
research papers

J. Synchrotron Rad. (2022). 29, 1085–1094 https://doi.org/10.1107/S1600577522005598 1085

Received 18 March 2022

Accepted 23 May 2022

Edited by A. Momose, Tohoku University, Japan

Keywords: difference map; image registration;

total variation; X-ray microscopy; TXM-XANES.

Supporting information: this article has

supporting information at journals.iucr.org/s

Rigid registration algorithm based on the
minimization of the total variation of the
difference map

Xianghui Xiao,a* Zhengrui Xu,b Dong Hou,b Zhijie Yangb and Feng Linb

aNational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA, and
bDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA. *Correspondence e-mail: xiao@bnl.gov

Image registration is broadly used in various scenarios in which similar scenes

in different images are to be aligned. However, image registration becomes

challenging when the contrasts and backgrounds in the images are vastly

different. This work proposes using the total variation of the difference map

between two images (TVDM) as a dissimilarity metric in rigid registration. A

method based on TVDM minimization is implemented for image rigid

registration. The method is tested with both synthesized and real experimental

data that have various noise and background conditions. The performance of

the proposed method is compared with the results of other rigid registration

methods. It is demonstrated that the proposed method is highly accurate and

robust and outperforms other methods in all of the tests. The new algorithm

provides a robust option for image registrations that are critical to many nano-

scale X-ray imaging and microscopy applications.

1. Introduction

Image registration is a process of mapping related images of

the same object taken at different times, or different angles,

or under different environmental conditions, or with different

sensors to integrate information about the features of interest.

Image registration has broad applications in computer vision,

remote sensing (Tondewad & Dale, 2020; Dawn et al., 2010),

and medical imaging (Maintz & Viergever, 1998; Sotiras et al.,

2013) tasks, among many others. In the data analysis in nano-

scale X-ray imaging and microscopy, e.g. transmission X-ray

microscopy based XANES (TXM-XANES), image registra-

tion is a critical data pre-processing step (Xiao et al., 2022;

Yu et al., 2018; Lerotic et al., 2014). In such applications, the

features’ contrasts and intensities, background patterns and

noise levels in the images may vary significantly. These

variations make precise image registration a challenging task.

On the other hand, image registration of series of images with

sub-pixel level precision is crucial for nano-scale imaging

data analysis like TXM-XANES. Although many off-the-shelf

image registration algorithms have been applied for such

tasks, light-weight robust algorithms that can work reliably in

these non-ideal and diverse scenarios are still lacking.

In general, the registration between a target image It and a

source image Is can be formulated as an optimization problem

in which the dissimilarity between It and some form of

transformation of Is is minimized. The goal of the registration

operation is to have the transformed Is match It as close as

possible.

Total variation (TV) regulation (Rudin et al., 1992) has long

been used in ill-posed deformable image registration (Henn,

2003; Hömke et al., 2007),
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the image space, N is the number of pixels of the images, M is

the dimensionality of the images, |ru|1 is the TV of u defined

as the L1 norm of its gradient, and � is a relaxation factor. The

TV regulation helps to constrain the optimization problem

and reduce the outliers but preserve the discontinuity in the

calculated displacement field. For simplicity, we will only

discuss two-dimensional image registration in the following

sections, but all the conclusions can be easily extended to

three-dimensions cases.

Image rigid registration is a type of registration widely used

in many applications, including brain and orthopedic imaging

(Hill et al., 2001; El-Gamal et al., 2016). In rigid-body trans-

formation, the freedoms are reduced to only global translation

and rotation. In the rigid-body case, the displacement field

u(x) can be expressed as (Eggert et al., 1997)

u xð Þ ¼ Rxþ t� x; ð2Þ

where x 2 RM is the position of a pixel in the target image, R is

the rotation transform and t is a translation vector. Rx + t is

the position of the corresponding pixel in the source image.

Therefore, u(x) defines the positional displacement map

between the corresponding pixels in target and source images.

