
Multilingual CS Education Pathways:
Implications for Vertically-Scaled Assessment

Yvonne Kao
WestEd

Redwood City, CA, USA
ykao@wested.org

David Weintrop
University of Maryland
College Park, MD, USA
weintrop@umd.edu

ABSTRACT
The expansion of computer science (CS) into K-12 contexts has
resulted in a diverse ecosystem of curricula designed for various
grade levels, teaching a variety of concepts, and using a wide ar-
ray of different programming languages and environments. Many
students will learn more than one programming language over
the course of their studies. There is a growing need for computer
science assessment that can measure student learning over time,
but the multilingual learning pathways create two challenges for
assessment in computer science. First, there are not validated assess-
ments for all of the programming languages used in CS classrooms.
Second, it is difficult to measure growth in student understanding
over time when students move between programming languages
as they progress in their CS education. In this position paper, we
argue that the field of computing education research needs to de-
velop methods and tools to better measure students’ learning over
time and across the different programming languages they learn
along the way. In presenting this position, we share data that shows
students approach assessment problems differently depending on
the programming language, even when the problems are concep-
tually isomorphic, and discuss some approaches for developing
multilingual assessments of student learning over time.

CCS CONCEPTS
• Social and professional topics→K-12 education;Computer
science education; Student assessment.

KEYWORDS
computer science education, K-12 education, assessment, assess-
ment validation, programming

ACM Reference Format:
Yvonne Kao and DavidWeintrop. 2022. Multilingual CS Education Pathways:
Implications for Vertically-Scaled Assessment. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2022),
March 3–5, 2022, Providence, RI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3478431.3499315

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499315

1 INTRODUCTION
Computer science (CS) is currently in a period of rapid expansion
in K-12 classrooms. This growth is the result of work at every level
of education, including national efforts to change policy and create
standards and framework documents, concerted state and regional
efforts to bring CS into classrooms, and individual districts, schools,
and educators working to create opportunities for students to learn
CS. To realize the vision of CS for All, the field still needs to make
progress along a number of fronts, including assessment. School dis-
tricts across the United States and national efforts in countries like
the United Kingdom have invested significantly in launching and
growing computer science pathways, beginning by implementing
high school courses and extending down into middle and elemen-
tary schools. However, it has proved challenging to understand the
impact of these efforts on students’ computer science knowledge
and researchers are calling for a system of assessments that can
measure student learning over time [31].

Students will likely learn more than one programming language
over the course of their computer science educational experiences.
Existing K-12 computer science pathways will generally expose
students to at least two programming languages and possibly many
more. Early learning experiences are likely to incorporate block-
based programming environments like Scratch, which is used by a
growing number of curricula (e.g. MyCS [27], Scratch Encore [14],
and Exploring Computer Science [29]). Later K-12 instruction often
focuses on text-based programming languages like Java or Python.
Given the variety of languages and programming environments
currently in use in K-12 education, measuring the growth of stu-
dents as they progress through a CS education pathway is an open
and important question.

In this position paper, we argue for the need to develop more
sophisticated and rigorous ways to track the growth of students as
they progress through a multi-year disciplinary pathway that may
span multiple programming languages. Following the lead of other
disciplines, in this work we argue for the use of vertically-scaled
assessments. These are systems of assessments where scores from
tests given at different time points can be placed on the same scale
to estimate how much a student has learned between assessment
administrations. As an example, the Smarter Balanced Assessment
Consortium in the United States has created vertically-scaled as-
sessments in mathematics and English language arts. Students take
a Smarter Balanced assessment each spring and their scores are
then compared year-over-year to measure growth [7].

Creating vertically-scaled assessments in computer science is
challenging, in part because of the diversity of programming lan-
guages used in CS education. Consider the following scenario. A
student takes a first computer science course using a curriculum

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

64

https://doi.org/10.1145/3478431.3499315
https://doi.org/10.1145/3478431.3499315

written for the block-based programming language Scratch. The
following year, the student takes a second, more advanced course,
this time taught in the text-based programming language Python.
How much did the student learn about core CS concepts in the
Python course, above and beyond what was learned in the Scratch
course?

There are a few ways to answer this question. We could adminis-
ter a Scratch assessment at the end of each course and compare the
scores. This solution is suboptimal, as the student may be out of
practice with Scratch and may also have learned new CS concepts
in Python that the student has never implemented in Scratch. This
would also render us unable to assess student learning on Python
concepts that have no clear equivalent in Scratch. Alternatively, we
could administer a Scratch assessment at the end of the first course,
and administer a Python assessment at the end of the second course
that has some items translated from Scratch to Python and compare
the student’s performance on the translated items.

