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Abstract—The signal-to-noise ratio (SNR) is a fundamental
tool to measure the performance of an image sensor. However,
confusions sometimes arise between the two types of SNRs. The
first one is the output-referred SNR which measures the ratio
between the signal and the noise seen at the sensor’s output.
This SNR is easy to compute, and it is linear in the log-log
scale for most image sensors. The second SNR is the exposure-
referred SNR, also known as the input-referred SNR. This SNR
considers the noise at the input by including a derivative term to
the output-referred SNR. The two SNRs have similar behaviors
for sensors with a large full-well capacity. However, for sensors
with a small full-well capacity, the exposure-referred SNR can
capture some behaviors that the output-referred SNR cannot.

While the exposure-referred SNR has been known and used by
the industry for a long time, a theoretically rigorous derivation
from a signal processing perspective is lacking. In particular,
while various equations can be found in different sources of the
literature, there is currently no paper that attempts to assemble,
derive, and organize these equations in one place. This paper
aims to fill the gap by answering four questions: (1) How is
the exposure-referred SNR derived from first principles? (2) Is
the output-referred SNR a special case of the exposure-referred
SNR, or are they completely different? (3) How to compute the
SNR efficiently? (4) What utilities can the SNR bring to solving
imaging tasks? New theoretical results are derived for image
sensors of any bit-depth and full-well capacity.

Index Terms—Signal-to-noise ratio (SNR), full-well capacity,
CMOS image sensors (CIS), charge coupled devices (CCD),
quanta image sensors (QIS), single-photon imaging.

I. INTRODUCTION

The signal-to-noise ratio (SNR) is a basic tool to measure
a device’s performance when acquiring, transmitting, and
processing raw data in the presence of noise. In as early as
1949, when Claude Shannon derived the information capacity
of a noisy Gaussian channel, the concept of SNR was already
presented [1]. As the name suggests, the SNR is the ratio
between the signal power and the noise power

SNR =
signal power
noise power

, (1)

which is sometimes expressed in the logarithmic scale via
10 log10 SNR with the unit decibel (dB). Assuming that the
signal follows the equation Y = θ + W where θ is a scalar
and W ∼ Gaussian(0, σ2) is the white noise, one can measure
the SNR at the output by defining

SNRout(θ) =
signal at output
noise at output

=
E[Y ]√
Var[Y ]

, (2)
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where the conversion from power to magnitude is taken care
by changing the log from 10 log10 SNR to 20 log10 SNRout. In
this equation, E[·] denotes the expectation and Var[·] denotes
the variance of the random variable Y . The SNR defined in
(2) is known as the output-referred SNR.

In the sensor’s literature, there is an alternative definition of
the SNR which is based on the exposure (i.e., the input). The
definition of this exposure-referred SNR is [2]

SNRexp(θ) =
signal at input
noise at input

=
θ√

Var[Y ] · dθ
dE[Y ]

. (3)

The denominator of the equation is called the exposure-
referred noise or the input-referred noise [3]. In computer
vision, an early work of Mitsunaga and Nayar in 1999 [4]
mentioned the equation (Equation (3)) although they did not
give it a name.

The interpretation of the derivative dθ/dE[Y ] is known to
the sensor’s community [2]. The argument is that the input-
referred noise is computed by back-propagating the signal
from the output to the input via the transfer function dθ/dE[Y ]
which approximates the relationship between the input θ and
the output E[Y ] [5, supplementary report]. As mentioned in
multiple papers [5], [6], the presence of this derivative term
is particularly important for sensors with a small full-well
capacity because when a sensor saturates, the SNR has to drop.
The exposure-referred SNR can capture this phenomenon
whereas the output-referred SNR cannot.

Both versions of the SNRs are widely used in the industry
[2]. People use the SNRs to evaluate sensors and to design
sensor parameters so that the performance is maximized.
However, from a theoretical point of view, besides the usual
interpretation of treating the derivative as a transfer function,
mathematically there is no rigorous proof trying to unify the
two SNRs. The paper by Yang et al. [7] introduced the SNR
from a statistical estimation perspective, whereas the paper
by Elgendy and Chan [5] proved the equivalence between
the SNR in [7] and SNRexp for the case of one-bit sensors
under a zero read noise. The connections between SNRexp and
SNRout and their generalizations to multi-bit sensors remain
unanswered. The goal of this paper is to fill the gap by
answering four questions:

(i) How is the exposure-referred SNR derived from the first
principle?

(ii) Under the unified framework addressed in (i), is it
possible to show that SNRout is a special case of SNRexp?

(iii) How to efficiently compute SNRexp for complex forward
imaging models?

(iv) What are the utilities of SNRexp(θ)?
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II. MATHEMATICAL BACKGROUND

A. Limitations of Output-Referred SNR

To begin the discussion, it would be useful to first study the
output-referred SNR and understand its limitations. Consider
a Poisson-Gaussian random variable which is commonly used
in modeling image sensors [8], [9]:

X ∼ Poisson(θ) + Gaussian(0, σ2
read),

where θ denotes the average number of photons (i.e., the flux
integrated over the surface area and the exposure time), and
σread is the standard deviation of the read noise. This equation
is a simplified model. Factors such as dark current, pixel non-
uniformity, defects, analog-to-digital conversion, and color fil-
ter arrays are not considered to make the theoretical derivations
tractable. Later in the paper, when the Monte Carlo simulation
is introduced, some of these factors will be included.

Assuming that the sensor has a full-well capacity L (with
the unit electrons), the output produced by the sensor follows
the equation

Y =

{
X, X < L,

L, X ≥ L.
(4)

If the full-well capacity is L = ∞, the measurement Y will
never saturate, and hence the expectation is E[Y ] = θ and the
variance is Var[Y ] = θ+σ2

read. Then, according to (2), SNRout
can be computed via

SNRout(θ) =
θ√

θ + σ2
read

. (5)

If the read noise is negligible, i.e. σread � θ, the SNR can be
simplified to SNRout(θ) =

√
θ. This equation can be found in

many standard texts, e.g., [8].
The problem arises when the full-well capacity is finite.

When L < ∞, SNRout in (2) is still adequate to capture the
sensor’s behavior when the exposure θ is smaller than the
full-well capacity L. However, if θ reaches the full-well and
goes beyond it, the mean E[Y ] will stop growing with θ as
illustrated in Figure 1. The variance Var[Y ] will gradually
drop to zero because when Y goes beyond the full-well
capacity, it will be capped. As a result, SNRout according
to (2) will eventually go to infinity (because Var[Y ] → 0).
This is not a desirable behavior because the SNR beyond the
saturation is supposed to be poor.

B. One-bit and Multi-bit Sensors

If the full-well capacity is the source of the issue, the
next question is how commonly does it happen. The full-
well capacity of a conventional CMOS image sensor (CIS)
is thousands of electrons. Therefore, unless the scene is bright
and the integration is long, the sensor generally does not need
to operate near the full-well capacity. However, for a newer
type of image sensors based on single-photon detectors, the
full-well capacity can be as small as only one electron. Their
idea is to acquire binary bits at a very high frame rate and use
computational methods to reconstruct the image. This class of
sensors is broadly known as the quanta image sensors (QIS)
that can be implemented using the single-photon avalanche

Fig. 1. With a finite full-well capacity, the mean E[Y ] will stop growing
when the exposure θ exceeds the full-well capacity L = 102.

diodes (SPAD-QIS) or the existing CMOS technology (CIS-
QIS) [10].

From a mathematical modeling point of view, QIS is no
different from a conventional CIS if it operates in the multi-bit
mode because the equation will follow (4) [6]. The difference
is that for QIS, the read noise is about 0.2 electrons whereas
for CIS, the read noise can range from 2 to tens of electrons.
If QIS operates in the one-bit mode, Y will follow

Y =

{
0, X < q,

1, X ≥ q,
(6)

where q is the threshold (usually set as q = 0.5). Because of
the generality of equations (4) and (6), the theoretical results of
this paper is applicable to sensors of any bit-depth, including
QIS and the conventional CIS.

C. Truncated Poisson and the Incomplete Gamma Function

The multi-bit sensor equation in (4) requires some statistical
tools to handle the truncated Poisson random variable. To
further simplify notations, in this section, the read noise is
σread = 0 so that X ∼ Poisson(θ). In this case, the probability
mass function of Y is

pY (y) =

{
θy

y! e
−θ, y < L,∑∞
`=L

θ`

`! e
−θ, y = L.

