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ABSTRACT

Unprecedented winter storms that hit across Texas in February 2021 have caused at least 69 deaths and 4.5 million customer interruptions due to the wide-ranging
generation capacity outage and record-breaking electricity demand. While much remains to be investigated on what, how, and why such wide-spread power outages
occurred across Texas, it is imperative for the broader macro energy community to develop insights for policy making based on a coherent electric grid model and
data set. In this paper, we collaboratively release an open-source extendable model that is synthetic but nevertheless provides a realistic representation of the actual
energy grid, accompanied by open-source cross-domain data sets. This simplified synthetic model is calibrated to the best of our knowledge based on published data
resources. Building upon this open-source synthetic grid model, researchers could quantitatively assess the impact of various policies on mitigating the impact of
such extreme events. As an example, in this paper we critically assess several corrective measures that could have mitigated the blackout under such extreme weather
conditions. We uncover the regional disparity of load shedding. The analysis also quantifies the sensitivity of several corrective measures with respect to mitigating the
severity of the power outage, as measured in Energy-not-Served (ENS). This approach and methodology are generalizable for other regions experiencing significant

energy portfolio transitions.

1. Introduction

The extreme winter storm and associated electricity outages in
February 2021 are estimated to have caused more than 70 deaths
[1] and $200 billion economic loss [2] in the state of Texas. Besides
the official brief review [3] and ongoing internal investigation on the
Electric Reliability Council of Texas (ERCOT), there have been prelim-
inary reports from non-peer-reviewed articles [4-6], press interviews
[7,8] and a few recent academic publication [9] on potential causes
and technical solutions for this blackout event. A challenging question
for the broader energy research community lies in how to develop an
open-source and extendable model that captures the key characteristics
associated with this extreme outage. Such models would offer an open
platform for corrective policy assessment.

The existing studies of power grid resilience to extreme weather con-
ditions offer power grid resilience enhancement strategies mainly in
two perspectives: (a) physical hardiness such as vegetation management
[10], substation relocation [11], selective undergrounding [12] and etc.,
and (b) operational capability such as emergency generator [13], dis-
tributed energy resources [14,15], grid monitoring system [16,17] and
etc. However, the lack of a common open-source realistic power grid
model prevents broader communities from the assessment of these meth-
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ods for specific real-world events via simulation. While researchers re-
cently have contributed to the creation of large-scale synthetic grid mod-
els [18] for analysis such as macro-scope energy portfolio transition
[19,20], cross-domain and open-source reliable approaches to quantify
impact from corrective measures against blackout events under extreme
frigid weather are still at a nascent stage, with several gaps in existing
research. First, existing open-source large-scale synthetic grid models
are not ready-to-use for the event reproduction without rigorous cali-
bration. Second, the lack of aggregated and processed event timeline
data prevents exhaustive simulation and further investigation. Last but
not least, the lack of consistent quantified criteria renders studies on the
effectiveness of potential corrective measures and their combined effect
incomparable.

Here, we collaboratively develop an open-source large-scale syn-
thetic baseline grid [21], providing a realistic representation of the
actual Texas electric grid, accompanied by the open-source data set
along the event timeline. This ready-to-use multi-platform synthetic grid
model is calibrated based on open-source data sets, including genera-
tion by source, load by weather zones, generation unit outage timeline,
load shedding record, etc. To the best of our knowledge, it is the first
fully open-source approach to model, simulate, benchmark, as well as
propose corrective measures against the 2021 Texas power outage. The
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blackout event reproduction results obtained from this open-source syn-
thetic model are compared and validated using key parameters obtained
from the actual blackout reports, including the change of system gen-
eration capacity, load demand and load shedding data. Additionally,
we propose and evaluate multiple technical solutions that can possi-
bly mitigate the electricity scarcity under such extreme weather con-
ditions, including energy system winterization, interconnected HVDC
lines, up-scaled demand response program and strategic energy storage
facilities. Leveraging the synthetic grid, we perform quantitative anal-
ysis on the corrective measures in the aspect of reducing the extent of
blackout events. Our results indicate the strong disparity among the win-
terization effectiveness for generation units of various source types and
geographical regions, the quantitative assessment of certain corrective
portfolios, and the interdependence of per-unit performance of correc-
tive measures.

2. Open-source synthetic grid model and data

We first collaboratively develop an open-source, large-scale, syn-
thetic baseline grid that provides a realistic representation of the ac-
tual Texas electric grid, and then integrate generation and load-related
data along the event timeline, which are both publicly available on
Github [21]. The original sources are detailed in the documentations
in the Github repository (see Data and Code Availability). In this pa-
per, the synthetic model creation focuses on feasibility of the direct cur-
rent optimal power flow (DCOPF) solution without transient stability
assessment for the following reasons. First, this DCOPF-based synthetic
grid model offers substantial insights to the chief parameters associated
with this blackout event based on the public data availability. Intro-
ducing synthetic yet unrealistic dynamic transient parameters would be
counter-productive for the purpose of open-domain analysis and correc-
tive measure assessment. Second, this model is extendable further for
the research community if more credible dynamic and detailed parame-
ters become available. Third, this model is shown to be computationally
efficient. It can serve as a bridge to connect the macro energy systems
research community with the electric power systems engineering com-
munity.

For the purpose of ‘what-if’ analysis, we create a comprehensive
blackout event dataset via collection from publicly available sources
[3,22-25] and estimation (see Methods). This dataset integrates actual
load by weather zone, actual generation by source, 7-day-ahead load
forecast by source, solar and wind generation forecast, generation units
outage, actual available generation capacity, actual load shedding and
customer power outage into a single ready-to-use format. Here, we de-
fine the counterfactual load as the 7-day-ahead load forecast and the
simulated load shedding as the gap between the post-shed and coun-
terfactual load, and introduce the estimated generation capacity by
weather zone based on rated generation capacity, thermal generation
units outage and actual renewable generation (see Methods), all of
which play important roles in the what-if analysis.

In this paper, we develop an open-source synthetic grid that captures
some of the key characteristics of the Texas Interconnection. Texas Inter-
connection is one of the AC synchronized grids in North America that
covers most of Texas. The Texas Interconnection has a total of more
than 86,000 MW of generation resources of various types, including
51.0% Natural Gas, 24.8% wind, 13.4% coal, 4.9% nuclear and 3.8%
solar [26]. The loads in the Texas Interconnection are further divided
into 8 weather zones and the various grid operation and market data
are aggregated to the zone level before publishing. There are two DC
ties between the Texas Interconnection and the Eastern Interconnection
that allow power exchange between two un-synchronized power grids.

