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Abstract— The electric vehicle (EV) fleet is gradually growing
into a major part of public transportation. Proper planning
and operation of EV supply equipment (EVSE) is essential to
ensure the efficient and economic operations of the EV fleets.
Charging stations (CS) have gained market attention due to
their lower cost and versatility. Battery swapping stations (BSS)
have also received considerable attention because of their promise
to provide fast and sustainable battery replacements. However,
their commercial viability is unclear due to their requirement
for large capital and infrastructure deployment. In this paper,
we develop a stochastic model for interactions between CS/BSS
and taxi/bus fleets. The model is based on a realistic abstraction
of users’ behavior defined by various stochastic processes. It also
considers the dynamic impacts of the road congestion. Analytical
revenue boundaries are derived and verified by simulations.
These simulation results may prove valuable for future studies
of public transit.

Index Terms—Electric vehicle, electric vehicle supply equip-
ment, EV charging networks, public transit, smart grids.

I. INTRODUCTION

N THE past decade, growing concerns about the relation-

ship among climate, pollution, and personal consumption
have led to a rapid rise in demand for the electrification of pub-
lic transportation such as electric buses and taxis. Numerous
cities worldwide have already announced commitments to the
electrification of public transportation, joining cities in China
that have piloted the effort. By the end of 2017, Shenzhen,
one of the largest cities in China, completed its transition
to all-electric mass transit. With approximately 16,000 buses
and 22,000 taxis, it became the first city worldwide to fully
electrify its bus fleets. There are more than 30 cities in China
committed to fully electrifying their public transportation
by 2020. Los Angeles, United States is electrifying its entire
vehicle fleet with the goal of 100% coverage by 2030. Denver,
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United States has also announced to have 100% buses electri-
fied by 2050. Tallinn, Estonia plans to purchase 650 electric
buses by 2035 while Paris, France will have 800 by 2024.
The United Kingdom government has launched a plan named
“road to zero” that calls for all vehicles on the roads to be
zero emissions by 2040.

As the number of electric vehicle (EV) fleets continues
to grow, it is imperative that businesses and municipalities
meet the charging demand and provide easy access to elec-
tric vehicle supply equipment (EVSE) services [1]. There
are currently two types of EVSE services on the market.
In most cases, charging stations (CS) have become the default
service. However, due to the limitations of current charging
technology and the existing infrastructure, charging speed
of CS may be inadequate for EVs that are sensitive to
charging time [2]-[5]. As an alternative, battery swapping
stations (BSS) provide a fast replacement of fully charged
batteries [6]-[8].

A fundamental question remains: How different is the
interactive dynamics given a set of EVs and EVSE services
and user behaviors? While BSS may provide a fast turn-over
rate for large and frequent demands, questions remain: What is
the overall quantitative benefit to be generated for users and
service providers? Are they worth the additional infrastruc-
ture and equipment cost? What is the best size and con-
figuration needed to serve a certain charging demand base?
To answer these questions, an accurate and computationally
efficient model for the interactions between vehicles and
service providers is needed. Various studies have identified the
stochastic nature of EV driving characteristics to be critical for
EVSE planning and operation. Zhou ef al. [9] considered the
charging characteristics of various EVs and proposed a sim-
ulation framework. Bo ef al. [10] formulated charging using
CS and BSS as a constrained Markov decision process and
investigated the optimal policy using the Lagrangian method
and dynamic programming. The electric taxi routing behavior
has also been considered [11]. Chekired and Khoukhi [12]
proposed a cloud scheduling algorithm to optimize the waiting
time for EV users at public stations. Based on the historical
driving data from Denmark and Japan, a method to quantify
impact of EV charging load on distribution grids was intro-
duced [13]. Zhang ef al. [7] presented a stochastic model of
taxi and bus fleets and used Monte-Carlo simulations to evalu-
ate the CS/BSS service capacities. Researchers have computed
the realistic profitability and sustainability of BSS and CS.
A probabilistic evaluation method for the dispatch potential
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of household EVs with the considerations of the multiple
travel needs was proposed [14]. Munshi and Mohamed [15]
proposed an algorithm to categorize users’ charging profiles
and determine their flexibility to address the performance of
CS for different users. Mak et al. [16] provided an overview
of BSS infrastructure management and discussed approaches
to optimally deploy BSS for an EVSE provider. Yang proposed
a charging strategy to maximize electric taxi’s profit by
choosing appropriate charging stations under uncertain elec-
tricity prices and time-varying incomes [6]. Yang ef al. [17]
proposed a route selection and navigation optimization model
to minimize EV users’ travel costs and to optimize grid
load levels. Dai et al. [18] constructed stochastic models to
estimate uncontrolled BSS energy consumption based on the
number of EVs for swapping, start time, travel distance,
and charging duration. Environmental variations and traffic
conditions were considered in optimizing the energy-efficient
driving algorithm [19]. Authors developed an integrated opti-
mization method for customized bus stop deployment, route
design, and timetable development [20].

Past developments in EV charging networks call for a
comprehensive study regrading abstraction and modeling of
EVSE planning and optimization. Considering the impacts
of road traffic conditions on EV charging may improve the
accuracy of the system model. Furthermore, a comparative
study of the operation of various EV charging types and
EV classes in a typical public transport setting may provide
additional unique insights. In this paper, we propose a dis-
crete stochastic model for public EV transportation service
processes that include both the CS and the BSS modes based
on past statistical results of EV charging behaviors from the
collected operations data and the simulation results [7], [21].
The analytical models are used to calculate the revenue of
a stochastic system. The presented results may help with
integrating new elements, deriving realistic battery degradation
characteristics, and estimating infrastructure cost and planning
needs. The proposed model considers the impacts of road
traffic conditions in addition to the charging characteristics
of taxi and bus EVs during various time periods.

The remaining of this paper is organized as follows: The
notation used in the paper is given in Nomenclature. Section II
provides the stochastic models of the system elements. The
theoretical closed-form solutions for service fleets are pre-
sented in Section III. Numerical results and their comparison
with simulation are given in Section IV. Use cases for the
proposed solution are presented in Section V followed by the
conclusion in Section VI. The proofs of lemmas are given in
the Appendix.

