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initiative that US Secretary of Energy Ste-
in 2010."" The
Hydrogen Earthshot is necessary to

ven Chu launched
create a hydrogen economy, but it is
not sufficient.

Second, the R&D should be integrated
with a private-public partnership for tech-
nology demonstration programs to
address economic, regulatory, supply
chain, and policy considerations and
thereby establish a credible de-risking
approach to attract private investors.

Third, federal and/or state authorities
must adopt policies to support a
hydrogen market either by a charge on
GHG emissions or via clean energy stan-
dards that involve GHG-free H; as an op-
tion, or a combination of the two. These
policies should also include the enabling
market creating policies for solid carbon
produced via methane pyrolysis. Further-
more, governments should use their pur-
chasing power to create a demand for
GHG-free H, and, most importantly,
consider using a reverse auction to foster
a globally competitive supply chain in the
private sector.

Finally, despite the strong interest in
green hydrogen from electrolysis, the
economic reality suggests that there
could be a significant fraction of GHG-
free hydrogen originating from natural
gas. Therefore, a holistic hydrogen
strategy should also be aligned with a
national carbon management plan,

which should include an infrastructure
for carbon capture, transport, and
sequestration derived from processes
yielding either gaseous (SMR) or solid
(pyrolysis) carbon co-production.
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The electric power and transportation
sectors are the two largest contributors
to greenhouse gas emissions in the U.S.
and in most other nations. A critical
path toward carbon neutrality relies on
decarbonizing electric power genera-
tion and simultaneously electrifying a
major portion of the transportation
sector. If successful, this path will funda-
mentally change the way energy is con-
verted, delivered, and utilized for a sus-
tainable society.

This piece takes an “electric grid-
centric” viewpoint to directly address
infrastructure changes that have long
lead times and often pose public
acceptance issues. A key challenge in
the ambitious carbon neutral transition
lies in the scale and speed of accom-
plishing  this transformation. We
address the following questions that
underpin this global endeavor to
grapple with climate change. Is today’s
electric infrastructure ready to facilitate
such an ambitious decarbonization
effort? If not, how should investments
be prioritized to leverage feedback
from vehicle electrification and further
expand the electric infrastructure? This
piece summarizes key challenges and
opportunities in the electric grid sector
as we make an ambitious transition to-
ward carbon neutrality. We have written
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with two audiences in mind: (1) decision
makers from government agencies and
related stakeholders (e.g., Regional
Transmission Organizations) and (2)
climate challenge-aware young re-
searchers who wish to make an impact
in the electric grid sector. We argue
that there exists a feedback loop be-
tween the electricity and transportation
sectors. Whereas the electricity sector
should plan for an aggressive electri-
fied charging demand from the trans-
portation sector, mobile batteries in
cars can also be viewed as an important
resource of energy during times of
stressed grid conditions. How to design
a coordinated incentive and opera-
tional architecture between these two
sectors remains a key intellectual chal-
lenge for the research and policy-mak-
ing communities.

Is today’s electric grid

infrastructure ready?

Based on a study by the U.S. Energy In-
formation Administration, the levelized
cost of electricity (with applicable tax
and subsidies) of onshore wind and
solar photovoltaic generation has
reached economic parity with the natu-
ral gas combined cycle." While this is
very encouraging news for the argu-
ment of further decarbonizing by ad-
dressing the electricity and mobility
sectors, it remains largely unclear
regarding the readiness of today’s elec-
tric grid infrastructure in facilitating
such an ambitious decarbonization

effort.

The discussions are motivated through
a representative example. There has
been increasing evidence on the
impact of uncoordinated electric
vehicle charging on the electric distri-
bution grid such as transformer over-
loading at a modest level of EV pene-
tration.? This is further exacerbated by
the more stringent limits imposed by
the electric distribution grid protection
design, which assumes one-way power
flow and very distinctive electric current
patterns that could be used to separate
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normal from faulty conditions.? With
aggressive vehicle electrification goals,
there will be a lack of hosting capacity
of today's distribution networks in
handling massive distributed energy re-
sources and EVs. Economic incentives
and smart scheduling could offset the
peak-to-valley ratio; however, even in
the most optimistic case (i.e., a flat-
tened total load curve), the limit of the
substation transformers will still likely
be exceeded. This will be further bottle-
necked by protective relay settings that
are not tuned for two-way power flow.?