(7)

By construction, the random variable Y will never take a value
greater than L. The probability that Y = L is given by the
sum of the Poisson tail, which can be conveniently expressed
via the incomplete Gamma function as shown in Figure 2.

Definition 1 (Incomplete Gamma function, [11]): The upper
incomplete Gamma function is defined as ΨL : R+ → [0, 1],
with

ΨL(θ) =
1

Γ(L)

∫ ∞
θ

tL−1e−tdt =

L−1∑
`=0

θ`e−θ

`!
, (8)

for θ > 0, L ∈ N where Γ(L) = (L − 1)! is the standard
Gamma function.
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Fig. 2. Incomplete Gamma function ΨL(θ) as a function of θ.

A few useful properties of ΨL(θ) can be derived. First, the
first-order derivative of ΨL(θ) is

Ψ′L(θ) = −θ
L−1e−θ

(L− 1)!
< 0, for all θ, (9)

which means that ΨL(θ) is a strictly decreasing function in
θ. The steepest slope can be determined by analyzing the
curvature

Ψ′′L(θ) = −(L− 1)θL−2e−θ + e−θθL−1.

Equating this to zero will yield θ∗ = L − 1. At this critical
point and assume L� 1, a new result using Stirling’s formula
can be shown1:

Ψ′L(θ∗) ≈ − 1√
2πθ∗

exp

{
− (θ∗ − (L− 1))2

2θ∗

}
. (10)

Therefore, Ψ′L(θ∗) = − 1√
2π(L−1)

. Hence, the slope of the

incomplete Gamma function reduces as L increases.
Remark 1: Most papers in the image sensor’s literature

plot curves with respect to log10 θ instead of θ, like the one
shown in Figure 2. The x-axis compression caused by log10 θ
will make the transient of the incomplete Gamma function to
appear steeper. The reason is that for any function f(θ), the
slope in the log10 θ space is determined by d

d log10 θ
f(θ) =

θf ′(θ) · log 10. So for large θ, the slope appears steeper.

D. Delta Method

A mathematical tool that will become useful later in the
paper is the Delta Method in statistics. It approximates the
variance when a random variable undergoes a nonlinear trans-
formation.

Lemma 1 (Delta Method, [12]): Consider a sequence of
independently and identically distributed (i.i.d.) random vari-
ables X1, . . . , XN with a common mean E[X1] = µ. Define
X = (1/N)

∑N
n=1Xn be the sample average, and assume

that
√
N(X−µ)

d→ Gaussian(0, τ2), where τ2 is the standard
deviation of a Gaussian random variable, and d→ denotes con-
vergence in distribution. Suppose that there is a continuously
differentiable function f such that f ′(µ) exists and is not zero.
Then

√
N [f(X)− f(µ)]

d→ Gaussian(0, τ2(f ′(µ))2). In other
words,

E[(f(X)− f(µ))2] ≈ [f ′(µ)]2Var[X]. (11)

1The proof of this result is given in the Appendix.

Proof: The complete proof can be found in [12, Theorem
2.5.2]. The two key arguments in the proof are (1) X converges
in distribution to µ due to the Central Limit Theorem; (2)
Taylor approximation gives

f(X) ≈ f(µ) + f ′(µ)(X − µ) + op(X − µ),

where op denotes the little-op notation [12, Definition 2.1.3]
and hence
√
N
[
f(X)− f(µ)

]
≈
√
Nf ′(µ)(X − µ) + op(

√
N(X − µ)).

Taking squares on both sides gives (11). �

III. SNR: A STATISTICAL DEFINITION

A. Defining the SNR

When defining the SNR, it is important to clarify the
notion of signal and noise. In most of the imaging problems,
the underlying signal is the scene exposure θ. The signal θ
defines a probability distribution pY (y; θ) from which the i.i.d.
samples Y1, . . . , YN are drawn.

Reconstruction of the signal θ from Y1, . . . , YN is based
on an estimator θ̂. An estimator can be any mapping that
maps Y = [Y1, . . . , YN ] to θ̂(Y ). However, if θ is a fixed
scalar, most sensors will produce an estimate based on the
sample average Y = (1/N)

∑N
n=1 Yn because the on-chip

processing today is largely limited to simple operations such
as addition. In this case, the estimator can be written as θ̂(Y ),
which can also be interpreted as an estimator based on the
sufficient statistics.

The noise term in the SNR is the deviation between the
estimator θ̂(Y ) and the true parameter θ. Since the estimator
θ̂(Y ) is random, the noise power is the expectation

noise power = E[(θ̂(Y )− θ)2], (12)

which is also the mean squared error.
Definition 2 (SNR, formal definition): Let Y = [Y1, . . . , YN ]

be i.i.d. random variables drawn from the distribution pY (y; θ).
Construct an estimator θ̂(Y ). Then the signal-to-noise ratio
(SNR) is

SNR(θ)
def
=

θ√
E[(θ̂(Y )− θ)2]

. (13)

The above definition is not a new invention. When Yang et
al. presented the analysis of the quanta image sensor in 2011
[7], this definition was already used to derive the Cramer-
Rao lower bound. Subsequent papers such as [5] and [13] by
Chan and colleagues also rely on this definition. A version for
single-photon avalanche diode (SPAD) is presented by Gupta
and colleagues [14].

To elaborate on this formal definition of the SNR, consider
the two examples below.

Example 1 (Poisson): Let Y1, . . . , YN
i.i.d.∼ Poisson(θ), and

consider the maximum-likelihood estimator θ̂(Y ) = Y . (The
derivation of the ML estimator for a Poisson random variable
is skipped for brevity.) Since θ̂(Y ) = Y , it follows that

E[(θ̂(Y )− θ)2] = E[(Y − θ)2] =
θ

N
,



4

where the second equality holds because the variance of a
Poisson random variable is θ. Therefore, SNR(θ) =

√
N ·
√
θ,

which is consistent with (5) when σread = 0. �
Example 2 (Poisson + Gaussian): Let Y1, . . . , YN

i.i.d.∼
Poisson(θ) + Gaussian(0, σ2

read). Consider the ML estimator
θ̂(Y ) = Y . It then follows that

E[(θ̂(Y )− θ)2] = E[(Y − θ)2] =
1

N

(
θ + σ2

read

)
,

where the second equality holds because the variance of a
Poisson-Gaussian is the sum of the two variances. Therefore,
SNR(θ) =

√
N · θ/

√
θ + σ2

read. This result is consistent with
(5) for a general σread. �

B. Mean Invariance

The formal definition of the SNR is general for any estima-
tor. However, the statistical noise model for an actual image
sensor can be complicated. In fact, except for a few special
occasions where the maximum-likelihood (ML) estimator can
be expressed in a closed form, in most other situations the ML
estimator cannot be obtained in a closed form. In this case, a
more convenient way is to define the estimator from the mean.

Definition 3 (Mean invariant estimator): Let Y1, . . . , YN be
i.i.d. random variables drawn from the distribution pY (y; θ).
Let µ(θ) = E[Y ] =

∫
y · pY (y; θ) dy be the mean of Y . An

estimator θ̂(Y ) is mean invariant if

µ(θ̂(Y )) = Y . (14)

If µ−1 exists, the mean invariant estimator is θ̂(Y ) = µ−1(Y ).
The following two examples shows that many estimators

are mean invariant.
Example 3: Let Yn

i.i.d.∼ Gaussian(θ, σ2
read) for n = 1, . . . , N ,

where θ is the unknown parameter. It can be shown that the
maximum-likelihood (ML) estimator is

θ̂ML(Y ) = argmax
θ

N∏
n=1

1√
2πσ2

read

exp

{
− (Yn − θ)2

2σ2
read

}
= Y .

Notice that if Y is Gaussian, the mean is µ(θ) = E[Y ] = θ.
Therefore, the mean invariance property holds:

µ(θ̂ML(Y ))
(a)
= θ̂ML(Y ) = Y .

where (a) is due to the fact that µ(θ) = θ. �
Example 4: Let Y1, . . . , YN be i.i.d. one-bit measurements

defined according to (6), with q = 0.5 and σread = 0. In
this case, Yn is a Bernoulli random variable such that Yn

i.i.d.∼
Bernoulli(1− e−θ). The ML estimator is

θ̂ML(Y ) = argmax
θ

N∏
n=1

(1− e−θ)Yn(e−θ)1−Yn

= − log(1− Y ).