NOMENCLATURE

C Battery capacity of EV (kWh).

B Remaining battery energy of EV (kWh).
Bi, and B, are the battery energy of an EV
arriving at and departing from an EVSE station,
respectively. Bipnormal represents the battery
energy of an EV arriving at an EVSE station
during normal hours.
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Total driving mileage of an EV (mile).
Driving mileage of a hired EV (mile).
Driving mileage of an EV vacant for hire
(mile).

Number of charging or battery swapping
services. For a bus: Ny = N p.

Number of EVs at EVSE station.
Designed service capacity of an EVSE
station.

EV driving speed at time ¢ (Mph) of a taxi
Vi, and a bus V4,

Average driving speed of a hired taxi

EV (Mph).

Average driving speed of a bus EV (Mph).
Average driving speed of a vacant

taxi (Mph).

Average speed of a taxi neither in service
nor for hire (Mph).

Average traffic adjustment.

Traffic congestion weight at time f.

Road traffic network capacity.

Road traffic weight at time .

Standard deviation of a taxi EV speed.
Standard deviation of a bus EV speed.
Energy injected into an EV at an EVSE
station at time ¢ (kWh).

Total income of a taxi at time ¢ ($).

Total income of a bus at time f ($).

Price of unit energy ($/kWh).

Net electricity income ($/kWh).

Income rate of an in-service taxi at

time ¢t ($/mile).

Average income rate of a bus.

Unit income rate of a bus EV ($/mile).
Probability of an EV arriving at an EVSE
station for service.

Probability of an EV leaving an EVSE
station.

Probability of taxi being hired for service.
Queue length at an EVSE station.

Normal distribution function with the
mean u and the standard deviation o.
The go-charging factor.

Energy consumption rate of an

EV (kWh/mile).

Battery price of a bus EV.

Charging speed of CS.

State of charge of an EV (%).

Set of all time slots.

Time slots when an EV is hired for service.
Time slots when an EV is driving.

Time slots when an EV is at EVSE station.
Time slots when an EV is at an EVSE
station for charging/battery swapping.
Time slots when an EV is queuing at an
EVSE station.

Starting and ending times of an EV in rest
hours, respectively.
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Starting and ending times of an EV in busy
hours, respectively.

e Extension factor.

T Predetermined routing distance between
charging/swapping services.

Tbu sY,sts 1 busy.et

II. STOCHASTIC MODEL

In this section, we describe a stochastic model and compare
it to the data collected from pilot projects. The model consists
of two classes of participants: EV operators and EVSE service
providers. EV operators control service fleets such as buses
and taxis. Their revenue is the service fee paid by their
passengers while their cost are the service charges that include
the electricity charges paid to the EVSE service providers,
the vehicle maintenance charges, and battery degradation cost.
A typical EV operator may be an EV driver or an autonomous
vehicle. For simplicity, in this paper, EV drivers and users
are referred to as EV operators. The EVSE service providers
offer EV charging services with CS or BSS to EV operators.
The net profit of the EVSE service providers is generated
from the difference between the service charge collected from
their EV users and the cost of electricity paid to the utilities.
A stochastic model of the EV operation workflow is shown
in Fig. 1.

In order to model the EV driving behavior as a statistical
sample of a community, we consider the reaction of the EV
driver to the battery state of charge (SOC). The decision
of an EV driver to use EVSE station for charging/swapping
service is based on the battery SOC level monitored by the
sensor displayed on the EV dashboard. The SOC level is an
indicator of the available energy stored in the battery. The
SOC level higher than a certain value indicates that the stored
energy is high and, hence, the EV driver is less likely to
charge the EV. When the EV battery SOC level falls below
a threshold, there is a higher probability that the driver will
use charging/swapping service. The remaining battery energy
depends on the capacity and the SOC level:

B; = CY¥;, (1)

where By, C, and ¥, are the remaining battery energy, the total
battery energy capacity, and the battery SOC of the EV at
time ¢, respectively.

The behavior of public EV fleets is modeled as the Markov
process consisting of three elements: (a) the operation mode
(charging/swapping or driving), (b) the remaining battery
energy of EV, and (c) the income of EV fleets. Driver’s
operation is modeled as the Bernoulli process. The probability
that a taxi arrives at and departs from an EVSE station depends
on the remaining energy of the EV. The time-varying function
of battery energy of an EV is calculated as:

(2)

where B; and B;_; are the remaining battery energy at
times t and ¢ — 1, respectively, Lgriving @nd 1charging are the
operational state indicator functions for an EV in the driving
state and in the charging state, respectively, # is the battery
energy consumption rate (kWh/mile) for the EV, V; is the

By =Bi_1— :”-drivingffvt + :”-cha.rgingjh
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CHARGING

Fig. 1. Tlustration of the EV operation workflow.

driving speed (mile/hour) of an EV at time ¢, and J; is the
energy (kWh) injected into the EV at time f. In practice,
there is energy losses when an EV stops and waits because
there are systems other than the powertrain system that still
require energy such as air conditioning, audio, navigation.
and control systems. Furthermore, there is energy losses of
battery over time. However, these energy losses are relatively
small compared to the energy consumption of a conventional
fuel vehicle with the engine idling while waiting. Hence,
to simplify the model, we assume no energy loss while the EV
is waiting. Although there are technologies such as wireless
charging and the on-car integrated solar energy system that
enable energy to be replenished to EVs while they are moving
and waiting, those technologies are still in their early stages of
research and development and are not yet ready for practical
mass applications. Hence, we may assume that there is no
energy injection while the vehicle is waiting. Therefore, J; = 0
when the EV is neither driving nor charging: If the EV stops
or is waiting for charging, the EV will not consume energy
nor will any energy be injected.

