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Image registration is broadly used in various scenarios in which similar scenes
in different images are to be aligned. However, image registration becomes
challenging when the contrasts and backgrounds in the images are vastly
different. This work proposes using the total variation of the difference map
between two images (TVDM) as a dissimilarity metric in rigid registration. A
method based on TVDM minimization is implemented for image rigid
registration. The method is tested with both synthesized and real experimental
data that have various noise and background conditions. The performance of
the proposed method is compared with the results of other rigid registration
methods. It is demonstrated that the proposed method is highly accurate and
robust and outperforms other methods in all of the tests. The new algorithm
provides a robust option for image registrations that are critical to many nano-
scale X-ray imaging and microscopy applications.

1. Introduction

Image registration is a process of mapping related images of
the same object taken at different times, or different angles,
or under different environmental conditions, or with different
sensors to integrate information about the features of interest.
Image registration has broad applications in computer vision,
remote sensing (Tondewad & Dale, 2020; Dawn et al., 2010),
and medical imaging (Maintz & Viergever, 1998; Sotiras et al.,
2013) tasks, among many others. In the data analysis in nano-
scale X-ray imaging and microscopy, e.g. transmission X-ray
microscopy based XANES (TXM-XANES), image registra-
tion is a critical data pre-processing step (Xiao et al., 2022;
Yu et al., 2018; Lerotic et al., 2014). In such applications, the
features’ contrasts and intensities, background patterns and
noise levels in the images may vary significantly. These
variations make precise image registration a challenging task.
On the other hand, image registration of series of images with
sub-pixel level precision is crucial for nano-scale imaging
data analysis like TXM-XANES. Although many off-the-shelf
image registration algorithms have been applied for such
tasks, light-weight robust algorithms that can work reliably in
these non-ideal and diverse scenarios are still lacking.

In general, the registration between a target image /; and a
source image [ can be formulated as an optimization problem
in which the dissimilarity between I; and some form of
transformation of / is minimized. The goal of the registration
operation is to have the transformed I; match I, as close as
possible.

Total variation (TV) regulation (Rudin et al., 1992) has long
been used in ill-posed deformable image registration (Henn,
2003; Homke et al., 2007),
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argmin/ D(I,, T(I;, u)) + A|Vu|, dSQ. 1
u Q

D(I, %(I,,u)) is a function to quantify the dissimilarity
between I, and the transformed image T(Ij,u):
RY x RM = R u e R™ is the displacement field, Q2 € RY is
the image space, N is the number of pixels of the images, M is
the dimensionality of the images, |Vu|; is the TV of u defined
as the L1 norm of its gradient, and A is a relaxation factor. The
TV regulation helps to constrain the optimization problem
and reduce the outliers but preserve the discontinuity in the
calculated displacement field. For simplicity, we will only
discuss two-dimensional image registration in the following
sections, but all the conclusions can be easily extended to
three-dimensions cases.

Image rigid registration is a type of registration widely used
in many applications, including brain and orthopedic imaging
(Hill et al., 2001; El-Gamal et al., 2016). In rigid-body trans-
formation, the freedoms are reduced to only global translation
and rotation. In the rigid-body case, the displacement field
u(x) can be expressed as (Eggert et al., 1997)

u(x) =Rx+t—x, (2)

where x € R" is the position of a pixel in the target image, R is
the rotation transform and t is a translation vector. Rx + t is
the position of the corresponding pixel in the source image.
Therefore, u(x) defines the positional displacement map
between the corresponding pixels in target and source images.
In a 2D case, it is easy to verify that |[Vu|; in equation (1) is
2A(1 — cosa + |sina]), A is the area of the image space 2, and
« is the relative rotation angle between two images. That is a
quantity independent of the translation t and thus does not
enforce right constraint in a general rigid-body image regis-
tration task. Therefore, TV regulation on the displacement
field is not as efficient as that in deformable registration
applications. Mathematically, some form of regulation is not
necessary in ideal rigid registration (Zitova & Flusser, 2003)
since there are only three and six unknown transform para-
meters to be determined in 2D and 3D cases, respectively. The
problem is not intrinsically underdetermined if noise is not
concerned. Therefore, the rigid-body registration methods are
designed to determine the transform parameters based on
either the selected point sets or the intensities of two images
(Zitova & Flusser, 2003; Tang & Hamarneh, 2013). Compared
with the point cloud-based methods, the intensity-based
methods save the point set detection step. The intensity-based
methods are more suitable in general applications because
there is not a universal way to select corresponding point sets
from the images that have different contrasts and artifacts.
Nonetheless, strong noise, irregular backgrounds or artifacts
from image resampling may still affect the performances of
the intensity-based rigid-body registration methods (Tang &
Hamarneh, 2013).