Typically, vertically-scaled assessments are designed with items
that appear on multiple test forms to help establish the common
scale. Creating vertically-scaled assessments in computer science
has the unique challenge of needing to assess the same concepts in
multiple programming languages. However, the data we present
in this paper suggests that students may not perform identically
when items are presented in different programming languages, even
when the items are conceptually the same.

Whether or not a course pathway is successful in advancing
student knowledge over time is an important empirical question for
evaluating and improving K-12 CS programs. This position paper
seeks to encourage discussion and debate on what a vertically-
scaled assessment in computer science might look like, how multi-
lingual CS education pathways impact how we design and interpret
the scores from such assessments, and what additional work needs
to be done to create and validate them.

This paper continues with a brief review of the literature on mul-
tilingual CS education and assessment. We then present data from
an assessment that we translated into three different programming
languages and then administered in three different high school
classroom contexts. The findings section presents overall assess-
ment results by course as well as a more detailed look at student
performance on specific items by course. The paper concludes with
a discussion of implications of this work and future work that would
be needed to develop an assessment that could measure growth
in student learning over time and through different programming
languages.

2 PRIORWORK
2.1 Transferring Knowledge Between

Programming Languages
The effects of transitioning students from one language to another is
an area of active study. Work from the 1990s that examined transfer
between programming languages found that this process often does
not go smoothly [28]. Although there is a body of conceptual knowl-
edge that applies across programming languages, there can be little
enough overlap in syntax and style between previously-learned and
new languages that code-writing skill in the new language must be
developed essentially from scratch [1].

More recently, there has been a significant amount of research
following learners in moving from an introductory block-based
context to more conventional text-based programming languages.
Cliburn reported a study of undergraduate studentswho first learned
to program in the Alice environment and then transitioned to Java.
Less than 60% of students felt the earlier experience in Alice was
helpful for learning Java. This finding discouraged the author’s
continued use of Alice [6]. Armoni et al. found mixed evidence
for transfer of student learning from Scratch to C# or Java. While
teachers reported that students with Scratch experience learned C#
or Java more quickly, there was little difference in final assessment
performance between students who had previously learned Scratch
and those who had not [3]. Weintrop and Wilensky conducted a
quasi-experimental study on the impact of introductory block-based
instruction on students’ learning of Java. They found that the block-
based introduction neither impeded nor facilitated learning in Java.
Although students who first studied a block-based language learned
more quickly at the outset, they ultimately performed no better on
an end-of-program Java assessment than students who did not first
learn a block-based language [34]. Other studies have found posi-
tive effects of first introducing students to a block-based language
and then supporting the transition to a text-based language with
explicit scaffolds in place for the transition [2, 9, 20].

2.2 Assessing Computer Science Knowledge
The design and validation of computer science content assessments
is an active area of research. Decker and McGill [10] conducted a
comprehensive review of 47 instruments published between 2012
and 2016 to measure cognitive, non-cognitive, or program assess-
ment constructs in CS education. Most (66%) of these instruments
measured non-cognitive constructs (e.g., self-efficacy or sense of
belonging) while 28% measured cognitive constructs (e.g., computa-
tional thinking or CS conceptual knowledge). Much of the work has
been targeted at the undergraduate level [8, 12, 13, 22, 24], but they
did find a smaller number of assessments at the elementary [5], mid-
dle [35] and high-school levels [33]. A few additional assessments
have been published since Decker and McGill’s review [23, 25, 36].

While many assessments rely on a specific programming lan-
guage, there have been some efforts to create assessments of com-
puter science knowledge that do not rely on knowledge of any
particular programming language. For example, the current Ad-
vanced Placement (AP) CS Principles (CSP) course offered in the
United States assesses students using a custom pseudocode and
poses questions in both block-based and text-based forms of that
pseudocode. This design has been found to benefit students from
historically excluded populations in CS [32]. However, research
on (and with) so-called language-independent assessments [12, 22]
has identified challenges and drawbacks [16]. One major issue is
that pseudocode-based assessments are not truly language-neutral
or language-independent. The syntax and semantics of students’
primary programming language influences the way they respond
to pseudocode-based assessments. Students whose primary pro-
gramming language is syntactically more similar to the assessment
pseudocode also tend to perform better on the assessment [11, 33].

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

65

2.3 Summary
Taken together, the research on transfer between programming lan-
guages and multilingual assessment present a conundrum: there is
sufficient transfer of knowledge from a first programming language
to affect student performance on pseudocode-based assessments.
However, there is not necessarily enough transfer from one lan-
guage to another that students can pick up learning new concepts
from where they left off if their previous coursework used a dif-
ferent language. This presents challenges for precisely measuring
changes in student learning over longer periods of time. In the
next section, we present a secondary data analysis that illustrates
how language can influence high school students’ responses on
conceptually-equivalent assessment items.

