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We describe a stochastic, dynamical system capable of inference and
learning in a probabilistic latent variable model. The most challenging
problem in such models—sampling the posterior distribution over la-
tent variables—is proposed to be solved by harnessing natural sources of
stochasticity inherent in electronic and neural systems. We demonstrate
this idea for a sparse coding model by deriving a continuous-time equa-
tion for inferring its latent variables via Langevin dynamics. The model
parameters are learned by simultaneously evolving according to another
continuous-time equation, thus bypassing the need for digital accumula-
tors or a global clock. Moreover, we show that Langevin dynamics lead to
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an efficient procedure for sampling from the posterior distribution in the
L0 sparse regime, where latent variables are encouraged to be set to zero
as opposed to having a small L1 norm. This allows the model to prop-
erly incorporate the notion of sparsity rather than having to resort to a
relaxed version of sparsity to make optimization tractable. Simulations
of the proposed dynamical system on both synthetic and natural image
data sets demonstrate that the model is capable of probabilistically cor-
rect inference, enabling learning of the dictionary as well as parameters
of the prior.

1 Introduction

Latent variable models such as sparse coding (Olshausen & Field, 1997)
and Boltzmann machines (Hinton & Sejnowski, 1983; Ackley, Hinton, &
Sejnowski, 1985) have been shown to be powerful and flexible tools in ma-
chine learning. However, training such models properly requires sampling
from probability distributions over the latent variables. Typically, instead of
sampling, a maximum a posteriori (MAP) estimate or other heuristics are
used since most sampling algorithms are laboriously slow and have con-
vergence guarantees only under limited conditions. The time cost in large
part comes from simulating stochastic dynamics of state transitions on de-
terministic, discrete-logic-based hardware, requiring random number gen-
eration and fine sampling intervals to avoid discretization errors. These
limitations have hindered the ability of latent variables models to learn
complex structures in data, since adapting the parameters in a more com-
plex, structured model, such as a hierarchical probabilistic model (Lee &
Mumford, 2003), necessitates sampling under the posterior distribution.

This letter proposes a solution to this problem based on utilizing the in-
trinsic sources of stochasticity that exist in any physical system. Our cen-
tral thesis is that rather than forcing a deterministic, discrete-logic-based
system to simulate stochastic dynamics on continuous variables, a more
sensible and efficient solution is to exploit physics to directly implement
stochastic, analog computation. In the same way that the analog VLSI
retina implements filtering via lateral inhibition in a resistive grid (Mead &
Mahowald, 1988), resulting in orders of magnitude greater computational
efficiency than digital simulation, we envision the development of ana-
log circuits that perform the necessary computations and stochastic dy-
namics for probabilistic inference and learning in complex latent variable
models. A recent successful example of this approach is the work of Bor-
ders et al. (2019), who used the intrinsic probabilistic behavior of nanoscale
magnetic tunneling junctions to sample from the binary state variables
of a Boltzmann machine. Another example is the use of stochastic logic
circuits to perform fast Bayesian inference for perception and reasoning
tasks (Mansinghka & Jonas, 2014; Mansinghka, Jonas, & Tenenbaum, 2008).
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Additionally, in neuroscience, it has been hypothesized that seemingly ran-
dom fluctuations in neural activity can be interpreted as a process for
sampling from posterior distributions (Hoyer & Hyvärinen, 2003; Berkes,
Orbán, Lengyel, & Fiser, 2011; Orbán, Berkes, Fiser, & Lengyel, 2016;
Echeveste, Aitchison, Hennequin, & Lengyel, 2020). Our goal here is to
demonstrate, through derivation and simulation of a dynamical system of
equations, the viability of such an approach for probabilistic inference and
learning in a latent variable model. In an online appendix, we point the way
to a potential circuit implementation.

Beyond the difficulties associated with sampling, learning the parame-
ters of a probabilistic model requires averaging the samples or other quan-
tities computed from them. One direct way of doing this is to accumulate
these quantities followed by a parameter update (see Figure 1b). However,
this requires a digital accumulator, and the interfacing between analog and
digital hardware is often a bottleneck for sampling. For example, in recent
work by Roques-Carmes et al. (2019), the limiting component for a pho-
tonic sampler was identified as the photodetector. Here we propose a novel,
fully analog framework in which the update of parameters occurs simulta-
neously alongside the sampling of latent variables through continuous time
dynamics (see Figure 1c). Rather than waiting for the collection of samples
for each discrete parameter update, the effective accumulation of samples
is achieved by simply having a longer time constant.

