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Abstract: This paper presents the design and analysis of an observer to enable non-invasive hemorrhage
detection. The proposed observer-based approach detects hemorrhage by continuously receiving the
volume resuscitation inputted to a patient and the resulting hemoglobin response of the patient, and creating
multiple state estimates as candidate signatures. A unique challenge differentiating the hemoglobin-based
hemorrhage detection problem from conventional fault detection problems is that hemorrhage (i.e., the
process fault) also alters the measurement equation. Through the design of an observer using a blood
volume kinetics model as plant dynamics, and the extensive analysis of its error dynamics incorporating
the process fault-induced alteration in sensing, it was demonstrated that hemorrhage can be detected based
on the dynamic behaviors of the signatures generated by the observer: virtual in silico testing resulted in a
F-score of 0.80 (precision: 0.91; recall: 0.78) and a normalized detection time of 0.1-0.7 relative to the time
to 25% blood volume loss.
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1. INTRODUCTION

Hemorrhage is accountable for ~40% of mortality globally
(Kauvar et al., 2006). Especially in combat casualty care,
>85% of mortality on the battlefield is attributed primarily to
hemorrhage, a quarter of which is survivable if timely
treatment is provided (Eastridge et al., 2011). Hence, early
detection of hemorrhage is of paramount importance in
providing life-saving interventions to hemorrhaging patients.
However, a chronic challenge is that traditional vital signs for
patient monitoring (e.g., heart rate, blood pressure (BP), and
oxygen saturation) may not reveal the symptoms of blood loss
during early stages of hemorrhage due to the compensatory
mechanisms in the body.

Effort to quickly detect hemorrhage and hemorrhage-induced
circulatory decompensation has been made on algorithmic and
sensing fronts. The algorithmic effort includes pulse wave
analysis (PWA) (Nicia et al., 2016) and machine learning-
based methods for detecting the depletion of blood volume
(BV) (Reljin et al., 2018) as well as compensatory reserve
(Convertino and Schiller, 2017). A potential limitation of the
recently reported techniques is that they tend to be empiric and
difficult to interpret due to their data-driven nature. In
addition, these techniques are often concerned with the
assessment of margins to circulatory collapse rather than the
detection of hemorrhage itself. The sensing effort includes, to
list a few, continuous blood hemoglobin (Hgb) monitoring and
ultrasound applications. Continuous Hgb monitoring via pulse
co-oximetry (Frasca et al., 2011) and diffuse optical
techniques (Vishwanath et al., 2018) showed promise despite
plenty of room for innovations, while the ultrasound
measurement of inferior vena cava diameter and left ventricle
thickness was not responsive to hemorrhage (Resnick et al.,
2011). Hence, there is a technological gap in early detection
of hemorrhage both in algorithmic and sensing standpoints.

This paper presents the design and analysis of an observer to
enable prompt and non-invasive hemorrhage detection. Our
innovative idea is to leverage an interpretable mathematical
model of BV kinetics (Bighamian et al., 2016) in conjunction
with continuous Hgb measurement (SpHb, a widely used
surrogate measure of BV expansion in response to volume
resuscitation) to detect and assess hemorrhage. If the patient
is subject to hemorrhage, the states in the BV kinetics model
(with the assumption of no hemorrhage) will predict a SpHb
response to volume resuscitation that has large discrepancy
from the monitored SpHb. In this way, hemorrhage may be
detected based on the relevancy of the behaviors associated
with the states in the BV kinetics model, which are estimated
by the observer as candidate signatures. A unique challenge
differentiating the hemoglobin-based hemorrhage detection
problem from conventional fault detection problems is that
hemorrhage (i.e., the process fault) also alters the measurement
equation. Through the design of an observer using a BV
kinetics model as plant dynamics and the extensive analysis of
its error dynamics incorporating the process fault-induced
alteration in sensing, it was demonstrated that hemorrhage can
be detected based on the dynamic behaviors of the signatures
generated by the observer.