3 AN EXAMPLE FROM HIGH SCHOOL
3.1 The Assessment
This paper uses a subset of questions from the Commutative Assess-
ment, a 28-questionmultiple choice assessment designed to evaluate
learners’ conceptual understanding of computing concepts across
block-based and text-based modalities [33]. To measure student
conceptual understanding independent of programming language
and modality, the questions were designed such that students are
asked to interpret short pieces of code that can be presented in
either a block-based or text-based form. Every question presents
the student with a short piece of code (either block-based or text-
based) thus allowing the administrator of the assessment to gain
insight into the relationship between how the program is presented
(including language and modality) and student understanding. Fur-
ther, this flexibility makes the assessment suitable for classes taught
with either text-based or block-based languages, meaning it can be
administered at multiple points along a multi-year CS pathway. A
side-effect of this design is that none of the programs or concepts
included in the assessment rely on a construct unique to any of
the languages used. So for example, there are no questions that use
Scratch blocks related to motion or costumes that do not have an
analog in Java. At the same time, there are no questions related to
type casting in Java as Scratch is a weakly-typed language. Figure 1
presents an example of a code snippet from a question on the Com-
mutative Assessment presented in Snap! (Figure 1a), Java (Figure
1b), the AP CSP block-based pseudocode (Figure 1c), and the AP
CSP text-based pseudocode (Figure 1d). For this question, students
are asked: What will be the value of x and y after this script is run?

The multiple-choice options presented to the learner include
the correct answer alongside distractor answers informed by prior
research on programming misconceptions [30]. Importantly, the
specific wording of the question and the multiple choice options
are held constant across the different forms of the Commutative
Assessment. The only thing that differs is the language and/or
modality of the code snippet presented within each question.

This paper argues for the need for assessment approaches that
can live at various points along a multi-year CS pathway. In the
next section, we present an analysis focused on eight items from
the Commutative Assessment, which we will collectively refer to
as the Mini-CA, as a demonstration of the potential and pitfalls
of using these conceptually isomorphic items in a multilingual
vertically-scaled assessment. The Mini-CA is comprised of two

(a) Snap! (b) Java

(c) AP CSP blocks (d) AP CSP text

Figure 1: The code snippet for item Variables 2, presented
in (a) Snap!, (b) Java, (c) the AP CSP block-based pseudocode,
and (d) the AP CSP text-based pseudocode.

Table 1: Summary of student demographics by course.

Course n % Female % URG % Jrs or Srs
Intro to CS 177 28.3% 20.3% 67.2%
AP CSP 5156 27.4% 31.8% 82.4%
AP CS A 172 26.8% 8.7% 89.3%

items for each of four concepts: variables, conditionals, loops, and
code comprehension (i.e., identifying the function or purpose of a
chunk of code).

3.2 Participants
The data presented below are drawn from two different studies that
included three high school contexts and three sets of participants:
students enrolled in a pre-AP introductory CS course, AP CSP, and
AP CS A. The three contexts are described in greater detail in the
next section and reflect different stages in common high school
CS course pathways in the United States. Table 1 summarizes the
student demographics for each course. Most students identified as
male, not as members of historically underrepresented racial or
ethnic groups (URG), and as juniors or seniors in high school.

3.3 Course and Assessment Contexts
3.3.1 Introduction to Computer Science. The pre-AP Introduction
to CS course used in this study was based on the Beauty and Joy
of Computing (BJC) course developed by the University of Califor-
nia—Berkeley for non-CS majors and adapted for high school [15].
The course uses the Snap! programming environment, which is a
block-based environment inspired by Scratch and includes addi-
tional features such as first-order functions [17]. The curriculum
contains a variety of lessons and activities to teach programming
fundamentals as well as lessons that address the applications and
ethical implications of computing in modern society.

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

66

Table 2: Summary of student performance and Cronbach’s
alpha by course.

% Correct
Course Mean Std. Dev. Cronbach’s alpha
Intro to CS 75.1 28.3 0.82
AP CSP 83.4 23.3 0.79
AP CS A 70.4 27.1 0.75

3.3.2 AP CS Principles. The AP CS Principles course was designed
to serve as an introduction to the field of computer science with a
focus on framing the field as more than just programming, cover-
ing additional topics including algorithms, design, data, and social
impacts of computing. The AP CSP students in this study were
enrolled in the Code.org AP CSP course, which teaches JavaScript
through App Lab, a dual-modality programming environment that
allows learners to move back and forth between block-based and
text-based presentations of the code.

3.3.3 AP Computer Science A. AP CS A is a year-long, traditional
introduction to Java programming course that emphasizes features
of the Java language as well as programming fundamentals. AP
CS A is intended to be equivalent to a first-semester, college-level
introductory computer science course and is often used as the
summative course of a high school CS pathway.