To study this analog learning and inference framework, we apply it to the
sparse coding model, a simple yet expressive probabilistic model with an
explicit prior over the latent variables (Tibshirani, 1996; Hastie, Tibshirani,
& Friedman, 2009). The sparse coding model is of interest in both neuro-
science and engineering as it provides an account of the neural representa-
tion of natural images in visual cortex (Olshausen & Field, 1997), and it has
proven useful in computer vision (Wright et al., 2010; Wang et al., 2015) and
signal compression (Donoho, 2006). However current implementations of
sparse coding are slow due to the optimization required to infer the latent
variables for each data sample, and learning is inefficient since only a single
such point estimate of the latent variables is used to make a dictionary up-
date (see Figure 1a). In section 2, we derive a a fully continuous-time sparse
coding model by making use of fast Langevin dynamics to sample latent
variables and slower dynamics to co-evolve the dictionary based on these
samples, as in Figure 1c.

Sampling with Langevin dynamics is well studied in both theory (Bussi
& Parrinello, 2007) and in application to Bayesian learning (Welling & Teh,
2011). However, to our knowledge, this is the first fully analog approach
to simultaneous inference and learning for sparse coding. Prior sampling-
based approaches utilized a mixture-of-gaussians model and employed dis-
crete Gibbs sampling over the mixture variables (Olshausen & Millman,
2000) or a method for preselecting parts of the space to sample via MCMC
(Shelton, Sheikh, Berkes, Bornschein, & Lücke, 2011).
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An additional advantage of Langevin dynamics is that it leads us to a
simple procedure for sampling from the posterior when using an L0 sparse
prior that explicitly encourages latent variables to be set to zero rather than
simply taking on small values (also known as a spike and slab prior). Nor-
mally such priors are avoided as finding the optimal sparse representation
of a signal requires solving a combinatorial search problem. Instead, spar-
sity is enforced by imposing an L1 cost function on the latent variables,
which is used as a proxy for L0 since it allows for convex optimization. How-
ever, in probabilistic terms, the L1 cost corresponds to a Laplacian prior,
which only weakly captures the notion of sparsity. We show in section 3 how
Langevin sparse coding releases us from this restriction. By simple thresh-
olding of a continuous variable undergoing Langevin dynamics, we obtain
samples from the posterior using an L0 sparse prior.

In section 4.1, we demonstrate the efficacy of this model for correct in-
ference and learning using a synthetic data set. Furthermore in section 4.2
we demonstrate that this approach allows for learning the size of the dictio-
nary, which was attempted in previous work using variational approxima-
tion of the posterior (Berkes, Turner, & Sahani, 2008). Then in section 4.3, we
fit our L0-sparse coding model to the van Hateren data set (van Hateren &
van der Schaaf, 1998) of natural images. In addition to learning the dictio-
nary elements, we provide an estimate for the sparsity of natural images.

To summarize, we present the following main contributions:

1. A theoretical formulation of simultaneous dynamics for sampling
from latent variables and learning model parameters

2. Langevin sparse coding (LSC), a continuous-time, probabilistic
model for simultaneous inference and learning in a sparse coding
model

3. An efficient procedure for sampling from the posterior with an L0-
sparse prior

4. Learning not only the dictionary for representing natural images but
also other parameters of the model such as the sparsity level and size
of the dictionary

2 Langevin Sparse Coding

Sparse coding is a simple yet efficient algorithm for learning structure in
data by finding a “dictionary” to describe patterns contained in the data.
While it is formulated as a probabilistic latent-variable model, it is often
approximated in practice by finding point estimates for the latent variables
rather than sampling from their posterior distribution. As a result, it is dif-
ficult to make rigorous claims about the relation between the learned dic-
tionary and the statistics of the data, and it is problematic to adapt other
parameters of the model such as the degree of sparsity or overcomplete-
ness of the dictionary. More broadly, it has hindered the advancement of
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sparse coding into a more powerful generative modeling framework (e.g.,
by incorporating hierarchical structure) since there is no principled way to
learn the parameters of such models without sampling from the posterior.