2. OBSERVER DESIGN AND ANALYSIS
2.1. Plant Dynamics: Blood Volume Kinetics

This work employed a lumped-parameter BV kinetics model
developed in our prior work (Fig. 1) (Bighamian et al., 2017).
The vast majority of mathematical models of BV Kkinetics
developed to date (Tatara et al., 2007; Carlson et al., 1996;
Gyenge et al., 2003; Kofranek and Rusz, 2010) intend to
establish in-depth understanding of the BV kinetics itself and
tend to include excessive details not observable in real clinical
settings and thus not suited to observer design. In contrast, the
lumped-parameter BV kinetics model retains the essential
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high-level physiological principles (e.g., volume equilibrium
and fluid shift) while lumping all the unnecessary details not
suited to observer design into phenomenological models. The
model is analogous to a two-bucket system, in which the
intravascular and extravascular compartments are modeled as
buckets, and the fluid shift as fluid flow through a valve
connecting the buckets. It can be shown that the plant
dynamics is written in the state-space representation in (1)
(Bighamian et al., 2017):

; 1 1

xl] —k 1) [ ] [ ]

= +|_k Ju—|_k_|h (1a)
[xz 0 0] [xz] 1+ay 1+ay

_ 1 _o@=-0®) Jyh@o@adr
e TS VBoo () (15)

The model is characterized by four interpretable parameters:
(i) pre-resuscitation/hemorrhage BV (Vp,), (ii) volume split
ratio @, and «a;, in the steady state, and (iii) fluid shift rate
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Fig. 1. Lumped-parameter blood volume kinetics model as the
plant dynamics for observer design.

This work assumes that SpHb is available as measurement:
o(t). In the absence of hemorrhage, % is equal to the
fractional BV change (Hahn, 2010). But, in the presence of
a(0)—a(t)

o(t)
an additional term related to the change in red blood cell
Jyh@e@dr  g(0)-a(t) _

(RBC) volume due to hemorrhage: Voo @ e

hemorrhage, is equal to the fractional BV change plus

AVg(t) foth(r)a(r)dr
VBo VBoo(t)
and h(t) is the hemorrhage rate. So, it is impossible to
measure fractional BV change from SpHbD in the presence of

hemorrhage since h(t) is unknown.

where AV is the change in BV from Vg,

2.2. Observer Design

Consider the following observer design model based on (1):
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where A= A+ A and B = B + B, with ~and * being nominal
and uncertain parts, respectively. The measurement equation

is given by:
_ L _ a(0)—o(t)
2T T T 3)
f;h(‘r)a(r)dr .

where the unknown term in (1b) was neglected.

VBoo(t)
Then, the Luenberger observer for (2) and (3) is given by:
5 s _ 1 foth(‘r)a'(r)dt 1
X=AX+Bu+1L [(Vso x, + R ) o~ x1] 4)

where L is the observer gain that can be designed by, e.g., pole
placement.

2.3. Error Dynamics Analysis
Given (2)-(4), the error dynamics is given by:
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uncertainty (Ax + Bu = 0) to scrutinize the effect of h(t) on
the errors and expanding (5) into component-wise equations:

where w = Ax + Bu— L . Neglecting parametric
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since h = 0, 0 = 0 (since SpHb is positive), and ¢ < 0 (since

f; h(r)dr. If
VBo

h(t) is assumed to be slowly varying and is approximated to a

H

Vpgos?'
gim e, (t) = oo, tlim e,(t) = oo, and gim es(t) = (1 + apH,

and in addition, tlim é,(t) < —H and tlim é,(t)<—kH. In

_ df;h(r)a(r)dr) > h
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SpHb decrease under hemorrhage). Hence, wy, >

step signal (i.e., h(s) = g), then wy, (s) = Therefore,

sum, assuming that h(t) is slowly varying, hemorrhage can be
detected if any of the following conditions is satisfied:
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1) CI: tlim e;(t) < —H - %,(t) > x,(t), with i, (t)
being the upper bound of x;(t) in (2), i.e., when
h(t) = 0, vt > 0.

2) C2:liméy(t) < —H - £, () > %,(t), with %, (t)

being the upper bound of %, (t) in (2), i.e., when
h(t) =0,vt = 0.
3) €3 lim é&(t) < —kH - £,() > %,(t) , with

%, (t) being the upper bound of x,(t) in (2), ie.,
when h(t) = 0, Vt = 0.

4) C4: tlim e;(t) = (1+ap)H = %5(t) < x3(t), with

x3(t) being the lower bound of x3(t) in (2), i.e.,
when h(t) = 0, Vt > 0.

