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Abstract—Modern graph neural networks (GNNs) learn node embeddings through multilayer local aggregation and achieve great
success in applications on assortative graphs. However, tasks on disassortative graphs usually require non-local aggregation. In
addition, we find that local aggregation is even harmful for some disassortative graphs. In this work, we propose a simple yet effective
non-local aggregation framework with an efficient attention-guided sorting for GNNs. Based on it, we develop various non-local GNNs.
We perform thorough experiments to analyze disassortative graph datasets and evaluate our non-local GNNs. Experimental results
demonstrate that our non-local GNNs significantly outperform previous state-of-the-art methods on seven benchmark datasets of
disassortative graphs, in terms of both model performance and efficiency.

Index Terms—Graph neural networks, non-local aggregation, attention mechanism, disassortative graphs.

1 INTRODUCTION

RAPH neural networks (GNNs) process graphs and

map each node to an embedding vector [1], [2], [3],
[4], [5], [6], [7]. These node embeddings can be directly used
for node-level applications, such as node classification [8],
link prediction [9]. In addition, they can be used to learn the
graph representation vector with graph pooling [10], [11],
[12], [13], [14], [15], [16], in order to fit graph-level tasks [17].
Many variants of GNNs have been proposed, such as Cheb-
Nets [18], GCNs [8], GraphSAGE [19], GATs [20], LGCN [21]
and GINs [22]. Their advantages have been shown on var-
ious graph datasets and tasks [23]. However, these GNNs
share a multilayer local aggregation framework, which is
similar to convolutional neural networks (CNNSs) [24] on
grid-like data such as images and texts.

The importance of non-local aggregation has been re-
cently demonstrated in many applications in the field of
computer vision [25], [26] and natural language process-
ing [27]. In particular, the attention mechanism has been
widely explored to achieve non-local aggregation and cap-
ture long-range dependencies from distant locations. Basi-
cally, the attention mechanism measures the similarity be-
tween every pair of locations and enables information to be
communicated among distant but similar locations. In terms
of graphs, non-local aggregation is also crucial for disassor-
tative graphs in which nodes with the same label are distant
from each other, while previous studies of GNNs focus on
assortative graph datasets (Section 2.2). In addition, we find
that local aggregation is even harmful for some disassor-
tative graphs (Section 4.3). The recently proposed Geom-
GCN [28] explores to capture long-range dependencies in
disassortative graphs. It contains an attention-like step that
computes the Euclidean distance between every pair of
nodes. However, this step is computationally prohibitive
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for large-scale graphs, as the computational complexity is
quadratic in the number of nodes. In addition, Geom-GCN
employs pre-trained node embeddings [29], [30], [31] that
are not task-specific, limiting the effectiveness and flexibility.

In this work, we propose a simple yet effective non-
local aggregation framework for GNNs. At the heart of the
framework lies an efficient attention-guided sorting, which
enables non-local aggregation through classic local aggre-
gation operators in general deep learning. The proposed
framework can be flexibly used to augment common GNN5s
with low computational costs. Based on the framework,
we build various efficient non-local GNNs. In addition, we
perform detailed analysis on existing disassortative graph
datasets, and apply different non-local GNNs accordingly.
Experimental results show that our non-local GNNs signif-
icantly outperform previous methods on node classification
tasks on seven benchmark datasets of disassortative graphs.

2 BACKGROUND AND RELATED WORK
2.1 Graph Neural Networks

We focus on learning the embedding vector for each node
through graph neural networks (GNNs). Most existing
GNNs follow a local aggregation framework. In general,
each layer of GNNs scans every node in the graph and
aggregates local information from directly connected nodes,
i.e., the 1-hop neighbors. Specifically, a common layer of
GNN s performs a two-step processing similar to the depth-
wise separable convolution [32]: spatial aggregation and
feature transformation. The first step updates each node
embedding using embedding vectors of spatially neighbor-
ing nodes. For example, GCNs [8] and GATs [20] com-
pute a weighted sum of node embeddings within the 1-
hop neighborhood, where weights come from the degree
of nodes and the interaction between nodes, respectively.
GraphSAGE [19] applies the max pooling, while GINs [22]
simply sums the node embeddings. The feature transfor-
mation step is similar to the 1 x 1 convolution, where
each node embedding vector is mapped into a new feature
space through a shared linear transformation [8], [19], [20]
or multilayer perceptron (MLP) [22]. Different from these



studies, LGCN [21] explores to directly apply the regular
convolution through top-£ ranking.