A. Taxi Fleet

Considering both earnings and operating costs, the income
of an taxi EV at time ¢ is given as:

(3)

where Uy ; and U, ;1 are the total incomes of a taxi at times
t and f — 1, respectively, 1pireq is the indicator function for
the taxi being hired by customers, u; is the taxi’s income rate
when it is hired, V, ; and J; are the taxi’s driving speed and
the energy injected into the vehicle at time ¢, respectively, and
Ruynit is the unit energy cost per kWh. Noted that we use the
notation of x to represent a “taxi”. (Later in the paper we use
b to represent a “bus”.)

1) Time Segmentation: The taxi driving behaviors are highly
correlated with the time of the day. Experiments conducted
with four taxis using BSS pilot project! in Hangzhou city,
Zhejiang Province, China between Feb. 15t and Apr. 30%,
2013 are shown in Fig. 2. The least number of requests for
battery swaps is at the beginning of a day. There are two peak
times during the day:

Around 5:00 pm and around 10:00 pm. Note that the drivers
prefer to swap their batteries at the end of the day even though

Ux,t = Ux,t—] + ]]-hiredutvx,r - :”-cha.rginthRunit,

IThis project was the only BSS taxi EV project where the BSS is
semi-automatic and the taxis do not support CS mode. The project began
in 2011 and was completed in 2016.
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Fig. 2. Histogram of hours when taxis swap batteries during experiments
conducted in Zhejiang Province, China.
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Fig. 3. The illustration of taxi operation hours.

the queue in the evening is longer than in the morning. The
peak demand begins at 5:00 pm when taxi drivers go to get a
battery fully charged before the rush hours begin. The end time
of the taxi’s shift and the closing time of the BSS is 10:00 pm.
Taxi drivers desire to have a fully charged battery before the
following day. This is the reason for the expected second peak
for battery swapping services.

Based on the observed behaviors shown in Fig.3, the model
for a taxi with 24-hour shift consists of: (a) peak time between
6:00 pm and 9:00 pm when taxi drivers are motivated to drive,
(b) rest time between 2:00 am and 5:00 am when driver prefers
to charge the vehicle, and (c) normal: the remaining time when
taxi drivers operate the EV.

2) Operation Mode: During normal hours, the probabilities
that a taxi arrives at and departs from an EVSE station depend
on the remaining battery energy of the EV as:

Pp=e" ©)
Py =e"C, )

where P, and Py are the probabilities of the taxi’s status
changing from driving to charging and from charging to
driving, respectively, B is the remaining battery energy, e is
the (natural) exponential function, and C is the battery capacity
of the vehicle (B = C, when the battery is fully charged).

During the break time, taxi drivers charge their EVs when
possible. Therefore, the probability P, of a taxi using CS is:
given as:

(6)

1, if frest, st < < frest, et and B < xC

P, =
0, else,

Where frest, st and fres;, o are the starting and ending times of the

resting period, respectively, and x € (0, 1] is the go-charging

factor that represents the threshold of the battery SOC above

which the driving may not charge the vehicle.
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At the onset of the peak time, there is a high probability
P, that drivers will depart from the EVSE station:

frusy st—t
Pg = €™ if thusy,st <1 < husy,ets ™

where Pj is the probability that the EV drives away from
the EVSE station and fp,5y ¢ and tp,sy e are the starting and
ending times of the busy period.

The operation differs in the BSS mode. Given the nature
of the BSS, the battery swapping time is usually constant.
Therefore, vehicles always leave after the swapping operation
process is completed.

3) Travel Speed: Based on the taxi driving status, the speed
of the taxi V, ; is a random variable generated at time f:

ry max(N (v, + v¢r, 65), 0), in service
It max(N(Ua: 0y),0), vacant, Irestet < T < Irestst
re max(N (vm, 0x), 0), else,

Vx,r =

®)

where V,; is the driving speed of a taxi, max(.) is the
maximum function, and AN (u, ) is the normal distribution
function with the mean x and the standard deviation o. vy
is the average speed when the taxi has customers, v, is the
average speed when the taxi is vacant for hiring, v,, is the
average speed when the taxi is not hired during the remaining
periods, v, is the average traffic adjustment, and o, is the
speed standard deviation. r; € [0, 1] is the traffic condition
factor that reflects the degree of traffic congestion. Value r; =
1 implies that there is no traffic congestion. If r, = 0, a vehicle
is unable to move. Collected traffic data and studies regarding
the road traffic congestion modeling are available [21]-[25].
In this analysis, we adapt a time-dependent indicator of traffic
road conditions that is inversely proportional to the traffic
congestion weight:
K,
o —, (&)

t
where K, is the road network capacity and c¢; is the traffic
congestion weight.

Under the same traffic conditions, we assume that a taxi’s
speed depends on whether or not the taxi is hired by customers.
The probability of a taxi being hired is high during the peak
hours, lower during the normal hours, and the lowest during
the rest hours.

4) Algorithm:
Algorithm 1:

The taxi’s operation is outlined in

Algorithm 1 The Taxi Operation

Input: B, Uy,
Output: By, Uy 141
if charging then decide whether or not to charge
else decide whether or not to depart from EVSE station

Implement (2) and (3)

B. Bus Fleet

Buses have several general differences from taxis: The
bus battery usually has larger capacity. A bus follows a

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 17:37:17 UTC from |IEEE Xplore. Restrictions apply.



9256

w x] N3 -] B S .3
@ P 80 B 8T A5 AB b gl
Day

(2) (&
Fig. 4. Energy consumption of buses using BSS during experiments in
Xuejiadao, Shandong Province, China: (a) Average daily energy consumption

in July 2017 and (b) Yearly power consumption and the number of swaps
between 2011 and 2020.

predetermined route with a known distance and, hence, a bus
charges its battery at a bus park based on a schedule. The
income of a bus depends on the number of passengers at the
time. Only a fraction of buses are driven during the night shift.