2.3. Virtual In Silico Testing and Data Analysis

To conduct extensive virtual in silico testing of the observer-
based approach to hemorrhage detection, virtual patients were
created using (1) in conjunction with a dataset acquired from
23 sheep subjects undergoing acute hemorrhage and volume
resuscitation and a novel collective Bayesian inference-based
generative modeling framework developed based on our prior
work (A Tivay et al., 2020; A. Tivay et al., 2020). In brief,
each sheep was subjected to a large initial (25ml/kg) and two
subsequent small hemorrhages (5ml/kg). Each sheep received
volume resuscitation with the Ringer’s Lactate by closed-loop
control algorithms designed to restore and maintain mean BP.
Details of the dataset and the control algorithms are provided
elsewhere (Marques et al., 2017; Rafie et al., 2004; Vaid et al.,
2006). A total of 200 realistic virtual patients were created and
employed in our virtual in silico testing.

In each virtual patient, the hemorrhage detection performance
was examined under a wide range of hemorrhage
(0.025ml/kg/min - 1.15ml/kg/min) and volume resuscitation
(Oml/kg to the hemorrhage rate under consideration) rates. To
make the virtual test more realistic, the SpHb signal outputted
by the virtual patient was corrupted by a white noise of 5%.
For each hemorrhage and resuscitation rate pair in each virtual
patient, we also considered the corresponding zero
hemorrhage rate scenario in which the virtual patient received
only volume resuscitation in the absence of blood loss. In this
way, the efficacy of the approach in making true detection and
avoiding false detection could be evaluated.

For each hemorrhage and resuscitation rate pair in each virtual
patient, hemorrhage detection was performed as follows. The
observer (4) generated state estimates £;, X5, X,, and £; based
on the volume resuscitation input and SpHb response, while
the plant dynamics (2) was solved concurrently for a large
number of virtual patients to determine the bounds ¥ (t) as
well as X, (t), %, (t) and &3 (t) in response to the given volume
resuscitation on the fly. These bounds were selected to cover
90% of all the virtual patient responses. The observer-based
estimates were then filtered via 20-point averaging to mitigate
the effect of measurement noise. At each sampling instant, the
conditions described in Section 2.2 were evaluated in a causal
moving time interval of a pre-specified duration (15 min to the
past in this work) using all the samples therein (15 samples
with a sampling rate of 0.016 Hz in this work). For a given

detection condition, hemorrhage was detected if (i) the
probability of satisfying the condition in the moving time
interval was higher than a pre-specified threshold value (80 %)
for longer than a pre-specified duration (15 min in this work)
and (ii)) hemorrhage was detected before a pre-specified
volume of blood was lost (25% in this work). The rationale
underlying these criteria was to (i) mitigate the adverse effect
of measurement noise (which may result in isolated samples
invalidating the conditions) and (ii) discard practically
meaningless detection (patient may not be resuscitated if
hemorrhage is detected after a large volume of blood is lost).

The hemorrhage detection performance of the four conditions
in Section 2.2 was evaluated individually. For each condition,
we computed precision, recall, and F-score using the outcomes
of hemorrhage detection associated with all the hemorrhage
and volume resuscitation rate pairs as representative metrics of
performance. We also computed the same metrics associated
with each hemorrhage and volume resuscitation rate pair. To
scrutinize how quickly hemorrhage is detected in case of true
positive outcomes, we computed the “normalized detection
time,” defined as the time hemorrhage is detected divided by
the time corresponding to the loss of a pre-specified BV (25 %
in this work), both with reference to the time of hemorrhage
onset). The normalized detection time was computed using (i)
the true positive hemorrhage detection outcomes associated
with all the hemorrhage and volume resuscitation rate pairs as
representative metric of performance as well as (ii) the true
positive hemorrhage detection outcomes associated with each
hemorrhage and volume resuscitation rate pair.

3. RESULTS AND DISCUSSION

Table 1 shows the performance of observer-based hemorrhage
detection in terms of precision, recall, F-score, and normalized
detection time while Table 2 shows the performance of
observer-based hemorrhage detection in terms of F-score at
slow, moderate, and fast hemorrhage. Fig. 2 shows precision,
recall, F-score across hemorrhage and resuscitation rates. Fig.
3 shows the average normalized detection time across
hemorrhage and resuscitation rates, while Fig. 4 shows its
actual distribution associated with (a) low, (b) moderate, and
(c) high hemorrhage rates.

Table 1. Efficacy of observer-based hemorrhage detection.

