
 

 Normalized time (NT = Time to detect hemorrhage/Time to lose 25% 
BV) is less than 1, then we safely detected hemorrhage and using this F1 
score was calculated for a range of H-I scenarios on 200 virtual subjects. 

 The contour plots below show the F1 score for a wide range of H-I 
scenarios across the virtual subjects for A1 & A2. 

 The table below summarizes the overall performance (average) and it 
shows that A1 outperforms A2. 

 Blood Volume (BV) Kinetics Model 
 

 

 

 

 

 

 The plant dynamics can be represented in state-space representation as 
below:  
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where 𝑥  is change in BV from initial BV, 𝑥  is interstitial fluid shift volume, 
𝑉  pre-resuscitation/hemorrhage BV, 𝛼  & 𝛼  are volume split ratios due 
to fluid gain and loss in the steady state, 𝑘 is fluid shift rate constant, 𝜎 𝑡  is 
continuous SpHb measurement, 𝑢 and ℎ are rate of fluid resuscitation (I) 
and hemorrhage (H), respectively.

 A lumped-parameter blood volume kinetics model is used as the plant 
dynamics in which rates of hemorrhage (H) and resuscitation (I) are the 
inputs and fractional change in blood volume is the output. 

 If there is hemorrhage, the output equation becomes nonlinear. One 
approach to handle the nonlinearity is to use nonlinear state estimation.  
The other approach is to approximate the output equation to linear and 
derive signatures of hemorrhage via extensive estimation error analysis.  
We explored the latter option in this work. 

 Extensive in silico testing of both the algorithms was evaluated using 
virtual subjects created using collective variational inference from the 
dataset of 23 sheep subjects undergoing acute hemorrhage and volume 
resuscitation.  

 Motivation: Early detection of hemorrhage is critical to clinical decision 
making and interventions for hemorrhaging patients. This work 
concerns model-based hemorrhage detection. It compares two 
alternative algorithms in their efficacy to detect hemorrhage using 
continuous SpHb measurements.   

 Novelty: We pursue model-based state and parameter estimation 
approaches as opposed to data-driven routes widely explored in the 
literature. 

 Challenges: (i) The algorithm must detect hemorrhage against a wide 
range of model parameter variability. (ii) The system is nonlinear in its 
output equation. 
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Methodology 

 

 Hemorrhage is modelled as state variable x , and then an observer is 
designed neglecting the unknown term related to hemorrhage in 
measurement equation.            
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 Algorithm1 (A1): Carrying out the error dynamics analysis on the 
observer design and assuming that hemorrhage h(t) is slowly 
varying and approximated to a step signal, we can derive 
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    with �̅� 𝑡  being the lower bound of nominal 𝑥 𝑡  values when h 𝑡 0.  

 The linear parametric model and parameter adaptation law are given by: 
𝑧 𝑘𝑧

1
𝑉

𝑢  
𝑘

1 𝛼
𝑢 ꞇ 𝑑ꞇ  

𝜃 𝛤𝜀𝜙 𝛤 𝑧 𝑘 
1
𝑉

 
𝑘

𝑉 1 𝛼

𝑧
𝑢
𝑣

𝑧
𝑢
𝑣

 

 Algorithm2 (A2): If the patient is resuscitating then it can be 
derived that hemorrhage can be detected if  

𝜃 𝜃  

Hemorrhage Detection Algorithms 

 The results of this study suggest that both the observer-based and 
parameter estimation-based methods show potential in detecting 
hemorrhage, but the performance degraded during high hemorrhage 
rates and low infusion rates. 
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