In this paper, the synthetic grid is calibrated carefully to capture the
key open-domain statistical characteristics of the Texas Interconnection.
The synthetic Texas grid model is adapted from an existing test system
[27] and rigorously calibrated in several aspects, namely generator units
capacity, and transmission line rating (see Methods). The geographical

Advances in Applied Energy 4 (2021) 100056

load distribution comes from the existing grid model [18], while their
real-time magnitudes in simulation are adjusted according to the real
load dataset or calculated ones depending on whether the real load data
are available. The generator units capacities are updated to the actual
available generation capacity [24] in January 2021. Without modifying
the network topology, some transmission lines are upgraded to ensure
that the model remains feasible in the period leading up to the black-
outs and that no renewable generators are unreasonably curtailed due
to congestion.

Integrating the open-source datasets, the ready-to-use synthetic grid
model is the first open-source simulation package dedicated to poten-
tially provide firm interdisciplinary insights into the particular real-
world blackout event, which is extendable for the broader macro en-
ergy community due to its transparency. To give an intuitive impres-
sion on the blackout event, we provide an event overview along with
regional generation outages and customer power outages (Fig. 1). The
timeline of the whole blackout event (Fig. 1-a) that contains the actual
total load, actual and estimated generation capacity shows the electric-
ity scarcity due to the high load demand and wide-ranging generation
outage. The actual generation and generation outage across eight ER-
COT weather zones (Fig. 1-b) show that the generation outage at the
darkest hour mainly consists of natural gas thermal generation outages
across ERCOT and renewable generation outages in the North, West, Far
West and South zones. We also find the regional disparity of load shed-
ding (Fig. 1-¢) from the aggregated county-level utility-reported cus-
tomer outage data [25] during the ”darkest” period, namely from 8 p.m.
February 15, to 11 a.m. February 16. Specifically, the satellite counties
around Houston in the Coast zone and several counties distributed in
the West zone suffered the most severe outages. We notice the signifi-
cant gap between the estimated generation capacity and actual online
capacity before February 15, and increasing mismatch between them
after noon on February 16, that are in line with expectations due to sev-
eral reasons explained in Appendix A.1. We have observed that there
exists a substantial mismatch between actual load and either actual on-
line or estimated generation capacity, which is beyond the reserve limit.
This mismatch may be attributed to multiple reasons, such as transient
stability requirements, reactive power demands, and capped wholesale
market price [28], which deserve more investigation but are neverthe-
less outside the scope of this paper. To show the complex but realistic
features of the synthetic grid, we visualize the topology of the whole
synthetic grid (Fig. 2), of which load distribution, generation units ca-
pacity and transmission lines rating are calibrated based on the static
Texas grid-related data (see Methods). In the following analysis, we will
leverage the synthetic model along with the blackout event dataset to
demonstrate its fidelity by reproducing the blackout event via simula-
tion and then perform quantitative assessments of multiple corrective
measures against extreme frigid weather.

We would like to remark that the approach of developing such an
open-source synthetic grid model is extendable for similar assessment of
impact and corrective measures of severe weather-induced power out-
ages across many regions. The synthetic model follows the Matpower
case format which uses tables to store generator, load and topology in-
formation [29]. The modification of all components are done through
altering the corresponding row of the tables. As an example, this syn-
thetic grid model is also compatible with the open-source model and
dataset in [30] which can be used to perform many more comprehensive
studies such as HVDC interconnection designs, 2030 projected profiles,
renewable and storage scenarios and integrated simulation along with
the synthetic Western and Eastern Interconnections.

3. Methods
3.1. Data aggregation

In order to validate the model by event production and perform
quantitative what-if analysis, we integrate the blackout related data dur-
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Fig. 1. Overview of the 2021 Texas blackout event from the perspective of generation capacity and load shedding. a, Blackout event overview in terms of
generation capacity and actual load associated with the key event labels. The significant gap between the estimated generation capacity and actual online capacity
before February 15, and increasing mismatch between them after noon on February 16, are in line with expectations due to several reasons explained in Appendix A.1.
b, Online and offline generation capacity by source in ERCOT weather zones at 11:00 a.m. February 16. The ring size is determined by the zone-level total generation
capacity and its color represents the type of generation capacity. The block color represents the weather zone where the county is located (grey blocks are not within
eight weather zones). ¢, Normalized county-level customer outage percentage during the “darkest” period. The block color represents the county-level customer
outage percentage [25], where the ERCOT average outage percentage is 31% (grey blocks mean no data available). The ”darkest” period is ranging from 8 p.m.
February 15, to 11 a.m. February 16, possessing the largest load shedding amount.

ing the event period between February 14, to February 18. The original
sources for all datasets are provided in the Data and Code Availability
section. We integrate the datasets via two ways, namely data collection
from multiple resources [22-25] and data estimation.

e Data Collection: We collect actual load, actual generation, 7-day-
ahead load forecast and 7-day-ahead solar generation forecast data
from the ERCOT regular data channel [22]. We collect generation
units outage data from the source [23] dedicated for the blackout
event, which specifies the outage period, outaged capacity, source
type, and location of outaged and de-rated generator units. Note that
only part of all generation outages are included in this source, since
some resource entities do not provide ERCOT consent to disclose,
and outages shorter than two hours may not be included. We ob-
tain generation capacity data from the Energy Information Admis-
sion (EIA) generation inventory data source [24]. Additionally, we
get the customer power outage data [25] from PowerOutage, which
has city-level utility-reported number of customers suffering power
outage.

¢ Data Estimation: We define the estimated generation capacity as the
sum of total maximum online capacity of thermal and nuclear gen-
eration and total real-time varying available wind and solar gen-
eration capacity. Here the maximum online capacity of thermal
and nuclear generation are equal to the seasonal maximum capac-
ity [24] subtracted by the generation units outage [23], while the
real-time varying capacity of wind and solar generation is the afore-
mentioned collected wind and solar generation data [22]. We define
the load shedding as the gap between the actual and counterfactual
load data. Here the counterfactual load data refer to the 7-day-ahead
load forecast. We also estimate the counterfactual wind generation
as described in the literature [19] using the associated weather data
[31] during the blackout event period. Wind generation estimation
in this way can achieve the highest granularity. Due to the lack of
weather data required by solar generation estimation model, the 7-
day-ahead forecast solar generation is the alternative way for the
counterfactual estimation. Great matches between actual and coun-
terfactual wind and solar generation profiles before February 9, as
shown in Fig. 3 demonstrates the accuracy of counterfactual gener-
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Fig. 2. Visualization of the large-scale synthetic Texas grid. Here the branch
width is proportional to the transmission line rating. This synthetic grid contains
606 generators, 1350 loads and 3206 branches, of which the generation units
capacity, transmission line rating and load distribution are calibrated based on
the available Texas grid-related data.

ation, and it also indicates that the impacts of the winter storm on
renewable generation approximately started from February 9.