In a 2D case, it is easy to verify that |ru|1 in equation (1) is

2A(1 � cos� + |sin�|), A is the area of the image space �, and

� is the relative rotation angle between two images. That is a

quantity independent of the translation t and thus does not

enforce right constraint in a general rigid-body image regis-

tration task. Therefore, TV regulation on the displacement

field is not as efficient as that in deformable registration

applications. Mathematically, some form of regulation is not

necessary in ideal rigid registration (Zitová & Flusser, 2003)

since there are only three and six unknown transform para-

meters to be determined in 2D and 3D cases, respectively. The

problem is not intrinsically underdetermined if noise is not

concerned. Therefore, the rigid-body registration methods are

designed to determine the transform parameters based on

either the selected point sets or the intensities of two images

(Zitová & Flusser, 2003; Tang & Hamarneh, 2013). Compared

with the point cloud-based methods, the intensity-based

methods save the point set detection step. The intensity-based

methods are more suitable in general applications because

there is not a universal way to select corresponding point sets

from the images that have different contrasts and artifacts.

Nonetheless, strong noise, irregular backgrounds or artifacts

from image resampling may still affect the performances of

the intensity-based rigid-body registration methods (Tang &

Hamarneh, 2013).

In this work, we propose a new dissimilarity metric based on

the total variation of the difference map between a target

image and a source image. It is demonstrated that the new

metrics can effectively suppress the effects of variable and

noisy backgrounds and thus provides more robust perfor-

mance compared with other intensity-based rigid-body regis-

tration methods.

2. Image registration with total variation as a
dissimilarity metrics

A difference map between two images It and Is is defined as

dm = Is � It. Difference maps are usually used to highlight

differences between two images. However, as illustrated in

Fig. 1, the difference map 1(c) of the image pair 1(a) and 1(b)

renders the edge features on top of a non-zero background

if 1(a) and 1(b) have different intensity scales. The L1 or L2

norm of a difference map like Fig. 1(c) might be dominated by

the non-zero background and thus may not be sensitive to the

misaligned features that are usually in the edge regions. To

reduce the effects of the non-zero backgrounds in the differ-

ence map, a gray value scale factor between two images is

fitted as one unknown parameter in the registration process

(Ashburner & Friston, 2007). Nonetheless, a global scaling

factor may not remove the non-zero background effects if two

images have different contrasts and backgrounds (Tang &

Hamarneh, 2013). This is the case when two images are

acquired with different sensors or under different conditions.

research papers

1086 Xianghui Xiao et al. � Rigid registration algorithm J. Synchrotron Rad. (2022). 29, 1085–1094

Figure 1
Schematic illustration of the proposed TVDM principle for aligning
similar images. Panels (a) and (b) show the target and source images It

and Is. (c) It � Is when two images are aligned. It has non-zero
background since the gray scales of It and Is are not calibrated. (d)
Gradient map of (c). The non-zero background is removed from the
gradient operation, so only edges are reserved. (e) It � Is when two
images are not aligned. ( f ) Gradient map of (e). The number of edge
points is doubled compared with that in (d).



The gradient of the difference map rdm can effectively

remove the non-zero background. As illustrated in Fig. 1(d),

the gradient of Fig. 1(c) has significant values only around the

edges. When two images are not aligned, there would be more

non-zero areas presented in the different map, as illustrated in

Fig. 1(e). Nonetheless, the gradient operation on the differ-

ence map still removes the non-zero background and high-

lights the residual edges. In such cases, as suggested by

Fig. 1( f), the number of pixels with significant values is

doubled compared with that when two images are aligned

[Fig. 1(c)]. Heuristically, rdm can be used as a measure of the

alignment between two images.

This leads to using the total variation of the difference map

between the registered image pair as a cost function in image

registration,

argmin
u2RM

TVðIt � T Is; uð ÞÞ ¼ rðIt � T Is; uð ÞÞ
�� ��

1
: ð3Þ

Compared with sum of squared difference and cross correla-

tion, which are two widely used dissimilarity metrics, the total

variation of the difference map (TVDM) weights more on the

features in the discontinuous regions that are more distin-

guished features when two images are not perfectly aligned. It

is also less sensitive to the non-uniform but smoothly variant

background features in the image pair. Such smooth back-

ground features are largely suppressed after the gradient

operation.