In this work, we propose a new dissimilarity metric based on
the total variation of the difference map between a target
image and a source image. It is demonstrated that the new
metrics can effectively suppress the effects of variable and

noisy backgrounds and thus provides more robust perfor-
mance compared with other intensity-based rigid-body regis-
tration methods.

2. Image registration with total variation as a
dissimilarity metrics

A difference map between two images I, and I is defined as
dn = Iy — I. Difference maps are usually used to highlight
differences between two images. However, as illustrated in
Fig. 1, the difference map 1(c) of the image pair 1(a) and 1(b)
renders the edge features on top of a non-zero background
if 1(a) and 1(b) have different intensity scales. The L1 or L2
norm of a difference map like Fig. 1(¢) might be dominated by
the non-zero background and thus may not be sensitive to the
misaligned features that are usually in the edge regions. To
reduce the effects of the non-zero backgrounds in the differ-
ence map, a gray value scale factor between two images is
fitted as one unknown parameter in the registration process
(Ashburner & Friston, 2007). Nonetheless, a global scaling
factor may not remove the non-zero background effects if two
images have different contrasts and backgrounds (Tang &
Hamarneh, 2013). This is the case when two images are
acquired with different sensors or under different conditions.

(@) (b)

©

Figure 1

Schematic illustration of the proposed TVDM principle for aligning
similar images. Panels (@) and (b) show the target and source images I,
and I. (c¢) I, — I; when two images are aligned. It has non-zero
background since the gray scales of I, and I are not calibrated. (d)
Gradient map of (¢). The non-zero background is removed from the
gradient operation, so only edges are reserved. (e) I, — I when two
images are not aligned. (f) Gradient map of (e). The number of edge
points is doubled compared with that in (d).
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The gradient of the difference map Vd,, can effectively
remove the non-zero background. As illustrated in Fig. 1(d),
the gradient of Fig. 1(c) has significant values only around the
edges. When two images are not aligned, there would be more
non-zero areas presented in the different map, as illustrated in
Fig. 1(e). Nonetheless, the gradient operation on the differ-
ence map still removes the non-zero background and high-
lights the residual edges. In such cases, as suggested by
Fig. 1(f), the number of pixels with significant values is
doubled compared with that when two images are aligned
[Fig. 1(c)]. Heuristically, Vd,,, can be used as a measure of the
alignment between two images.

This leads to using the total variation of the difference map
between the registered image pair as a cost function in image
registration,

argmin TV(I, — T(I,w)) = |V, — T, w)|,. (3)

ueRM

Compared with sum of squared difference and cross correla-
tion, which are two widely used dissimilarity metrics, the total
variation of the difference map (TVDM) weights more on the
features in the discontinuous regions that are more distin-
guished features when two images are not perfectly aligned. It
is also less sensitive to the non-uniform but smoothly variant
background features in the image pair. Such smooth back-
ground features are largely suppressed after the gradient
operation.

It should be noticed that the proposed method in this work
is different from the methods that use the total variation of the
displacement field as a regulation term. The displacement field
as defined in equation (2) is the pixel coordinate displacement
map between all corresponding pixels in the target and source
images. On the other hand, the difference map used in TVDM
is the direct subtraction between two images. TVDM is used as
a sole cost function rather than a regulation term in the image
registration. In Section 4, we will show the difference between
the proposed method and a method using total variation of the
displacement field as a regulation term in the scope of rigid
registration.

3. Implementation of TVDM based rigid-body
registration

In rigid-body cases, the transform function ¥ in equation (3)
transforms a pixel at x in the source image I to a new position
Rx + t, according to equation (2). As in other rigid-body
registration approaches, the search of matched rotation angles
and translation can be conducted separately in sequence as in
other rigid registration methods (Huang et al., 1986; Arun et
al., 1987). The pseudocode for solving the optimization
problem in equation (3) is shown in Fig. 2.