An experiment conducted in Xuejiadao, Shandong Province,
China collected daily and yearly energy consumption of a
bus using BSS shown in Fig. 4. The 3-lane BSS in the
experiment serve more than 156 electric buses on 10 routes
with 388 average daily swaps. The longest and shortest single
laps of the bus line are 77 km and 4.6 km, respectively.
The bus battery capacity is 171 kWh. Buses have higher
energy consumption rates (approximately 200 kWh per day)
when compared to passenger EVs (usually equipped with
battery size between 10 kWh and 100 kWh). Collected data
indicate that the daily energy consumption of buses grows
steadily. The increase between July 11" and 12%, 2017 is
possibly due to a longer shift. In 2019, the total energy
consumption was 8.59 x 10° kWh, with an average daily power
of 24,000 kWh. In 2020, it was 6.42 x 10 kWh, with an
average of 17 x 10° kWh per day. The average daily number
of battery swapping services was 175 and 123 in 2019 and
2020, respectively.

The income of a bus at time # is:

Ub,! = Ub,t—l + Wvb,t - :”-chargingjt Runit
Vi,e = re max(N (vp + v¢r, 05), 0)
y = max(N (up, op), 0),

where Uy ; and Up ;1 are the bus incomes at times ¢ and £ —1,
respectively, Ldriyving and Lcharging are the indicator functions
of buses in the states of driving and charging, respectively, w
is the unit income rate, u), is the average unit income rate of a
bus, o, is the standard deviation, J; is the energy injected into
the bus at time #, Ryp; is the unit energy cost per kWh, r; is
the traffic condition parameter, Vj ; is the speed of the bus, and
N (vp+vyr, op) follows the normal distribution where vy, is the
average driving speed of the bus and v, is the average traffic
adjustment. Similar to a taxi, a bus has the highest income rate
during peak hours, a lower income rate during normal hours,
and the lowest income rate during night shifts.
The operation of a bus is described in Algorithm 2:

(10)

C. Charging and Battery Swapping Stations

A CS service provider offers a number of charging ports
with charging services to EVs while a BSS service operator
offers lanes with battery swap robots for users to swap their

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

Algorithm 2 The Bus Operation
Input: B, Up,
Output: By, Up 1
if charging then charge until fully charged
else drive until predetermined distance is reached

Implement (2) and (10)

Algorithm 3 EVSE Operation
if an EV arrives to EVSE for service then
add the EV to the queue
while there is an open slot for pending vehicles do
move the vehicle to charge/swap
Ut+1 = Ut + NeV.t+1Jrotal Ruet

batteries. In the BSS mode, spared batteries are requested for
the battery swapping service. We assume that a BSS service
operator always has charged batteries and is ready to provide
service to EV users. Hence, there is always at least one fully
charged battery for the arriving vehicle. It should be noted that
while battery backup may improve the service quality of BSS,
it also increases the cost of BSS service providers. The optimal
solution may be found through proper scheduling of batteries.
The operations of CS and BSS are described in Algorithm 3,
where Ngy; is the number of EV charging/swapping at time
t, Jiu1 is the energy injected into all vehicles at time f + 1,
and Ry is the net electricity income ($/kWh) based on the
cost of purchasing electricity from a utility.

III. ANALYSIS OF OPERATION EFFICIENCY

Given a number of participants (taxi/bus and CS/BSS),
the income of taxis and buses in the considered stochas-
tic system may be evaluated using numerical or analytical
approaches. In this section, we present the analytical approach
for both types of EV fleets.

A. Taxi

Proposition 1: The expected net income of a taxi is:

]E(Ux) = E(Mhired)uf - W]E(Mtotal)Runih (11)

where E(.) is the expectation function, Uy is the taxi’s income,
u; is the taxi’s income rate, Mp;r4 is the fotal hired mileages,
n is the faxi’s battery energy consumption rate, My is the
taxi’s fotal driving mileages, and R,,;; is the unit energy cost.

The total mileage Moiq is the sum of the mileage of a hired
taxi Mhireq and a taxi that is available for hire M,y.ii:

Miotal = Mhired + Mavail- (12)
The Proposition 1 is derived based on (3):
U, = Z Ux,t = z Ug Vx,! - Z Jt Runit, (13)

teTiotal teTy teTs

where Tiota 1S the set of all time slots, T}, is the set of time slots
when the taxi is hired, and T is the set of time slots when the
taxi is in charging service. Therefore, ZtET;. V¢ is the total
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mileage a taxi traveled with having customers, >, . J; is the
total consumed energy, and Ryyj; is the cost of unit energy.

The energy consumed by a taxi linearly depends on the total
traveled mileage (2). Hence,

z Jy = ??Mtotaj-
teT;

Substituting in (13), leads to (11).
Lemma 1: The expected mileage of a taxi having customers

(14)

is:

E(Mhired) = E(Vx ¢ |hired) PsE(Ty) (15)

while the expected mileage of a taxi available for hire is:

E(Mavaii) = E(Vx,tlvacanr)(] - PS)E(Td): (16)

where V. is the speed of a taxi, Ps is the probability that
the taxi is hired for riding service, and Ty is the total driving
time of the taxi.

Remark 1: For a given time period Tipsal:

Tiotal = Tg + Tc: (1?)

where Ty,ia1 15 the total time under observation, Ty is the total
driving time, and T, is the total time that the EV spent at
EVSE that includes the time for charging or battery swapping
service and the queuing fime.

All variables except E(7;) in Proposition 1 and Lemma 1 are
known.

Therefore, the main goal in order to calculate E(U,) is to
estimate E(T}).

1) Taxi Using CS: The behaviors of a taxi using CS depend
on the time periods. We consider four time periods as shown
in Fig. 3: hy (normal hours between 9:00 pm and the next
day 2:00 am), hy (rest hours between 2:00 am and 5:00 am),
h3 (normal hours between 5:00 am and 6:00 pm), and h4 (peak
hours between 6:00 pm and 9:00 pm). The classification of
the normal, rest, and peak hours may be adjusted according
to study cases.