Nevertheless, each layer of these GNNs only aggregates
local information within the 1-hop neighborhood. While
stacking multiple layers can theoretically enable communi-
cation between nodes across the multi-hop neighborhood,
the receptive field of a multiple-layer GCN usually includes
more noise than useful information. In addition, deep GNNs
usually suffer from the over-smoothing problem [33], [34],
[35] and the over-squashing issue [36].

2.2 Assortative and Disassortative Graphs

There are many kinds of graphs in the literature, such
as citation networks [37], community networks [35],
co-occurrence networks [38], and webpage linking net-
works [39]. We focus on graph datasets for the node clas-
sification tasks. In particular, we categorize graph datasets
into assortative and disassortative ones [31], [40] according
to the node homophily in terms of labels, i.e., how likely
nodes with the same label are near each other in the graph.

Assortative graphs refer to those with a high node ho-
mophily. Common assortative graph datasets are citation
networks and community networks. On the other hand,
graphs in disassortative graph datasets contain more nodes
that have the same label but are distant from each other.
Example disassortative graph datasets are co-occurrence
networks and webpage linking networks.

As shown in [31], distant nodes with the same label in
disassortative graphs could be structurally similar. Thus,
they are informative to each other. Most existing GNNs
perform local aggregation only and achieve good perfor-
mance on assortative graphs [8], [19], [20], [21]. However,
they may fail on disassortative graphs, where informative
nodes in the same class tend to be out of the local multi-hop
neighborhood and non-local aggregation is needed. Thus, in
this work, we explore the non-local GNNSs.

2.3 Attention Mechanism

The attention mechanism [27] has been widely used in
GNNs [20], [41], [42] as well as other deep learning mod-
els [25], [26], [43]. A typical attention mechanism takes three
groups of vectors as inputs, namely the query vector g,
key vectors (ki, ks, ..., ky), value vectors (v1,vs,...,0p).
Note that key and value vectors have a one-to-one corre-
spondence and can be the same sometimes. The attention
mechanism computes the output vector o as

0= E a;v;,
7

a; = ATTEND(q, k;) €R, i=1,2,...,n,

M

where the ATTEND(-) function could be any function that
outputs a scalar attention score a; from the interaction
between ¢ and k;, such as dot product [41] or even a neural
network [20]. The definition of the three groups of input
vectors depends on the models and applications.

Notably, existing GNNs usually use the attention mech-
anism for local aggregation [20], [41]. Specifically, when
aggregating information for node v, the query vector is the
embedding vector of v while the key and value vectors come
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from node embeddings of v’s directly connected nodes.
Note that the attention mechanism can be easily extended
for non-local aggregation [25], [26], by letting the key and
value vectors correspond to all the nodes in the graph
when aggregating information for each node. However, it
is computationally prohibitive given large-scale graphs, as
iterating it for each node in a graph of n nodes requires
O(n?) time. In this work, we propose a novel non-local
aggregation method that only requires O(nlogn) time.

3 THE PROPOSED METHOD

3.1 Non-Local Aggregation with Attention-Guided Sort-
ing

We consider a graph G = (V, E), where V is the set of nodes
and F is the set of edges. Each edge e € E connects two
nodes so that £ C V x V. Each node v € V has a node
feature vector z,, € R%. The k-hop neighborhood of v refers
to the set of nodes N (v) that can reach v within k edges.
For example, the set of v’s directly connected nodes is its
1-hop neighborhood N (v).

As illustrated in Figure 1, our proposed non-local ag-
gregation framework is composed of three steps, namely
local embedding, attention-guided sorting, and non-local
aggregation. In the following, we describe them one by one.

Local Embedding: Our proposed framework is built
upon a local embedding step that extracts local node embed-
dings from the node feature vectors. The local embedding
step can be as simple as

2, = MLP(z,) € R, Yo € V. )

The MLP(-) function is a multilayer perceptron (MLP), and
f is the dimension of the local node embedding z,. Note
that the MLP(-) function is shared across all the nodes
in the graph. Applying MLP only takes the node itself
into consideration without aggregating information from
the neighborhood. This property is very important on some
disassortative graphs, as shown in Section 4.3.