There is not a unique solution if the feature pattern in the
images poses certain symmetries. Two example illustrations of
such special symmetries are given in the supporting informa-
tion. Note that there is not a specific issue with the proposed
TVDM method. For instance, the cost function based on the
sum of squared difference cannot distinguish the degenerate

orientations of an object with a central symmetry either. In
a general case, the feature patterns in images are usually
complicated, so rarely have such special symmetries. There-
fore, the proposed method should work in general cases like
methods using other types of similarity metrics but with better
robustness and higher sensitivities to the misalignment
features, which will be demonstrated with examples in the
next section.

Different minimization schemes are employed in the mini-
mizations of equations (4) and (5) in Fig. 2(a) to accommodate
the difference between them. For equation (4), a multi-reso-
lution minimization is adopted in which a brute-force search
in a small region is applied at each resolution level, with the
result from the lower-resolution level as the center of the
search range in the next higher-resolution level. This search
usually leads to a state where two images are partially over-
lapped which is good for the angle search in the next step.
The pseudocode of this procedure is provided in Fig. 2(b).
For equation (5), a stochastic optimization algorithm — the
differential evolution (DE) (Storn & Price, 1997) - is
employed to find the global minimum. The DE algorithm
iteratively searches the rotation parameter space by mutating

SET@=0;t=0
REPEAT
Step 1:
argmin: TV (I, — T(,,t, @) 4)

terM

UPDATE t
Step 2:
argmin: TV (I, — I(,,t, @) (5)

ferM

UPDATE @
UNTIL (t and 8 converge) Or (maximum iterations)
(a)

Step 1
SETt=0
FOR level in [0, N]

Zoom out I, and I, by a factor 2-N-level)

Find argmin: |I, — T(/,t)| for t varying in steps

- tERM - -
in a fixed range in pixel

SET t as that giving minimum |[, — T([,, )|
QOUTPUT ¢t

(b
Step 2
SET 8 search range
Find argmin:TV(l, — T(l,,t,0)) with differential
gerM
evolution algorithm
OUTPUT @
(c)
Figure 2

(a) Pseudocode for the minimization of equation (3) in 2D rigid-body
registration. (b) Pseudocode for Step 1 in (a). (¢) Pseudocode for Step 2
in (a).
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and selecting between a population of candidate solutions to
reach an optimal point. DE does not assume that the opti-
mization problem is differentiable so is suitable for the
problem defined in equation (5). DE is demonstrated to be
superior to many other optimization algorithms in terms of the
required number of function evaluations necessary to locate a
global minimum (Storn & Price, 1997; Das & Suganthan, 2011;
Das et al., 2016). In this work, we used the DE implementation
available in the Scipy.optimize package (Virtanen et al., 2020).
The pseudocode for the minimization of equation (5) is
presented in Fig. 2(c). Since the translation and rotation angle
correction are coupled, the minimizations of equations (4) and
(5) are iterated until a stable result or the maximum number of
iterations is reached.

In practice, there is always noise in images that can decorate
the edge features. A Gaussian filter on the images can effec-
tively reduce the noise effect in TVDM. Therefore, I, and I
in the pseudocode above are replaced with their Gaussian
filtered version gf(l,, 0)gf(l, o), where o is the standard
deviation for the filter. It is found that o = 1 is efficient in
most cases.