3.2. Synthetic grid creation

The synthetic Texas grid model is adapted from the existing test sys-
tem [27], and rigorously calibrated in several aspects, namely, system
topology, geographical load distribution, generation units capacity and
transmission lines rating. Note that although the latest released synthetic
Texas 7,000-bus grid[32] offers more granularity in terms of buses and
zones, the zones do not line up with the data available from ERCOT, ren-
dering remarkable difficulty for model calibration. Therefore, we still
choose this 2,000-bus case as the base model.

e Load distribution: The geographical load distribution comes from the
original design of the synthetic grid model [18], of which the relative
sizes are reasonably determined by the demographic and geographi-
cal information. The real-time sizes of loads in simulation are further
adjusted to the real hourly load dataset or calculated counterfactual
ones. As the public datasets only disclose aggregated load of each
weather zone, all loads within each weather zone are proportion-
ally scaled such that the sum of all loads in each area equals the
published numbers.

e Generation units capacity: The existing test system contains genera-
tion capacity inventory up to 2016 [18] plus the largest generators
added in the period from 2017 to 2019, with the entire generator
fleet scaled to match totals by type and zone at the start of 2020 [27].
To update this dataset to 2021 conditions, we add eight new gener-
ators: two natural gas generators (a total of 427 MW), one biomass
generator (100 MW), four solar generators (742 MW), and one wind
generator (220 MW). These generators were added at high-voltage
buses in the synthetic network closest to their real locations. Finally,
the generation fleet was scaled such that totals by type and weather
zone match the totals from EIA Form 860-M, December 2020 (to
account for any uncaptured additions, retirements, de-ratings, etc.).
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e Transmission lines rating: The topology of the system is adopted from
the synthetic Texas 2,000-bus grid as described in the literature [18].
Without modifying the topology of the transmission network, their
capacity ratings and imdepances are tuned to emulate transmission
expansion to accommodate the additional generation resources, ad-
ditional HVDC interconnections and 2021 demand. Transmission
lines are upgraded as necessary to ensure network feasibility and
to avoid unrealistic curtailment of variable renewable generators.
Specifically, 59 out of 3206 branches are upgraded, representing
108.4 GW-miles of transmission lines upgrades (out of a total of
19,374 GW-miles in the base grid. These transmission upgrades are
mostly in the Far West (29) and North (14) weather zones, where
growth of demand and generation resources has been greatest rela-
tive to the 2016 transmission network capacities.

3.3. Load shedding and restoration operation principles

In ERCOT operation protocols, when the system-wide reserve drops
to a dangerous level that qualifies for Energy Emergency Alert (EEA)
conditions, the grid operator will use different resources from various
participants of the ERCOT market to maintain grid security. In EEA lev-
els 1 and 2, ERCOT will first contact industrial loads that agreed to be
disconnected during emergencies and call upon available demand re-
sponse programs. In EEA level 3 events during which the operating re-
serve capacity is below 1000 MW, ERCOT will ask transmission compa-
nies to shed load, typically done through rotating outages. In our simula-
tions, we aim to follow a similar process in determining the total amount
of load to shed while maintaining simplicity and generality. For each
snapshot, we start by applying the counterfactual load and try to find
a feasible power flow solution. If the available capacity cannot satisfy
the full demand or the supply is limited by transmission line congestion,
DCOPF will be infeasible. In that case, we then gradually reduce the load
across the network until a feasible solution is found. In the reproduction
simulation, the spatial distribution of shedded load obtained from the
ERCOT historic demand data during the event is adopted into the simu-
lation to more closely mimic the timeline of the event. Similarly, if the
system-wide reserve is high enough and there is active load shedding
from the past hours, we attempt to slowly reconnect them back until
the operation reserve has been depleted. The full logic flow of load shed
in simulation is listed in Algorithm 1 .

Algorithm 1: Iterative Load Shedding in Simulation.

Load renewable generation profile of hour #, P! into model
Modify thermal generator capacity based on unit outage data
Load counterfactual load of hour ¢, PI’ into model

Apply load shedding from the past hour P,’;l to load buses
Compute system-wide capacity reserve P/ = Zi(P;J. -P)+ JPI’S‘1
Vi € [list of all buses]

Attempt to solve DCOPF on the base profile

if DCOPF is infeasible or P! < P, ,;, then

r.min
while DCOPF is infeasible or P! < P, ,;, do
Increase load shedding: P/ = P/ + AP
Update P! = P! + AP
end while
else if Operation reserve P! > P, ,,;,

and P/ > 0 then
while OPF is feasible and P/ > P, ,;, and P/ >0 do
Decrease load shedding: P/ = P/ — AP
Update P! = P! — AP
end while
end if

Save P/ as the minimum load shedding for hour ¢
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Algorithm 2: AC Transmission Network Upgrade for Additional
HVDC Links.