At the bulk transmission power system
level, challenges exist regarding how
to control and monitor dynamic swings
induced by decarbonization and elec-
trification. For example, there is
increasing evidence in many regions of
transient  subsynchronous  oscilla-
tions.”> This is particularly challenging
because it illustrates that even with
installation of modern power elec-
tronics controllers and state-of-the-art
transmission hardware technologies,
there are still many challenges in real-
time operation of large renewable gen-
eration, especially when they are far
away from the load centers.

The above engineering examples illus-
trate  how increasing interdepen-
dencies between mobility, renewable
energy, and the electric grid infrastruc-
ture will render today’s operation and
design of the electric grid ill-prepared
for the ambitious decarbonization
goals. There are many more open ques-
tions. (1) How do we tap into the large
wind resources, which may be far away
from load centers, by using improved
long-distance transmission? (2) How
do we replace conventional generators
with low carbon energy resources to
provide all the grid services because
of their differing characteristics? (3)
How do we create scalable market
mechanisms to ensure efficient and reli-
able electricity services with human-in-
the-loop grid edge-level resources? (4)
How do we value and protect data
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and computation assets for a carbon-
neutral  electricity and  mobility
infrastructure?

In the next section, we provide our
comments about how to reinforce the
infrastructure for such an ambitious de-
carbonization effort.

How to prioritize electric grid
expansion for carbon-neutral
transition?

Recognizing the limitations of today’s
electric grid infrastructure in support
of an ambitious carbon-neutral transi-
tion, we argue that a holistic approach
will be needed to align the societal
choices, business incentives, and tech-
nological innovations in order to priori-
tize expansion of the electric infra-
structure system. While logistically
presented in a separate manner, these
aspects are fundamentally intertwined
and will synergistically contribute to
enabling a more sustainable electric
grid. There are indeed many experi-
ences that can be learned from regions
with deeper penetration of renew-
ables;® however, to the best of our
knowledge, how to reliably and cost-
effectively integrate massive renew-
ables with large amount of vehicle elec-
trification at a continental scale remains
an open question.” It is our sincere
hope that this manuscript will generate
more interest and attention to the
“infrastructure” aspect of the climate
solution.

We summarize the key research chal-
lenges below and substantiate them in
the rest of the article.

1. Whereas conventional power
grid dynamics are primarily domi-
nated by inertia-driven physical
interactions, carbon-neutral po-
wer grid dynamics will be primar-
ily governed by the algorithmic
control of power electronic in-
verters. What will be the proper
algorithmic control protocol that
would ensure the physical and cy-
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ber security of a large-scale sto-
chastic dynamic system?

. Whereas reliability performance

of conventional power grids is
conventionally achieved by diver-
sification of location and technol-
ogies of generators with firming
capacity (e.g., coal and natural
gas), a carbon-neutral power
grid will be supplied predomi-
nantly by generation that does
not exhibit firming capacity.
What will be the theory and
cost-risk analysis of reliability per-
formance of a power grid with
deepening penetration of inter-
mittent supply and demand?

. From the market design perspec-

tive, what will the pricing
construct be for uncertainty and
flexibility in carbon-neutral elec-
tricity systems? A market for car-
bon-neutral electricity needs to
charge resources that create un-
certainty and reward resources
that mitigate uncertainty by
providing flexibility. Markets for
flexibility and market clearing
mechanisms that account for un-
certainty will go a long way to-
ward mobilizing demand side re-
sources and edge technologies
to provide reserves and accom-
modate renewables.

. As the key resource that brings

electric and transportation net-
works closer, mobile EVs require
special attention. How could
one imagine and construct a mar-
ket for EV storage? Potentially,
cars can travel to a location that
has an outage and provide it
with power. Such interaction
puts an uber-like market on top
of an electricity market.