In the proposed model, there is a high probability of a taxi
EV being hired during busy hours. However, a taxi driver
may not drive during the peak time due to the limited battery
capacity. Therefore, we consider two extreme scenarios in
terms of the expected number of charging services E(N;)
during the peak time: In the optimistic case, a taxi is assumed
not to charge during busy hours h4. Its energy consumption
during the period h4 is carried over to the rest hours 7 when
the hiring rate is the lowest. In the pessimistic case, we assume
that a taxi operates normally in the peak hours h4 and does
not leave EVSE early.

Proposition 2: In the optimistic case, the expected number
of charging/swap services is:

nE(M1)/Ex(B), during hy
max(yE(Ms + M2)/E.(B), 1), during h

nE(M3)/Ex (B),
0, during hy,

E(Ny) = (18)

during h3

where Ny is the number of charging services, n is rate of the
battery energy consumption for the taxi, M1, M2, M3, and My
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are the total mileage in each respective period of normal (h),
rest (hz), normal (h3), and peak (ha) hours, and E,(B) is the
expected energy consumption of a taxi during each charging
session.
The expected energy consumption of a taxi E, (B) is:
I, (B) = ]E(Bout) - E(Bin): (19)
where E(Boy) and E(Bj,) are the expected battery energy
of an EV departing from and arriving at an EVSE station,
respectively. E(Bj,) is given as:

E(Binnormal), for h1, h3,and hs

C —E(My), @0

E(Bin) = { for Iy
where C is the battery capacity, Bipnormal i8 the remaining
energy of the battery when the EV arrives at CS/BSS for
charging during normal hours, and M4 are miles of an EV
during the peak hours.

Based on the law of large numbers, Proposition 2 is true
for a large enough number of EVs. In theoretical analysis we
assume that the aggregated energy consumption within each
time period is completed within the same time period. This
avoids confusion in the analysis of power consumption in
different time periods.

Hence, for h1, E(N;) = nE(M1)/E,(B).

Each taxi will charge during the rest hours at the begin-
ning of hy based on (4) and (6). Hence, a taxi is charged
at least once and the driving mileage of a taxi during hy
is carried over to h3. Hence, E(N;) = nEMy + M3)/
E.(B)for h3. As assumed in the optimistic case scenario,
a taxi does not charge during h4 and the energy used in hy4
was charged during hy. Therefore, during ha, E(N;) =
max(7E(Ms)/Ex(B), 1).

Lemma 2:

C ..
EBinpoma) = 3 Be-8 LB oy

B=0 Pa

where C is the battery capacity, B is the remaining battery
energy, P(B|driving) is the conditional probability of the
remaining battery energy B when driving, and P, is the
probability that the faxi uses CS/BSS charging or battery
swapping service.

Lemma 3: The fraction P(B|driving)/P, satisfies:

C ..

P(B|d
S et P(Bldriving) |Prwmg) =1. (22)
B=0 a

In the optimistic case scenario, a taxi driver will not charge
the EV during peak hours and the energy consumed during
the peak hours will be replenished during the rest hours.

Proposition 3: In  the  pessimistic  case  scenario,
the expected number of charging/swapping services is:

nE(M1)/Ex(B), for hy

BNy =1 forha 53
nE(Ma + M3)/E.(B), for h3
nE(Ma4) /Ex(B), Jfor ha.
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The expected remaining battery energy E(By in) when a taxi
arrives at EVSE for charging service is:

]E(Bin,normal)s fOI’ hi, h3, and ha

24
xkC, Jor ha, 29

E(Bx,in) = {
where Ny is the number of charging services, n is the battery
energy consumption rate of the taxi, x is the go-charging
factor, C is the battery total capacity, E(Bjnnormal) 1S the
expected battery energy of an EV when arriving at an EVSE
station during normal hours, My, M2, M3, and My are the
total mileage in normal (hy), rest (ha), normal (h3), and peak
(ha) hours, respectively, and E.(B) is the expected energy
consumption of a taxi for each charging session.

In this study, we assume that the expected remaining battery
energy of an EV after EVSE service are the same for both the
pessimistic and the optimistic case scenario. In other words,
we assume that all the charging services provide fully charged
batteries.

Cases hy and h3 are the same as in Proposition 2. Since
we assume that drivers’ charging behavior and driving behav-
ior will not be adjusted to optimize for busy hours hg4.
E(N;) = nE(M4)/Ey(B)for hs during hs. During the rest
period, drivers are still expected to charge at least once.

Lemma 4:

C .
P(B|chargin
]E(Bx,our) = 2 BeB—C ( l P it g)
B—0 d

c .
Zea_c P(B|charging) 1
Py ’

(25)

(26)
0
where B, is the battery energy of an EV when leaving
CS/BSS after charging or battery swapping service, C is the
battery capacity, B is the remaining energy of a battery,
P(B|charging) is the conditional probability of the battery
remaining energy B when charging, and Py is the probability
that the EV departs from the CS/BSS.
The expected time of an EV spent on charging at CS
(excluding the waiting time) T is:
(E(Bout) - E(Bm))E(Ns)
7 ,
where E(Nj) is the expected number of charging services and
A is the constant charging speed rate of the CS. The charging
speed normally is a highly nonlinear function depends on the
charging power. In this study, we simplify it to a constant
value. Queuing occurs when the number of vehicles is larger
than the number of CS/BSS. We consider two extreme cases:
In the pessimistic case scenario, all vehicles arrive at the same
time with their energy demands. Thus, each vehicle arriving
to an occupied CS/BSS will be placed in a queue. In the
optimistic case scenario, vehicles arrive uniformly during each
time frame. Neither scenario is likely to occur. However, both
provide lower and upper bounds for the income.
The expected charging time for a taxi is:

E(T.) = E(T) + E(Ty) = OE(T), (28)

where T, is the time that the EV spent at the CS/BSS, T is the
EVSE service time, T; is queuing time, and © is the extension

E(Ty) =

(27)
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factor function. The value of © reflects the efficiency and
profitability of the system. The derivation of (28) is given in
the Appendix.
Proposition 4: In the optimistic case, the extension factor
0=1
This implies that an EV will not spend time on queuing at
EVSE nor will an EVSE station need to wait for customers.
Hence, the system is economically and efficiently optimized.
Proposition 5: In the pessimistic case, the extension factor
O is:

1 Ngv .
E(l + NEVSE)’N if Ny <1

o [+ ) 41 Ny @
EN T Ny T4 TOERD = DL,

if Ny > 1,

where Npy and Ngysg are the number of taxis and EV charg-

ing ports in CS, respectively, N; is the number of charging

service times, and q is the length of the queue at the CS.
The length of the CS queue is:

Ngv ’ Nev
Nevse’ Nevse  7E(Vx)
where g.s is the CS queue length, 1 is the CS charging
speed rate, x is the energy consumption rate, and E(V,) is
the average driving speed of the taxi.