Define the maximum capacity of new HVDC tie P,. and increment
stepsize AP,
Define the maximum distance N within which the lines will be
upgraded
Select a heavily loaded profile snapshot as baseline
Select a bus o € B in the network as the location for new DC
converter station
Find the sets of buses [B!, B2, ., B¥] such that D,; ==n,Yj € B"
through recursive graph tracing
Find the sets of all lines [L!, L2, ., LV ] that connects the buses of
neighbouring distance: L" = {L;; |i € B!, j e B")
Run DCOPF to determine initial line flows Pf;.”“ Vi,j € B
Calculate load factor for lines that require upgrading,
pfjm Vi,je[L', L% . LN]
Initialize the capacity of new DC tie, P = AP,
while P% < Pd¢ do

Set the power injection at bus o, P, = P,

Solve DCOPF to obtain new line flows with additional HVDC

injection P; Vi,j € B

forn = [1, 2,.,, N] do

Upgrade thermal rating of lines
PP = max(P; /p,%’;m‘, PR Vi, j € L"

end for

Increment P;, = P, + AP, iteratively to ensure convergence
end while

4. Model-based simulation of the 2021 texas blackout event

To validate the calibrated model dedicated for the blackout event, we
reproduce the Texas blackout event from February 15, to February 18.
To this end, we simulate the synthetic grid model using the aggregated
data, where realistic load shedding allocation and DCOPF are key steps.
We take the estimated generation capacity (the binding constraint for
load shedding) and counterfactual load (the ebb-flow pattern of load)
as the simulation inputs. To achieve the fidelity of load shedding, we
mimic the guides of load shedding and restoration [33,34] to determine
the total load shedding amount at any given moment, and perform ap-
propriate spatial allocation of load shedding to reflect its regional dis-
parity (see Methods). We reproduce the blackout event by iteratively
solving DCOPF given the post-shedding load (see Methods), which re-
veals the hourly change of geographically distributed load, generation
and load shedding across Texas in detail.

We demonstrate the fidelity of the synthetic grid and the associated
simulation methods by the reproduction results of load shedding and
generation composition (Fig. 4). To quantify the severity of the black-
out event, we use the power system reliability index energy-not-served
[35] (ENS), defined as the integral of load shedding over the event time-
line, to quantitatively evaluate the load shedding throughout the rest of
this paper. We first demonstrate the fidelity of the geographical load dis-
tribution and the designed load shedding algorithm by the good match
between the actual and simulated total load shedding (Fig. 4-a) that
respectively represent a total of 998.8 GWh and 929.6 GWh Energy-
Not-Served (6.91% difference). The correlation coefficient between the
two timeseries is 0.88, which also indicates a good match between the
re-produced load shedding process and actual ERCOT record. The un-
avoidable mismatch attributes to the combined effects of errors in syn-
thetic grid modelling and system operation under emergency conditions
(see Appendix A.2 for the remark on the mismatch). We then validate
that the simulation well captures the regional disparity of load shedding
across eight weather zones [36] by comparing the simulated zone-level
normalized load shedding with the real one (Fig. 4-b). It shows that
Far West experienced the most disproportional load shedding among all
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zones and Coast has suffered from a significantly worse condition com-
pared to the other two most populous zones: North Central and South
Central. Finally, we validate the fidelity of generation units capacity by
type and generation cost curves used for DCOPF by showing the almost
perfect match between actual and simulated generation composition
throughout the event (Fig. 4-c). The reproduction results validate the
synthetic baseline model, the related data and the associated simulation
methods, which provide a reliable basis for the following what-if anal-
ysis. Additionally, the reproduction results can transparently show the
change of load, generation and load shedding along the timeline, aiding
public multidisciplinary researchers in combing the event development
process, investigating the event causes and providing possible techni-
cal solutions. The transparency and reproducibility of the synthetic grid
model also allow public researchers to contribute to further model de-
velopment and calibration.

4.1. Details of the event simulation

e Load and Load Forecast Profile: In the reproduction of the outage
event, we apply the real historic load during the period between
February 12, and February 18, to the synthetic Texas network. The
ERCOT load data are divided into eight weather zones in Texas, each
containing a specific set of counties. In the simulation, we scale the
base value of every load bus within each weather zone such that the
total load capacity in the zone equals the ERCOT load forecast data
on the same hour, which is used as the counterfactual load profile.

e Renewable Generator Capacity: We have estimated the unit-level wind
and solar capacity data during the event periods using the combi-
nation of available weather data and ERCOT generation-mix data.
In the reproduction of the outage event, the unit-level data are all
scaled according to the total actual renewable generation data pub-
lished on EIA [24]. These data are set to be the maximum real power
output for renewable generators and is subject to further curtail-
ments, should congestion in the lines occur. The renewable genera-
tors are set to have zero cost in the DCOPF formulation to prioritize
them over thermal energy sources.

e Dispatch-able Generator Capacity: We use the ERCOT unit-level out-
age report[23] to determine the maximum real power output ca-
pacity for thermal generators. Although the maximum rate capacity
for thermal plants is fixed through the event, many thermal gener-
ators have experienced outage or de-rating due to various reasons,
including limited fuel supply, facility freezing and planned mainte-
nance. As the generators in the synthetic networks are equivalent
generators, exacting matching with the outage report is not possi-
ble. Instead, the outage data are first aggregated to county-level and
used to set the maximum capacity of all thermal generators of the
same fuel type in each county.

e Formulation of DCOPF: Using deterministic system demand and re-
newable generation data, the actual output of dispatchable genera-
tors (coal, natural gas and nuclear) and the power flow pattern in
the network is determined by Direct-Current Optimal Power Flow
(DCOPF). DCOFPF is an optimization formulation that computes the
most economic real power output assignment for all dispatch-able
generators in a network, such that all transmission line flow is be-
low their thermal limit and the total real power generation equals
the total demand across the network. The Matlab package Matpower
is used to solve DCOPF for all simulations. A detailed description and
formulation of DCOPF implemented by Matpower can be found in
their documentation [37].

e Cost Curve: The cost curves of generators in the original synthetic
network[18] are revised to make an even closer match with real-
ity. We have run a year-round multi-period DCOPF simulation using
2016 ERCOT renewable and load profile data to confirm that the
total generation from each of the fuel sources is sufficiently closely
matching historical data. A detailed experiment procedure and result
comparison can be found in the literature [19].
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load shedding refers to the ratio of load shedding percentage over online load percentage for each zone. We use the estimated load shedding data based on the
counterfactual and actual load data from ERCOT rather than customer outage data [25] as the real benchmark (See Appendix A.3). ¢, Comparison between actual
and simulated percentage of generation compositions of various source types throughout the event.

