Alternatives to Simple Multiple-Choice Questions: Computer Scorable Questions that Reveal and Challenge Student Thinking

Yvonne S. Kao, *WestEd* Contact: ykao@wested.org

When creating assessments, computer science educators and researchers must balance items' cognitive complexity and authenticity against scoring efficiency. In this poster, the author reports results from an end-of-course assessment administered to over 500 high school students in an introductory block-based programming course. The poster focuses on three atypical multiple-choice items, in which students had to select all the correct responses. The items were designed to be more cognitively complex than simple multiple choice questions while remaining easy to score. Results show that this type of item was challenging for students but was predictive of their overall performance.

Keywords: computer science education; high school; block-based programming; assessment

DOI: https://doi.org/10.1145/3159450.3162301

Yvonne Kao

Alternatives to Simple Multiple-Choice Questions

ykao@wested.org

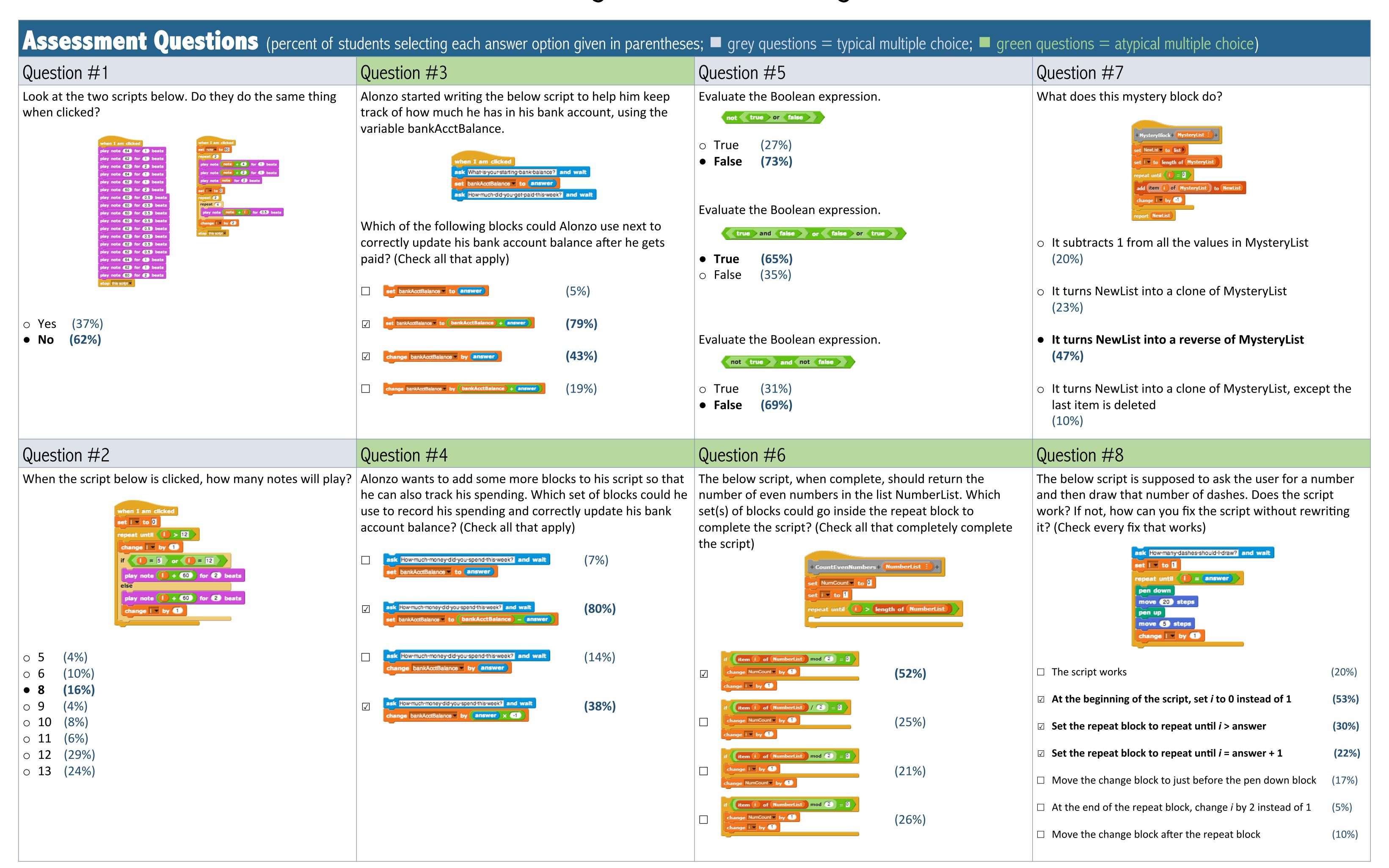
Computer Scorable Questions that Reveal and Challenge Student Thinking

End-of-course assessment data collected from **453** introductory computer science students, taught by **14** teachers in **5** US states.

Background

Assessing computer science students' understanding is a perennial challenge. Computer science educators need to be familiar with a variety of question types and the tradeoffs inherent in different question formats.

- Typical multiple choice questions are easy to grade, but frequently inauthentic, unidimensional, and not cognitively demanding.
- Open-ended programming exercises are timeconsuming and difficult to grade systematically.


Prior work has explored how different question formats reveal different aspects of student thinking (e.g., Hazzan, Lapidot, & Raginot, 2011; Simon & Snowdon, 2014).

In this project, we explore how an atypical multiplechoice format, in which students must identify more than one right answer, may challenge students and reveal more about their thinking and understanding than a typical multiple-choice question that has only one correct response.

Method

Data were collected online as part of a larger study. The end-of-course assessment was developed specifically for the study and aligned to the introductory computer science course used in participating classes.

Classroom teachers administered the end-of-course assessment to their students as part of normal classroom activities.

Student Characteristics					
Gender					
Male	73%	Female	27%		
Ethnicity		Grade Level			
White	44%	9th	18%		
Asian	27%	10th	29%		
Hispanic	26%	11th	33%		
Black	2%	12th	20%		

Assessment Statistics ($\alpha = 0.64$)					
#	Accuracy*	Item-Total Correlation	lpha if Dropped		
1	65%	0.44	0.61		
2	16%	0.38	0.61		
3	34%	0.75	0.54		
4	32%	0.72	0.54		
5	69%	0.37	0.62		
6	37%	0.36	0.61		
7	46%	0.42	0.62		
8	11%	-0.11	0.69		

*Students were only given credit for a question if they answered all parts correctly (no partial credit).

Conclusions

- The atypical multiple-choice questions on the assessment were more difficult than the typical multiple-choice questions.
- Students were more likely to identify the first correct response on an atypical multiple-choice question than the subsequent correct responses.
- One of the atypical questions (#8) performed quite poorly while two of the atypical questions (#3 and #4) outperformed all the other items.