On the other hand, graph neural networks (GNNs) can
be used as the local embedding step as well, so that our
proposed framework can be easily employed to augment
existing GNNs. As introduced in Section 2.1, modern GNNs
perform multilayer local aggregation. Typically, for each
node, one layer of a GNN aggregates information from its 1-
hop neighborhood. Stacking L such local aggregation layers
allows each node to access information that is L hops away.
To be specific, for each node v € V, the /-th layer of a L-
layer GNN (¢ =1,2,..., L) can be described as

20 =T1® (A(Z) ({sz‘l) cu €N (v)U v})) cRrR/, (3)
where zl(,o) = x,, and z, = zf,L) is the local node em-
bedding. A®)(-) and T)(-) functions represent the spatial
aggregation and feature transformation step introduced in
Section 2.1, respectively. With the above framework, GNNs
can capture the node feature information from nodes within
a local neighborhood as well as the structural information.

When either MLP or GNNSs is used as the local embed-
ding step, the local node embedding z, only contains local
information of a node v. However, z, can be used to guide
non-local aggregation, as distant but informative nodes are
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Fig. 1. An illustration of the proposed non-local aggregation framework.

sorting, and non-local aggregation. Details are described in Section 3.1.

likely to have similar node features and local structures.
Based on this intuition, we propose the attention-guided
sorting to enable the non-local aggregation.

Attention-Guided Sorting: The basic idea of the
attention-guided sorting is to learn an ordering of nodes,
where distant but informative nodes are put near each other.
Specifically, given the local node embedding z, obtained
through the local embedding step, we compute one set of
attention scores by

a, = ATTEND(c, 2,) ER, Yv €V, 4)

where c is a calibration vector that is randomly initialized
and jointly learned during training [43]. In this attention
operator, c serves as the query vector and z, are the key
vectors. In addition, we also treat z, as the value vectors.
However, unlike the attention mechanism introduced in
Section 2.3, we use the attention scores to sort the value
vectors instead of computing a weighted sum to aggregating
them. Note that originally there is no ordering among nodes
in a graph. To be specific, as a, and z, have one-to-one
correspondence through Eq. (4), sorting the attention scores
in non-decreasing order into (ai,as,...,a,) provides an
ordering among nodes, where n = |V is the number of
nodes in the graph. The resulting sequence of local node
embeddings can be denoted as (z1, 22, . - -, Zn ).

The attention process in Eq. (4) can be also understood as
a projection of local node embeddings onto a 1-dimensional
space. The projection depends on the concrete ATTEND(-)
function and the calibration vector c. As indicated by its
name, the calibration vector c is used to calibrate the 1-
dimensional space, in order to push distant but informative
nodes close to each other in this space. This goal is fulfilled
through the following non-local aggregation step and the
training of the calibration vector ¢, as demonstrated below.

Non-Local Aggregation: We point out that, with the
attention-guided sorting, the non-local aggregation can be
achieved by convolution, the most common local aggre-
gation operator in deep learning. Specifically, given the
sorted sequence of local node embeddings (z1, 22, . .., 2n),
we compute

(,’2‘1, 2oyt én) = CONV(Zl, 29y, Zn),

)

where the CONV(-) function represents a 1D convolution
with appropriate padding. Note that CONV(-) can be re-

. Non-Local Aggregation
It consists of three steps, including local embedding, attention-guided
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placed by a 1D convolutional neural network as long as the
number of input and output vectors remains the same.

To see how the CONV(-) function performs non-local
aggregation with the attention-guided sorting, we take an
example where the CONV(+) function is a 1D convolution
of kernel size 2s + 1. In this case, 2; is computed from
(Zits,---,2i—s), corresponding to the receptive field of
the CONV(-) function. As a result, if the attention-guided
sorting leads to (%i4s, ..., %i—s) containing nodes that are
distant but informative to z;, the output 2; aggregates non-
local information. Another view is that we can consider
the attention-guided sorting as re-connects nodes in the
graph, where (z;ys,...,%;—s) can be treated as the 1-hop
neighborhood of z;. After the CONV(-) function, 2; and z;
are concatenated as the input to a classifier to predict the
label of the corresponding node, where both non-local and
local dependencies can be captured. In order to enable the
end-to-end training of the calibration vector ¢, we modify
Eq. (5) into

.y 2n) = CONV(aj 21, a229, . .

(6)

where we multiply the attention score with the correspond-
ing local node embedding. As a result, the calibration vector
c receives back-propagated gradients through the attention
scores during training.

The remaining question is how to make sure that the
attention-guided sorting pushes distant but informative
nodes together. We can understand this intuitively by
comparing our attention-guided sorting with the attention
mechanism that uses learnable query [43]. In such attention
mechanism, attention scores obtained by attending learn-
able query vector to key vectors are used to compute the
weighted sum of value vectors. In this case, the learnable
query vector can be optimized towards its goal, i.e., assign-
ing appropriate weights to value vectors, since the attention
scores serve as weights directly. In our attention-guided
sorting, the calibration vector is trained towards its goal, i.e.,
deriving a good sorting, in an indirect manner. Specifically,
the attention scores can be treated as unnormalized weights.
At the beginning of training, the calibration vector yields
random weights and a correspondingly random sorting.
Thus the near nodes might not be informative. Notably,
nodes in the same receptive field of the subsequent 1D
convolutional neural network tends to have similar weights
as all the nodes are already sorted according to the weights.