5. Quantitative assessment of corrective measures against
extreme frigid weather

In order to provide firm insights into potential technical correc-
tive policy assessment, we start from investigating four possible correc-
tive measures, namely, generation units winterization, interconnection
HVDC lines, up-scaled demand response program, and strategic energy
storage facility as conceptualized in Fig. 5. Generation units winteri-
zation only refers to the adapted winterization treatments for electric
energy generation units, assuming no winterization is currently applied
for any units. Particularly, we reserve the impacts of wide-ranging nat-
ural gas scarcity [6] due to failures in the non-winterized natural gas
supply chain (see Appendix A.4). We also note that there could have

been potential interruption to gas refineries in Texas which might have
also contributed to the lack of natural gas supply, as the gas reserve
amount within Texas have been low compared to the consumption rate.
Assumed as a part of a possible future macro nationwide HVDC network,
additional HVDC interconnections, besides two existing HVDC ties, re-
spectively connect from the Western Interconnection to the West zone
and from the Eastern Interconnection to the Coast zone, and require
necessary transmission lines upgrade around the locations of their con-
verter stations (see Appendix A.8). Up-scaled demand response refers to
various incentive programs distributed across ERCOT that require vol-
untary reduction of electric energy demand. Energy storage refers to the
large utility scale storage facilities that absorb the excessive energy dur-
ing off-peak hours and release it at high power during emergency hours.



D. Wu, X. Zheng, Y. Xu et al.

Demand Response Program
m¢= HVDC Transmission Line

E @ Energy Storage Facility
. Winterized Capacity - Nuclear

Here we treat the energy storage as the first-aid measure while taking
the other three as the sustained electricity supply measure, especially
viewing the generation units winterization as the primary preventive
measure. Therefore, we conduct quantitative assessment of all correc-
tive measures from different perspectives in the following analysis.

5.1. Generator outage and corrective measure modelling

To quantitatively assess the impact of generator outage on the sever-
ity of the outage event and evaluate the effectiveness of potential correc-
tive measures such as the additional HVDC interconnections, generation
units weatherization, up-scaled demand response programs and energy
storage, it is necessary to model each of these elements appropriately
in our synthetic grid. The detailed modelling method is documented be-
low:

e Generator Outage: The unit-level generator outage data is retrieved
from the ERCOT public report [23,38]. As detailed generator infor-
mation is not available to the public (especially for natural gas, wind
and solar generators), we have 606 equivalent generators across the
network such that the area-wide aggregated generation capacity and
profile can match real ERCOT records. To match the real outage data
with synthetic equivalent generator, we pre-process the data by ag-
gregating the total outage capacity for each county and fuel type.
The county-level outage data are used to scale the maximum real
power output of all corresponding generators in the same county
and of the same fuel type in the synthetic network.

o Generator Weatherization: Weatherization is a preventive measure to
reduce the impact of extreme weather conditions on the function-
ality of infrastructures. Different types of generators require differ-
ent types of weatherization treatments: wind turbines require blade
and gearbox heating while gas plants may need anti-frost treatment
for facilities. Despite the potentially big difference in weatherization
cost and complexity, our focus is more about evaluating the effec-
tiveness of weatherization among different generator types and geo-
graphical regions. To this end, we only specify the amount of MW of
weatherized generators for each fuel type in each weather zone and
try to compare the effectiveness on the reduction of ENS as a result of
weatherization. We have also considered the scarcity of natural gas
supply before and during the winter storm by approximating the de-

O Winterized Capacity - Natural Gas
Winterized Capacity - Wind

| Winterized Capacity - Coal
Not Winterized Capacity
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Fig. 5. Conceptual diagram of geographi-
cal distribution of four corrective measures
in simulation. It illustrate a combination of
60% facility winterization, 2 GW HVDC lines,
2 GW up-scaled demand response program and
4 GWh strategic energy storage facility. Here
the generators of thermal and renewable en-
ergy evenly implement 60% winterization. The
two long-distance HVDC lines with total 2 GW
deliver the power from California through the
Western Interconnection to the West zone and
from Florida through the Eastern Interconnec-
tion to the Coast zone. The up-scaled demand
response program is mainly deployed in four
metropolises. The energy storage facilities are
deployed around the location with rich renew-
able generation.

rating of the winterized generators caused by gas supply shortage,
using disclosed unit de-rating data from ERCOT (see Appendix A.5).
When computing the area-level available capacity during counter-
factual simulation, we only apply weatherization to generators that
were completely out, as the de-rating of the running generators was
highly likely caused by lack of gas supply. The weatherized genera-
tors are also de-rated based on the extent of de-rating of running gas
generators in the same county.

e HVDC Ties: We have included two existing HVDC ties to the Eastern
Interconnection in our synthetic network model. These two existing
conveter stations are modelled as fixed equivalent loads for DCOPF
computation. In each hour, the real tie flow data from ERCOT is as-
signed as real power demand for the equivalent loads and the sign is
determined by the direction of DC tie flow. This is meant to make the
DC tie flow exactly the same as real data. For counterfactual studies,
we have included two additional HVDC ties, one to the Western In-
terconnection and another to the Eastern Interconnection. Here we
assume a macro HVDC interconnection network will be built across
the U.S. following a commonly used design [39]. We have adopted
this design in determining the location for the converter stations and
upgrade the transmission lines around the converter stations (see
Appendix A.8). As the additional HVDC ties are introduced to be
counterfactual corrective measures to supply any extra power dur-
ing the event, their actual output power needs to be adjusted ac-
cording to the ERCOT system demand. Hence, the new DC ties are
modelled differently as equivalent generators with a cost function
representing the hypothetical cost to buy power from neighboring
states. The magnitude and direction of their tie flow is determined
by OPF result.

e Demand Response: Demand response refers to various incentive pro-
grams that encourage voluntary reduction of electric energy demand
during peak or emergency hours. Although most demand response
programs in ERCOT are still in development at the current stage and
mostly target large industrial, commercial or aggregated customers,
it has the potential to scale up quickly and provide a valuable de-
mand side resource during similar energy emergencies. In our sim-
ulation, the effect of a demand response program is modelled as a
form of voluntary load reduction with prior agreement between load
serving entities and customers which does not count to ENS. During
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Fig. 6. Quantitative assessment of each single sustained supply measure in terms of load shedding (GW). a, The impacts of additional facility winterization
on load shedding with different percentages from 20% to 60%. These percentages correspond to the winterization for generation capacity of 21.7 GW, 43.4 GW and
65.1 GW. b, The impact of additional HVDC lines on load shedding with the capacity ranging from 1 to 4 GW. ¢, The impact of up-scaled demand response program
on load shedding with the capacity ranging from 1 to 4 GW. Note that winterized generator units and demand response programs are deployed across ERCOT without

priority in any specific area. Here the original curve refers to the load shedding in the event reproduction with no corrective measures.

energy emergencies, load resources from demand response programs
are the first to be committed before all of the other more costly steps.
Hence, we also prioritize available demand response capacity over
storage and forced load shedding. When the system reserve is below
2300 MW which corresponds to ERCOT EEA level 1, the loads across
the synthetic network are reduced up to the maximum allowed de-
mand response capacity.

e Energy Storage: The purpose of energy storage is to absorb excessive
energy from renewable sources during off-peak hours and release
stored energy during peak and emergency hours. Unlike other types
of corrective measures that are more suitable in reducing the over-
all severity of the outage by providing sustained additional power
supply, the advantage of energy storage lies in its ability to provide
relatively large power output during a short period, which can be
used to bridge through "most difficult” hours. To emphasize this, we
assume all storage capacities are fully charged prior to the event and
commit them during the hours when the level of forced load shed is
around the highest. The contribution of energy storage is reflected
in the reduction of peak load shed capacity.