The total driving time E(7y) in each time period hi, h2,
h3, and h4 may be calculated using (12), (17), (18)—(23), (27),
and (28). In the optimistic case, taxis arrive uniformly within
the time period. Therefore, if the total charging time is shorter
than the length of the period, the vehicle will not wait (each
taxi arrives to an idle CS). Substituting E(7;) in Lemma 1,
E(U,) may be calculated using Proposition 1.

The validity of Proposition 5 may be proved by considering
two cases: Ny < 1 and N; > 1.

If Ny < 1, no taxi will make recurring trip to the CS.
The first taxi in the queue will experience no waiting time,
the second taxi will have to wait for the first taxi to complete
its charging service, and the last taxi will need to wait for all
the previous taxis. Hence, the average T is the total charging
and waiting time of all vehicles in the CS divided by the
number of taxis per CS.

The extension factor is:

), (30)

q = gcs = max(

Nev /NEVSE

o=( >,

1
—(1
J+

i)/(Ngv/Ngvsg)

Nev
Nevse ™
If Ny > 1, a queue extension should be considered for
the case when the next group of vehicles arrives and vehicles
from previous group have not yet completed their service. The
number of vehicles in this case is mﬁ%f&}m. The length
of the queue is:

(3D

Nev Nev E.(B) ,E«(B)
= + max(0, —
1 NEvsE ( NEvsE tﬂE(Vx)X A )
N N A
_ max( VBV pNEVSE ) 32)
Nevse' Nevse  7E(Vy)
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Hence, the extension factor @ is:
Nev

Z]E(Ns)[(l T Navae

A queue extension reflects the waiting time in the system.
It is the number of additional vehicles in a queue in case when
a vehicle A completes charging and drives away while the
queue length is L. When the vehicle A empties the battery and
decides to return to CS, the queue may have been reduced to
L’ thanks to the work preformed by the CS. However, by the
time A returns, the queue length may become L + 1. The
queue extension term takes this effect into account.

2) Taxi Using BSS: Computations for a taxi using BSS
can be obtained using minor modifications. In case of BSS,
E(Bout) = C. Since the swapping time is fixed and indepen-
dent of the desired energy, (28) becomes:

E(Tc) = QE(N.!‘)TSJ

0= )+ (1 +@)EWN;) -] (33)

(34)

where E(T¢) is the expected time of the taxi for swapping
and queuing, ® is the extension factor function, E(N;) is the
expected number of swapping services, and T, is the time
duration of a battery swapping service. Unlike in the case of
CS, the BSS service time 7 is a constant and predetermined
by the BSS system.

The extension factor ® follows Proposition 5. The differ-
ence between CS and BSS is the queue length. In the BSS
mode, the queue length is:

Nev , Nev _ E:(B)
Nevse’ Nevse  nE(Vo)T
where gy pss is the queuing function of the taxi in the BSS
mode, Ngy and Ngysg are the numbers of taxis and battery
swapping lanes, respectively, E,(B) is the expected energy
consumption of a taxi for each BSS session, and T; is the
time that a taxi spends in the battery swapping service.

), (33)

q ‘= {x bss = max(

B. Bus

The approach to analyze a bus is similar, albeit simpler to
the taxi case.
Proposition 6: The expected income of a bus is:

E(Up) = E(Miora) (E(up) — 7R unir),

where E(Uy) is the expectation of the income of a bus, Mioal
is the mileage of a bus, uy, is the bus income rate (income per
mile), n is the battery energy consumption rate of a bus, and
Rynit 18 the cost of unit energy.

Unlike the taxi, the income rate of the bus uj is a random
variable with different distributions in h, k2, h3, and h4.

Lemma 5: The expectation E(Myqa1) of the total driving
mileage of a bus M is:

]E(Mtotal) = E(Vb,I)E(Td,b),

(36)

(37)

where E(Vy,;) is the expectation of the driving speed of a bus
at time t, and E(Ty ) is the driving time of a bus.

As the bus follows predetermined schedules, the expected
number of charges in each time period E(N; ) is:

E (M tuta])

EWsp) = —F— (38)
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where T is the predetermined routing distance between
charge/swapping services. The routing distance is planned
and preordained based on the route conditions and the bus
transportation capability.

The battery energy B, of a bus at BSS is equal to the bus
battery capacity C.

The time that each bus spends in charging using BSS is:
qTE(Ns,b)
—

The pessimistic and the optimistic case queuing scenarios
for a taxi may be also applied to a bus:

E(T.p) = OE(Ts,p),

where E(T ;) is the expected staying time of a bus at CS/BSS,
O is the extension factor, and (T ) is the expected charging
service time of a bus at the CS/BSS.

Although there are significant differences in the vehicle
arrival models for taxi and bus, the optimistic and pessimistic
queuing models are the same at CS/BSS because the optimistic
and pessimistic queues are the same regardless of the model
that ignores the distribution of vehicle arrivals. While the
queuing models are similar for taxis and buses, different ®
shall be considered. In the optimistic case, similar to the taxi
® = 1, a bus will always have an EVSE station available
when it arrives, and there will be no queue at the BSS. In the
pessimistic case under the CS mode, ® remains the same as
in the taxi case in Proposition 5. However, in the pessimistic
case of the BSS mode, the queue length g for the bus is:

Nev Nev
,2 - .4
Ngvse’  NEVSE ]E(Vb)Ts,h) “h)
E(Vp) may be found in each time period using (17), (36),
(37), (38), (39), and (40).