In this section, we introduce Langevin sparse coding (LSC), which effi-
ciently samples the latent variables of a sparse coding model and allows
simultaneous, continuous updates of dictionary elements along with the
latent variables. This last property is important in making the LSC frame-
work amenable for fully analog implementation. We begin with a review of
the canonical approach of discrete sparse coding (DSC). Next, we introduce
simultaneous-update sparse coding (SSC) in which dictionary updates are
made continuously and concurrent with the dynamics of the coefficients.
Finally, we present LSC, where we demonstrate that the inherent noise to
analog systems can be used to perform sampling.

2.1 Probabilistic Model. Sparse coding assumes that the data, x ∈ R
D,

are described as a linear combination of elements from a dictionary A ∈
R

D×K with additive gaussian noise n ∈ R
D:

x = A s + n, (2.1)

where ni
iid∼ N(0, σ 2). The coefficients s ∈ R

K are latent variables that are
assumed to be sparsely distributed, so that any given data point should
be well approximated using a small number of columns of the dictionary.
Sparsity is enforced by the choice of prior, typically chosen to be factorial::

ps(s) = �K
i=1 ps(si), (2.2)

ps(si) ∝ exp(−λC(si)), (2.3)

Figure 1: Illustration of three approaches to learning latent variable models.
(a) In the standard approach, data x are presented at regular intervals (upper
plot, black trace). A MAP estimate of latent variables is calculated via gradi-
ent descent or other iterative algorithm (green trace). The resulting estimate is
used for a discrete update to the dictionary A (lower plot). The blue vertical bars
illustrate the computational inefficiency where only a single point estimate of
the coefficients is used to make a dictionary update. (b) In a sampling-based ap-
proach, for each data interval, multiple samples from the posterior are averaged
for a dictionary update. The colored regions in the top panel show that many
samples are collected to approximate the posterior distribution. However, the
discrete dictionary updates (at corresponding vertical bands) make a fully ana-
log implementation difficult. (c) Rather than waiting for the accumulation of
samples, the dictionary A is updated simultaneously alongside the latent vari-
ables s. The slow timescale of the dictionary compared to the latent variables
τA � τs allows for effective averaging. (Learning rates shown are purely for il-
lustrative purposes.)
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where the form of C is chosen so that ps(si) is peaked at si = 0 and with
heavy tails away from zero. (Note that nonfactorial priors are also possible;
see e.g., Garrigues & Olshausen, 2010.)

The posterior over the latent variables in this model may be written in
exponential form,

p(s | x, A) ∝ exp(−E(A, s, x)), (2.4)

with the energy function E(A, s, x) given by

E(A, s, x) = ‖x − A s‖2
2

2σ 2 + λ
∑

i

C(si). (2.5)

Thus, inferring a good (highly probable) interpretation of a given data sam-
ple, x, corresponds to finding a set of latent variables, s, with low energy, E.

The goal of learning in this model is to find a dictionary, A, that provides
the best fit to the data. This is accomplished by solving for the maximum
likelihood estimator (MLE) of the dictionary,

A∗ = arg max
A

〈
log p(x|A)

〉
x∼D , (2.6)

where 〈·〉x∼D denotes expectation over the data set D (e.g., natural images).
The MLE can be found through gradient ascent, where the gradient is given
by

∇A〈log p(x|A)〉x∼D =
〈〈−∇AE(A, s, x)

〉
s|x

〉
x∼D

(2.7)

=
〈〈

(x − A s) sT 〉
s|x

〉
x∼D

, (2.8)

where 〈·〉s|x denotes expectation with respect to the posterior distribution
p(s | x, A) (see Lewicki & Olshausen, 1999, for a derivation). Thus, adapting
the dictionary to the data requires, for each data sample x, sampling from
the posterior over s and computing the correlation between the residual,
x − A s, and s. The dictionary A would then be incrementally updated ac-
cording to this correlation (see equation 2.8). Equilibrium is reached when〈〈x̂(s)sT〉s|x

〉
x∼D = 〈

x〈sT〉s|x
〉
x∼D, with x̂(s) = A s.

Beyond learning the dictionary, one can adapt other parameters of the
model such as σ and λ also via gradient descent. The gradients for these
parameters are

∇σ 〈log p(x|A)〉x∼D ∝ 1
D

〈〈|x − A s|2〉s|x〉x∼D
− σ 2, (2.9)

∇λ〈log p(x|A)〉x∼D ∝ 1
K

〈〈
K∑
i

C(si)

〉
s|x

〉
x∼D

− 〈C(s)〉ps (s). (2.10)
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Adapting these parameters similarly requires computing averages under
the posterior distribution for each data sample. Note that when the sparse
coding model objective is formulated purely in terms of its energy function
(see equation 2.5), which is typically the case, then there is no principled
way to adapt these parameters to the data. The probabilistic framework
makes it possible, so long as it is tractable to sample from the posterior
distribution.