. At the foundational level, it re-

mains far from clear what the
proper architecture will be for
the grid infrastructure that sup-
ports carbon-neutral electricity
and mobility. It remains open
research questions how to prop-
erly conceptualize, model, and
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analyze the interdependencies
across multiple functional layers
for such a complex power infra-
structure ecosystem.

The electrification of the transportation
sector undoubtedly requires attention
to a wide range of transition, including
heavy-duty, air traffic, as well as light-
to medium-duty vehicles.

Whereas the primary motivator driving
this change comes from decarboniza-
tion, the possible paths toward decar-
bonization may vary from region to
region. We address some of the com-
mon infrastructure challenges that arise
from decarbonization. As a particular
subset of research focus, a distributed
approach to realizing the goal of decar-
bonization is of particular interest in this
article. Therefore, we will highlight
some of the unique research challenges
and opportunities in distributed energy
resources as society tackles deep
decarbonization.

Starting from the infrastructure hard-
ware perspective, substantial invest-
ments will be needed to expand the
bulk transmission grid infrastructure in
order to allow reliable delivery of abun-
dant renewable resources to load cen-
ters. At the more local level, substantial
investments are needed to modernize
the control and protection of power dis-
tribution networks and to enable them
to handle two-way AC power flow with
much more overlapping patterns of
normal versus abnormal operational
conditions. A large portion of these in-
vestments will be needed for informa-
tion gathering, coordination, and actu-
ation (i.e., the “software/analytics”
aspect) in order to maximize the host-
ing capacity of the power grid hard-
ware. Much attention should be paid
to the investment of new control/infor-
matics in addition to wiring-and-trans-
former expansion.

It is important to stress the need to
revisit power system reliability in the

context of decarbonization. Electricity
supply in the US and most developed
nations has historically enjoyed a very
high level of reliability. This has been
ensured by detailed long-term plan-
ning against uncertainties stemming
from equipment failures and load fore-
casting. Going forward to full decar-
bonization of the power grid will
require penetration levels of renewable
energy that today’'s power industries
have no experience with.>'? If reli-
ability is to be maintained at the
customary levels, considerable long-
term planning with reliability in mind
needs to be done to understand these
issues and find solutions. Typically,
maintaining reliability in the presence
of variable energy can be achieved
by geographical diversification and
resource diversification, including stor-
age and flexible demand strategies.
These strategies need to be studied,
planned, and executed by performing
simulations long before actual imple-
mentation. As an example, for global
diversification, suitable transmission
facilities need to be built, which will
entail extensive lead times. Energy
storage will provide value to both the
short-term power swing and the
longer-term power availability chal-
lenges. Storage requirements will be
substantial and may have conse-
quences like disposal and cycling. It is
worth stressing that reliability can be
maintained, but successfully doing so
requires working out these strategies
and implementing them over a long
period of time. All aspects need to
be thoughtfully considered before
plunging into the whole-scale conver-
sion to renewables. The nature of this
problem is complex, both structurally
and computationally, and there will be
an increasing need for real-time deci-
sions. It is not possible just to replace
conventional energy sources with re-
newables without ameliorating conse-
quences of the variability of these re-
sources. All this is made more difficult
in the absence of a central planning
entity."”
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From the business and market perspec-
tive, itis important to recognize that elec-
tricity market design varies significantly
across different regions. Markets provide
mechanisms for regulating consumption
or sharing distributed resources. If de-
signed well, they can have serious impact
on the (physical) infrastructure require-
ments. As much promise as renewable
energy and storage technologies may
offer, the complicated and oftentimes
conflicting interests within the electricity
ecosystem in most regions makes
the adoption of technology much more
complex than a single top-down deci-
sion-making process. Conventional utility
business models based on volumetric
charges at mostly fixed rates are
rendered much less conducive toward
large-scale adoption of grid-edge
distributed energy resources such as so-
lar and EVs. From an implementation
point of view, it is imperative to allow
new business models and incentive struc-
tures be tried out in different localities.
“Learning by doing” is a most pragmatic
approach to stimulate technological
adoption and market acceptance at the
customer end. As a crucial ingredient
for scalable adoption of energy storage,
we argue that EVs can be assets as
opposed to constraints during this transi-
tion. With the emerging technologies
that will allow for charging and discharg-
ing batteries while idle, EVs can become
a major storage asset with spatial and

temporal distribution.