Since the mean of Y is µ(θ) = E[Y ] = 1 − e−θ, it follows
that

µ(θ̂ML(Y )) = 1− e−θ̂ML(Y ) = Y .

Again, the mean invariance property is satisfied. �

A mean invariant estimator is easy to construct. Even if
pY (y; θ) has a complex form, the mean E[Y ] can be obtained
through Monte Carlo simulation. Once the mean E[Y ] is
determined, the mean invariant estimator θ̂ can be constructed
from θ̂(Y ) = µ−1(Y ), assuming that µ−1 exists.

Follow up of Example 3. Let Yn
i.i.d.∼ Gaussian(θ, σ2

read) for
n = 1, . . . , N where θ is the unknown parameter. Since the
mean is E[Y ] = θ, it follows that µ(θ) = E[Y ] = θ. This
µ is the identity mapping, and so the inverse mapping is
µ−1(s) = s for any s. Thus, one can define an estimator
θ̂(Y ) = µ−1(Y ) = Y . As seen, it is the same as the ML
estimator derived in Example 3. Moreover, θ̂(Y ) is mean
invariant because θ̂ is constructed in that way. �

Follow up of Example 4. Let Yn
i.i.d.∼ Bernoulli(1−e−θ) be the

one-bit measurements for n = 1, . . . , N . The mean is µ(θ) =
E[Y ] = 1− e−θ, and so the inverse is µ−1(s) = − log(1− s).
Therefore, one can define the estimator as θ̂(Y ) = µ−1(Y ) =
− log(1−Y ) The result is identical to Example 4. Furthermore,
since the estimator is constructed from the mean invariance
property, it has to satisfy the property. �

Based on Example 3 and Example 4, one may conjecture
that any ML estimator is also the mean invariant estimator. The
observation is correct for any distributions in the exponential
family. The proof is given in the Appendix. Outside the
exponential family the two can be different. The following
is a counter example.

Example 5 (Mean invariant estimator 6= ML estimator):
Consider a truncated Poisson distribution

pY (y; θ) =

{
θye−θ

y! , y < L,

1−ΨL(θ), y ≥ L.

Using (23) (to be proved in the next section), the mean is
E[Y ] = θΨL−1(θ) + L(1−ΨL(θ)). Let µ(θ) = θΨL−1(θ) +
L(1−ΨL(θ)). So, the mean invariant estimator can be defined
as

θ̂(Y ) = µ−1(Y ),

which is a function of Y = (1/N)
∑N
n=1 Yn.

Now consider the ML estimator. The ML estimator is

θ̂ML(Y ) = argmax
θ

1

N

N∑
n=1

[
(Yn log θ − θ) · I{Yn < L}︸ ︷︷ ︸

Zn

+ log(1−ΨL(θ)) · I{Yn ≥ L}︸ ︷︷ ︸
1−Zn

]
, (15)

where Zn = I{Yn < L} is the indicator function that returns
1 if Yn < L or 0 if otherwise. Taking derivative and setting it
to zero implies that θ̂ML must satisfy the equation

1

θ̂ML

(
1

N

N∑
n=1

YnZn

)
− 1

N

N∑
n=1

Zn

=

(
1− 1

N

N∑
n=1

Zn

)
· Ψ′L(θ̂ML)

1−ΨL(θ̂ML)
. (16)

Therefore, the ML estimator θ̂ML(Y ) must be a function of
(1/N)

∑N
n=1 YnZn and (1/N)

∑N
n=1 Zn, not Y . �
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While the ML estimator and the mean invariant estimator
are generally not the same, they are asymptotically equivalent.
As N →∞, the consistency of the ML estimator implies that
θ̂ML(Y )

p→ θ [12]. On the other hand, the law of large numbers
implies that Y

p→ E[Y ] = µ(θ). So, a mean invariant estimator
θ̂(Y ) = µ−1(Y )

p→ µ−1(µ(θ)) = θ. Therefore, as N → ∞,
both θ̂ML(Y ) and θ̂(Y ) will converge in probability to the true
parameter θ and hence they are equivalent asymptotically.

Mean invariance is also not the same as the invariance
principle of the ML estimator. The invariance principle of the
ML estimator says that if there is a monotonic mapping h that
maps θ to h(θ), then h(θ̂ML) will be the ML estimator of h(θ).
The following example shows a case where mean invariance
is different from the invariance of ML.

Example 6: Consider Xn
i.i.d.∼ Bernoulli(θ) and Yn

i.i.d.∼
Bernoulli(eθ) for n = 1, . . . , N . The ML estimator of θ using
X1, . . . , XN is

θ̂ML(X) = X.

According to the invariance of the ML estimator, a monotonic
mapping h1(·) = e(·) will ensure that θ̂1

def
= h1(θ̂ML) = eX

is the ML estimator of eθ. By the same principle, if there is
a different monotonic mapping θ̂2

def
= h2(·) = log(·), it holds

that h2(θ̂ML) = log(X) is the ML estimator of log(θ).
Now consider the mean µ(θ)

def
= E[Y ] = eθ. The invari-

ance principle says nothing about whether µ(θ̂1(Y )) = Y
or µ(θ̂2(Y )) = Y . In fact, θ̂1 does not satisfy the mean
invariance property because µ(θ̂1(Y )) = eθ̂1(Y ) = ee

Y 6= Y .
However, θ̂2 satisfies the mean invariance property because
µ(θ̂2(Y )) = elog(Y ) = Y . Therefore, the invariance principle
of the ML estimator is completely different from the mean
invariance property. �

To summarize, the mean invariance is a property that specif-
ically focuses on whether the mean E[Y ] can be nonlinearly
mapped to recover the true parameter θ. This is the property
required for the exposure-referred SNR. Whether the estimator
is the ML estimator is not of concern.

In the statistics literature, the mean invariance property
presented in this paper is related to the link function for the
generalized linear models. Specifically, the mapping µ(θ)

def
=

E[Y ] from the true parameter θ to the mean µ is known as the
link function, and the inverse mapping µ−1 is known as the
response function. Readers interested in details of this topic
can consult [15].

C. Exposure-referred SNR

With all the mathematical tools ready, the exposure-referred
SNR can now be formally derived.

Theorem 1: Let Y1, . . . , YN be i.i.d. random variables
drawn from the probability density function pY (y; θ). Define
Y = (1/N)

∑N
n=1 Yn. Let µ(θ)

def
= E[Y ] and assume that µ−1

exists. Let θ̂(Y ) be the mean invariant estimator such that
θ̂(Y ) = µ−1(Y ). Then the SNR defined in (13) is related to
SNRexp as

SNR(θ) ≈ SNRexp(θ) =
θ√

Var[Y ]
· dµ
dθ
. (17)

Proof: By the Delta Method, the mean squared error can
be approximated by

E
[(
θ̂(Y )− θ

)2
]

= E
[(
θ̂(Y )− θ̂(µ(θ))

)2
]

≈
[
θ̂′(µ(θ))

]2
Var[Y ],

where the derivative is taken with respect to µ(θ).
Since θ̂(µ(θ)) = µ−1(µ(θ)) = θ, it follows that dθ̂(µ)

dµ = dθ
dµ .

So,

E
[(
θ̂(Y )− θ

)2
]

=

[
dθ

dµ

]2

Var[Y ]. (18)

Using the fact that dθ
dµ = 1/dµdθ , the SNR can be written as

SNR(θ) =
θ√

E
[(
θ̂(Y )− θ

)2
] ≈ θ√

Var[Y ]
· dµ
dθ︸ ︷︷ ︸

SNRexp(θ)

,

which completes the proof. �
Corollary 1: Under the same conditions listed in Theorem 1,

the exposure-referred SNR is related to the output-referred
SNR as

SNRexp(θ) = SNRout(θ) ·
θ

µ
· dµ
dθ
. (19)

Proof: The proof follows from the substitution

SNRexp(θ) =
θ√

Var[Y ]
· dµ
dθ

=
µ√

Var[Y ]︸ ︷︷ ︸
=SNRout(θ)

· θ
µ
· dµ
dθ
.