Taking these corrective measure settings into account, we first quan-
tify the impacts of each single sustained electricity supply measure of
distinct extents in load shedding (Fig. 6). We find that 60% genera-
tion units winterization can effectively reduce the Energy-not-Served
from 929.6 GWh to 40.8 GWh (Fig. 6-a), and about 80% generation
units winterization can prevent the blackout entirely, where we reserve
the impacts of non-winterized natural gas supply chain. We also find
that HVDC lines and up-scaled demand response of equal capacity have
similar but different effectiveness on mitigating the electricity scarcity
(Fig. 6-b,c), which respectively reduces the Energy-not-Served by 64.1
GWh and 67.5 GWh per 1 GW capacity (see Appendix A.6 for more
details). Since energy system winterization is the most straightforward
solution against extreme frigid weather, we attach additional impor-
tance to prioritizing the winterization of generation units of specific
source types in different regions. We perform the quantitative assess-
ment of the effectiveness of facility winterization by source and region
on the electricity scarcity mitigation. The results in Table 1 indicate
the distinct performance of per-GW generation units winterization (see
Appendix A.7 for more details). Based on this, we suggest the priority
of winterization for the disabled nuclear generation units located in the
South Central, natural gas generation units across ERCOT, coal genera-
tion units in the Coast and wind generation units in the West.

Given the quantitative assessment of single sustained electricity sup-
ply measure, we investigate the performance of several sustained elec-
tricity supply portfolios and assess the first-aid capability of energy stor-
age on the basis of sustained sources. We have selected three appro-

priate winterization portfolios based on the foregoing priority analysis,
as shown in Table 2 to provide a quantitative assessment in terms of
additional Energy-not-Served reduction contributed by both HVDC and
demand response (Fig. 7). First, we find that the performance of HVDC
and demand response are slightly different but almost equivalent under
certain cases of winterization portfolio. Second, we find the per-GW per-
formance of HVDC and demand response decreases as the winterization
capacity increases. For first-aid outage mitigation at the load shedding
peak hour, we focus on load shedding peak clipping by the strategic en-
ergy storage facilities on top of sustained corrective measure portfolios,
each refers to one of the three winterization portfolios in Table 2 to-
gether with HVDC and demand response of 2 GW. We find that the per-
formance of per-GWh capacity reduces as the total energy storage ca-
pacity increases, or along with increasingly sufficient sustained supply
corrective measures (Fig. 8). To summarize the key findings obtained
in the foregoing quantitative analysis, we find the strong disparity of
generation units winterization of various source types in multiple re-
gions, and the interdependence of per-unit performance of corrective
measures, based on the quantitative assessment of certain corrective
portfolios.

6. Concluding remarks

We develop an open-source and extendable synthetic electric grid
model that could serve as a platform for broader energy research com-
munity to quantitatively assess the severity and corrective measures of
the 2021 Texas power outage. Simulation results based on this open
synthetic model are shown to have captured key characteristics of the
real-world event, demonstrating the model fidelity and uncovering the
key regional disparity of load shedding. The quantitative assessment of
the corrective measures and portfolios has indicated the strong disparity
of winterization effectiveness among generation units of various types
in multiple regions and the interdependence of per-unit performance
among corrective measures. It can immediately inform policy makers of
the priority of generation units winterization, the quantitative assess-
ment of certain portfolios on mitigating the blackout and the necessity
of launching systematic investigations on the combined effects of cor-
rective measures, which can potentially be generalized for other regions
around the world which are experiencing the dual challenge of energy
portfolio transition and extreme weather conditions.

This open-source, cross-domain, data-driven approach to analyzing
a real-world power grid during extreme events provides a fresh perspec-
tive to allow broader climate and energy research communities to have
high fidelity characterization of what happened and what could have
been corrected in large power grids, as energy systems around the world
go through profound transformation. The design of this open-source syn-
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Quantitative assessment of generation units winterization by source and region in terms of Energy-
not-Served reduction (MWh). Each entry in the table shows the resulting reduction of Energy-not-Served
(in MWh) for 1 GW generation capacity winterization of each source type in each weather zone. A crossed-
out entry means that the lack of associated generation outage data renders the evaluation of this certain

winterization non-applicable.

Source Type  Far West ~ West North East Coast North Central ~ South Central ~ South
Nuclear — — — — — — 38,205 —
Natural Gas 37,058 12,338 18,993 16,908 25,129 29,236 18,905 23,279
Coal — — — 266 18,719 1,967 266 5,768
Wind 6,865 15,178 4,479 5,188 795 — — —
a. b. c.
Winterization 10 GW Winterization 20 GW Winterization 30 GW
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Fig.7. Additional Energy-not-Served reduction (GWh) by HVDC and demand response given different winterization portfolios. a, b, ¢, respectively show the
additional Energy-not-Served reduction contributed by HVDC and demand response that is represented by both bubble size and color, given different total winterized
generation capacity. Here the winterization portfolios in three cases are determined based on the results in Table 2. The Energy-not-Served reduction contributed by
winterization portfolio alone are respectively 266.2 GWh, 467.0 GWh and 628.9 GWh for the case of 10 GW, 20 GW and 30 GW winterized capacity.

Table 2

Selective generation units winterization in portfolio 1, 2 and 3 .