(217227“ '7anzn)7



Hence, if the near nodes are not informative, the gradient
back-propagated from the classification loss tends to tune
the calibration vector to produce better weights and a corre-
spondingly useful sorting. Hence, the calibration vector can
be trained to obtain a good sorting effectively.

Also, note that the requirement of non-local aggregation
depends on the concrete graphs. In fact, our proposed
framework grants GNNs the ability of non-local aggregation
but lets the end-to-end training process determine whether
to use non-local information. The back-propagation from the
supervised loss will tune the calibration vector c effectively
and encourage Z; to capture useful information that is not
encoded by z;. In the case of disassortative graphs, Z;
usually needs to aggregate information from distant but
informative nodes. Hence, the calibration vector c¢ tends
to arrange the attention-guided sorting to put distant but
informative nodes together, as demonstrated experimentally
in Section 4.5. On the other hand, nodes within the local
neighborhood are usually much more informative than dis-
tant nodes in assortative graphs. In this situation, Z; may
simply perform local aggregation that is similar to GNNS.

3.2 Time Complexity Analysis

We perform theoretical analysis of the time complexity of
our proposed framework. As discussed in Section 2.3, using
the attention mechanism [25], [26], [27] to achieve non-local
aggregation requires O(n?) time for a graph of n nodes.
Essentially, the O(n?) time complexity is due to the fact
that the ATTEND(-) function needs to be computed between
every pair of nodes. In particular, the recently proposed
Geom-GCN [28] contains a similar non-local aggregation
step. For each v € V, Geom-GCN finds the set of nodes from
which the Euclidean distance to v is less than a pre-defined
number, where the Euclidean distance between every pair of
nodes needs to be computed. As the computation of the the
Euclidean distance between two nodes can be understood
as the ATTEND(+) function, Geom-GCN has at least O(n?)
time complexity.

In contrast, our proposed non-local aggregation frame-
work requires only O(nlogn) time. To see this, note that
the ATTEND(-) function in Eq. (4) only needs to be computed
once, instead of iterating it for each node. As a result, com-
puting the attention scores only takes O(n) time. Therefore,
the time complexity of sorting, ie. O(nlogn), dominates
the total time complexity of our proposed framework. In
Section 4.6, we compare the real running time on different
datasets among common GNNs, Geom-GCN, and our non-
local GNNSs as introduced in the next section.

3.3 Efficient Non-Local Graph Neural Networks

We apply our non-local aggregation framework to build
efficient non-local GNNs. Recall that our proposed frame-
work starts with the local embedding step, followed by the
attention-guided sorting and the non-local aggregation step.

In particular, the local embedding step can be imple-
mented by either MLP or common GNNSs, such as GCNs [8]
or GATs [20]. MLP extracts the local node embedding only
from the node feature vector and excludes the information
from nodes within the local neighborhood. This property
can be helpful on some disassortative graphs, where nodes
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within the local neighborhood provide more noises than
useful information. On other disassortative graphs, infor-
mative nodes locate in both local neighborhood and distant
locations. In this case, GNNs are more suitable as the local
embedding step. Depending on the disassortative graphs
in hand, we build different non-local GNNs with either
MLP or GNNs as the local embedding step. In Section 4.3,
we show that these two categories of disassortative graphs
can be distinguished through simple experiments, where we
apply different non-local GNNs accordingly. Specifically, the
number of layers is set to 2 for both MLP and GNNs.

In terms of the attention-guided sorting, we need to
specify the ATTEND(-) function in Eq. (4). In order to make
it as efficient as possible, we choose it as

a, = ATTEND(c, 2,) = ¢’ 2z, €ER, Yo € V, )

where c is part of the training parameters.

With the attention-guided sorting, we can implement
the non-local aggregation step through convolution, as ex-
plained in Section 3.1. Specifically, CONV(-) function is set as
a 2-layer convolutional neural network composed of two 1D
convolutions. The kernel size is treated as a hyperparameter.
The activation function is ReL.U [44].