2.2 Discrete Sparse Coding. In practice, the expectation over the data
in equation 2.8 is approximated via stochastic gradient descent (SGD). For
a batch of data of size N, {xn}n=1...N, the update rule is

�A = η
1
N

N∑
n=1

〈
(xn − A sn) sT

n

〉
sn|xn

, (2.11)

where η specifies the learning rate. However, the expectation over sn is usu-
ally considered intractable, and so in practice it is approximated by the max-
imum a posteriori (MAP) estimator of sn,

s∗
n = arg min

sn
E(A, sn, xn). (2.12)

Solving via gradient descent yields the iterative update equation

�sn ∝ −∇sE(A, sn, xn) (2.13)

= − 1
σ 2 AT (xn − Asn) − λC′(sn), (2.14)

where C′ is the derivative of cost function C above equation 2.5 and operates
elementwise on sn. For each xn, equation 2.14 is iteratively evaluated until it
converges to a solution. In order to make this a convex optimization, the cost
function C is typically taken to be the L1 norm, corresponding to a Laplacian
prior ps(s). Gradient descent does not generally constitute the most efficient
method for finding the MAP estimate, but we use it here as a step toward
the development of LSC below.

The price we pay for approximating the expectation 〈 · 〉sn|xn in equa-
tion 2.11 with a single MAP estimate is that it now becomes necessary to
normalize the dictionary elements A = (A1, . . . , AK ) after each update via

Ai ← Ai

‖Ai‖2
≡ Âi. (2.15)

This is necessary because the MAP estimator s∗ will consistently underes-
timate s such that it is biased toward zero (due to the sparse prior). As a
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result, each Ai will grow without bound unless normalized. (As we shall
see, this no longer becomes necessary when we sample from the posterior.)

Both updates �A and �sn can be expressed more efficiently through gra-
dient descent on a batch energy function:

E(A, S, X ) ≡
N∑

n=1

E(A, sn, xn) (2.16)

= ‖AS − X‖2
2,2

2σ 2 + λ‖S‖1,1. (2.17)

We have defined batch matrices S ∈ R
K×N and X ∈ R

D×N. Above, ‖ · ‖p,q re-
fer to the L(p,q) matrix norm, defined by

‖A‖p,q =
⎛
⎝∑

j

(∑
i

|ai j|p

) q
p

⎞
⎠

1
q

. (2.18)

With the batch energy defined, the update rules are

S ← S − ηS∇SE(A, S, X ), (2.19)

A ← A − ηA∇AE(A, S, X ), (2.20)

A ← Norm(A), (2.21)

where the Norm() operation corresponds to the normalization of equa-
tion 2.15.

To coordinate the updates of S and A, a nested loop must be used (see
algorithm 1). The inner loop approximates the MAP estimator S∗ while the
outer loop finds the MLE of A.

A closely related cousin of DSC, the locally competitive algorithm (LCA;
Rozell, Johnson, Baraniuk, & Olshausen, 2008), computes the MAP estimate
by following dynamics that descend the energy E in a more efficient man-
ner. Instead of doing direct gradient descent (see equation 2.14), s is taken
to be a monotonically increasing, nonlinear function of another variable u
that follows the gradient with respect to s:

�un ∝ −∇sE(A, sn, xn) (2.22)

sn = g(un), (2.23)

where g operates elementwise on u and is determined by the choice of cost
function C. For an L1 cost, g is a signed ReLU function with threshold λ:

g(ui) =
{

0 |ui| < λ

sign (ui)(|ui| − λ) |ui| ≥ u0.
(2.24)
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Other than this difference in the dynamics for MAP inference, which falls
purely within the inner loop (line 4) of algorithm 1, both DSC and LCA
update the dictionary based on a single MAP estimate and thus suffer the
same inefficiency as depicted in Figure 1a.

2.3 Simultaneous (Update) Sparse Coding. We note that the DSC al-
gorithm requires the alternating update of the dictionary elements and
coefficients. Typically this necessitates a digital clock for synchronization
and is a major challenge toward fully analog implementation. In this
section, we present an asychronous framework, simultaneous (update)
sparse coding (SSC), where both the dictionary and coefficients are updated
simultaneously.