E(Tsp) = (39)

(40)

q ‘= 4qbbss = max(

C. Saturation Analysis

Due to the random nature of the vehicle routing, it is
necessary to consider the limits of the service capacity of
the service provider. The service provider cannot offer any
charging service beyond the length of a certain time period.
Hence, for a taxi and a bus in each period i:

Ngy
NEvsE

T,

, < |h;].
EV/EVSE

=T, 42)

If the sum T;; is larger than the length of the period,
we consider that the service capacity has been reached. Note
that time is divided into four periods and the saturation is
bounded within each period.

In practice, the segregation of time periods can be fuzzy.
A driver’s driving and charging behavior is also a gradual
adjustment process and does not exactly follow the directive
obedience of the time period. A driver may schedule the
charging activities in advance according to the time periods.
However, a charging process will not be terminated when it
enters into another time period. Thus, in deployed systems and
simulations, these four periods may overlap.

The charging time of one period can be “compensat
a neighboring period that is less saturated.

» by
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TABLE I
SIMULATION PARAMETERS

Parameter Value
C, taxi 30 kWh
C, bus 313 kWh
Ngvsg, CS 10
Ngyse, BSS 10
Ngy, taxi 100
NEV& bus 20

K 0.9

Uh 30 Mph
Uy 10 Mph
Um 1 Mph
Uy in normal hours 0 Mph
vy in rest hours 3 Mph
Uy in busy hours -3 Mph
Oy 10 Mph
Ryt for CS 0.6 $/kWh
Ry for BSS 1 $/kWh
Up 25 Mph
Op 1.5 Mph
Ug 2 $/mile
T 145 mile
T, for BSS 10 min
n for taxi 0.34 kWh/mile
n for bus 2 kWh/mile
Charging power 40 kW
Simulation time 30 days
Simulation steps 1 min

IV. SIMULATION RESULTS

The proposed stochastic model is validated by adjusting
the model parameters in a case study with Monte-Carlo
simulations of daily operations of 100 taxis and 20 buses
using 10 CS and 10 BSS. The configuration of the simulation
parameters is given in Table I. Parameters values are based on
statistics of common service vehicles and service rates [26],
[27]. The simulation scenario covers a 30-day period with
time increments of 1 minute. In this paper, we set x = 0.9.
Usually, drivers do not wait until the EV battery is completely
depleted before they recharge their EVs. Note that there are
thresholds above which the drivers may become anxious and
find an EVSE station for charging. The value of x indicates the
usage level of battery energy and represents such thresholds.
In practice, the value of x varies among drivers and highly
depends on the battery capacity. Parameter x is not a con-
stant but rather a function that follows a complex irregular
distribution as described in studies dedicated to modeling user
charging behaviors [11], [14], [28]. We aim to understand the
dynamics of the charging behaviors of electric public transport
and do not consider the influence of the users. Hence, we have
adopted a constant value of x. Our choice is based on the
observation that both the taxi and bus drivers wish to minimize
the number of trips to recharge in order to increase their
operating income.
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Fig. 5. Average hourly road traffic congestion weight used in simulations.

The hourly normalized traffic congestion weights shown
in Fig. 5 are based on the road traffic monitoring data from the
State of Nebraska, the United States [21]. In the simulation
study, we do not consider the difference in traffic conditions
between weekends and weekdays and the difference between
the urban and suburb areas. We assume that all taxis and buses
are operated on weekdays in urban areas.

The comparison results of the incomes for an EV under
the CS and the BSS modes are shown in Fig. 6. The revenue
growth significantly slows down during the rest hours before
the dawn while it grows slightly during the peak hours in the
evening. The profitability of the BSS mode is significantly
higher than for the CS mode. The income difference is caused
by the different number of vehicles that are driving. While CS
service consumes plenty of vehicles’ time in waiting, BSS are
more available leading to significantly longer driving time for
EVs. The result is expected since the time spent at CS/BSS is
very important for an EV fleet.

When considering the road traffic congestion, the BSS
profitability of buses remains significantly higher than of the
CS. However, the BSS mode for taxis is only marginally
more profitable than the CS mode. As the congestion becomes
severe during the congested hours, the EV speed will sig-
nificantly decrease, which in turn will cause a significant
reduction in the profitability of the taxis. However, simulation
results show that the decline in profitability does not increase
the willingness of the taxis to opt for a battery swapping
service. The reason may be a tangible income gained by
taking passengers during the slow traffic time compared to
zero revenue when the roads to BSS are congested.

The simulation results are consistent with the results from
the BSS taxi EV pilot project in Hangzhou City, China. Since
the costs of BSS construction and operation are usually higher
than of CS, the investment benefits of the BSS taxi project are
lower than the CS taxi project. Based on the analysis of the
model and the operation of the deployed project, the BSS taxi
project should reduce the BSS construction and operating costs
if they are to continue operating. The main costs are the labor
required for the BSS operation and the land requirement for
the BSS.

Most taxi EVs are charged at night and begin operation
early in the morning even though during the evening peak
hours the EV user’s demand is most likely to be at its highest.
It is also observed that even if taxis are stuck in traffic at
peak hours, they will not choose to charge during peak hours
unless necessary. Hence, the BSS mode has lower impact
on the taxi operations than the CS mode. For the buses
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Average simulation results with consideration of road traffic congestion for a 30-day period with 100 taxis and 20 buses using (a) 10 CS and

(b) 10 BSS. Taxi’s (top) and bus’ (bottom) income and the number of taxis in driving, charging, and waiting. The left and right shaded regions indicate the

rest and the busy periods, respectively.

incomes, there are more vehicles running during the morning
and evening peak hours than during the midday break. After a
day of operation, some bus EVs will have to recharge during
the evening peak hours, resulting in fewer vehicles operating
in the evening peak hours than in the morning rush hours.
This indicates that the transportation capacity of bus EVs in
the CS mode is not fully utilized during the evening peak
hours. Therefore, the operating efficiency of bus EVs may be
improved by rational scheduling and dispatching and, thus,
increasing the transportation capacity. BSS work very well for
bus operations and the bus workload are hardly affected by
the battery swapping service.