4. Experiments

For simplicity, we only focus on 2D examples in this work to
demonstrate the validity of using TVDM as an optimization
metric in rigid-body registration. The proposed method is
tested with both the simulated and experimental data, and its
performance is compared with three other algorithms. The
popular dissimilarity metrics used in image registrations
include, for example, the sum of squared difference, the
normalized cross correlation, the phase correlation, and the
mutual information (Zitova & Flusser, 2003), to name a few.
Thorough discussions on the dissimilarity metric topic can be
found in review articles (Song et al., 2017, Wyawahare et al.,
2009; Zitova & Flusser, 2003, and references therein). For
comparisons with the proposed method, we choose one
method based on phase correlation, one based on the sum of
squared difference, and one method using the total variation
of the displacement field as the regulation term for the mini-
mization in the registration. For the phase correlation method,
we use a Python implementation available at https://github.
com/YoshiRi/ImRegPOC (Ri & Fujimoto, 2018) and refer to
it as FPC. This algorithm implements a band filter to reduce
both low-frequency background and high-frequency noise.
For the sum of squared difference based method, a routine
implemented in the popular image processing package
Insight Toolkit (McCormick et al, 2014) via the
SimpleElastix (Marstal et al.,, 2016) interface to Python is
used. The ‘AdvancedMeanSquares’ metric and ‘Standard-
GradientDescent’ optimizer are used in this routine. It is
referred to as the SSD method in this work. For the third
method, the routine optical_flow_tvll (Zach et al, 2007,
Wedel et al., 2009; Sanchez Pérez et al, 2013) available in
scikit-image’s registration module (van der Walt et al., 2014)
is used. This is a deformable registration method that uses the
L1-norm of the difference image as the cost function and the

total variation of the displacement field as the regulation term.
This method is referred to as OFTV. For convenience, the
method proposed in this work is referred to as TVDM.

The first experiment is based on images synthesized from
the original noise-free image I, in Fig. 3(a). The gray scale of
the original image is scaled into the range [0, 1]. The target

(®)
- Orlrgln_al i_malge

E'-‘m = Noiseinl;
: |
E_o.oos |
2 ‘ )
':é_ 0.004 [[
a | |

-1.0 0.0 1.0 2.0
Gray value

(d)

Figure 3

Images used in experiment 1 and results. (a) Original image. Panels (b)
and (c) show the synthesized target and source images with additive
noises. (d) Histograms of (a) and additive noises in (b) and (c). (e)-(g)
Difference images between (b) and the registered images with FPC, SSD
and TVDM. The edge features in (e) and (f) indicate that the images
are not registered correctly. (k) Registered image with OFTV; local
distortions in the registered image are obvious.
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and source images /; and I are synthesized as I, = Iy + n; + b,
and I, = I, + ng + b, where n, and ng are additive noises, b, and
b, are constant background offsets. In this experiment, we
choose n, s >~ N(u =0.7,0 =0.7) and b = 0; N(u, 0) is a
noise background following a Gaussian distribution with a
mean p and standard deviation o. The source image I is
translated by x = [13.5, 21.3] pixels along the horizontal and
vertical directions then rotated by 6 = 53.9° relative to the
target image [;. The translation and rotation numbers are
chosen randomly. Figs. 3(b) and 3(c) show the synthesized
target and source images, respectively. Fig. 3(d) shows the
gray-value histograms of the noise-free image and the additive
noise in Figs. 3(b) and 3(c). The noise histogram peak posi-
tions being higher than that for the noise-free image suggests
that the noise has higher magnitudes than the signals at most
image pixels. It is clear that the target and source images in
Figs. 3(b) and 3(c) lose the details of the weak features in
comparison with Fig. 3(a). The registration results given by
SSD, FPC and TVDM are [x, 8] = [17.5, —5.1, —40.2°], [—10.7,
—40.5, —35.7°] and [14.2, 20.8, 53.7°], respectively. While the
error in the TVDM result is less than 0.7 pixel in the trans-
lation and 0.2° in the rotation, the results with SSD and FPC
are wildly off. Figs. 3(e)-3(g) show the difference maps
(I, — (I, w)) with FPC, SSD and TVDM. Visually, the
difference map Fig. 3(g) for TVDM presents no residual edge
features but just random noise background. In contrast,
Figs. 3(e) and 3(f) for FPC and SSD show plenty of residual
edge features. Fig. 3(h) presents the transformed source image
that is calculated with OFTV based on noise-free target and
source images. The image is clearly distorted from the applied
local warps. OFTV is designed for non-rigid registration that
allows more freedoms for local deformations but enforces
fewer constraints to a rigid-body registration even with the TV
of the displacement field as the regulation term. Clearly,
OFTV is not an effective approach for rigid-body registration
tasks. Thus, we will only compare the results with FPC, SSD
and TVDM in the following experiments.