Rather than updating the dictionary A at the end of the loop when S
has converged to the MAP estimator S∗, SSC updates A continuously and
concurrent with S. In search of dynamics amenable to analog computation,
we take the step sizes to be infinitesimally small and arrive at the following
set of differential equations,

τSṠ = −∇SE(A, S, X(t)), (2.25)

τAȦ = −∇AE(A, S, X(t)), (2.26)

while still enforcing the normalization constraint on A (equation 2.15). Here,
we take X(t) to be updated synchronously at regular intervals of τX . At each
update, a new batch of samples is drawn.

To compare SSC and DSC, consider the simulation for SSC using the
Euler method in algorithm 2.
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In a comparison of algorithms 1 and 2, the timescales τ can be related
to the learning rates, η, and the number of iterations NS. We stress an im-
portant difference between the two is that SSC is fully described through a
set of coupled differential equations and requires no control structure (i.e.,
a nested for loop). This is especially desirable for analog implementation
as a global clock is no longer a necessary. Furthermore, there is no longer
a need for synchronous, regular input of the data X. While not explored
here, dynamic input such as videos can be naturally processed without any
frame-by-frame synchronization.

2.4 Sampling via Langevin Dynamics. Consider a time-varying sys-
tem described by coordinates u(t) with energy E(u). It can be modeled
by Langevin dynamics according to the following stochastic differential
equation:

u̇ = −∇E(u) +
√

2Tξ (t), (2.27)

where ξ (t) is independent gaussian white noise with 〈ξ (t)ξ (t′)T〉 = Iδ(t −
t′). Under these dynamics, the distribution of p(u(t)) over time will asymp-
totically converge to

p(∞)(u) ∝ e−E(u)/T . (2.28)

This relation suggests that we change the dynamics of SSC, equation 2.25,
by injecting noise to Ṡ:

τSṠ = −∇SE(A, S, X ) +
√

2TτSξ (t). (2.29)

Note that under the scaling of t → t/τS, we have 〈ξ (t/τS)ξ (t′/τS)T〉 =
Iδ(τ−1

S (t − t′)) = τSIδ(t − t′) = 〈√τSξ (t)
√

τSξ (t′)T〉. This necessitates the
somewhat unexpected scaling factor of τS.
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Following the above dynamics, for fixed A and input X, S will sample
from the posterior distribution:

pS|X (S(t)|X, A) ∝ e−E(A,S,X )/T . (2.30)

This is a remarkable result: By simply injecting noise into the continuous-time
dynamics normally used for MAP inference in sparse coding, we obtain a dynami-
cal system that naturally samples from the desired posterior distribution (see equa-
tion 2.4). With T = 0, we recover the SSC dynamics above (see equations
2.25 and 2.26) where S converges to the MAP estimate.

A useful property of equation 2.29 is that the equilibrium distribution
is independent of the time constant τS. By taking τA � τS, the assumption
that A is fixed with respect to the dynamics of S can be upheld. Conversely,
because S evolves much faster than A, the dynamics of A are well approxi-
mated by

τAȦ = −〈∇AE(A, S, X )〉S|A,X . (2.31)

This is the exact mean gradient that we originally sought to calculate (see
equation 2.7).

In summary, we have derived a new method for inference and learning
in a sparse coding model, Langevin sparse coding (LSC), as specified by the
continuous, coupled dynamics of equations 2.29 and 2.31, which achieves
the desired property illustrated in Figure 1c. Importantly, our aim in doing
this is not simply to produce another MCMC algorithm but rather to move
toward a physical realization that naturally implements these dynamics (an
example is described in appendix C).

3 L0-Sparse Prior

Since the goal of sparse coding is to represent each data item using a small
number of nonzero latent variables, the prior should ideally have a sharp
peak at zero in order to encourage many latent variables to be set to zero.
In this case, the cost term C within the energy function, equation 2.5, would
resemble an L0 cost that rewards coefficients for being strictly zero (as op-
posed to being nonzero and merely small in amplitude). However such
cost functions are not used in practice because they are not amenable to
gradient-based or convex optimization methods for computing the MAP
estimate. Instead, the L1 cost is usually adopted as a proxy for L0 as it has
been shown to yield equivalent solutions under certain conditions (Tropp,
2006). However from the perspective of a probabilistic model, the L1 cost
corresponds to a Laplacian prior that only weakly expresses the notion of
sparsity. In fact, the Laplacian is the maximum entropy distribution for a
real-valued variable of a given mean absolute value. Here we show that
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Figure 2: L0-sparse prior. (Left) The exponential distribution p(u). With the
change of variable s = f (u) via the application of a soft-thresholding function,
we obtain the desired L0-like distribution p0(s) shown in the right panel (shown
for the region s ≥ 0). The threshold parameter u0 is chosen so that the probabil-
ity weight of the delta function, 1 − π , is equal to the shaded region in the left
panel. These plots show the resulting distributions for λ = 1, π = 0.5.