It should be noticed that the proposed method in this work

is different from the methods that use the total variation of the

displacement field as a regulation term. The displacement field

as defined in equation (2) is the pixel coordinate displacement

map between all corresponding pixels in the target and source

images. On the other hand, the difference map used in TVDM

is the direct subtraction between two images. TVDM is used as

a sole cost function rather than a regulation term in the image

registration. In Section 4, we will show the difference between

the proposed method and a method using total variation of the

displacement field as a regulation term in the scope of rigid

registration.

3. Implementation of TVDM based rigid-body
registration

In rigid-body cases, the transform function T in equation (3)

transforms a pixel at x in the source image Is to a new position

Rx + t, according to equation (2). As in other rigid-body

registration approaches, the search of matched rotation angles

and translation can be conducted separately in sequence as in

other rigid registration methods (Huang et al., 1986; Arun et

al., 1987). The pseudocode for solving the optimization

problem in equation (3) is shown in Fig. 2.

There is not a unique solution if the feature pattern in the

images poses certain symmetries. Two example illustrations of

such special symmetries are given in the supporting informa-

tion. Note that there is not a specific issue with the proposed

TVDM method. For instance, the cost function based on the

sum of squared difference cannot distinguish the degenerate

orientations of an object with a central symmetry either. In

a general case, the feature patterns in images are usually

complicated, so rarely have such special symmetries. There-

fore, the proposed method should work in general cases like

methods using other types of similarity metrics but with better

robustness and higher sensitivities to the misalignment

features, which will be demonstrated with examples in the

next section.

Different minimization schemes are employed in the mini-

mizations of equations (4) and (5) in Fig. 2(a) to accommodate

the difference between them. For equation (4), a multi-reso-

lution minimization is adopted in which a brute-force search

in a small region is applied at each resolution level, with the

result from the lower-resolution level as the center of the

search range in the next higher-resolution level. This search

usually leads to a state where two images are partially over-

lapped which is good for the angle search in the next step.

The pseudocode of this procedure is provided in Fig. 2(b).

For equation (5), a stochastic optimization algorithm – the

differential evolution (DE) (Storn & Price, 1997) – is

employed to find the global minimum. The DE algorithm

iteratively searches the rotation parameter space by mutating
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Figure 2
(a) Pseudocode for the minimization of equation (3) in 2D rigid-body
registration. (b) Pseudocode for Step 1 in (a). (c) Pseudocode for Step 2
in (a).



and selecting between a population of candidate solutions to

reach an optimal point. DE does not assume that the opti-

mization problem is differentiable so is suitable for the

problem defined in equation (5). DE is demonstrated to be

superior to many other optimization algorithms in terms of the

required number of function evaluations necessary to locate a

global minimum (Storn & Price, 1997; Das & Suganthan, 2011;

Das et al., 2016). In this work, we used the DE implementation

available in the Scipy.optimize package (Virtanen et al., 2020).

The pseudocode for the minimization of equation (5) is

presented in Fig. 2(c). Since the translation and rotation angle

correction are coupled, the minimizations of equations (4) and

(5) are iterated until a stable result or the maximum number of

iterations is reached.

In practice, there is always noise in images that can decorate

the edge features. A Gaussian filter on the images can effec-

tively reduce the noise effect in TVDM. Therefore, It and Is

in the pseudocode above are replaced with their Gaussian

filtered version gf(It, �)gf(Is, �), where � is the standard

deviation for the filter. It is found that � = 1 is efficient in

most cases.

4. Experiments

For simplicity, we only focus on 2D examples in this work to

demonstrate the validity of using TVDM as an optimization

metric in rigid-body registration. The proposed method is

tested with both the simulated and experimental data, and its

performance is compared with three other algorithms. The

popular dissimilarity metrics used in image registrations

include, for example, the sum of squared difference, the

normalized cross correlation, the phase correlation, and the

mutual information (Zitová & Flusser, 2003), to name a few.