More tests are conducted with different noise and back-
grounds of various combinations of u, o, b, and b,. The results
are summarized in Table S1 of the supporting information. All
three methods reach results that are in good agreement with
the ground truth within £0.7 pixel for translation shifts and
+0.2° for rotation shift in the relatively low noise cases when
n <04,0 <04 and b, = 0, with SSD giving slightly better
results in this range. FPC becomes instable after u > 0.5,
o > 0.5 independent of b, levels. It is noticed that SSD is
susceptible to the variant background offsets. Although SSD
can reach reasonable results up to u =0.5,0=0.5 and b, = b, =
0.6, it fails even with low noise of u = 0.1, 0= 0.1 when b, = 0.6,
by = 0.3. In contrast, TVDM provides a solid performance
consistently even up to u = 1.0, o = 1.0 with either zero or non-
zero background offsets in two images.

The performance difference between FPC, SSD and MRTV
is not a surprise. As discussed by Tang & Hamarneh (2013),
SSD as a dissimilarity metric does not work well if two images
have different background offsets. Cross-correlation-based
methods work in such a scenario provided that the back-

ground offsets are linearly related. Therefore, the perfor-
mance of FPC is independent of the constant background
offsets in two images. On the other hand, Gaussian noise is
unstructured so has uniform distribution in the Fourier space.
Filtering in Fourier space will not remove Gaussian noise
completely. Thus, FPC becomes unstable when the Gaussian
noise level is too high. In the TVDM cases, the TV operation
on the difference map of a pair of /; and /; removes the effect
of the constant b, — b, thus TVDM results are free from the
effects of the uniform background offsets in the pair of images.
The Gaussian filtering on the target and source images before
the difference map operation effectively removes the noise
effects in the following TV operation. Therefore, TVDM
presents robust performance in this challenging scenario.

To further test the performances of different algorithms in
the presence of inhomogeneous backgrounds, the target and
source images are added to a noise background of the form
b s + sinw L n, in the second experiment, where w, and
L, are the spatial frequencies and spatial variables for the
target and source images, respectively. To avoid the correla-
tion between the noise backgrounds, L, is set to be the position
along the horizontal direction in the target image and L, the
position along the vertical direction in the source image. The
source image is then translated by x = [13.5, 21.3] pixels along
the horizontal and vertical direction and then rotated
by 6 = 53.9° relative to the target image. Figs. 4(a) and
4(b) show target and source images with backgrounds
0.6 + sin(L,/21) (0.5, 0.5) and 0.3 + sin(L,/33) N'(0.5, 0.5),
respectively. Histograms of the original image and the noise
backgrounds are presented in Fig. 4(c). The strong and non-
uniform noise backgrounds heavily distort the images. Both
SSD and FPC fail to register two images as the edge features
are still clearly seen in the difference maps between the target
and registered source images shown in Figs. 4(d) and 4(e).
Quantitatively, FPC calculates [x, 8] = [—25.2, —15.1, 168.7°],
and SSD gives [x, 8] = [17.3, —11.5, —42.1°]. Both are far away
from the ground truth [x, ] = [13.5, 21.3, 53.9°]. On the
contrary, TVDM calculates [x, ] = [14.4, 21.2, 53.9°]. As
shown in Fig. 4(f), there are no residual edge features visible
in the difference map, in contrast to that in Figs. 4(d) and 4(e).

More experiment results under different noise conditions
are summarized in Table S2 of the supporting information. It is
seen that the level of noise that FPC can handle is reduced to
= 0.2, 0 = 0.2 when sinusoidal modulations are added to the
backgrounds. SSD fails to provide reasonable solutions even
in the noise-free case because the gray-value levels in the
target and source images are impaired due to the different
modulations and offset in the backgrounds. TVDM can still
provide stable solutions under all the test conditions.