Allocation of Winterized Capacity (MW) in Portfolio 1

Weather Zone Far West ~ West North East Coast North Central South Central South
Natural Gas 2000 0 0 0 2000 2000 0 2000
Coal 0 0 0 0 1000 0 0 0
Wind 0 0 0 0 0 0 0 0
Nuclear 0 0 0 0 0 0 1000 0
Allocation of Winterized Capacity (MW) in Portfolio 2
Weather Zone Far West ~ West North East Coast North Central South Central South
Natural Gas 3500 500 1000 1000 2500 3000 1000 2500
Coal 0 0 0 0 1000 0 0 500
Wind 500 1000 500 500 0 0 0 0
Nuclear 0 0 0 0 0 0 1000 0
Allocation of Winterized Capacity (MW) in Portfolio 3
Weather Zone Far West ~ West North East Coast North Central South Central South
Natural Gas 3500 500 1000 1000 2500 3000 1000 2500
Coal 0 0 0 0 1000 0 0 500
Wind 500 1000 500 500 0 0 0 0
Nuclear 0 0 0 0 0 0 1000 0

thetic grid can be easily reconfigured, making it very convenient to
conduct further analysis such as HVDC interconnection designs, 2030
projected profiles, renewable and storage scenarios and integrated sim-
ulation along with the Western and Eastern Interconnection. The trans-
parency and extendability of the synthetic grid model will contribute
to a data-driven technology and policy assessment of the energy sys-
tem transformation with respect to climate change and extreme weather
events.

This model and analysis is a first step towards an open-domain cross-
displinary approach to fully understand the impact of severe weather
on critical infrastructure systems such as the 2021 Texas power out-
age. Building upon this open-source model, we hope future research
to address several key challenges in assessing the severity and causes
of the 2021 Texas blackout. First, we notice the wide-ranging natural
gas generation capacity outage and de-rating are not simply due to the

freezing temperature, but also to natural gas scarcity and interruption
in the supply chain. It is particularly important to estimate and predict
the impacts of interdependence between two energy infrastructure sys-
tems on the overall energy system reliability and energy market stabil-
ity on both sides under extreme weather conditions. Second, we notice
the price-ceiling-hitting whole-sale electricity price [28] at $9,000 per
MW, that lasted for three days ending on February 18. Its quantified im-
pacts on generation dispatch and load restoration still remain unknown.
More investigation is necessary for demonstrating and developing a be-
nign power market mechanism that can encourage improving the reli-
ability and resiliency of power grids. Third, reproducing the reported
frequency event at the beginning of blackout event based on reliable
dynamic parameters will provide more fruitful insights into what, how
and why it happened. Last but not least, the interdependence of per-
unit performance among corrective measures emphasizes the necessity
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Fig. 8. Load shedding peak clipping of energy storage facility. The baseline
refers to the model without other corrective measures, while the portfolio 1, 2
and 3 respectively consist of one of three winterization portfolios in Table 2 to-
gether with HVDC and demand response of 2 GW capacity.

of systemic assessment on the combined cost-effectiveness of technical
solution bundles.

7. Data and code availability

The open-source synthetic grid model and the corresponding dataset
used for blackout simulation are publicly available on Github[21]. A
tutorial and examples for running the code using provided dataset are
also available in the Github repository.

Declaration of competing interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is supported in part by Breakthrough Energy Sciences, and
in part by NSF grant CMMI-2130945 and ECCS-2035688

Al. Remarks on the gap between actual online and estimated generation
capacity

There are two periods that have apparent gap between actual and
estimated generation capacity as shown in Fig. 1. The first period is
before 12 a.m. February 15, when the EEA 3 has not been launched.
The reason for this mismatch is that the estimated generation capacity
includes all non-outaged generation that is not necessarily online, and
it is normal that generation units are offline according to the dispatch
or scheduled seasonal maintenance. Therefore, the estimated generation
capacity is higher than the actual online generation capacity. The second
period is after 12 p.m. February 16, when the gap becomes increasingly
large. We suspect it could involve several causes, of which the main one
may be attributed to the generators whose de-rating and outage are not
disclosed in the public report [23]. Besides, the good match between
12 a.m. February 15, and 12 p.m. February 16, is because all available
generation must be required online under such emergency conditions.
Since we focus on the blackout event period, it is reasonable to use the
estimated generation capacity instead of the actual online capacity to
achieve the most accurate granularity.

A2. Remarks on the mismatch between actual and simulated load shedding
Here we separate the period from February 15, to February 18, into

three parts, namely the load shedding rising stage from 0 a.m. to 8 p.m.
February 15, the load shedding stable stage from 8 a.m. February 15, to
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12 p.m. February 16, and the load restoration stage from 1 p.m. Febru-
ary 16, to 12 a.m. February 18. During the load shedding rising stage,
actual and simulated Energy-not-Served are respectively 277,625 MWh
and 274,316 MWh, of which the relative error is -1.19%. During the
load shedding stable stage, actual and simulated Energy-not-Served are
respectively 292,778 MWh and 331,210 MWh, of which the relative er-
ror is 13.12%. During the load restoration stage, actual and simulated
Energy-not-Served are respectively 428,388 MWh and 324,115 MWh,
of which the relative error is -24.34%. The mismatch between actual
and simulated total Energy-not-Served is mainly derived from the later
two stages. The gap during the load shedding stable stage is mostly due
to multiple factors such as system topology, system congestion pattern
and load shedding strategy (shown in Methods). However, to our best
ability, this is the closest result we can obtain based on only publicly
available materials, in which limitations include the low geographical
resolution of generation, demand and outage data as well as lack of
detailed load shedding protocols or event logs in ERCOT internal docu-
mentations. The significant mismatch during the load restoration stage
shows that the actual load restoration is slower than the simulated one,
which may reasonably attribute to the requirements by system tran-
sient stability, unknown load regulation, and unreported technical load
restoration issues that nevertheless are beyond this paper’s scope and
need more attention for future research.

A3. Remarks on the benchmark of load shedding allocation

Although we have acquired county-level outage data from Power-
Outage.com [25] that show the number of customers with and without
electricity during the Texas windstorm event, those data are not appro-
priate for simulation purposes as they do not provide actual online and
offline capacity (in kW/MW). In our simulation, the loads are allocated
and scaled based on their rated MW capacity and total ERCOT historical
hourly load in each weather zone. While it would be intuitive to draw
a direct relationship between the number of disconnected customer and
the total capacity of those customers, we unfortunately do not have the
necessary data with high enough resolution to do so as the load data in
our synthetic network is aggregated and represents the total capacity of
entire towns which include residential, commerical and industrial load
altogether.