3.3.4 Assessment Administration. Because these data are drawn
from two different studies, the assessment administration proce-
dure was not the same for all participants. The Intro to CS and AP
CS A students completed the Mini-CA items online as part of a
larger end-of-course computer science assessment that covered a
wider range of constructs. The Mini-CA items were translated into
Snap! and Java for inclusion in this larger assessment. The AP CSP
students completed the entire Commutative Assessment online. It
was embedded into their course using Code.org’s content manage-
ment system and teachers decided whether to assign the assessment
to their students. Questions for students in the AP CSP condition
were presented using the AP CSP block-based pseudocode (Figure
1c) and text-based pseudocode (Figure 1d).

4 FINDINGS
The findings section is broken down into two sections. First, we
present statistics on assessment and item performance across lan-
guages and contexts, and then we present a deeper analysis of the
differences we see by context. Table 2 shows student performance
and Cronbach’s alpha for the Mini-CA.

4.1 Summary Statistics
4.1.1 Overall assessment performance. Looking at the overall scores,
a few things stand out. First, the Mini-CA was not difficult for the
high school students in any of the three contexts, with mean scores
ranging between 70.4% for AP CS A students to 83.4% for AP CSP
students. Second, Cronbach’s alpha remained high for all contexts.
Cronbach’s alpha is a measure of an assessment’s reliability, or
internal consistency. Values close to one indicate that the assess-
ment items measure closely related constructs. The calculation for
Cronbach’s alpha is both item-dependent and sample-dependent,

Figure 2: Normalized Mini-CA item difficulties by course

meaning that we cannot directly compare the values from course
to course because the participants are different (i.e., we cannot say
that the Mini-CA was “most reliable” for Intro to CS because it has
the highest alpha coefficient). However, the high values for alpha
across the board suggest the translation process did not significantly
diminish the Mini-CA’s reliability. Guidelines for interpreting Cron-
bach’s alpha suggest that a value of 0.70 is of “modest” reliability
and appropriate for early-stage research and a value of 0.80 is ade-
quate for basic research studies [18, 21]. The alpha coefficients we
report here are all within this range, even with the small number of
items in the Mini-CA (Cronbach’s alpha tends to be higher when
there are more items in an assessment). This result suggests it is
possible to translate an assessment into different languages without
making it less reliable overall.

4.1.2 Relative item difficulty by course. Figure 2 shows the relative
difficulty of each item in each context. These values were normal-
ized by taking the total percent of students answering correctly on
each item and then subtracting the mean percent correct for the
entire Mini-CA. Thus, a value of zero on the y-axis indicates the
item was of average difficulty for students in that course. Positive
values indicate the item was easier than average and negative val-
ues indicate the item was more difficult than average. It should be
noted that percent correct values and normed difficulties confound

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

67

Table 3: Distribution of incorrect responses for Variables 2.

Incorrect response Intro to CS AP CSP AP CS A

1 x is equal to 15
y is equal to 15 35.4% 23.9% 45.5%

2 x is equal to 5
y is equal to 10 2.0% 21.8% 13.6%

3 x is equal to “x + 5”
y is equal to “x” 35.4% 11.5% 9.1%

4 x is equal to 10, 15
y is equal to 5, 10 12.5% 16.5% 22.7%

5 x is equal to 10
y is equal to 5 14.6% 26.2% 9.1%

item difficulty and group proficiency. That is, a high percent correct
value can indicate an easy item, a proficient group, or both. The
three groups of students are not necessarily comparable in terms
of their CS proficiency, so differences in item performance reflects
both differences in the difficulty of the item in different languages
as well as differences in group proficiency. Nevertheless, different
rank orderings of items provides some indication that the relative
difficulties of items change when they are translated into various
languages.

For example, difficulty on item Comprehension 2 ranges from
being very difficult for Intro to CS students to being relatively easy
for AP CS A students. This may be an artifact of the respective
curricula. Item Comprehension 2 asks students to read a function
and explain its behavior; functions were likely not covered in-depth
in the Intro to CS course while more time is spent on the topic in
AP CS A. The fact that difficulty reflects content coverage suggests
an initial sense of face validity for the item as it is administered in
different context. We now take a deeper dive into some individual
items, specifically looking at differences in performance by course
and language. Due to space limitations, we focus on two of the
items from the Mini-CA: Variables 2 and Conditionals 1.

4.2 Differences in Performance by Language
Variables 2 (shown in Figure 1) asks students to identify the values
of x and y after the program executes. Variables 2 was of average
difficulty or slightly more difficult than average for Intro to CS and
AP CSP students, respectively, but it was the easiest item for AP
CS A students. Table 3 shows the distribution of incorrect answers
for this question (non-responders are omitted from the table). The
error patterns differed noticeably between courses.