This completes the proof. �
As one can see from (18), the derivative dµ/dθ is added

because of the Delta Method. It is the first-order approximation
of a nonlinear mapping from the output to the input. Using the
argument of Elgendy and Chan [5], this first-order derivative
can be regarded as a transfer function relating the output E[Y ]
to the input θ. If the input-output has a linear relationship
E[Y ] = θ, which is the case of a CIS with a large full-well
capacity, then the derivative is dµ/dθ = 1 and so SNRout(θ) =
SNRexp(θ).

D. Illustrating the SNR via one-bit QIS

To elaborate on the difference between SNRexp(θ) and
SNRout(θ), it would be instructive to consider the statistics of
a one-bit quanta image sensor. Let X1, . . . , XN

i.i.d.∼ Poisson(θ)
and let Yn be the random variables defined in (6).

First, consider the case where q = 1. Since Y1, . . . , YN
i.i.d.∼

Bernoulli(1 − e−θ), the mean is E[Y ] = 1 − e−θ. Define the
mean as µ(θ) = E[Y ] = 1−e−θ. As shown in Example 4, the
maximum-likelihood estimate of θ is θ̂(Y ) = − log(1 − Y )
and it satisfies the mean invariance property. The derivative
dµ/dθ is

dµ

dθ
=

d

dθ

[
1− e−θ

]
= e−θ.
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Substituting into Theorem 1, it can be shown that

SNRexp(θ) =
θ√

Var[Y ]
· dµ
dθ

=
√
N · θ ·

√
e−θ

1− e−θ
.

For cases where q > 1, one can use the incomplete Gamma
function so that

pY (y; θ) =

{
1−Ψq(θ), y = 1,

Ψq(θ), y = 0.

It then follows that E[Y ] = 1−Ψq(θ) and the estimator can be
chosen such that θ̂(Y ) = Ψ−1

q (1 − Y ). The mean invariance
property is therefore validated. The derivative dµ/dθ is

dµ

dθ
=

d

dθ
(1−Ψq(θ)) =

θq−1e−θ

(q − 1)!
.

Hence, the SNR is

SNRexp(θ) =

√
N · θ√

Ψq(θ)(1−Ψq(θ))
· θ

q−1e−θ

(q − 1)!
, (20)

of which the visualization is shown in Figure 3. This result
is consistent with the one shown by Elgendy and Chan by
deriving the Fisher Information [5].
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Fig. 3. Exposure-referred SNR for a one-bit quanta image sensor, assuming
that σread = 0. As θ goes beyond the threshold q, SNRexp(θ) starts to drop
as expected.

Unlike SNRexp(θ), the output-referred SNR goes to infinity
when θ grows. For the same one-bit statistics, the output-
referred SNR is simply the ratio between E[Y ] and Var[Y ],
which is

SNRout(θ) =
E[Y ]√
Var[Y ]

=
√
N ·

√
1−Ψq(θ)

Ψq(θ)
. (21)

As shown in Figure 4, SNRout(θ) grows indefinitely as θ
grows. This does not reflect the reality because when θ
grows beyond the threshold q, the measurements {Yn |n =
1, . . . , N} will have more one’s. The signal degrades and
hence eventually the SNR drops to zero.
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Fig. 4. Output-referred SNR for a one-bit quanta image sensor, assuming that
σread = 0. As θ goes beyond the threshold q, SNRout(θ) continues to grow
because of the inability of SNRout(θ) to handle pixel saturation.

IV. SNREXP(θ) FOR FINITE FULL-WELL CAPACITY

The subject of this paper is to understand the exposure-
referred SNR for digital (CCD and CMOS) image sensors
with a finite full-well capacity L. In particular, the goal is to
understand the situation when L is small, e.g., a few bits. This
section presents the main result for such a scenario.

A. SNRexp(θ) for Truncated Poisson

To make the analysis tractable, the derivation in this section
will be focusing on a truncated Poisson distribution assuming
σread = 0. Extension to the more complex noise model will be
analyzed later.

Theorem 2 (SNRexp(θ) for truncated Poisson): Let
Y1, . . . , YN be i.i.d. random variables following the truncated
Poisson statistics defined in (4) where Xn

i.i.d.∼ Poisson(θ) for
n = 1, . . . , N . Let θ̂(Y ) be an estimator satisfying the mean
invariance property. Then the exposure-referred SNR is

SNRexp(θ) =
√
N · θ√

Var[Yn]
· dµ
dθ
, (22)

where

E[Y ] = θΨL−1(θ) + L(1−ΨL(θ))
def
= µ,

Var[Y ] = θ2ΨL−2(θ) + θΨL−1(θ) + L2(1−ΨL(θ))− µ2,

dµ

dθ
= θΨ′L−1(θ) + ΨL−1(θ)− LΨ′L(θ). (23)

Proof: The proof is presented in the Appendix. �
To illustrate the predicted SNRexp(θ) as a function of θ,

Figure 5 shows several curves evaluated at different full-well
capacity L. As is consistent with the one-bit QIS example
shown in Section III.D, the exposure-referred SNR for a
truncated Poisson random variable also demonstrates a drop in
SNRexp(θ) after the pixel saturates. What is more interesting
is that as L increases, SNRexp(θ) becomes a straight line in
the log-log plot with a sharp decay after saturation.

The rapid drop after the saturation is attributed to two
reasons. First, as explained in the remark in Section II.C, the
log-log plot has a compression of the x-axis so that the slope
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Fig. 5. Exposure-referred SNR for a digital image sensor with a full-well
capacity of L electrons.

is amplified with θ. If one plots the x-axis in the linear scale
(instead of the log scale), the sharp cutoff will appear in a
smoother transition. However, since in practice the exposure is
always shown in the log scale, what is being shown in Figure 5
is valid. The second reason for the drop after the saturation
is due to the limiting behavior of the incomplete Gamma
function. As L increases, the incomplete Gamma function in
the log-log plot will have an increasingly sharp transient as
shown in Figure 2. This will be shown theoretically in the
next subsection.

B. Limiting Case

Figure 5 shows that as the full-well capacity L increases,
SNRexp(θ) becomes more linear in the log-log plot. Such a
behavior can be theoretically derived by analyzing the limiting
cases of the incomplete Gamma function. The log-log plot
requires the x-axis to be mapped from θ to log10 θ. In this
case, define φ = log10 θ (so that θ = 10φ) and it can be
shown that

ΨL(10φ) ≈

{
1, φ ≤ log10 L,

0, φ > log10 L,
(24)

assuming that L� 1.
Corollary 2: Consider the same conditions as in Theorem 2

but with L � 1. Let Ψ = ΨL(θ). Under the limiting
assumption of ΨL(θ) described in (24), it holds that

20 log10 SNRexp(10φ) =

{
10φ, φ ≤ log10 L,

−∞, φ > log10 L.
(25)

Proof: See Appendix. �
The implication of the corollary is that as L increases,

plotting SNRexp(θ) in the log-log plot will give a linear
response followed by an abrupt transition. This is exactly
what is happening in the output-referred SNR. Therefore,
Theorem 2 is a generalized version of the output-referred
SNR curves reported in the literature. For practical algorithms
such as those for high dynamic range imaging, (25) is very
common, for example used in [16].

V. MONTE CARLO SIMULATION

So far, the theoretical derivations have been focusing on the
Poisson distribution only. Read noise, dark current, quantiza-
tion error, and other sources of noise have not been considered.
When including these factors, seeking an analytic expression
would be significantly more challenging. A more reasonable
approach is to resort to numerical schemes to estimate the
SNR approximately.

A. General Principle

In general, the measurement Y generated by an image sen-
sor is the result of a sequence of optical-electronic operations
such as

Y = clip
{

round
{

Poisson(θ + θdark) + Gauss(0, σ2
read)

}}
,

(26)
where θdark denotes the dark current, “round” denotes the
analog-to-digital (A/D) conversion, and “clip” denotes the
saturation due to a finite full-well capacity. Assuming a
sufficiently large full-well capacity L, the output-referred SNR
is given by [16], [17]

SNRout(θ) =

{
θ√

θ+θdark+σ2
read

, θ < L,

0, θ ≥ L,
(27)

where L is the full-well capacity.
To compute SNRexp(θ), the numerical approach is to draw

samples from the the distribution defined by the forward
model:

Ym = forward model (θ | θdark, σread, L) , (28)

for m = 1, . . . ,M , where M denotes the number of Monte
Carlo samples. As stated in (28), the mth sample Ym is a
function of the underlying signal θ, along with other model
parameters. Do not confuse M with the number of i.i.d. mea-
surements N used in the previous subsections when defining
the average Y .