Thorough discussions on the dissimilarity metric topic can be

found in review articles (Song et al., 2017; Wyawahare et al.,

2009; Zitová & Flusser, 2003, and references therein). For

comparisons with the proposed method, we choose one

method based on phase correlation, one based on the sum of

squared difference, and one method using the total variation

of the displacement field as the regulation term for the mini-

mization in the registration. For the phase correlation method,

we use a Python implementation available at https://github.

com/YoshiRi/ImRegPOC (Ri & Fujimoto, 2018) and refer to

it as FPC. This algorithm implements a band filter to reduce

both low-frequency background and high-frequency noise.

For the sum of squared difference based method, a routine

implemented in the popular image processing package

Insight Toolkit (McCormick et al., 2014) via the

SimpleElastix (Marstal et al., 2016) interface to Python is

used. The ‘AdvancedMeanSquares’ metric and ‘Standard-

GradientDescent’ optimizer are used in this routine. It is

referred to as the SSD method in this work. For the third

method, the routine optical_flow_tvl1 (Zach et al., 2007;

Wedel et al., 2009; Sánchez Pérez et al., 2013) available in

scikit-image’s registration module (van der Walt et al., 2014)

is used. This is a deformable registration method that uses the

L1-norm of the difference image as the cost function and the

total variation of the displacement field as the regulation term.

This method is referred to as OFTV. For convenience, the

method proposed in this work is referred to as TVDM.

The first experiment is based on images synthesized from

the original noise-free image I0 in Fig. 3(a). The gray scale of

the original image is scaled into the range [0, 1]. The target
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Figure 3
Images used in experiment 1 and results. (a) Original image. Panels (b)
and (c) show the synthesized target and source images with additive
noises. (d) Histograms of (a) and additive noises in (b) and (c). (e) – (g)
Difference images between (b) and the registered images with FPC, SSD
and TVDM. The edge features in (e) and ( f ) indicate that the images
are not registered correctly. (h) Registered image with OFTV; local
distortions in the registered image are obvious.



and source images It and Is are synthesized as It = I0 + nt + bt

and Is = I0 + ns + bs, where nt and ns are additive noises, bt and

bs are constant background offsets. In this experiment, we

choose nt, s ’ Nð� ¼ 0:7; � ¼ 0:7Þ and bt, s = 0; Nð�; �Þ is a

noise background following a Gaussian distribution with a

mean � and standard deviation �. The source image Is is

translated by x = [13.5, 21.3] pixels along the horizontal and

vertical directions then rotated by � = 53.9� relative to the

target image It . The translation and rotation numbers are

chosen randomly. Figs. 3(b) and 3(c) show the synthesized

target and source images, respectively. Fig. 3(d) shows the

gray-value histograms of the noise-free image and the additive

noise in Figs. 3(b) and 3(c). The noise histogram peak posi-

tions being higher than that for the noise-free image suggests

that the noise has higher magnitudes than the signals at most

image pixels. It is clear that the target and source images in

Figs. 3(b) and 3(c) lose the details of the weak features in

comparison with Fig. 3(a). The registration results given by

SSD, FPC and TVDM are [x, h] = [17.5, �5.1, �40.2�], [�10.7,

�40.5, �35.7�] and [14.2, 20.8, 53.7�], respectively. While the

error in the TVDM result is less than 0.7 pixel in the trans-

lation and 0.2� in the rotation, the results with SSD and FPC

are wildly off. Figs. 3(e)–3(g) show the difference maps

ðIt � TðIs; uÞÞ with FPC, SSD and TVDM. Visually, the

difference map Fig. 3(g) for TVDM presents no residual edge

features but just random noise background. In contrast,

Figs. 3(e) and 3( f) for FPC and SSD show plenty of residual

edge features. Fig. 3(h) presents the transformed source image

that is calculated with OFTV based on noise-free target and

source images. The image is clearly distorted from the applied

local warps. OFTV is designed for non-rigid registration that

allows more freedoms for local deformations but enforces

fewer constraints to a rigid-body registration even with the TV

of the displacement field as the regulation term. Clearly,

OFTV is not an effective approach for rigid-body registration

tasks. Thus, we will only compare the results with FPC, SSD

and TVDM in the following experiments.