The third incorrect response option, x is equal to “x + 5” and
y is equal to “x”, was tied for the most common error made by
students in Intro to CS, but tied for the least common error made by
students in AP CS A. A potential explanation is that this is because
Snap!, the language used in Intro to CS is a weakly-typed language
and students do not necessarily recognize the difference between
strings and variable expressions. Meanwhile Java, the language
used for AP CS A is a strongly-typed language and the Java version
of the question declares x and y as ints. Thus, AP CS A students
who have a basic grasp of variable types would recognize that
the third response option, which reports the values of x and y as
strings, cannot be correct. This serves as one example of how the

(a) Snap! (b) Java

Figure 3: The code snippet for item Conditionals 1, pre-
sented in (a) Snap! and (b) Java.

Table 4: Distribution of incorrect responses for Cond’ls 1.

Incorrect response Intro to CS AP CSP AP CS A
1 “inside first if” 21.4% 36.2% 57.7%

2 “inside first if”
“inside second if” 57.1% 49.6% 34.6%

3 It will be different
each time 21.4% 14.2% 7.7%

language of instruction can interact with conceptual knowledge
and influence performance on an assessment, even when the main
concept exists in both languages.

Figure 3 shows two of the four versions of item Conditionals 1.
In this question, two variables, x and y, are initialized with values of
100 and 200, respectively. Students then have to trace the execution
of code through two if statements and identify what the program
will output. Table 4 shows the distribution of answers for students
who responded to this item incorrectly.

The most common incorrect response for Intro to CS students
and AP CSP students was the second option, which prints the con-
tents inside both if statements. AP CS A students more frequently
chose the first incorrect response, which prints the contents of the
first if statement only (the correct answer is to print the contents
of the second if statement only). We can only speculate about the
reasons for this difference in error patterns, but it is worth mention-
ing that the Java version of the question is more difficult to parse
visually than the other versions. The Java version uses the function
“System.out.println” to generate output. This is less human-readable
than the “write” block in the Snap! version. The AP CSP version
uses a block/function called "display". Students viewing the Java
version of the item also have to interpret the meaning of curly brack-
ets to define scope, as opposed to having commands more clearly
nested via the block-based code’s graphical cues. This builds on
earlier work on the Commutative Assessment that found students
answering questions in the block-based modality performed bet-
ter on questions related to conditional logic compared to students
answering the same question in a text-based form [33].

4.3 Limitations
This analysis was conducted using available data and thus has
some limitations. First, samples for each course differ in terms of

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

68

demographics and prior CS experiences. In addition, the Mini-CA
is relatively easy and not likely to capture the full range of student
learning in each course. This data set also does not allow us to
tease apart the effects of programming language and curriculum,
as only one course is included for each language. And finally, the
sample sizes for Intro to CS and AP CS A were too small to use
item response theory (IRT) to estimate item parameters such as
difficulty [26]. IRT models are thought to be less sample-dependent
than Cronbach’s alpha. The analysis presented in this paper should
not be used to draw conclusions about students’ computer science
proficiency, within a course or by comparing across courses, instead
we present it to prompt debate. Different programming languages
have different affordances and this influences students’ responses
to conceptually isomorphic questions. This understanding should
inform how we design vertically-scaled assessments in computer
science.

5 DISCUSSION
To more fully explore these findings and their implications for
creating assessments that can serve to assess students learning at
multiple points along a multi-year K-12 CS pathway, we begin our
discussion with one of the categories of evidence for establishing
an instrument’s reliability and validity laid out by Standards for
Educational and Psychological Testing [4], evidence based on re-
sponse process. To establish an instrument’s validity, assessment
developers should have evidence that the strategies test takers use
to provide their answers are relevant to the knowledge and skills
the tasks are intended to measure. It seems likely that students
responding to different-language versions of programming ques-
tions recruit slightly different processes to answer the questions.
This is due to the fact that shifting from a text-based to a block-
based modality introduces additional information to the question
(e.g. shapes of blocks and how they fit together convey additional
information around to meaning and behavior). Even if the prompts
and code snippets are functionally equivalent across languages,
differences in language syntax and semantics can lead students
to recruit different knowledge and cognitive processes when an-
swering the questions. Thus, it becomes difficult to disentangle
a learner’s knowledge about conditional logic from their general
knowledge about how to parse block-based programs. These dif-
ferences in response processes mean that it is likely not valid to
treat different-language versions of the same item as if they were
equivalent when establishing vertical scales.