The Monte Carlo sampling scheme goes as follow. Consider
N = 1. For every θ, the sample average is an estimate of E[Y ]
and the sample variance is an estimate of Var[Y ]:

µ̂(θ) =
1

M

M∑
m=1

Ym, and σ̂2(θ) =
1

M

M∑
m=1

(Ym − µ̂)2.

Once µ̂(θ) has been determined for every θ, the derivative
dµ/dθ can be approximated by

dµ̂

dθ
=
µ̂(θk+1)− µ̂(θk)

θk+1 − θk
,

where {θk | θk < θk+1, k = 1, . . . ,K} is the discrete
set of exposures used to evaluate the mean and variance.
Consequently, if there are N i.i.d. samples, SNRexp(θ) can
be approximately estimated by

ŜNRexp(θ) =
√
N · θ

σ̂
· dµ̂
dθ
. (29)
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B. Visualizing the Impacts of θdark and σread

With the Monte Carlo simulation technique, complex for-
ward models can be visualized. Consider the following two
demonstrations.

Example 7 (Influence of Read Noise): The first scenario
considers a fixed dark current, full-well capacity, and A/D
converter, but a varying read noise level. Let θdark = 0.016
(which is consistent with the quanta image sensor [18]), a full-
well capacity of L = 15 electrons, and 4-bit A/D converter.
The read noise level σread varies from 0 to 4.5 with a step
interval of 0.5. By using M = 5× 106 Monte Carlo samples,
the numerically simulated SNRexp(θ) is plotted in Figure 6.
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Fig. 6. Exposure-referred SNR for a digital image sensor by considering
different levels of read noise.

Increasing the read noise leads to a reduced SNR for all θ
before saturation. After saturation, the read noise will occa-
sionally move a saturated measurement back to an unsaturated
state because the Gaussian noise can take a negative value. See
that the purple curves on the right-hand side of the plot are
higher than the green curves. Therefore, for large θ, there is
a minor but noticeable gain in SNR, especially when the read
noise is high. This is not necessarily a better outcome, because
the increased SNR at larger θ comes at the cost of significantly
lower SNR in low light where the θ is small.

Remark: The small fluctuation towards the tail in Figure 6
is due to the randomness in the Monte Carlo simulation. As
M goes to infinity, the random estimate will approach the
expectation by the law of large number. �

Example 8 (Influence of Dark Current): The second scenario
considers a fixed read noise, full-well capacity, and A/D
converter, but a varying dark current. To be consistent with
the literature, the dark current θdark is assumed to vary from
0 to 0.45 with a step interval of 0.05. The read noise level is
fixed at 0.2 based on [18]. The full-well capacity is L = 15
electrons, and a 4-bit A/D converter is used. Same as Example
7, M = 5×106 Monte Carlo samples are used to numerically
generate the SNRexp(θ) plot in Figure 7.

Unlike Example 7 where the read noise has a substantial
influence to the SNR, an increased dark current will only show
its impact for small θ. This should not be a surprise because
when the true signal θ is strong, the influence of θdark will be
negligible considering the small magnitude it usually has. For

small θ, the impact of θdark is more prominent. A smaller dark
current indeed leads to a higher SNR as expected. �
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Fig. 7. Exposure-referred SNR for a digital image sensor by considering
different levels of dark current. The small fluctuation towards the tail on the
left-hand side is due to randomness in the Monte Carlo simulation.

The utility of the Monte Carlo simulation is that it bypasses
the complication of seeking for an analytic expression of
SNRexp(θ). To account for even more difficult modelings such
as the pixel response non-uniformity, 1/f noise, conversion
gain, and exposure time, etc, one just needs to modify the
forward image formation model. For extreme cases such as
very small θ where the random fluctuation is significant, one
easy fix is to approximate SNRexp(θ) by SNRout(θ) using (27).
This approximation is reasonably accurate for small θ that is
sufficiently far away from the saturation cutoff.

VI. UTILITIES

After elaborating on the details of the exposure-referred
SNR, readers may ask: what are the utilities of this SNR?
The answer is simple. As a performance metric of an image
sensor, the primary utility of the exposure-referred SNR is to
describe how well an image sensor performs. Because of this
primary goal, three points should be noted:

• The exposure-referred SNR is a generalized version of
the output-referred SNR. The latter is a special case of
the former when the bit-depth L is large as shown in
Figure 8. The output-referred SNR and the exposure-
referred SNR are very similar for large L, whereas, for a
small bit-depth, the output-referred SNR cannot capture
the phenomenon when the exposure goes beyond the full-
well capacity.

• Because of the first point, any subsequent low bit-depth
sensors applications need to use the exposure-referred
SNR. Using the output-referred SNR will lead to sub-
optimal performance, and this will be illustrated in Ap-
plication 1 on high-dynamic range imaging.

• Again, because of the first point, the exposure-referred
SNR can be used as the objective function to tune the
parameters of the one-bit and few-bit image sensors.
Since closed-form expressions of the SNR are available
for some cases, the optimal parameters can also be
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Fig. 8. The output-referred SNR is a special case of the exposure-referred
SNR when the full-well capacity L is large. This figure plots the SNRs of a
truncated Poisson random variable. For the output-referred SNR, the curve is
generated by SNRout(θ) =

√
θ for θ ≤ L and SNRout(θ) = 0 for θ > L.

expressed in closed-form. Application 2 on the threshold
design will illustrate this point.

A. High Dynamic Range Imaging Using a 3-bit Sensor

The majority of the high dynamic range (HDR) image
reconstruction algorithms today are designed for digital image
sensors with a large full-well capacity, and so SNRout(θ) is
adequate. However, for image sensors with a small full-well
capacity, e.g., L = 7, a fusion algorithm based on SNRexp(θ)
will produce a better image.

To illustrate the impact of SNRexp(θ) in HDR imaging,
consider the problem of reconstructing one HDR image (a
single pixel) θ̂ from M exposure brackets Y 1, . . . ,Y M . Each
of these exposure brackets Y m = [Y m1 , . . . , Y mN ] has N
frames. The formation of each frame follows the equation

Y mn
i.i.d.∼

{
Poisson(τmθ), τmθ < L,

L, τmθ ≥ L,

for n = 1, . . . , N , where τm is the mth integration time. To
reconstruct the mth low-dynamic range (LDR) image, one can
substitute the sample average Y

m
= (1/N)

∑N
n=1 Y

m
n into the

inverse mapping of the mean µ−1. Then the HDR image is
fused by a linear combination of the estimates 2

θ̂ =
M∑
m=1

wm
µ−1(Y

m
)

τm
, (30)

where {w1, . . . , wM} is a set of linear combination weights.
The development of the idea can be traced back to Mann
and Picard [19], Debevec and Malik [20], among other works
[16], [21], [22]. For a conventional CIS with a large full-well
capacity, µ−1 is an identity mapping and so the reconstruction
is simplified to θ̂ =

∑M
m=1

wm
τm
Y
m

. For sensors with a
small full-well capacity, the nonlinearity of the mean function

2The problem here does not assume any motion so that the theoretically
optimal solution can be analytically derived. Handling motion remains an open
problem in computer vision, although significant progress has been made over
the past decade.

should be taken into account. This reconstruction scheme is
elementary and predates all the deep learning methods.

As previously proved by Gnanasambandam and Chan in
[13], the optimal weight wm is

wm =
SNR2

m(θ)∑M
m=1 SNR2

m(θ)
, (31)

where SNRm(θ) is the SNR of the mth low dynamic range
image. If SNRout(θ) is used, the weight will become

wm =
SNR2

out,m(θ)∑M
m=1 SNR2

out,m(θ)
=

(
√
τmθ · I{τmθ<L})2∑M

m=1(
√
τmθ · I{τmθ<L})2

=
τm · I{τmθ<L}∑M
m=1 τm · I{τmθ<L}

, (32)

where the function I{τmθ<L} is a binary indicator showing
whether the total exposure τmθ has exceeded the full-well ca-
pacity. I{τmθ<L} = 1 if the argument is true and I{τmθ<L} = 0
if the argument is false. If SNRexp,m(θ) is used, the optimal
weight will become

wm =
SNR2

exp,m(θ)∑M
m=1 SNR2

exp,m(θ)
, (33)

where one can substitute (22) into this equation.
Once the combined image is formed, the overall SNR can

be computed via

SNRHDR(θ) =
θ√∑M

m=1

(
wm
τm

)2

σ2
m(θ)

. (34)

where σ2
m(θ) = Var[µ−1(Y

m
)] is the noise variance of the

mth reconstructed LDR image. The intuitive interpretation of
(34) is that it weighs the noise according to the integration
time τm and combination weight wm to produce a calibrated
noise. Thus, the ratio is the SNR with respect to the optimally
combined image θ̂.