More tests are conducted with different noise and back-

grounds of various combinations of �, �, bt and bs. The results

are summarized in Table S1 of the supporting information. All

three methods reach results that are in good agreement with

the ground truth within �0.7 pixel for translation shifts and

�0.2� for rotation shift in the relatively low noise cases when

� � 0.4, � � 0.4 and bt, s = 0, with SSD giving slightly better

results in this range. FPC becomes instable after � � 0.5,

� � 0.5 independent of bt, s levels. It is noticed that SSD is

susceptible to the variant background offsets. Although SSD

can reach reasonable results up to � = 0.5, � = 0.5 and bt = bs =

0.6, it fails even with low noise of � = 0.1, � = 0.1 when bt = 0.6,

bs = 0.3. In contrast, TVDM provides a solid performance

consistently even up to � = 1.0, � = 1.0 with either zero or non-

zero background offsets in two images.

The performance difference between FPC, SSD and MRTV

is not a surprise. As discussed by Tang & Hamarneh (2013),

SSD as a dissimilarity metric does not work well if two images

have different background offsets. Cross-correlation-based

methods work in such a scenario provided that the back-

ground offsets are linearly related. Therefore, the perfor-

mance of FPC is independent of the constant background

offsets in two images. On the other hand, Gaussian noise is

unstructured so has uniform distribution in the Fourier space.

Filtering in Fourier space will not remove Gaussian noise

completely. Thus, FPC becomes unstable when the Gaussian

noise level is too high. In the TVDM cases, the TV operation

on the difference map of a pair of It and Is removes the effect

of the constant bt � bs, thus TVDM results are free from the

effects of the uniform background offsets in the pair of images.

The Gaussian filtering on the target and source images before

the difference map operation effectively removes the noise

effects in the following TV operation. Therefore, TVDM

presents robust performance in this challenging scenario.

To further test the performances of different algorithms in

the presence of inhomogeneous backgrounds, the target and

source images are added to a noise background of the form

bt,s + sin!t,sLt,s nt,s in the second experiment, where !t,s and

Lt,s are the spatial frequencies and spatial variables for the

target and source images, respectively. To avoid the correla-

tion between the noise backgrounds, Lt is set to be the position

along the horizontal direction in the target image and Ls the

position along the vertical direction in the source image. The

source image is then translated by x = [13.5, 21.3] pixels along

the horizontal and vertical direction and then rotated

by � = 53.9� relative to the target image. Figs. 4(a) and

4(b) show target and source images with backgrounds

0.6 + sinðLt=21ÞN ð0:5; 0:5Þ and 0.3 + sinðLs=33ÞN ð0:5; 0:5Þ,
respectively. Histograms of the original image and the noise

backgrounds are presented in Fig. 4(c). The strong and non-

uniform noise backgrounds heavily distort the images. Both

SSD and FPC fail to register two images as the edge features

are still clearly seen in the difference maps between the target

and registered source images shown in Figs. 4(d) and 4(e).

Quantitatively, FPC calculates [x, h] = [�25.2, �15.1, 168.7�],

and SSD gives [x, h] = [17.3, �11.5, �42.1�]. Both are far away

from the ground truth [x, h] = [13.5, 21.3, 53.9�]. On the

contrary, TVDM calculates [x, h] = [14.4, 21.2, 53.9�]. As

shown in Fig. 4( f), there are no residual edge features visible

in the difference map, in contrast to that in Figs. 4(d) and 4(e).

More experiment results under different noise conditions

are summarized in Table S2 of the supporting information. It is

seen that the level of noise that FPC can handle is reduced to

� = 0.2, � = 0.2 when sinusoidal modulations are added to the

backgrounds. SSD fails to provide reasonable solutions even

in the noise-free case because the gray-value levels in the

target and source images are impaired due to the different

modulations and offset in the backgrounds. TVDM can still

provide stable solutions under all the test conditions.