The analytical bounds provide a range of possible ranges
for EV incomes with given queuing conditions. The lower
and upper boundaries are the EVs with the pessimistic and
optimistic scenarios, respectively. In the case when the number
of EVs is less than the number of CS/BSS, the optimistic
arrival situation applies to both boundaries because there are
always available CS/BSS.

The simulation results and analytical boundaries are shown
in Fig. 7. The simulation result lies between the lower and
upper boundaries. When approaching saturation, the simula-
tion result is closer to the lower boundary, which is reasonable
as the charging queue becomes longer. The simulated saturated

income is shown in Table II. The lower saturated boundary
for buses using BSS is larger than the upper boundary for CS
mode. The boundaries for taxi EVs using BSS are larger than
that of CS. However, the difference is not strongly meaningful
since the income is directly related to the setting of the service
price.

Parameters in the proposed model may be adjusted to better
match the profiles of the actual environment. For example,
the adjustment should be made according to the weather
and season in the user’s region. In cold regions, the battery
performance is often downgraded due to the low temperature
and, hence, the value of battery capacity may be decreased
accordingly. In regions where the heating and cooling systems
are in place, the rate of battery consumption shall increase.

V. UsSe CASES

The presented analytical solution may be used to evaluate
CS and BSS operations with no need to perform extensive
numerical simulations. It may also assist in evaluations of
larger systems that include CS/BSS. We present an example of
finding the optimal driving speed of a bus with given EVSE
infrastructure. The faster a bus drives, the more frequently
the EV will need to be charged and, therefore, the number
of saturated buses decreases. This is the maximum number of
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TABLE II
COMPUTED SATURATED INCOME OF TAXIS AND BUSES WITH EVSE (%)

Lower Bound Upper Bound Simulation
Taxi/BSS  6.216 x 107 9.572 x 107  7.423 x 107
Taxi/CS 5.523 x 107 6.726 x 107 5.522 x 107
Bus/BSS  1.180 x 108 1.436 x 108  1.270 x 10%
Bus/CS 7.615x 107 8.949 x 107  8.337 x 107

vehicles that CS/BSS may serve and the income of the service
provider no longer increases.

A faster driving speed requires a higher discharge
rate and the battery cycle life decreases with increasing
charge/discharge rate [29], [30]. With faster driving, each bus
gets additional income per unit time. Therefore, an optimiza-
tion problem is to find the speed that maximizes profit of a
single bus considering the cost of battery degradation:

argmax __P
v NEV,sat(Ub) L(Ub)
s.t. 0 < vp < Vb, max,

Ns,b

(43)
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where v}, is the bus driving speed, U}, is the income of a bus,
Nivsat(vp) is the number of saturated buses given vp, p is
the price of the battery for a single bus, L(v,) is the cycle
life of a battery with given vp, and N;j is the number of
charging services per day. We assume a linearly decreasing
relationship between L and v,. We use the setup described in
Section IV and BYD 40’ electric transit bus [31] as a reference
for battery cost. The daily profit of a single bus, its revenue,
and its battery degradation cost for using BSS as a function of
speed is shown in Fig. 8. While revenue increases linearly with
speed, the cost of battery degradation increases non-linearly
especially at upper boundary and high speeds. The optimal
speed is 35 mph (assuming the minimum queue/upper bound
income) or 45 mph (assuming the maximum queue/lower
boundaries income).

VI. CONCLUSION

In this paper, we developed an analytical model to evaluate
stochastic interactions between service fleets (taxi/bus) and
EVSE (CS/BSS). The model considered the behavior of public
transport and the impact of road traffic congestion. The highly
stochastic dynamics of vehicles charging activities in the
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developed model was evaluated by finding the upper and
lower boundaries of the operating revenues under various
assumptions regarding the behavior of individual users and
overall arrivals. The stochastic model was verified via Monte-
Carlo simulations. The analytical approach provided further
insight into the stochastic model and may facilitate evaluations
using various CS/BSS features. The results of the proposed
models were consistent with the operational experiences of
the pilot projects.

APPENDIX
A. Proofs of Lemmas

Proof of Lemma 1: The Lemma is proved using Wald’s
equation [32] when considering time slots when a taxi is either
hired or available:

Ta
E(Mhirea) = E(Ve(|hired)ECY . L hirea)
=0
= E(Vq ¢|hired)E(Ty) P;
Ta
E(Mayait) = E(Ve([avail)ECY_ Lavairt)
=0
= E(Vy,|avail)E(T7)(1 — Py). (44)
O

Proof of Lemma 2: The proof is based on the proposition of
expectation and the Bayes theorem. Let the driver’s state s; be
a Markov process. Then, s; = d (driving) or s; = ¢ (charging
or swapping). When a driver decides to charge EV at time f,
ss=cand s;_1 =d:

E(Bin,normal) = E(B|decide to charge)
c
=D B P(Bls=c,s-1=4d)
B=0

C
_ ZBP(Sr =c|B,s;—1 =d)P(B|s;—1 =r)
B=0

P(s; =cls;—1 =d)

c
_ Z Be—B P(Bls;—1 = d)
o P(st = c|st—1 =d)

c .
P(B|drivin
=2 B pha ( ll %:)SJBSS - )
P (decide to leave )
P(s; = c|s;—1 = d) is a constant. For simplicity, we also
assume that P(B|s;_; = d) is a constant for all B. O
Proof of Lemma 3: From the proof of Lemma 2,
P(B|si—1 =d
PBlsi = c.5_y =d) = e BT BIs1=d) 0
P(s; =cls;i—1 =d)
Since B € (0, C),
c
> PBls=c,s_1=d)=1. 47)
B=0
O
Proof of Lemma 4: The proof is identical to proofs of
Lemma 2 and Lemma 3. O
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