In the third experiment, three algorithms are tested with the
images synthesized from real X-ray images. Figs. 5(a) and 5(b)
are two X-ray absorption images of a LiCoO, sample taken at
7619 eV and 7729 eV, one below and another above the Co
K-edge. Two images have had the dark-field background
subtracted and normalized with the reference beam images
acquired at each energy. In real imaging data, the dominating
noise is Poisson noise. However, the average Poisson noise-to-

J. Synchrotron Rad. (2022). 29, 1085-1094
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Figure 4

Images used in experiment 2 and results. Panels () and (b) show the
synthesized target and source images. (¢) Histograms of the original
image Fig. 3(a) and additive noises in (a) and (b). (d)-(f) Difference
images between (a) and the registered images with FPC, SSD and TVDM.

signal ratios in the raw images for Figs. 5(a) and 5(b) are
relatively low, 0.13% and 0.17% in the middle regions and
0.45% and 0.54% in the border regions, respectively. The
sample has very different absorptions to X-rays at the two
X-ray energies, as seen from the different feature contrasts in
Figs. 5(a) and 5(b) and the image gray value histograms in
Fig. 5(e). Besides, the two images have different backgrounds
due to X-ray illumination beam variations at the two energies.
Before any following operations, the two images are first
manually aligned as the ground truth. To test the algorithms
under extreme conditions, Gaussian noise is added to
the images again. Fig. 5(a) has added noise of the form
N(u,/2, 1,/2) to generate the image in Fig. 5(c), and Fig. 5(b)
has added noise of the form N (u,/2, u,/2), where u, = 0.68
and u; = 1.67 are the mean gray values in the regions of
interest marked with the red boxes in Figs. 5(a) and 5(b),
respectively. The resulting image from Fig. 5(b) is then
translated by 37 and —33 pixels along the vertical and hori-
zontal directions and rotated by 38° around its center. The
final image is presented in Fig. 5(d). Figs. 5(c) and 5(d) are
used as the target and source images in the experiment,
respectively. The strong noise backgrounds overwhelm the
fine structures in two images. In particular, the weak contrast
in the target image is further compromised by the background
noise. Fig. 5(e) presents gray value histograms of Fig. 5(a) and
the additive noise. Fig. 5(f) presents the gray value histograms
of Fig. 5(b) and the additive noise. The histograms of Figs. 5(a)
and 5(b) have different shapes, and the centers of the noise
distributions shift differently from the signal histograms. This
indicates that neither the signals nor the additive background
noise in Figs. 5(c) and 5(d) are linearly related. Thus, a global
scale factor as suggested by Ashburner & Friston (2007) may
not equalize the gray-value levels in Figs. 5(c) and 5(d), so the
registrations with FPC and SSD may be still affected by the
impaired gray levels in the two images (Tang & Hamarneh,

@ (b)

(© @

.
s
2
"
=
2
=

e
]
Probability density

Probability density
.§ G

g

02 04 06
ray value

0.0

_ © ®
Figure 5

® ® B

Images used in experiment 3 and results. Panels (a) and (b) show the original images for the synthesizing target and source images in (c¢) and (d),
respectively. (¢) Histograms of (@) and the additive noise in (¢). (f) Histograms of (b) and the additive noise in (d). (g) - (i) Difference images between (c)

and the registered images with FPC, SSD and TVDM.
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2013). Nonetheless, a global scale factor, us/u,, is applied to
the target image Fig. 5(c) to roughly equal the gray levels in
the two images. The registration results with FPC, SSD and
TVDM are [13.2, —7.2, 154.0°], [33.5, —23.7, 33.0°] and
[36.9, —31.8, 38.0°]. Compared with the ground truth [x, 8] =
[37, —33, 38°], TVDM gives the closest result. Figs. 5(g)-5(7)
present difference maps with FPC, SSD and TVDM. Ideally,
the residual features in a difference map between the target
image and the correctlly aligned source image should just look
like Fig. 5(c) since the global scaling on the source image may
not perfectly equalize the gray levels of the two images. The
incorrect orientation of the features in the middle of Fig. 5(g)
indicates that the result with FPC is wrong. The result with
SSD is not far from the correct solution, but the double edge
feature marked by the red arrow suggests that the result with
SSD is also off. In contrast, the difference map with TVDM
in Fig. 5({) shows no visible residual edge features. More
experimental results with different levels of additive Gaussian
noise are summarized in Table S3 of the supporting informa-
tion. It is shown that FPC only works in cases when the
additive Gaussian noise is at levels u < u, /10, o < p,/10.
With higher background noise, FPC results quickly become
unstable. SSD fails even to register the original images without
additive Gaussian noise due to the quite different back-
grounds and features in the image pair. In contrast, TVDM
performs well up to the u = u, /2, 0 = u, /2 noise level at
which the error in the vertical direction translation increases
to 1.2 pixel while the errors in the horizontal direction trans-
lation and rotation angle are still close to zero.