Finally, we use a linear classifier that takes the concate-
nation of 2; and z; as inputs and makes prediction for the
corresponding node. Depending on the local embedding
step, we build three efficient non-local GNNs, namely non-
local MLP (NLMLP), non-local GCN (NLGCN), and non-
local GAT (NLGAT). The models can be end-to-end trained
with the classification loss.

4 EXPERIMENTS
4.1 Datasets

We perform experiments on seven disassortative graph
datasets [28], [38], [39], [45] (snap-patents, Chameleon, Squirrel,
Actor, Cornell, Texas, Wisconsin) and four assortative graph
datasets [37], [46] (Cora, Citeseer, Pubmed, ogbn-arxiv). These
datasets are commonly used to evaluate GNNs on node
classification tasks [8], [20], [21], [28]. We provide detailed
descriptions of disassortative graph datasets below.

snap-patents is an extremely large patent graph [47]
where nodes are patents and edges denote citation relation-
ships. Node features are extracted from patent metadata.
Each node is labeled by the year when the corresponding
patent war granted.

Chameleon and Squirrel are Wikipedia networks [39]
where nodes represent web pages from Wikipedia and
edges indicate mutual links between pages. Node fea-
ture vectors are bag-of-word representations of informative
nouns in the corresponding pages. Each node is labeled
with one of five classes according to the number of average
monthly traffic of the web page.

Actor is an actor co-occurrence network, where nodes
denote actors and edges indicate co-occurrence on the same
web page from Wikipedia. It is extracted from the film-
director-actor-writer network in [38]. Node feature vectors
are bag-of-word representations of keywords in the actors’
Wikipedia pages. Each node is labeled with one of five
classes according to the topic of the actor’s Wikipedia page.



TABLE 1
Statistics of the eleven datasets used in our experiments. The definition of H(G) is provided in Section 4.1. H(G) can be used to distinguish
assortative and disassortative graph datasets.

Assortative

Disassortative

Datasets Cora Citeseer Pubmed ogbn-arxiv | snap-patents — Chameleon Squirrel Actor Cornell Texas Wisconsin
H(G) 0.83 0.71 0.79 0.64 0.22 0.25 0.22 0.24 0.11 0.06 0.16
Splits 60/20/20 60/20/20 60/20/20  54/18/28 50/25/25 60/20/20  60/20/20  60/20/20  60/20/20  60/20/20  60/20/20
#Nodes 2708 3327 19717 169343 2923922 2277 5201 7600 183 183 251
#Edges 5429 4732 44338 1166243 13975788 36101 217073 33544 295 309 499
#Features 1433 3703 500 128 269 2325 2089 931 1703 1703 1703
#Classes 7 6 3 40 5 5 5 5 5 5 5

Cornell, Texas, and Wisconsin come from the WebKB
dataset collected by Carnegie Mellon University. Nodes
represent web pages and edges denote hyperlinks between
them. Node feature vectors are bag-of-word representations
of the corresponding web pages. Each node is labeled as
student, project, course, staff, or faculty.

In order to distinguish assortative and disassortative
graph datasets, [28] proposes a metric to measure the ho-
mophily of a graph G, defined as

b [{u: w € Ni(v) and I(u) = I(v)}]
> TAG] ’

where |[{u: u € N1(v) and I(u) = I(v)}| denotes the number
of v’s directly connected nodes who have the same label as v
and |7 (v)| represents the number of v’s directly connected
nodes. Intuitively, a large H(G) indicates an assortative
graph, and vice versa. The H(G) and other statistics for all
datasets are summarized in Table 1.

H(G) ®)

4.2 Baselines

We compare our proposed non-local MLP (NLMLP), non-
local GCN (NLGCN), and non-local GAT (NLGAT) with
various baselines: (1) MLP is the simplest deep learning
model. It makes prediction solely based on the node feature
vectors, without aggregating any local or non-local informa-
tion. (2) GCN [8] and GAT [20] are the most common GNNSs.
As introduced in Section 2.1, they only perform local aggre-
gation. (3) Geom-GCN [28] is a recently proposed GNN that
can capture long-range dependencies. Geom-GCN requires
the use of different node embedding methods, such as
Isomap [29], Poincare [30], and struc2vec [31]. We simply
report the best results from [28] for Geom-GCN and the
following two variants without specifying the node embed-
ding method. (4) Geom-GCN-g [28] is a variant of Geom-
GCN that performs local aggregation only. It is similar to
common GNNss. (5) Geom-GCN-s [28] is a variant of Geom-
GCN that does not force local aggregation. The designed
functionality is similar to our NLMLP. (6) In addition, we
also consider several recently developed methods on disas-
sortative graphs as baselines. They are HyGCN [48], SimP-
GCN [49], FAGCN [50], and CPGCN [51]. Since Ho,GCN and
CPGCN has multiple variants, we report its best result on
each dataset.