In the third experiment, three algorithms are tested with the

images synthesized from real X-ray images. Figs. 5(a) and 5(b)

are two X-ray absorption images of a LiCoO2 sample taken at

7619 eV and 7729 eV, one below and another above the Co

K-edge. Two images have had the dark-field background

subtracted and normalized with the reference beam images

acquired at each energy. In real imaging data, the dominating

noise is Poisson noise. However, the average Poisson noise-to-
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signal ratios in the raw images for Figs. 5(a) and 5(b) are

relatively low, 0.13% and 0.17% in the middle regions and

0.45% and 0.54% in the border regions, respectively. The

sample has very different absorptions to X-rays at the two

X-ray energies, as seen from the different feature contrasts in

Figs. 5(a) and 5(b) and the image gray value histograms in

Fig. 5(e). Besides, the two images have different backgrounds

due to X-ray illumination beam variations at the two energies.

Before any following operations, the two images are first

manually aligned as the ground truth. To test the algorithms

under extreme conditions, Gaussian noise is added to

the images again. Fig. 5(a) has added noise of the form

N ð�t=2; �t=2Þ to generate the image in Fig. 5(c), and Fig. 5(b)

has added noise of the form Nð�s=2; �s=2Þ, where �t = 0.68

and �s = 1.67 are the mean gray values in the regions of

interest marked with the red boxes in Figs. 5(a) and 5(b),

respectively. The resulting image from Fig. 5(b) is then

translated by 37 and �33 pixels along the vertical and hori-

zontal directions and rotated by 38� around its center. The

final image is presented in Fig. 5(d). Figs. 5(c) and 5(d) are

used as the target and source images in the experiment,

respectively. The strong noise backgrounds overwhelm the

fine structures in two images. In particular, the weak contrast

in the target image is further compromised by the background

noise. Fig. 5(e) presents gray value histograms of Fig. 5(a) and

the additive noise. Fig. 5( f) presents the gray value histograms

of Fig. 5(b) and the additive noise. The histograms of Figs. 5(a)

and 5(b) have different shapes, and the centers of the noise

distributions shift differently from the signal histograms. This

indicates that neither the signals nor the additive background

noise in Figs. 5(c) and 5(d) are linearly related. Thus, a global

scale factor as suggested by Ashburner & Friston (2007) may

not equalize the gray-value levels in Figs. 5(c) and 5(d), so the

registrations with FPC and SSD may be still affected by the

impaired gray levels in the two images (Tang & Hamarneh,
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Figure 4
Images used in experiment 2 and results. Panels (a) and (b) show the
synthesized target and source images. (c) Histograms of the original
image Fig. 3(a) and additive noises in (a) and (b). (d) – ( f ) Difference
images between (a) and the registered images with FPC, SSD and TVDM.

Figure 5
Images used in experiment 3 and results. Panels (a) and (b) show the original images for the synthesizing target and source images in (c) and (d),
respectively. (e) Histograms of (a) and the additive noise in (c). ( f ) Histograms of (b) and the additive noise in (d). (g) – (i) Difference images between (c)
and the registered images with FPC, SSD and TVDM.



2013). Nonetheless, a global scale factor, �s /�t, is applied to

the target image Fig. 5(c) to roughly equal the gray levels in

the two images. The registration results with FPC, SSD and

TVDM are [13.2, �7.2, 154.0�], [33.5, �23.7, 33.0�] and

[36.9, �31.8, 38.0�]. Compared with the ground truth [x, h] =

[37, �33, 38�], TVDM gives the closest result. Figs. 5(g)–5(i)

present difference maps with FPC, SSD and TVDM. Ideally,

the residual features in a difference map between the target

image and the correctlly aligned source image should just look

like Fig. 5(c) since the global scaling on the source image may

not perfectly equalize the gray levels of the two images. The

incorrect orientation of the features in the middle of Fig. 5(g)

indicates that the result with FPC is wrong. The result with

SSD is not far from the correct solution, but the double edge

feature marked by the red arrow suggests that the result with

SSD is also off. In contrast, the difference map with TVDM

in Fig. 5(i) shows no visible residual edge features. More

experimental results with different levels of additive Gaussian

noise are summarized in Table S3 of the supporting informa-

tion. It is shown that FPC only works in cases when the

additive Gaussian noise is at levels � � �t;s=10, � � �t;s=10.

With higher background noise, FPC results quickly become

unstable. SSD fails even to register the original images without

additive Gaussian noise due to the quite different back-

grounds and features in the image pair. In contrast, TVDM

performs well up to the � = �t;s=2, � = �t;s=2 noise level at

which the error in the vertical direction translation increases

to 1.2 pixel while the errors in the horizontal direction trans-

lation and rotation angle are still close to zero.