5.1 Applying evidence-centered design
So where do we go from here? We continue our discussion with
some ideas based on the evidence-centered assessment design (ECD)
approach, which views assessment as an exercise in evidentiary
reasoning. What student behaviors would reveal different levels
of proficiency with the knowledge and skills being assessed [19]?
ECD builds its Conceptual Assessment Framework around a series
of models that define what is being measured and how. In this
discussion we will focus on the student model, the evidence model,
the task models, and the assembly model.

5.1.1 The student model. The student model describes what the
assessment is intended to measure. For example, a simple student

model might include a single variable, proficiency in a single do-
main, as characterized by the proportion of items the student is
likely to answer correctly [19]. When developing vertically-scaled
CS assessments, it may be necessary to create more complex stu-
dent models that address a range of knowledge and skills in CS.
For example, the student model could include variables for under-
standing of broader CS constructs (e.g., control structures) as well
as concepts and skills that are more language-specific.

5.1.2 The evidence model. The evidence model describes how ob-
servable student responses to assessment tasks relate to their pro-
ficiency with the variables defined in the student model [19]. For
example, the distractor options for a multiple-choice question could
correspond to common misconceptions that would indicate lower
proficiency with the related variables in the student model.

5.1.3 The task models. A task model describes how an assessment
task should be structured in order to collect the evidence for the
evidence model, including what material should be presented to the
student as a part of the task prompt and what type of observable
response the student should generate. Task models are developed
for families of assessment tasks, not individual items. A single
assessment can have multiple task models [19].

If a vertically-scaled CS assessment uses a complex student
model, it seems to follow that the assessment would require a large
number of task models in order to capture all the evidence needed
for each variable in the student model, and/or include more complex
tasks models. Currently, the most widely-used CS assessments tend
to use a small number of task models, typically a code-reading task
during which the student selects a single response from multiple
options. A multi-lingual vertically-scaled assessment could include
task models for non-coding items that assess foundational CS con-
structs as well as coding items. Differences in how students respond
to these different tasks can then be used as evidence of proficiency
for more general CS as well as language-specific concepts.

5.1.4 The assembly model. The assembly model puts it all together,
describing how the other models "work together to form the psy-
chometric backbone of the assessment" [19, p. 11]. The assembly
model would describe the number of each item type (i.e., non-coding
items vs. coding items in different languages) to ensure the assess-
ment reflects the desired breadth and depth of the knowledge and
skills in the student model while keeping the number of items to a
manageable number per test administration.

5.2 Conclusion
We are not the first authors to take the position that CS education
should develop vertically-scaled assessments that can measure stu-
dent learning over time [31]. In this paper, we take that position
farther and argue that such assessments must necessarily consider
how students learn and transfer knowledge from one programming
language to another. We discuss how the evidence-centered design
approach could be used to guide the development of a multi-lingual,
vertically-scaled assessment through the creation of more complex
student models than we typically see in CS assessments and the use
of more task models. Creating such an assessment presents a signif-
icant challenge to the field, but its existence would facilitate more
rigorous, longitudinal evaluations of computer science pathways.

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

69

ACKNOWLEDGMENTS
This material is based in part upon work supported by the by the
National Science Foundation under Grant #1348866. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES
[1] John R. Anderson. 1993. Rules of the Mind. Lawrence Erlbaum Associates,

Hillsdale, NJ.
[2] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From

Scratch to ’Real’ Programming. ACM Transactions on Computing Education 14, 4,
Article 25 (2015), 15 pages. https://doi.org/10.1145/2677087

[3] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
Scratch to “Real” Programming. ACM Trans. Comput. Educ. 14, 4, Article 25 (Feb.
2015), 15 pages. https://doi.org/10.1145/2677087

[4] American Educational Research Association, American Psychological Associa-
tion, and National Council on Measurement in Education. 2014. Standards for
Educational and Psychological Testing. AERA, Washington, DC.

[5] Guanhua Chen, Ji Shen, Lauren Barth-Cohen, Shiyan Jiang, Xiaoting Huang, and
Moataz Eltoukhy. 2017. Assessing elementary students’ computational thinking
in everyday reasoning and robotics programming. Computers & Education 109
(2017), 162–175.

[6] D. C. Cliburn. 2008. Student opinions of Alice in CS1. In 2008 38th Annual Frontiers
in Education Conference. IEEE, T3B–1–T3B–6. https://doi.org/10.1109/FIE.2008.
4720254

[7] Smarter Balanced Assessment Consortium. 2019. Interpretive Guide for Eng-
lish Language Arts/Literacy and Mathematics Assessments. https://portal.
smarterbalanced.org/library/en/reporting-system-interpretive-guide.pdf

[8] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. 2012. Detecting and Un-
derstanding Students’ Misconceptions Related to Algorithms and Data Structures.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Edu-
cation (Raleigh, North Carolina, USA) (SIGCSE ’12). Association for Computing
Machinery, New York, NY, USA, 21–26. https://doi.org/10.1145/2157136.2157148

[9] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper.
2012. Mediated transfer: Alice 3 to java. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. 141–146.