We implement MLP, GCN, GAT, and our methods using
Pytorch [52] and Pytorch Geometric [53]. As has been dis-
cussed!, in fair settings, the results of GCN and GAT differ
from those in [28].

1. https:/ /openreview.net/forum?id=S1e2agrFvS&noteld=
8tGKV10SzCr

The experiments on snap-patents are repeatedly con-
ducted by 5 times, following [45], and experiments on other
datasets are repeatedly performed 10 times. The average test
accuracy over runs are reported unless stated specifically.
Testing is performed when validation accuracy achieves
maximum on each run. Apart from the details specified
in Section 3.3, we tune the following hyperparameters on
validation set for our proposed models: (1) the number of
hidden unit € {16, 48, 96, 128, 256}, (2) the kernel size of
convolution € {3, 5, 7}, (3) dropout rate € {0, 0.5, 0.8}, (4)
weight decay € {0, 5e-4, 5e-5, 5e-6}, and (5) learning rate €
{0.001, 0.01, 0.05}.

4.3 Analysis of Disassortative Graph Datasets

As discussed in Section 3.3, the disassortative graph datasets
can be divided into two categories. Nodes within the local
neighborhood provide more noises than useful information
in disassortative graphs belonging to the first category.
Therefore, local aggregation should be avoided in models
on such disassortative graphs. As for the second category,
informative nodes locate in both local neighborhood and
distant locations. Intuitively, a graph with lower H(G) is
more likely to be in the first category. However, it is not an
accurate way to determine the two categories.

Knowing the exact category of a disassortative graph is
crucial, as we need to apply non-local GNNs accordingly.
As analyzed above, the key difference lies in whether the
local aggregation is useful. Hence, we can distinguish two
categories of disassortative graphs by comparing the per-
formance between MLP and common GNNs (GCN, GAT)
on each of the seven disassortative graph datasets. To be
rigorous, we compare the average of the best validation
accuracy over runs in Table 2.

We can see that Actor, Cornell, Texas, and Wisconsin fall
into the first category, while snap-patents, Chameleon, and
Squirrel belong to the second category. We add the perfor-
mance on assortative graph datasets for reference, where
the local aggregation is effective so that GNNs tend to
outperform MLP.

4.4 Comparisons with Baselines

According to the insights from Section 4.3, we apply dif-
ferent non-local GNNs according to the category of dis-
assortative graph datasets, and make comparisons with
corresponding baselines. In our experiments, we focus on
comparing the model performance on disassortative graph
datasets, in order to demonstrate the effectiveness of our
non-local aggregation framework. The performances on as-
sortative graph datasets are also included in Table 5 for
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TABLE 2
Comparisons between MLP and common GNNs in terms of the best validation accuracy. These analytical experiments are used to determine the
two categories of disassortative graph datasets, as introduced in Section 4.3.

Assortative Disassortative
Datasets Cora Citeseer Pubmed  ogbn-arxiv | snap-patents  Chameleon — Squirrel Actor Cornell Texas Wisconsin
MLP 77.2+1.6  T44+1.4 87.4+0.5 56.6+0.1 31.2+0.1 47.8+1.7 33.3+0.8  35.9+0.9 83.1+3.3 815+3.9 86.7-+£2.4
GCN 88.8+1.0 78.1+1.3 88.7+0.5 71.5+0.1 46.2+0.6 67.7+£1.3 54.2+1.1  32.2+0.8 585427 68.1+1.6  62.343.5
GAT 89.8+1.4 77.6+£1.3 87.7+0.4  66.5+2.5 45.6+0.5 66.4+1.3  51.8+t2.6 30.6+0.6 61.9+t1.6 63.2+4.7 64.3L3.5
TABLE 3 the second category of disassortative graph datasets, we

Comparisons between our NLMLP and strong baselines on the four
disassortative graph datasets belonging to the first category as defined

in Section 4.3.
Datasets Actor Cornell Texas Wisconsin
MLP 35.1+0.8 81.6+6.3 81.3+7.1 84.9+5.3
Geom-GCN 31.6 60.8 67.6 64.1
Geom-GCN-s 34.6 75.4 73.5 80.4
H>GCN 35.9+41.0 82.2+6.0 84.9+6.8  86.7+4.7
SimP-GCN 36.2 84.1 81.6 85.5
NLMLP (ours) 37.9+1.3 84.9+5.7 85.4+3.8 87.3+4.3
TABLE 4

Comparisons between our NLGCN, NLGAT and strong baselines on
the three disassortative graph datasets belonging to the second
category as defined in Section 4.3.