The question to be answered here is: If the weight wm is
computed by using the output-referred SNR while the actual
sensor has a small full-well capacity such as L = 7, what
will SNRHDR(θ) be? To answer this question, consider the fol-
lowing configurations: Assume four integration times τ1 = 1,
τ2 = 0.1, τ3 = 0.01, τ4 = 0.001, a total number of frames
N = 100 at each integration time, and a full-well capacity
of L = 7. The output-referred SNR for each m, SNRout,m,
is computed by (32), whereas the exposure-referred SNR for
each m, SNRexp,m, is computed by (22). Once computed,
the weight wm is constructed from SNRout,m. The overall
SNRHDR(θ) is formed by using (34) where the calibrated noise
σ2
m(θ) uses the exposure-referred noise σ2

exp,m(θ), essentially
Var[Y ] · dµdθ defined in (22).

Since the weight wm is computed using SNRout while
the actual sensor has a small full-well capacity, the overall
SNRHDR will suffer. Figure 9 shows the SNRHDR’s where the
weights are either computed from SNRout or SNRexp. This
is a new plot that has never been shown including [13]. As
one can see, SNRHDR suffers in two places. The first place is
the gap between two consecutive maxima, where the weights
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Fig. 9. Comparison of the exposure bracketing by using two different schemes
to compute the weight when the sensor has a full-well capacity of L = 7. (i)
Use the exposure-referred SNR to compute the weight. (ii) Use the output-
referred SNR to compute the weight.

generated by the SNRout gives an overall SNRHDR with a
sharp cutoff. This discontinuity will be visible when the scene
contains a continuous range of θ. The second place is the
sharp cutoff after the full-well capacity. The visual impact is
that the overall HDR image will saturate sooner than what
it is supposed to be, compared to the fusion using exposure-
referred SNR.

Figure 10 provides a visual comparison between the HDR
image reconstructed using SNRout and SNRexp. In this exam-
ple, the full-well capacity is assumed to be L = 7. Four
different exposures (1 ms, 0.1 ms, 0.01 ms, and 0.001 ms)
were used to construct the low dynamic range images, where
each image is the result of N = 100 frames averaged over
time. The scene is static, and so the reconstructed results are
theoretically optimal with respect to the linear combination
and the choice of the SNR. The visual comparison shows
a clear benefit of SNRexp over SNRout especially around the
cropped areas where the pixels are near saturation. However,
the performance gap will become smaller when the full-well
capacity becomes larger.

B. Threshold for one-bit Quanta Image Sensors

The second application is the theoretical analysis of the one-
bit quanta images sensor (QIS). The one-bit QIS has an in-
teresting forward model given by (6) where the corresponding
SNRexp(θ) is derived in (20) (assuming that the read noise
σread is negligible compared to the signal θ.) This section will
show two new results on the optimal threshold q that were not
mentioned in [5].

1) Optimal q for θ � 1: The context of this operating
regime is that the sensor sees a sufficient amount of photons
but it chooses to operate in a single-bit mode to earn the speed.
In this case, the threshold q should be dynamically adjusted
to maximize the SNR.

When θ � 1, the read noise σread can be neglected. Conse-
quently, the SNR follows the Poisson statistics as in (20). By
noting that 0 ≤ Ψq(θ) ≤ 1 and hence Ψq(θ)(1−Ψq(θ)) ≤ 1/4

(a) Exposures (b) Ground Truth

(c) Using SNRout (d) Using SNRexp
PSNR = 37.53dB PSNR = 45.02dB

(e) Ground Truth (f) Using SNRout (g) Using SNRexp

Fig. 10. High dynamic range (HDR) image reconstruction using the optimal
linear combination scheme. (a) The four exposures are captured at 1 ms,
0.1 ms, 0.01 ms, and 0.001 ms. Shown in this sub-figure are the single-
frame measurements with a full-well capacity of 3 bits. (b) The ground truth
HDR image. (c) Linear combination using the output-referred SNR. (d) Linear
combination using the exposure-referred SNR. For (c)-(d), the reconstruction
is based on averaging 100 frames per exposure. (e)-(f)-(g) shows the zoom-in
regions of the respective figures.

where the maximum is attained when Ψq(θ) = 1/2, SNRexp(θ)
can be lower bounded by

SNRexp(θ) =
θ√

Ψq(θ)(1−Ψq(θ))
· θ

q−1e−θ

(q − 1)!

≥ θ
1
2

· θ
q−1e−θ

(q − 1)!
. (35)

The following lemma shows the optimal q for the lower bound.
Lemma 2 (Maximizing the lower bound): Consider the SNR

lower bound for one-bit QIS given by (35). The bound is
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maximized when q∗ = bθc+ 1.
Proof: The proof of this lemma can be found in [5]. �

What was not proved in [5] is that at this optimal q, the
inequality in (35) is actually an equality. The reason is that
for large θ, Ψq(θ) can be approximated by the cumulative
distribution function of a Gaussian via the Stirling’s formula.
This can be seen from (10) where for large θ,

Ψq(θ) ≈
∫ q

−∞

1√
2πθ

exp

{
− (θ + 1− y)2

2θ

}
dy.

The integral is Ψq(θ) = 1/2 when q = θ + 1, because the
integrand is a Gaussian probability distribution centered at
θ + 1. In other words, at the optimal q, Ψq(θ) = 1/2 and
so Ψq(θ)(1 − Ψq(θ)) = 1/4. Hence, the equality in (35) is
satisfied, meaning that q = θ+ 1 does not only maximize the
lower bound but it also maximizes the SNR.

2) Optimal q for θ ≈ 1: . This is a new result. The context
is that the photon flux is small and so the goal of the sensor is
to count the number of photons. However, for small θ, the read
noise plays a role because if σread is big, two adjacent counts
cannot be differentiated. The threshold q in this context is used
to quantize the analog voltage (which is a Poisson-Gaussian
random variable) so that the SNR is maximized.

For one-bit Poisson-Gaussian, the probability distribution
of the binary random variable Y still follows (6) but with
X ∼ Poisson(θ) + Gaussian(0, σ2

read). The exposure-referred
SNR is computable because Y is binary. To see this, notice
that the mean of Y is

E[Y ]︸︷︷︸
µ(θ)

=
∞∑
k=0

θke−θ

k!

∫ q

−∞

1√
2πσ2

read

exp

{
− (y − k)2

2σ2
read

}
dy

=
1

2

∞∑
k=0

θke−θ

k!
erfc

(
q − k√
2σread

)
, (36)

where erfc(·) is the error function. In the first equation the
term inside the summation is the convolution of a Poisson
probability density and a Gaussian probability density, evalu-
ated at the threshold q. (36) can be computed using numerical
techniques.

The variance of Y follows from the fact that Y is binary
(i.e. a Bernoulli random variable). Thus,

Var[Y ] = E[Y ](1− E[Y ]) = µ(θ)(1− µ(θ)). (37)

The derivative dµ/dθ can be approximated numerically:

dµ

dθ
≈ µ(θ + ε)− µ(θ)

ε
, (38)

where ε is a small numerical constant. Combining everything
in (36), (37) and (38), the exposure-referred SNR can be
numerically computed via Theorem 1.

The derived SNRexp(θ) is plotted in Figure 11 as a function
of the threshold q, for various read noise levels σread. When
σread = 0, the SNR is a constant for all q considered. This is
because in the absence of read noise, there is no ambiguity in
determining the measured number of photons regardless where
the threshold q is put. As σread increases, two adjacent counts
begin to overlap due to the Gaussian. The maximum is located
around q = 0.5. For high read noise where the two peaks of
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Fig. 11. SNRexp as a function of the threshold when the exposure is θ = 1.
As the read noise σread, increases, the SNR drops when q = 0.5.

the photon count merge, there is limited SNR one can expect
from the sensor.

VII. DISCUSSIONS AND CONCLUSION

A. Alternatives to SNR?

While SNR is a natural choice for analyzing the perfor-
mance of an image sensor, it is by no means the only option.
Especially for one-bit devices such as the quanta image sensor,
there are other ways to characterize the performance.