It is worth pointing out that, as a key
component which couples the elec-
tricity and mobility sectors, mobile
electric loads from vehicle charging
will likely be a game-changer for infra-
structure expansion in technological,
business, and regulatory aspects. The
commitment to produce 100% EVs by
2035 from major car manufactures
such as General Motors will accelerate
the infrastructure’s adoption of new
technologies as well as market con-
structs to not only serve these mobile
demands, but to actively exploit their
flexibilities and meet the increasing
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Societal Choice (Sustainable, Resilient,
and Affordable)

Monitoring and Short-term Operation
(Control and Optimization)

Market Mechanism and Information
Structure

Data Acquisition and Decision Actuation
(Sensing and Signal Processing)

Interface Layer
(Power Electronics, Energy Storage)

Physical Grid Infrastructure

Figure 1. A possible architecture of the future grid

intermittency from renewables.”? In this
context, planning for expansion of the
infrastructure will need thoughtful coor-
dination between the electricity and
transportation sectors.

At a more fundamental level, it requires
extensive research efforts to properly
conceptualize, model, and analyze the
interdependencies across functional
layers for such a complex power infra-
structure ecosystem. It is our conjecture
that a qualitatively different architec-
ture is required to synthesize the cyber,
physical, and interdepen-
dencies for electric infrastructure sys-
tems. While it still remains an open

societal

question as to which architecture would
eventually prevail in the energy transi-
tion, here we postulate a functionally
layered architecture for a massively
digitized and decarbonized power
grid. We take inspiration from some of
the classical works in data communica-
tion networks and distributed con-

trol"*'* to visualize one possible archi-
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tecture as shown in Figure 1. It
illustrates the interdependencies that
underpin the carbon-neutral electricity
delivery ecosystem. Each horizontal
layer represents a functional decompo-
sition of the ecosystem. The arrows
refer to the interactions across two
adjacent functional layers. The interac-
tion variables between adjacent layers
encapsulate the key functional features
of a given layer. What distinguishes this
architecture from the present opera-
tional practice is that conventional ar-
chitecture rests on the premise of a
centralized hierarchical information
and decision-making
whereas the future grid operating archi-

framework,'®

tecture will have to be much more inter-
active between producers and con-
sumers (prosumers), and information
flow becomes more distributed. An
example would be that vehicle-to-grid
services would imply very different in-
formation flow (two-way) as compared
to that of deferrable charging (one
way). Risk requirement coming from so-
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cietal choices would dictate the design
of redundancy, or reserve. Carbon
requirement impacts the renewable
penetration, which then impacts the
infrastructure design. We believe that
one cannot talk about infrastructure up-
grades without talking about markets
and regulation. A well-designed archi-
tecture for the future grid will need to
address the five issues raised at the
beginning of this section.

When it comes to implementation
paths toward carbon-neutral goals,
our perspective is that societal choice,
the top layer of the architecture, will
most likely dictate the outcome. There
are many possible paths to achieve
the eventual objective of carbon
neutrality. These paths will likely vary
from region to region because of the
structure of the US power grid and var-
iations in local energy resources. The
“endgame” of carbon neutrality might
have more than one scenario. With the
deepening level of renewables, energy
storage, carbon capture, utilization and
storage, and behind-the-meter rooftop
PVs, planning and operation strategies
may need to be revisited and extensive
research and development will be
needed to plan for the transition from
the current status to the endgame.

The current structure of regional trans-
mission organizations’ lack of an overall
planning and executive authority plus
social activism makes the transmission
grid expansion very challenging.”
Because of lack of this central authority,
it remains far from clear how and
whether a national transmission over-
haul project will be feasible to facilitate
the large amounts of renewable inte-
gration from wind and solar resource
centers. Given the complex and inter-
connected nature of electricity flows, it
makes technical sense to have a coordi-
nated approach to evaluating the over-
all electric infrastructure, especially
given the vast geographical diversity
of energy resources and population/
demand mixtures in the U.S.
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