino acid conservation [83]. Rather, this suggests the
presence of an antibody for an unknown epitope with an affinity for the TQLPP region in
Spike. The COVID-19 vaccines designed to deliver the Spike protein from SARS-CoV-2,
like COVID-19 infection itself, can cause thrombocytopenia [53,84-86] and it is plausible
that cross-reactivity can titrate the serum concentration of free h\TPO. The TQLPP motif is
changing in the SARS-CoV-2 variants and evolutionary trends of the motif suggest it may
not remain in Spike. RMSD values between wild-type TQLPP and TQLPP in five variants
of concern range from 0.21-1.78 A (Table S3). In the Gamma variant, a P265 mutation has
changed TQLPP to TQLPS and two additional mutations are located just before the motif
at L18F and T20N in the NTD supersite, while the Delta variant is mutated at T19R [87].
The first Omicron variant (21K or BA.1), however, has no amino acid substitutions near
the TQLPP motif, while a closely related Omicron variant (21L or BA.2) contains a 9
nucleotide deletion that results in the loss of 60% of the TQLPP motif (L24-, P25-, P26-) [87].
Neutralizing antibodies targeting the NTD supersite may rapidly lose efficacy against the
evolving SARS-CoV-2. While the current COVID-19 vaccines remain safe and efficacious,
we postulate that protein engineering of the TQLPP motif and possibly the NTD supersite
for future COVID-19 vaccines may reduce the risk for thrombocytopenia and improve
long-term vaccine protection against evolving variants.

We illuminated the cross-reactivity mediated through the ELDKY motif between
Spike and PRKG1, TPM1, and TPM3. While PRKGI1 provides a connection between blood
clotting disorders and cardiac complications, it has a larger RMSD than other ELDKY motifs.
ELDKY motifs in o-helices have high similarity and make good candidates for molecular
mimicry. We find ELDKY in the homologous proteins TPM1 and TPM3 suggesting a
conserved importance for structure and function. In contrast to TQLPP, the ELDKY motif
is highly conserved among beta-coronaviruses [29] and there are presently no SARS-CoV-
2 variants with mutations in this region [87]. Further, while the existence of a broadly
neutralizing antibody against an epitope containing ELDKY [29] illustrates the potential
of this motif as a pan-coronavirus vaccine target, the viability may be diminished by the
possibility of autoimmune cross-reactivity due to this motif.

We present an extended application of Epitopedia [22] to identify molecular mimicry
between Spike and known epitopes. We do not attempt to discover all possible molecular
mimicry epitopes for Spike. Epitopedia is only capable of predicting molecular mimicry
for linear epitopes with positive assays that have been deposited in IEDB [19] and cannot
predict molecular mimicry de novo. By design, Epitopedia does not predict molecular
mimicry for conformational epitopes. Epitopedia relies primarily on structures available in
PDB [24] when assessing structural similarity between 1D-mimics and the corresponding
region on SARS-CoV-2 Spike. This can result in the nonidentification of potentially genuine
molecular mimics if they are only present as 1D-mimics but have yet to have their structure
experimentally determined. Moreover, the composition of the PDB is biased towards
proteins that crystallize well, thus a molecular mimic can additionally go nonidentified if
the 1D-mimic is found in an intrinsically disordered protein region. Proteins are dynamic
molecules and the structures present in PDB may only represent a fraction of a protein’s full
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conformational ensemble [88]. Further, IEDB and PDB both have a biased data composition
in that more well-studied proteins are likely to be the ones whose functions and structures
are published while other proteins are underrepresented. Lastly, it is important to be
mindful that Epitopedia output is strictly a prediction and can have false positives. It is
therefore of utmost importance to follow up on the results with both literature searches
and experimental validation.

We highlight two epitopes of particular interest in our investigation of molecular
mimicry in SARS-CoV-2. For one epitope, we find the TQLPP motif and an interacting
antibody with which we perform a computational investigation into antibody binding
properties of the tentative molecular mimic. The results show that the same antibody may
be able to bind TQLPP-containing epitopes in different proteins and that the TQLPP motif
tends to be found in similar conformations despite being in a loop or coil. For the other
epitope, we find the ELDKY motif with potential for protective immunity and with high
structural similarity. High structural similarity can be expected for «-helical structures,
and, if the sequence is identical, molecular mimicry results. Altogether, these are examples
of molecular mimicry that may play a role in the autoimmune or cross-reactive potential
of antibodies generated by the immune system against SARS-CoV-2 Spike, but it must
be noted that these results have not been experimentally verified. Still, computational
investigations into the autoimmune potential of pathogens like SARS-CoV-2 are important
for therapeutic intervention and when designing vaccines to avoid potential predictable
autoimmune interference.
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