the use of L0-sparse priors becomes tractable in our sampling-based setting,
and we develop a modified LSC formulation that enables efficient sampling
from the posterior.

Consider the following prior consisting of a mixture of a delta function
and Laplacian distribution (also known as a spike-and-slab prior; Mitchell
& Beauchamp, 1988):

p0(s) = π λe−λ s + (1 − π )δ(s). (3.1)

With π as the probability of being “active,” 1 − π quantifies the L0 sparsity,
or how likely s is to be zero. When s is in the active state, it is exponentially
distributed with mean 1/λ (see the right panel of Figure 2). Note that here
and in what follows, we assume the latent variables to be nonnegative as
opposed to allowing them to go positive or negative as is typically the case
in sparse coding models.

To develop an efficient sampling strategy, we first define auxiliary vari-
ables u such that each ui independently follows an exponential distribution:

pU (ui) = λ e−λ ui . (3.2)

We then take the latent variables s to be given by si = f (ui) where f is a
biased ReLU function:

si = f (ui) =
{

0 ui < u0

ui − u0 ui ≥ u0
(3.3)
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for some positive u0. We can show that si is then distributed according to the
prior p0(s) by marginalizing the joint distribution p(s, u) over u as follows:

pS(s) =
∫ ∞

−∞
p(s|u) pU (u)du

=
∫ u0

0
δ(s) pU (u)du +

∫ ∞

u0

δ(s − (u − u0)) pU (u)du

= δ(s)
∫ u0

0
pU (u)du + pU (s + u0)

= δ(s) [1 − e−λu0 ] + λe−λs e−λu0

= [1 − π ] δ(s) + π λe−λs ≡ p0(s), (3.4)

with π = e−λu0 . The relation between p(u), u0 and p(s) is illustrated in
Figure 2.

To derive the Langevin dynamics for sampling from the posterior us-
ing the L0-sparse prior above, we first rewrite the energy function in terms
of u:

E(A, u, x) = 1
2

‖x − A f (|u|)‖2
2

σ 2 + λ‖u‖1. (3.5)

We then let u follow Langevin dynamics governed by this energy function.
Note that we can allow the ui to move freely between positive and negative
values and then use only their absolute value in evaluating the energy. This
essentially reflects the dynamics about the origin, which avoids the prob-
lems associated with having an infinite energy barrier at ui = 0. Letting |u|
denote the elementwise absolute value of u, the distribution of |u| will con-
verge to

p(|u| | x) ∝ exp
(−‖A f (|u|) − x‖2

2/σ
2 − λ‖u‖1

)
(3.6)

∝ p(x| f (|u|)) pU (|u|) (3.7)

= p(x|s) p0(s). (3.8)

Thus, we obtain a second remarkable result: By following Langevin dynamics
on the energy in equation 3.5 with s = f (|u|), we obtain samples from the posterior
p(s|x) given by combining the likelihood with the L0-sparse prior p0(s). This is
significant, because a MAP-estimate-based approach would be impossible
with such a prior since the posterior will always have its maximum at s = 0
regardless of the likelihood.

Applying the LSC equations 2.29 and 2.31 using the energy in equation
3.5, we obtain the following coupled stochastic differential equations for
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inference and learning in L0-LSC:

τuu̇ = −AT (A s − x)�(|u| − u0) − λ sign (u) +
√

2ξ (t), (3.9)

s = f (|u|), (3.10)

τAȦ = −(A s − x)sT , (3.11)

where �(u) is the Heaviside function and ξ (t) is independent gaussian
white noise. Importantly, we can also learn u0, and therefore the activation
probability, π , via the dynamics

u̇0 ∝
〈〈

− ∂E
∂u0

〉
s|x

〉
X∼D

(3.12)

=
〈〈

AT (As − x) · 1(s > 0)
〉
s|x

〉
x∼D

. (3.13)

4 Results

To study the efficacy of L0-LSC, we first apply it to an artificial data set con-
sisting of images of bars in different orientations. This provides a useful test
case for evaluation since the causes that generate the data are known. We
then turn to a data set of natural scenes where the ground truth is unknown.