A4. Relationship between natural gas generation derating and gas supply
scarcity

Our hypothesis is that all natural gas generation derating is derived
from the gas supply scarcity and the remaining full outage is derived
from equipment failures at power plants. The Texas blackout event re-
view [3] includes some information related to the generation outages,
which documented that the cumulative generation capacity forced out
throughout the event is 46,249 MW, cumulative number of generators
outage throughout the event is 356 and cumulative gas generation de-
rated due to supply issues is 9323 MW. Here the "cumulative capacity”
includes all units that have failed at some point, regardless of whether
it comes back later during the event, as defined as in the 2011 Texas
winter event report [40]. To verify the hyphothesis, we calculate the
cumulative generation capacity forced out and cumulative number of
generators outage based on the generation outage report [23], which
are respectively 47,946 MW and 316. The relative error between esti-
mated and reported values are 3.67% and 11.23%, which validates the
correctness of the calculate method. The mismatch between real and
reported cumulative number of generator outages is in line with our ex-
pectation because about 10% of generation plants deny to release of the
outage information to the public [23]. In the same way, we calculate the
cumulative generation derating that equals to 10,608 MW, which has
13.78% relative error compared to the reported 9323 MW. To simplify
the problem, we confirm that the proposed hypothesis roughly matches
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the reality which indicates that all natural gas generation derating are
cause by gas supply scarcity.

A5. Incorporating gas supply scarcity into natural gas thermal generation
winterization

As shown in Appendix A.1, we are able to roughly separate the
outage/de-rating of generators that are caused by lack of gas supply
and those that are caused by un-winterized power plant facilities. With
this information, we are able to incorporate gas supply interruption in
our counterfactual simulations that involve the hypothetical weather-
ization of natural gas generators. We only apply weatherization treat-
ments to generators that are completely out-of-service as shown in the
ERCOT unit outage data. For each of those generators, we calculate the
amount of de-rating of other in-service but de-rated generators in the
same county by assuming that the availability of gas supply is roughly
the same across gas generators in the same county. Hence, even when
those completely out generators are in service as a result of weather-
ization, they still cannot run at their maximum capacity due to the lack
of gas supply. In counterfactual simulation, the de-rating caused by gas
supply is done by giving additional natural gas generators a de-rating
multiplier that is determined by the level of de-rating of its neighbouring
generators in the same county.

A6. Remarks on the performance of HVDC and demand response

In Fig. 4b and 4c, the effect of HVDC and demand response on forced
load shedding is different even for the same total capacity. This differ-
ence is mainly caused by the difference in modelling these two types
of corrective measures. For the modelling of additional HVDC, we have
added two converter stations into the synthetic network: one in the city
of Roscoe in the West zone representing a DC tie to California, one in
the city of Bryan in the Coast zone representing a DC tie to Florida.
Transmitting power from these two converter station to the rest of the
grid is limited by network congestion, which can result in remote loads
not getting power from HVDC interconnections and thus they must be
shed even when there is available power supply from the HVDC ties.
In contrast, for the modelling of demand response, we assume the addi-
tional load-capacity is split across the entire network, which is less likely
to cause congestion than concentrated high-capacity energy supply like
the HVDC converter stations. Moreover, since the system demand is still
reduced after introducing demand response (but on a voluntary basis),
the lower demand also alleviates the congestion pattern in the network
which leads to more effective energy use.

A7. Remarks on the performance of winterization of various sources in
multiple regions

Appendix Table A.1 has shown that for the same amount of MW
of weatherization, the difference in effectiveness of different fuel types
can be very different. This difference is mainly caused by the severity of
outage and derating during the event across generator types. Some type
of generators, such as natural gas, are more vulnerable to cold weather
than others and have suffered much higher levels of outage and derating,
thus weatherization treatment would be more effective. In contrast, coal
and nuclear generators are much less affected by the winter storm (prob-
ably due to their larger size), thus additional weatherization treatment
won’t improve the situation much. In short, the more severe a generator
is affected, the more effective will its weatherization be. Moreover, even
with complete weatherization, the actual capacity of wind turbines is af-
fected by the wind strength. For example, the wind strength between 9
a.m. February 15, and 8 p.m. February 16, is weak, hence during this
time period wind turbines cannot provide much power even if they are
fully weatherized.
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A8. Transmission line upgrade around the interconnection nodes of the
HVDC lines

In our counterfactual case studies we have added two additional
HVDC converter stations that represent ties to California and Florida
to the original synthetic grid network. Each station is capable of trans-
mitting at a maximum 2000 MW of real power into the Texas network.
This additional power injection will significantly overload the AC trans-
mission grids near the point of common coupling as their specifications
are not designed to handle the additional power flow. To accommodate
the new resources, we have up-scaled the thermal limit of AC trans-
mission lines in the neighbouring region to avoid line overflowing. We
have designed a iterative algorithm to upgrade the AC transmission line
appropriately without disrupting the congestion pattern in the original
network.

We first model the topology of a transmission network as an un-
directed graph, where each bus is represented as a vertex and each
branch is represented as an edge. Let B denote the set of all buses (ver-
tices) in the graph; let L = L; ;Vi,jEB denote the set of all branches
(edges). The distance between two vertices i and j is denoted as D; e
The real power flow in a line L;; is P;;. For each transmission there ex-
ists a thermal rating, P™#*, that dictates the maximum allowed power
flow along the line. The thermal limit is used in OPF formulation to
ensure that the power flow of all lines in the network is lower than
the thermal limit, P, ;<= P[‘/T“”‘ Vi, j € B. We define the line Load Factor
pij = Pj/PI™ as the ratio between the line flow to its thermal limit.
With the addition of a new power source such as an HVDC converter,
the line flow pattern across the network will change to reflect the new
power flow solution. Most likely, the power flow in the lines that are
close to the converter station will increase drastically as the capacity of
HVDC lines is usually much larger than the power absorption of local
loads in the region and will cause lines to overflow. To upgrade those
lines appropriately, we take an iterative approach to ensure that the load
factor p of lines in nearby regions remain unchanged before and after
adding the new HVDC tie with a designated max capacity. The detailed
algorithm is presented as follow:

A9. Remarks on the simulation environment for this open-source model

Although the model itself adopts the Matpower format for storing
the bus, generator and topology information, it its not exclusive to Mat-
power which is based on MATLAB. We chose Matpower to perform our
studies for this paper but similar works can be done using other plat-
forms when MATLAB is not available. For example, there exists several
free Python-based software that can also run analysis directly on the
Matpower case format such as Pandapower [41] and REISE [42]. In
fact, some of our preliminary works on the creation and calibration of
the synthetic model were carried out using REISE without MATLAB.
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