[10] Adrienne Decker and Monica M. McGill. 2019. A Topical Review of Evaluation
Instruments for Computing Education. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 558–564. https:
//doi.org/10.1145/3287324.3287393

[11] Allison Elliott Tew. 2010. Assessing fundamental introductory computing concept
knowledge in a language independent manner. Ph.D. Dissertation. Atlanta, GA.
http://hdl.handle.net/1853/37090

[12] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language Indepen-
dent Assessment of CS1 Knowledge. In Proceedings of the 42nd ACM Tech-
nical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE
’11). Association for Computing Machinery, New York, NY, USA, 111–116.
https://doi.org/10.1145/1953163.1953200

[13] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A. Shaffer.
2017. Towards a Concept Inventory for Algorithm Analysis Topics. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
(Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery,
New York, NY, USA, 207–212. https://doi.org/10.1145/3017680.3017756

[14] Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa
Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, MaxWhite, Marco Anaya,
et al. 2020. Scratch Encore: The Design and Pilot of a Culturally-Relevant Inter-
mediate Scratch Curriculum. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 794–800.

[15] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71–79.

[16] Mark Guzdial. 2019. We Should Stop Saying ’Language Independent.’ We
Don’t Know How To Do That. https://cacm.acm.org/blogs/blog-cacm/238782-
we-should-stop-saying-language-independent-we-dont-know-how-to-do-
that/fulltext

[17] Brian Harvey and Jens Mönig. 2010. Bringing “no ceiling” to scratch: Can one
language serve kids and computer scientists. Proc. Constructionism (2010), 1–10.

[18] Charles E. Lance, Marcus M. Butts, and Lawrence C. Michels. 2006. The Sources
of Four Commonly Reported Cutoff Criteria: What Did They Really Say? Or-
ganizational Research Methods 9, 2 (2006), 202–220. https://doi.org/10.1177/
1094428105284919

[19] Robert J. Mislevy, Russell G. Almond, and Janice F. Lukas. 2003. A brief introduc-
tion to evidence-centered design. Technical Report RR-03-16. Educational Testing

Service, Princeton, NJ. https://www.ets.org/Media/Research/pdf/RR-03-16.pdf
[20] MarkNoone andAidanMooney. 2018. Visual and textual programming languages:

a systematic review of the literature. Journal of Computers in Education 5 (2018),
149–174. https://doi.org/10.1007/s40692-018-0101-5

[21] Jum Nunnally and Ira H. Bernstein. 1994. Psychometric Theory: 3rd Edition.
McGraw-Hill Education.

[22] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-
idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia) (ICER ’16). Association for Computing Ma-
chinery, New York, NY, USA, 93–101. https://doi.org/10.1145/2960310.2960316

[23] Miranda C. Parker, Yvonne S. Kao, Dana Saito-Stehberger, Diana Franklin, Susan
Krause, Debra Richardson, and Mark Warschauer. 2021. Development and Pre-
liminary Validation of the Assessment of Computing for Elementary Students
(ACES). In Proceedings of the 52nd ACM Technical Symposium on Computer Sci-
ence Education (Virtual Event, USA) (SIGCSE ’21). Association for Computing
Machinery, New York, NY, USA, 10–16. https://doi.org/10.1145/3408877.3432376

[24] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C. Webb,
Cynthia Lee, and Michael Clancy. 2019. BDSI: A Validated Concept Inventory for
Basic Data Structures. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (Toronto ON, Canada) (ICER ’19). Association for
Computing Machinery, New York, NY, USA, 111–119. https://doi.org/10.1145/
3291279.3339404

[25] Arif Rachmatullah, Bita Akram, Danielle Boulden, Bradford Mott, Kristy Boyer,
James Lester, and Eric Wiebe. 2020. Development and validation of the middle
grades computer science concept inventory (MG-CSCI) assessment. Eurasia
Journal of Mathematics, Science and Technology Education 16, 5 (2020). https:
//doi.org/10.29333/ejmste/116600

[26] Alper Sahin and Duygu Anil. 2017. The effects of test length and sample size on
item parameters in item response theory. Educational Sciences: Theory & Practice
17, 1 (2017). https://doi.org/10.12738/estp.2017.1.0270

[27] Elizabeth Schofield, Michael Erlinger, and Zachary Dodds. 2014. MyCS: CS
for Middle-Years Students and Their Teachers. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (Atlanta, Georgia, USA)
(SIGCSE ’14). Association for ComputingMachinery, New York, NY, USA, 337–342.
https://doi.org/10.1145/2538862.2538901

[28] Jean Scholtz and Susan Wiedenbeck. 1990. Learning second and subsequent
programming languages: A problem of transfer. International Journal of Human-
Computer Interaction 2, 1 (1990), 51–72.