A typical TXM XANES image dataset is composed of tens

to hundreds of images taken at different energy points. One

strategy to register a series of images is to use one image as the

global target images and register every other image in the

series to the target image. The challenge in this approach is

that the image contrasts, background features and noise, and

gray-value levels may vary dramatically over the entire series.

As shown in the second and third examples, FPC and SSD

may become instable in such cases. Another strategy is to start

with one image as the global anchor and register every two

neighbor images progressively from that image. The relative

shift of any image from the reference image can be calculated

by summing up the shifts of every image pair between these

two images. However, even the small registration error in each

registration operation may accumulate into a large error at the

end. As a trade-off solution to these two strategies, the third

strategy is to set one image as the global anchor and split the

entire image series into a few small chunks. In each chunk, one

image is chosen as the local target image, and every image in

the chunk is registered to this local target image. A local target

image is registered to its neighbor local target image toward

the global anchor image. For instance, if the global anchor

image is the number n0 image in the image series and the

chunk size is nc, then the local target images are [ . . . , n0 � 2nc,

n0 � nc, n0, n0 + nc, n0 + 2nc, . . . ]. This approach degenerates

to the first approach if the chunk size nc is set to 1, or to the

second approach if the chunk size nc is set to the number of

images in the entire dataset. Nonetheless, the variations in the

images and error accumulation may still pose issues in regis-

tering a long image series.

In the fourth experiment, three algorithms are tested with

real experimental data. The dataset is composed of 101 images

of a LiCoO2 electrode sample taken at 101 energy points

across the Co K-edge. The sample was cycled at 0.5 C rate for

100 cycles and measured under ex situ conditions. Before

registration, each image is normalized by its reference beam

image. The third registration strategy with a chunk size of 7 for

an image series is utilized in this experiment. Fig. 6(a) shows

the global anchor image taken at 7730 eV that is the 51st

image in the series. The Poisson noise-to-signal ratio in the

small region marked by the red box in Fig. 5(a) is plotted as a

function of image index in Fig. 6(b). It is seen that the Poisson

noise-to-signal ratio varies in a range between 1.4% and 1.9%.

As seen in Fig. 6(a), there is a thin crack across the particle in

the middle of the images. A plot along the line across the crack

shown in Fig. 6(a) has a sharp dip that indicates the crack

position, as shown in Fig. 6(c). Ideally, the line plots for each

image should have the dip at the same position if all the

images are correctly aligned. Figs. 6(d) and 6(e) are line plots

based on the registration results with FPC and SSD. Clearly,

the line plot dip positions drift between different images. The

drift range is between [�2, +1.5] pixels for FPC and [�2, +2.5]

pixels for SSD. On the contrary, the line plots for TVDM

in Fig. 6( f) show that the dip positions stay tightly within a

�1 pixel range over 101 images that have significant variance

in the gray-value levels.

Precise alignment of the entire XANES image stack is

crucial for obtaining an accurate valence state distribution of

the concerned elements, especially in the particles’ boundary

regions. Figs. 6(g)–6(i) plot the XANES spectra at the points A

and B marked in Fig. 6(a), based on the FPC, SSD and TVDM

registration results. Point A is on the boundary, and point B is

in the middle, of a LiCoO2 particle. While the spectra for point

B show no fundamental differences in Figs. 6(g)–6(i), the

spectra in Figs. 6(g) and 6(h) for the point A obtained from

the aligned image stacks with FPC and SSD present significant

distortions due to the alignment errors. In comparison, the

spectrum for point A obtained from the aligned image stack

with TVDM is smooth and similar to that at point B. This is an

expected result since LiCoO2 single crystals tend to have a

uniform state of charge under slow charging conditions (Xu et

al., 2017).