A typical TXM XANES image dataset is composed of tens
to hundreds of images taken at different energy points. One
strategy to register a series of images is to use one image as the
global target images and register every other image in the
series to the target image. The challenge in this approach is
that the image contrasts, background features and noise, and
gray-value levels may vary dramatically over the entire series.
As shown in the second and third examples, FPC and SSD
may become instable in such cases. Another strategy is to start
with one image as the global anchor and register every two
neighbor images progressively from that image. The relative
shift of any image from the reference image can be calculated
by summing up the shifts of every image pair between these
two images. However, even the small registration error in each
registration operation may accumulate into a large error at the
end. As a trade-off solution to these two strategies, the third
strategy is to set one image as the global anchor and split the
entire image series into a few small chunks. In each chunk, one
image is chosen as the local target image, and every image in
the chunk is registered to this local target image. A local target
image is registered to its neighbor local target image toward
the global anchor image. For instance, if the global anchor
image is the number n, image in the image series and the
chunk size is n, then the local target images are [ .. ., ny — 2n,,
ng — R, o, Ny + N, No + 20, . . . |. This approach degenerates
to the first approach if the chunk size n. is set to 1, or to the
second approach if the chunk size 7. is set to the number of
images in the entire dataset. Nonetheless, the variations in the

images and error accumulation may still pose issues in regis-
tering a long image series.

In the fourth experiment, three algorithms are tested with
real experimental data. The dataset is composed of 101 images
of a LiCoO, electrode sample taken at 101 energy points
across the Co K-edge. The sample was cycled at 0.5 C rate for
100 cycles and measured under ex situ conditions. Before
registration, each image is normalized by its reference beam
image. The third registration strategy with a chunk size of 7 for
an image series is utilized in this experiment. Fig. 6(a) shows
the global anchor image taken at 7730 eV that is the S1st
image in the series. The Poisson noise-to-signal ratio in the
small region marked by the red box in Fig. 5(a) is plotted as a
function of image index in Fig. 6(b). It is seen that the Poisson
noise-to-signal ratio varies in a range between 1.4% and 1.9%.
As seen in Fig. 6(a), there is a thin crack across the particle in
the middle of the images. A plot along the line across the crack
shown in Fig. 6(a) has a sharp dip that indicates the crack
position, as shown in Fig. 6(c). Ideally, the line plots for each
image should have the dip at the same position if all the
images are correctly aligned. Figs. 6(d) and 6(e) are line plots
based on the registration results with FPC and SSD. Clearly,
the line plot dip positions drift between different images. The
drift range is between [—2, +1.5] pixels for FPC and [—2, +2.5]
pixels for SSD. On the contrary, the line plots for TVDM
in Fig. 6(f) show that the dip positions stay tightly within a
41 pixel range over 101 images that have significant variance
in the gray-value levels.

Precise alignment of the entire XANES image stack is
crucial for obtaining an accurate valence state distribution of
the concerned elements, especially in the particles’ boundary
regions. Figs. 6(g)-6(i) plot the XANES spectra at the points A
and B marked in Fig. 6(a), based on the FPC, SSD and TVDM
registration results. Point A is on the boundary, and point B is
in the middle, of a LiCoO, particle. While the spectra for point
B show no fundamental differences in Figs. 6(g)-6(i), the
spectra in Figs. 6(g) and 6(h4) for the point A obtained from
the aligned image stacks with FPC and SSD present significant
distortions due to the alignment errors. In comparison, the
spectrum for point A obtained from the aligned image stack
with TVDM is smooth and similar to that at point B. This is an
expected result since LiCoO, single crystals tend to have a
uniform state of charge under slow charging conditions (Xu et
al., 2017).