1) Entropy: As far as one-bit measurements are concerned,
the entropy is a natural substitute of the SNR. If Y is binary
with pY (1) = 1−Ψq(θ) and pY (0) = Ψq(θ), the entropy is

H(Y ) = −pY (1) log2 pY (1)− pY (0) log2 pY (0)

= −(1−Ψq(θ)) log2(1−Ψq(θ))−Ψq(θ) log2 Ψq(θ).

It is relatively easy to show that the derivative of the entropy
with respect to Ψq(θ) is

d

dΨq(θ)
H(Y ) = − log

(
1−Ψq(θ)

Ψq(θ)

)
.

Setting it to zero will yield Ψq(θ) = 1
2 . Therefore, the entropy

is maximized when E[Y ] = 1 − Ψq(θ) = 1
2 . Since E[Y ] is

the expected value of the measurement, E[Y ] = 1
2 means

that the entropy is maximized when there are 50% one’s
and 50% zero’s in a set of independent measurements. So,
if the application goal is to identify a threshold q such that
the performance of the sensor is maximized, then instead of
optimizing for the SNR as in Section VI.B.1, the alternative
is to optimize the entropy. The solution to Ψq(θ) = 1/2 is
q∗ = θ + 1, which is consistent with Section VI.B.1.

2) Bit Error Rate (BER): In the presence of read noise, the
bit error rate is another commonly used criterion to evaluate
the performance of a sensor. For one-bit quanta image sensor,
the BER measures the probability of making a wrong decision
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(i.e., declaring a 0 as a 1, or declaring a 1 as a 0). It can be
readily computed as

BER(θ) = pY (0) ·
∫ ∞
q

1√
2πσ2

read

e
− t2

2σ2read dt

+ pY (1) ·
∫ q

−∞

1√
2πσ2

read

e
− (t−1)2

2σ2read dt

=
1

2
erfc

(
q

σread
√

2

)
Ψq(θ)

+
1

2
erfc

(
1− q
σread
√

2

)
(1−Ψq(θ)). (39)

Therefore, if q = 1/2, the BER is simplified to

BER(θ) =
1

2
erfc

(
1

σread
√

8

)
, (40)

which does not depend on θ. If BER(θ) can be empirically
measured, then by inverting (40) one can estimate the read
noise σread. For a fixed θ, one can also optimize (39) by finding
an appropriate q.

B. Conclusion

The exposure-referred SNR is a concept motivated by the
need to capture the sensor’s behavior near and beyond the
full-well capacity. For small image sensors with one or few
bits, exposure-referred SNR provides a natural characterization
of the performance without showing an infinite SNR due to
the artificial squeezing of the noise. In order to establish the
exposure-referred SNR, the paper introduces new mathemati-
cal concepts and showed a few results:
• The mean invariance property is introduced. The property

asserts that when an estimator θ̂(·) is applied to the
mean of the measurement, the mapped value is the true
parameter θ̂(µ) = θ.

• Exposure-referred SNR calibrates the noise variance
Var[Y ] by the derivative dµ/dθ, where the derivative
is the result of the first-order approximation used in the
Delta Method.

• SNR of a sensor with a finite full-well capacity is
analytically derived via the incomplete Gamma function.
The new result generalizes the conventional ones. For
sensors with a large full-well capacity, the new result
recovers the classical one that shows a linear response.
For sensors with a small full-well capacity, the new result
shows how the transient of the SNR looks like.

• Monte Carlo simulation is presented for complex noise
models. The general procedure is to estimate the mean of
the measurement µ(θ) and the variance of the measure-
ment Var[Y ]. Then by using a numerical finite difference
operator, the derivative dµ/dθ can be approximated.

• Optimal high dynamic range image reconstruction is
shown. The new result generalizes the classical linear
response.

• Threshold analysis of one-bit sensors is revisited and
generalized. For θ � 1, the optimal threshold is q = θ+1.
For θ ≈ 1, the optimal threshold needs to overcome the
read noise and so the optimal value is q = 1/2.

• For one-bit sensors, it was found that the entropy of the
bits and the bit error rate can be used as alternatives to
characterize the sensor.

As the full-well capacity of the image sensors is becoming
small, it is anticipated that the exposure-referred SNR will
become a useful utility for theoretical analysis of the sen-
sors, hence allowing signal processing [23]–[26], algorithm
development [27]–[31], and computer vision applications [32],
[33]. Specific problems such as sensor gain control, exposure
analysis, bit-depth to speed trade off, and color filter array,
will be important questions to answer next.
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VIII. APPENDIX

A. Gaussian approximation of Poisson

When deriving the first-order derivative of the incomplete
Gamma function, it was mentioned that the Poisson distribu-
tion can be approximated by a Gaussian. The formal statement
is as follows.

Lemma 3 (Gaussian approximation of Poisson): For large θ
(i.e., θ � 1), it holds that

pX(x)
def
=
θxe−θ

x!
≈ 1√

2πθ
e−

(x−θ)2
2θ . (41)

Note that this is not the Central Limit theorem because it does
not involve any sample average. The approximation compares
the two functions.

Proof: First of all, take the log on the Poisson equation:

log pX(x) = log

{
θxe−θ

x!

}
= x log θ − θ − log x!

Stirling’s formula states that for x → ∞, we have x! ≈
xxe−x

√
2πx. Substitute into the previous equation yields

log pX(x) ≈ x log θ − θ − log
(
xxe−x

√
2πx

)
= x log θ − θ − x log x+ x− log

√
2πx.

The Gaussian has to fit the Poisson well around the mean,
which is θ. Thus define x = θ + ε with θ � ε. Then,

log pX(x) = x log θ − θ − x log x+ x− log
√

2πx

= (θ + ε) log θ − θ − (θ + ε) log (θ + ε)

+ (θ + ε)− log
√

2π(θ + ε)

= ε+ (θ + ε) log
θ

θ + ε
− log

√
2π(θ + ε)

= ε− (θ + ε) log
(

1 +
ε

θ

)
− log

√
2πθ − 1

2
log
(

1 +
ε

θ

)
= ε− log

√
2πθ −

(
θ + ε+

1

2

)
log
(

1 +
ε

θ

)
.
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For ε
θ � 1, it holds that log(1+ ε

θ ) ≈ ε
θ−

ε2

2θ2 +. . .. Therefore,

log pX(x) ≈ ε− log
√

2πθ −
(
θ + ε+

1

2

)(
ε

θ
− ε2

2θ2
+ . . .

)
= ε− log

√
2πθ − ε− ε2

θ
− ε

2θ
+
ε2

2θ
+

ε2

4θ2
+ . . . .

By canceling terms, and removing ε2

4θ2 and ε
2θ (because ε

θ �
1), it follows that log pX(x) ≈ − ε2

2θ − log
√

2πθ. This implies
that pX(x) ≈ 1√

2πθ
e−

ε2

2θ . Substituting x = θ + ε completes
the proof. �

B. Mean Invariant = ML for Exponential Family

A mean invariant estimator is generally not the same as
an ML estimator. However, for distributions in the exponen-
tial family, they are identical. Recall the definition of the
exponential family. A sequence of i.i.d. random variables
Y = [Y1, . . . , YN ] is said to be in the exponential family if

pY (y; θ) = h(y) exp {η(θ)T (y)−A(θ)} , (42)

for some functions h, η, T , and A [12]. The function T (y)
is the sufficient statistic. Since a necessary condition for an
estimator to be mean invariant is that it is a function of the
sample average Y , in the subsequent discussions it is assumed
that T (y) = y where y = (1/N)

∑N
n=1 yn with y1, . . . , yN as

the realizations of Y1, . . . , YN .
Example 9: For one-bit QIS, the probability density function

can be written as

pY (y; θ) =

N∏
n=1

exp
{

log
[
(1− e−θ)yn(e−θ)1−yn

]}
= exp

{
Ny log(1− e−θ) +N(1− y) log(e−θ)

}
=
[
exp

{
y log(eθ − 1)− θ

}]N
.

So, one can associate h(y) = 1, T (y) = y, η(θ) = log(eθ−1),
A(θ) = θ.