5. Discussions

The proposed TVDM method demonstrates superior perfor-

mance over the other two intensity-based conventional rigid

registration methods in three experiments. The effects of

the TV operation in TVDM are different from those in the

conventional TV regulation on the displacement field in

deformable registration methods. As shown in the first

experiment, the TV regulation in the optical flow method does

not provide a sufficient rigid-body transform constraint in the

rigid registration cases. In TVDM, the Gaussian filter together

with TV operation on the DM of the image pair can effectively
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reduce various slow background variations while keeping the

edge features. This is different from band filters such as the

one implemented in the FPC method that cannot remove

noise in the reserved bandwidth. In all three experiments,

TVDM works well under all test conditions whilst FPC only

works in relatively low-noise cases.

TVDM still requires gray value scaling if two images have

very different gray-value levels. However, it is not sensitive to

the accuracy of the global scaling factor. As shown in the third

experiment, it works even when the gray value histograms of

two images are not completely overlapping. In contrast, SSD is

sensitive to the scaling factor choice in such a case. The output

may change if the scaling factor is varied. That makes the SSD

method still subjective to visual evaluations and manually

tweaking of its parameters according to the image conditions.

The parameters for TVDM are not sensitive to the appli-

cation conditions. TVDM has few arguments for adjusting its

performance. The default values of most arguments work in

most cases. The parameters in the translation offset search are

the number of resolution levels and the search range in each

level. These two parameters determine the overall search

range. The default setting is 5 for the number of resolution

level and 8 for the search range at each level, which provides

an overall search range of [�64, 64] pixels in each dimension.

The rotation angle search uses the differential evolution

method whose key arguments are search range, number of

population (NP), mutation factor (F) and the crossover factor

(CR) (Storn & Price, 1997). In the DE implementation in

Scipy.Optimize, the default setting is 0.7 for CR and randomly

dithering in the range [0.5, 1) on a generation-by-generation

basis for F. These default settings are inherited in TVDM. To

avoid local minima in angle search, the default setting for NP

is set to 100 to ensure sufficient sampling in the search space.

The default angle search range is set to [�10�, 10�]. This
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Figure 6
Registration results with a TXM XANES dataset. (a) Global reference image. (b) Average Poisson noise-to-signal ratio as a function of image index in
the region of interest marked with the red box in (a). (c) Line plot along the line in (a). The dip position indicates the crack position in the line. (d) – ( f )
Line plots for each image in the dataset after the registrations with FPC, SSD and TVDM, respectively. With an ideal registration, the dip positions in all
the lines should be the same. (g) – (i) XANES spectra at points A and B marked in (a) based on aligned image stacks with FPC, SSD and TVDM,
respectively. Alignment errors have more impact on the spectra in the particles’ boundary regions.



assumes a rough estimation on the relative rotation between

two images that is not difficult to do. The most important

parameter in TVDM is the Gaussian filter kernel width. The

Gaussian filter is used to reduce the noise outlier presence in

the DM of two images. Its value balances the noise removal

and the edge preservation. A large kernel width can smear the

edge features in the images that may reduce the registration

accuracy. In practice, a kernel width around 1 is found to be

sufficient in most cases, thus the default value for the Gaussian

filter kernel width is set to 1. These default argument values

are used in all three experiments. The success of TVDM in all

the test cases shows the robustness of the proposed method in

rigid registration applications.

Although it is not tested, the results of the third experiment

suggest that the proposed TVDM method is expected to work

in the multimodal image rigid registration tasks if two images

share common feature boundaries but have varying contrasts

between different features.

6. Summary

A new dissimilarity metric based on the total variation of the

difference map between an image pair is proposed for rigid

registration applications. A rigid registration method based on

a new metric, TVDM, is tested and compared with the Fourier

analysis-based phase correlation and sum of squared differ-

ence metrics. The results demonstrate the validity and

robustness of TVDM. TVDM overperforms the other two

intensity-based rigid registration methods, one based on

Fourier phase correlation and the other based on the sum of

squared difference, under both simulated and real experi-

mental conditions. The proposed method is expected to find

broad applications in image registration tasks, e.g. imaging-

based nano-XANES data analysis, in which varying levels of

noise and backgrounds could be pronounced. TVDM has been

integrated into TXM_Sandbox (Xiao et al., 2022) that will be

released at https://github.com/xianghuix/TXM_Sandbox.
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