Datasets snap-patents  Chameleon — Squirrel
GCN 45.7+0.0 67.6+2.4 54.9+1.9
GAT 45.4+0.4 65.0+3.7 51.3+2.5
Geom-GCN - 60.9 38.1
Geom-GCN-g - 68.0 46.0
H>GCN - 59.4+2.0 37.942.0
FAGCN - 61.7 39.7
NLGCN (ours) 50.8+0.4 70.1+2.9 59.0+1.2
NLGAT (ours) 48.3+0.2 65.7+1.4 56.8+2.5

reference, indicating that the proposed framework will not
hurt the performance when non-local aggregation is not
strongly desired.

Specifically, we employ NLMLP on Actor, Cornell, Texas,
and Wisconsin. The corresponding baselines are MLP, Geom-
GCN, and Geom-GCN-s, as Table 2 has shown that GCN
and GAT perform much worse than MLP on these datasets.
And Geom-GCN-g is similar to GCN and has worse per-
formance than Geom-GCN-s, which is shown in Table 5.
We also include Ho,GCN and SimP-GCN as baselines since
they also conduct experiments on these datasets. The com-
parison results are reported in Table 3. We find that MLP
consistently outperforms Geom-GCN-s by large margins.
In particular, although Geom-GCN-s does not explicitly
perform local aggregation, it is still outperformed by MLP. A
possible explanation is that Geom-GCN-s uses pre-trained
node embeddings, which aggregates information from the
local neighborhood implicitly. In contrast, our NLMLP is
built upon MLP with the proposed non-local aggregation
framework, which excludes the local noises and collects
useful information from non-local informative nodes. The
NLMLP sets the new state-of-the-art performance on these
disassortative graph datasets.

On snap-patents, Chameleon, and Squirrel that belong to

apply NLGCN and NLGAT accordingly. The baselines are
GCN, GAT, Geom-GCN, Geom-GCN-g, HoGCN, FAGCN,
and CPGCN. On these datasets, these baselines that ex-
plicitly perform local aggregation show advantages over
MLP and Geom-GCN-s, as shown in Table 2 and 5. As
shown in Table 4, our proposed NLGCN achieves the
best performance on all three datasets. Note that CPGCN
uses different splits as other baselines. For comparing with
CPGCN, we additionally run our NLGCN using the same
splits as CPGCN. On Chameleon and Squirrel, our NLGCN
achieves better test accuracies of 41.3 and 60.0 respectively,
compared to 37.0 and 56.9 of CPGCN. In addition, it is
worth noting that our NLGCN and NLGAT are built upon
GCN and GAT, respectively. They show improvements over
their counterparts, which indicates that the advantages of
our proposed non-local aggregation framework are general
for common GNN.

We summarize the results on all datasets in Table 5 for
reference.

4.5 Analysis of the Attention-Guided Sorting

We analyze the results of the attention-guided sorting in our
proposed framework, in order to show that our non-local
GNNss indeed perform non-local aggregation.

Suppose the attention-guided sorting leads to the sorted
sequence (21, 22, . . - , 2 ), which goes through a convolution
or CNN into (21, 22, . .., 2, ). As discussed in Section 3.1, we
can consider the sequence (z1, 22, . .., 2, ) as a re-connected
graph Q, where we treat nodes within the receptive field of
2; as directly connected to z;, i.e. z;’s 1-hop neighborhood.
The information within this new 1-hop neighborhood will
be aggregated. If our non-local GNNs indeed perform non-
local aggregation, the homophily of the re-connected graph
should be larger than the original graph. Therefore, we
compute H(G) for several datasets to verify this statement.
Following Section 4.4, we apply NLMLP on Actor, Cornell,
Texas, and Wisconsin and NLGCN on Chameleon and Squirrel.

Figure 2 compares H (G) with H(G). We can observe that
H(G) is much larger than H(G), indicating that distant but
informative nodes are near each other in the re-connected
graph G. We also provide the visualizations of the sorted
sequence for Cornell and Texas. We can see that nodes with
the same label tend to be clustered together. These facts
indicate that our non-local GNNs indeed perform non-local

aggregation with the attention-guided sorting.