Lemma 4: θ̂ML(y) is the ML estimate if and only if it
satisfies the equation

g(θ̂ML(y))
def
=
A′(θ̂ML(y))

η′(θ̂ML(y))
= y, (43)

where g(θ)
def
= A′(θ)/η′(θ) is a function, provided that A′(θ)

and η′(θ) exist and are not zero. If g−1 exists, then θ̂ML(y) =
g−1(y).

Proof: θ̂ML is the ML estimate if and only if
∂
∂θ log pY (y; θ)

∣∣
θ=θ̂ML

= 0. The derivative is

∂

∂θ
log pY (y; θ) =

∂

∂θ
{log h(y) + η(θ)y −A(θ)}

= η′(θ)y −A′(θ).

Setting it to zero, the condition is equivalent to A′(θ̂ML)

η′(θ̂ML)
= y.

Defining g(θ) = A′(θ)
η′(θ) , it follows that g(θ̂ML(y)) = y. If g−1

exists, then estimator is θ̂ML(Y ) = g−1(Y ). �

Lemma 5: For any distributions in the exponential family
and for any parameter θ,

A′(θ)

η′(θ)
= E[T (Y )]

def
= µ(θ). (44)

If A′(θ) and η′(θ) exist and are not zero, and µ−1 exists, then
θ = µ−1(E[T (Y )]).

Proof: The function A(θ) is the normalization constant,
defined as A(θ) = log

∫
h(y)eη(θ)T (y)dy. Therefore, its

derivative is

A′(θ) =
d

dθ

{
log

∫
h(y)eη(θ)T (y)dy

}
=

∫
h(y)eη(θ)T (y)T (y)η′(θ)dy∫

h(y)eη(θ)T (y)y

= η′(θ)

∫
T (y) · pY (y; θ)dy = η′(θ)E[T (Y )].

Thus, if µ−1 exists, then θ = µ−1(E[T (Y )]). �
Comparing (43) and (44), it follows that the mapping is

g(θ) = µ(θ). Therefore, µ(θ̂ML(Y )) = g(θ̂ML(Y )). But since
g(θ̂ML(Y )) = Y , it follows that µ(θ̂ML(Y )) = Y . Thus, the
ML estimator is mean invariant.

C. Proof of Theorem 2

Proof: Since Y = (1/N)
∑N
n=1 Yn, the mean E[Y ] =

E[Y1]. It then follows that the derivative dµ/dθ remains
unchanged. For the variance, it is easy to show that Var[Y ] =
Var[Y1]/N . Substituting these results into (22) would yield

SNRexp(θ) =
θ√

Var[Y ]
· dµ
dθ

=
√
N

θ√
Var[Y1]

· dµ
dθ
.

Therefore, it suffices to prove the SNR for N = 1. In what
remains, let Y be any of the random variables Y1, . . . , YN
since they are i.i.d.

Recall the probability density function of Y :

pY (y) =

{
θy

y! e
−θ, y < L,∑∞
k=L

θk

k! e
−θ = 1−ΨL(θ), y ≥ L,

where ΨL(θ) is the incomplete Gamma function. The mean
of Y can be shown as

µ = E[Y ] =
L−1∑
k=0

k · θ
k

k!
e−θ + L ·

( ∞∑
k=L

θk

k!
e−θ

)

=
L−1∑
k=1

θk

(k − 1)!
e−θ + L · (1−ΨL(θ))

= θ
L−2∑
k=0

θk−1

k!
e−θ + L · (1−ΨL(θ))

= θΨL−1(θ) + L · (1−ΨL(θ)).

The derivative dµ/dθ is therefore

dµ

dθ
=

d

dθ
{θΨL−1(θ) + L · (1−ΨL(θ))}

= θΨ′L−1(θ) + ΨL−1(θ)− L ·Ψ′L(θ).
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For the variance, since Var[Y ] = E[Y 2]−µ2, it remains to
determine E[Y 2].

E[Y 2] =
L−1∑
k=0

k2 · θ
k

k!
e−θ + L2 ·

( ∞∑
k=L

θk

k!
e−θ

)

=
L−1∑
k=1

k
θk

(k − 1)!
e−θ + L2 · (1−ΨL(θ))

=
L−1∑
k=1

(k − 1 + 1)
θk

(k − 1)!
e−θ + L2 · (1−ΨL(θ))

=
L−1∑
k=2

θk

(k − 2)!
e−θ +

L−1∑
k=1

θk

(k − 1)!
e−θ

+ L2 · (1−ΨL(θ))

= θ2ΨL−2(θ) + θΨL−1(θ) + L2(1−ΨL(θ)).

This completes the proof. �

D. Proof of Corollary 2

Proof: When L is large, ΨL(10φ) and ΨL−1(10φ) are
close enough that they can be considered approximately equal.
Denote the value ΨL(10φ) as Ψ. Then by (24) it holds that
Ψ → 0 for φ > log10 L and Ψ → 1 for φ ≤ log10 L. In
either case, since Ψ is a constant, it follows that the derivative
Ψ′L(10φ) = 0 as long as φ > log10 L or φ < log10 L.
Therefore, by denoting θ = 10φ, the two cases can be derived
as follows.

When φ ≤ log10 L, it holds that

µ = θΨ + L(1−Ψ) = θ,

Var[Y ] = θ2Ψ + θΨ + L2(1−Ψ)− µ2

= θ2 · 1 + θ · 1 + L2 · 0− µ2 = θ,

dµ

dθ
= Ψ− (L− θ)Ψ′L−1(θ)

= 1− (L− θ) · 0 = 1.

So, the SNR for φ ≤ log10 L is

20 log10 SNRexp(10φ) = 20 log10

√
10φ = 10φ.

When φ > log10 L, Ψ→ 0. Therefore,

µ = θΨ + L(1−Ψ) ≈ θΨ + L,

Var[Y ] = θ2Ψ + θΨ + L2(1−Ψ)− µ2

= θ2Ψ + θΨ + L2(1−Ψ)− (θΨ + L)2

= θ2Ψ + θΨ + L2 − θ2Ψ2 − 2θΨL− L2

= θ2Ψ + θΨ− 2θΨL

= θΨ(θ + 1− 2L),

dµ

dθ
= θΨ′L−1(θ) + ΨL−1(θ)− LΨ′L(θ)

= θ · 0 + Ψ− L · 0 = Ψ.

By taking the limit that Ψ→ 0, it follow that

lim
Ψ→0

SNRexp(10φ) = lim
Ψ→0

θ√
Var[Y ]

· dµ
dθ

= lim
Ψ→0

θ√
θΨ(θ + 1− 2L)

·Ψ

= lim
Ψ→0

√
θΨ√

(θ + 1− 2L)
= 0.

Combining with the case where φ ≤ log10 L, the overall SNR
is proved. �

E. MATLAB Code for Monte Carlo Simulation

The MATLAB code below illustrates the Monte Carlo sim-
ulation of how SNRexp(θ) is generated for a truncated Poisson
distribution. Adding other factors to the forward model can be
done by modifying the random variable Y .

N = 100000;
L = 10;
theta_set = logspace(-2,3,100);
mu = zeros(1,100);
sigma = zeros(1,100);
for i=1:100

theta = theta_set(i);
Theta = theta*ones(N,1);
Y = poissrnd(Theta);
Y(Y>L) = L;
mu(i) = mean(Y);
sigma(i) = std(Y);

end
dmu_dt = [diff(mu)./diff(theta_set) 1];
SNR = theta_set./sigma.*dmu_dt;
loglog(theta_set, SNR);

For plotting the theoretical SNRexp(θ), one just needs to call
the incomplete Gamma function.

theta = logspace(-2,3,100);
Psi = gammainc(theta,L,’upper’);
Psi1 = gammainc(theta,L-1,’upper’);
Psi2 = gammainc(theta,L-2,’upper’);
dPsi = -theta.ˆ(L-1).*exp(-theta) ...

/gamma(L);
dPsi1 = -theta.ˆ(L-2).*exp(-theta) ...

/gamma(L-1);
mu = theta.*Psi1 + L.*(1 - Psi);
sigma = sqrt(theta.ˆ2 .* Psi2 + ...

theta.*Psi1 + Lˆ2*(1-Psi) - ...
mu_theory.ˆ2);

dmu_dt = theta.*dPsi1 + Psi1 - L*dPsi;
SNR = theta./sigma.*dmu_dt;
loglog(theta, SNR);

The combination of the two pieces of codes, with minor
modifications, is sufficient to reproduce all the figures reported
in this paper.
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