5. Discussions

The proposed TVDM method demonstrates superior perfor-
mance over the other two intensity-based conventional rigid
registration methods in three experiments. The effects of
the TV operation in TVDM are different from those in the
conventional TV regulation on the displacement field in
deformable registration methods. As shown in the first
experiment, the TV regulation in the optical flow method does
not provide a sufficient rigid-body transform constraint in the
rigid registration cases. In TVDM, the Gaussian filter together
with TV operation on the DM of the image pair can effectively
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Figure 6

Registration results with a TXM XANES dataset. (a) Global reference image. (b) Average Poisson noise-to-signal ratio as a function of image index in
the region of interest marked with the red box in (a). (c) Line plot along the line in (a). The dip position indicates the crack position in the line. (d)—(f)
Line plots for each image in the dataset after the registrations with FPC, SSD and TVDM, respectively. With an ideal registration, the dip positions in all
the lines should be the same. (g)—(i) XANES spectra at points A and B marked in (a) based on aligned image stacks with FPC, SSD and TVDM,
respectively. Alignment errors have more impact on the spectra in the particles’ boundary regions.

reduce various slow background variations while keeping the
edge features. This is different from band filters such as the
one implemented in the FPC method that cannot remove
noise in the reserved bandwidth. In all three experiments,
TVDM works well under all test conditions whilst FPC only
works in relatively low-noise cases.

TVDM still requires gray value scaling if two images have
very different gray-value levels. However, it is not sensitive to
the accuracy of the global scaling factor. As shown in the third
experiment, it works even when the gray value histograms of
two images are not completely overlapping. In contrast, SSD is
sensitive to the scaling factor choice in such a case. The output
may change if the scaling factor is varied. That makes the SSD
method still subjective to visual evaluations and manually
tweaking of its parameters according to the image conditions.

The parameters for TVDM are not sensitive to the appli-
cation conditions. TVDM has few arguments for adjusting its

performance. The default values of most arguments work in
most cases. The parameters in the translation offset search are
the number of resolution levels and the search range in each
level. These two parameters determine the overall search
range. The default setting is 5 for the number of resolution
level and 8 for the search range at each level, which provides
an overall search range of [—64, 64] pixels in each dimension.
The rotation angle search uses the differential evolution
method whose key arguments are search range, number of
population (NP), mutation factor (F) and the crossover factor
(CR) (Storn & Price, 1997). In the DE implementation in
Scipy.Optimize, the default setting is 0.7 for CR and randomly
dithering in the range [0.5, 1) on a generation-by-generation
basis for F. These default settings are inherited in TVDM. To
avoid local minima in angle search, the default setting for NP
is set to 100 to ensure sufficient sampling in the search space.
The default angle search range is set to [—10°,10°]. This
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assumes a rough estimation on the relative rotation between
two images that is not difficult to do. The most important
parameter in TVDM is the Gaussian filter kernel width. The
Gaussian filter is used to reduce the noise outlier presence in
the DM of two images. Its value balances the noise removal
and the edge preservation. A large kernel width can smear the
edge features in the images that may reduce the registration
accuracy. In practice, a kernel width around 1 is found to be
sufficient in most cases, thus the default value for the Gaussian
filter kernel width is set to 1. These default argument values
are used in all three experiments. The success of TVDM in all
the test cases shows the robustness of the proposed method in
rigid registration applications.

Although it is not tested, the results of the third experiment
suggest that the proposed TVDM method is expected to work
in the multimodal image rigid registration tasks if two images
share common feature boundaries but have varying contrasts
between different features.

6. Summary

A new dissimilarity metric based on the total variation of the
difference map between an image pair is proposed for rigid
registration applications. A rigid registration method based on
a new metric, TVDM, is tested and compared with the Fourier
analysis-based phase correlation and sum of squared differ-
ence metrics. The results demonstrate the validity and
robustness of TVDM. TVDM overperforms the other two
intensity-based rigid registration methods, one based on
Fourier phase correlation and the other based on the sum of
squared difference, under both simulated and real experi-
mental conditions. The proposed method is expected to find
broad applications in image registration tasks, e.g. imaging-
based nano-XANES data analysis, in which varying levels of
noise and backgrounds could be pronounced. TVDM has been
integrated into TXM_Sandbox (Xiao et al., 2022) that will be
released at https://github.com/xianghuix/TXM_Sandbox.
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