4.6 Efficiency Comparisons

As analyzed in Section 3.2, our proposed non-local aggre-
gation framework is more efficient than previous methods
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Fig. 2. (a) Comparisons of the homophily between the original graph and the re-connected graph given by our NLGCN on Chameleon and Squirrel.
(b) Comparisons of the homophily between the original graph and the re-connected graph given by our NLMLP on Actor, Cornell, Texas, and
Wisconsin. (c) Visualization of sorted node sequence after the attention-guided sorting for Cornell and Texas. The colors denote node labels.

Details are explained in Section 4.5.

TABLE 5

Comparisons between our NLMLP, NLGCN, NLGAT and baselines on all the 11 datasets. TWe can only use smaller hidden dimensions for GAT
and NLGAT on ogbn-arxiv and snap-patents due to the huge memory requirement. $Uses a GPU with 48 GB of memory.

Assortative Disassortative
Datasets Cora Citeseer Pubmed ~ ogbn-arxiv | snap-patents — Chameleon — Squirrel Actor Cornell Texas Wisconsin
MLP 76.5+1.3  T73.6+1.9 87.5+0.4 54.1+0.1 31.3+0.1 48.5+3.0 31.5+1.4 35.1+0.8 81.6+6.3 81.3+7.1 84.9+5.3
GCN 88.2+1.2  75.7+1.3  88.4+0.6 70.4+0.2 45.7+0.0 67.642.4 54.9+1.9 30.3+1.6 54.247.3 61.14+7.0 59.6+4.5
GAT 88.4+1.4 76.1+1.0 87.040.3  65.0+2.97 45.4+0.4F 65.043.7 51.3+2.5 29.4+1.2 56.344.3 57.946.1 57.844.3
Geom-GCN 85.3 78.0 90.1 - - 60.9 38.1 31.6 60.8 67.6 64.1
Geom-GCN-g 87.0 80.6 90.7 - - 68.0 46.0 32.0 67.0 73.1 69.4
Geom-GCN-s 73.3 72.2 87.0 - - 61.6 38.0 34.6 75.4 73.5 80.4
NLMLP (ours) 76.9+1.8 73.4+1.9 88.240.5 54.0+0.3 32.1+0.1% 50.7+2.2 33.7+1.5 37.9+1.3 84.9+5.7 85.4+43.8 87.3+4.3
NLGCN (ours) 88.1+1.0 75.24+1.4 89.0+0.5 70.6+0.3 50.8+0.4% 70.1+2.9 59.0+1.2 31.6+1.0 57.6+55 65.5+6.6 60.2+5.3
NLGAT (ours) 88.5+1.8 76.2+1.6 88.24+0.3  66.7+2.4F 48.3+0.2f% 65.74+1.4 56.842.5 29.5+1.3 54.7+7.6 62.6+7.1  56.9+7.3
TABLE 6 posed method. In particular, we experimentally analyze

Comparisons in terms of real running time (milliseconds). We have
memory issue if we use the same dimension for GAT as GCN and
NLGCN on snap-patents.

snap-patents Chameleon Squirrel
GCN 2193.0 (1.0x) 22.2 (1.0x) 14.3 (1.0x)
GAT oomt 33.2 (1.5x) 163.3 (11.4x)
Geom-GCN - 3615.0 (163.1x)  10430.0 (727.3x)
NLGCN (ours)  2437.4 (1.1x) 26.3 (1.2%) 39.6 (2.8%)

based on the original attention mechanism, such as Geom-
GCN [28]. Concretely, our method requires only O(nlogn)
computation time in contrast to O(n?). In this section, we
compare the real running time to verify our analysis. Specifi-
cally, we compare NLGCN with Geom-GCN as well as GCN
and GAT. For Geom-GCN, we use the code provided in [28].
Each model is trained for 500 epochs on each dataset and the
average training time per epoch is reported.

The results are shown in Table 6. Although our NLGCN
is built upon GCN, it is just slightly slower than GCN and
faster than GAT, showing the efficiency of our non-local
aggregation framework. On the other hand, Geom-GCN is
significantly slower due to the fact that it has O(n?) time
complexity.

5 CONCLUSION

In this work, we propose a simple yet effective non-local
aggregation framework for GNNs. The core of the frame-
work is an efficient attention-guided sorting, which enables
non-local aggregation through convolution. The proposed
framework can be easily used to build non-local GNNs
with low computational costs. We perform thorough ex-
periments on node classification tasks to evaluate our pro-

existing disassortative graph datasets and apply different
non-local GNNs accordingly. The results show that our non-
local GNNSs significantly outperform previous state-of-the-
art methods on all benchmark datasets of disassortative
graphs, in terms of both accuracy and speed.
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