[29] Exploring Computer Science. [n.d.]. What is ECS? http://www.exploringcs.org/
[30] Juha Sorva. 2012. Visual program simulation in introductory programming educa-

tion; Visuaalinen ohjelmasimulaatio ohjelmoinnin alkeisopetuksessa. G4 Mono-
grafiaväitöskirja. http://urn.fi/URN:ISBN:978-952-60-4626-6

[31] Rebecca Vivian, Diana Franklin, Dave Frye, Alan Peterfreund, Jason Ravitz, Flo-
rence Sullivan, Melissa Zeitz, and Monica M. McGill. 2020. Evaluation and
Assessment Needs of Computing Education in Primary Grades. In Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer Science Edu-
cation (Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery,
New York, NY, USA, 124–130. https://doi.org/10.1145/3341525.3387371

[32] David Weintrop, Heather Killen, and Baker E Franke. 2018. Blocks or Text?
How programming language modality makes a difference in assessing un-
derrepresented populations. In Rethinking Learning in the Digital Age: Mak-
ing the Learning Sciences Count, 13th International Conference of the Learning
Sciences (ICLS) 2018. International Society of the Learning Sciences. https:
//doi.org/10.22318/cscl2018.328

[33] David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-Based and Text-Based Programs.
In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (Omaha, Nebraska, USA) (ICER ’15). Association
for Computing Machinery, New York, NY, USA, 101–110. https://doi.org/10.
1145/2787622.2787721

[34] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. Computers & Education 142 (2019),
103646. https://doi.org/10.1016/j.compedu.2019.103646

[35] Linda Werner, Jill Denner, Shannon Campe, and Damon Chizuru Kawamoto.
2012. The Fairy Performance Assessment: Measuring Computational Thinking in
Middle School. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (Raleigh, North Carolina, USA) (SIGCSE ’12). Association for
Computing Machinery, New York, NY, USA, 215–220. https://doi.org/10.1145/
2157136.2157200

[36] Eric Wiebe, Jennifer London, Osman Aksit, Bradford W. Mott, Kristy Elizabeth
Boyer, and James C. Lester. 2019. Development of a Lean Computational Thinking
Abilities Assessment for Middle Grades Students. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (Minneapolis, MN, USA)
(SIGCSE ’19). Association for ComputingMachinery, New York, NY, USA, 456–461.
https://doi.org/10.1145/3287324.3287390

Session: IDEA — Multilingual Computing SIGCSE ’22, March 3–5, 2022, Providence RI, USA

70

https://doi.org/10.1145/2677087
https://doi.org/10.1145/2677087
https://doi.org/10.1109/FIE.2008.4720254
https://doi.org/10.1109/FIE.2008.4720254
https://portal.smarterbalanced.org/library/en/reporting-system-interpretive-guide.pdf
https://portal.smarterbalanced.org/library/en/reporting-system-interpretive-guide.pdf
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1145/3287324.3287393
https://doi.org/10.1145/3287324.3287393
http://hdl.handle.net/1853/37090
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/3017680.3017756
https://cacm.acm.org/blogs/blog-cacm/238782-we-should-stop-saying-language-independent-we-dont-know-how-to-do-that/fulltext
https://cacm.acm.org/blogs/blog-cacm/238782-we-should-stop-saying-language-independent-we-dont-know-how-to-do-that/fulltext
https://cacm.acm.org/blogs/blog-cacm/238782-we-should-stop-saying-language-independent-we-dont-know-how-to-do-that/fulltext
https://doi.org/10.1177/1094428105284919
https://doi.org/10.1177/1094428105284919
https://www.ets.org/Media/Research/pdf/RR-03-16.pdf
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/3408877.3432376
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.29333/ejmste/116600
https://doi.org/10.29333/ejmste/116600
https://doi.org/10.12738/estp.2017.1.0270
https://doi.org/10.1145/2538862.2538901
http://www.exploringcs.org/
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://doi.org/10.1145/3341525.3387371
https://doi.org/10.22318/cscl2018.328
https://doi.org/10.22318/cscl2018.328
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/3287324.3287390

	Abstract
	1 Introduction
	2 Prior Work
	2.1 Transferring Knowledge Between Programming Languages
	2.2 Assessing Computer Science Knowledge
	2.3 Summary

	3 An Example from High School
	3.1 The Assessment
	3.2 Participants
	3.3 Course and Assessment Contexts

	4 Findings
	4.1 Summary Statistics
	4.2 Differences in Performance by Language
	4.3 Limitations

	5 Discussion
	5.1 Applying evidence-centered design
	5.2 Conclusion

	Acknowledgments
	References