Condition Precision  Recall F-Score NDT
1 0.31 0.39 0.34 0.65
2 0.88 0.70 0.72 0.42
3 0.76 0.34 0.44 0.40
4 0.91 0.78 0.80 0.45

In general, C2 and C4 outperformed C1 and C3 in F-score as
well as precision and recall. C4 appeared to perform the best
all in all. In terms of NDT, C2, C3, and C4 were comparable
while C1 largely underperformed. Scrutinizing Fig. 2 provides
deeper insight regarding why C2 and C4 are superior to C1 and
C3. Cl1 and C3 are effective only under low hemorrhage rates
and/or high resuscitation rates (I/H ratio: the ratio between the
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resuscitation rate and the hemorrhage rate). In contrast, C2
and C4 exhibit satisfactory performance across a wide range
of hemorrhage and resuscitation rates. These trends were
commonly observed for precision, recall, and F-score.

Table 2. Efficacy of observer-based hemorrhage detection in
relation to hemorrhage rates. P: precision. R: recall. F: F-
score.

Condition Slow Moderate Fast

P 0.62 0.27 0.16

1 R 0.91 0.31 0.18
F 0.74 0.29 0.17

P 0.93 0.96 0.69

2 R 0.99 0.84 0.36
F 0.96 0.88 0.41

P 0.93 0.77 0.60

3 R 0.80 0.34 0.20
F 0.84 0.41 0.25

P 0.89 0.97 0.77

4 R 0.99 0.92 0.47
F 0.94 0.94 0.53

It was of interest to garner in-depth insight on the mechanisms
underlying the relationship of precision, recall, and F-score to
hemorrhage and resuscitation rates. Fig. 2 indicates that the
efficacy of all the conditions tends to degrade as hemorrhage
rate increases and resuscitation rate decreases. This may be
attributed to (i) the impact of hemorrhage and resuscitation
rates on BV and (ii) uncertainty acting as disturbance to the
observer. First, BV decreases faster when (i) hemorrhage rate
is high and (ii) resuscitation rate is low. Hence, the time to
loss 0f 25% BV is small under these conditions, which reduces
the chance of detecting hemorrhage promptly before 25% BV
is lost, thus decreasing true positives (and degrading precision
and F-score) while increasing false negatives (and degrading
recall and F-score). Indeed, F-score was high under slow
hemorrhage but low under fast hemorrhage. Under high
hemorrhage rates, the efficacy of observer-based hemorrhage
detection was only marginal. Second, the uncertainty due to
inter-individual variability exceeding the detection thresholds
%, (t), %, (t), X,(t), and x5(t) as well as measurement noise
triggered false alarms, thereby decreasing true negatives while
increasing false positives (and degrading precision).

In general, NDT associated with all the conditions degraded as
hemorrhage rate increased and resuscitation rate decreased.
Similarly to the hemorrhage detection metrics, this is attributed
at least in part to the impact of hemorrhage and resuscitation
rates on BV: BV decreases faster when (i) hemorrhage fast and
(ii) resuscitation is slow. Hence, the time to loss of 25% BV
is small under these conditions, which ends up with increasing
NDT. Notably, NDT was small under fast hemorrhage and
slow resuscitation in C2, C3, and C4. But, the NDT in this
region was associated with very small number of true positive
cases, and hemorrhage was not detected in most virtual
patients (i.e., most virtual patients were associated with false
negatives). In fact, NDT pertaining to C2 and C4 exhibited a
(roughly) decreasing trend as I/H ratio increased in slow and
moderate hemorrhage (in which F-score was high).
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Fig. 2. Efficacy of observer-based hemorrhage detection with
respect to hemorrhage and volume resuscitation rates.
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Fig. 3. Average normalized detection time across hemorrhage
and resuscitation rates.

4. CONCLUSIONS

The feasibility of non-invasive hemorrhage detection based on
readily available SpHb measurements was investigated. It was
demonstrated that hemorrhage detection may be feasible with
the integration of a lumped-parameter BV kinetics model and
an observer in conjunction with real-time Hgb measurement.
The observer-based hemorrhage detection approach exhibited
promising performance under a wide range of hemorrhage and
resuscitation rates, although its efficacy degraded under fast
hemorrhage and/or slow resuscitation. Future work includes
optimization of the observer-based approach, development of
alternative approaches (including parameter estimation-based
approach), and judicious fusion of detection conditions to
enable more accurate and robust hemorrhage detection.
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Fig. 4. Normalized detection time associated with (a) low, (b)
moderate, and (c) high hemorrhage rates.
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