4.1 Inference on Bars Data Set. For the Bars data set, samples are gen-
erated from a dictionary A consisting of vertical and horizontal lines (see
Figure 3a). We compare results obtained on this data set against DSC as
well as another method for training sparse coding, the locally competitive
algorithm (LCA; Rozell et al., 2008).

We synthetically generate data as a linear combination of the dictionary
with additive gaussian noise (see equation 2.1) where, ni ∼ N(0, σ 2) and the
coefficients are distributed according to L0 zero-inflated exponential prior
(Beckett et al., 2014; see equation 3.1). A sample drawn from this model
without noise and with noise is shown in Figures 3b and 3c.

When trained on this data set, all three algorithms were successful at
learning the correct dictionary. However, L0-LSC can better capture the pos-
terior distribution than either DSC or LCA due to the fact that it directly
enforces L0 sparsity. In both DSC and LCA, the sparsity is controlled by ad-
justing the parameter λ. However, the relationship between λ and L0 spar-
sity (see Figure 4a) is rather indirect and no analytic expression is known.
On the other hand, in L0-LSC, a specific level of L0-sparsity can be directly
enforced by setting u0 = −λ−1 log(π ).

Moreover, the activation probability π can be learned by LSC with-
out any guesswork or parameter search (see equation 3.12). Specifically,
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Figure 3: The synthetic Bars data set used as a toy problem. (a) The dictionary is
the collection of vertical and horizontal lines. (b) An example of a sample drawn
from the data set. (c) Another sample with noise introduced.

simultaneous to the evolution of A, u, the threshold parameter u0 is treated
as a variable evolves through gradient descent, u̇0 ∝ ∇u0 E.

Figure 4b shows the convergence of model parameter π to match (ap-
proximately) the actual level of sparsity in the data. To further character-
ize the coefficients, the distributions of the nonnegative coefficients of the
three algorithms were also plotted in Figure 5. Using a fixed dictionary, the
algorithm was run either to infer the MAP estimate (DSC and LCA) or to
sample from the posterior (L0-LSC). This was done with a correctly learned
dictionary (see Figure 3a) as well as a random dictionary (i.e., uncorrelated
gaussian noise). In addition to having the correct L0-sparsity, L0-LSC cor-
rectly samples the posterior, which when averaged over the data matches
the desired prior (see Figure 5c), as expected from theory. This is in contrast
to nonstochastic algorithms where the inferred latent variable distribution
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Figure 4: (a) LCA and DSC are trained on data generated with activation proba-
bility π = 0.3 (blue) and π = 0.1 (red). For both, a sweep in sparsity parameter λ

is made. While a correspondence between λ and π exists, there is no analytic ex-
pression to automatically adapt these parameters to the data. Even with data of
known sparsity, it is impossible to select the correct parameter λ to use. (b) With
L0-sparse LSC, the activation probability π is directly related to the parameter
u0 = −λ−1 log π and can be learned directly without a parameter search.

often exhibits a more pronounced peak at zero compared to the prior. A
more quantitative analysis is provided in appendix B.

4.2 Learning the Dictionary Norm. For traditional sparse coding mod-
els such as DSC and LCA, which update the dictionary based on a single
MAP estimate for each data item, it is necessary to normalize the dictionary
elements after each update. However if the update is based on samples from
the posterior, as specified in equation 2.8, then this is no longer necessary.
As a result, when using LSC, there is no need for normalization. Instead, the
dictionary element norms ‖Ai‖ will automatically grow or shrink as needed
to optimize the model log likelihood.

The adaptive norm property can also be used to automatically select for
the size of the dictionary. For data of dimension D, we consider a dictio-
nary of size K = 
 × D to have an (over)completeness of 
. A 2× overcom-
plete model was trained using the LSC algorithm using a fixed activation
probability π , without normalizing the dictionary A. The resulting learned
dictionary is shown in Figure 6b. In previous work by Berkes et al. (2008),
annealed importance sampling (AIS; Neal, 2001) was used to approximate
the marginal likelihood in order to find the optimal dictionary elements.
However, L0-LSC, without additional procedures, can be used to effectively
do the same through attenuation of unnecessary dictionary elements. The
learned dictionary contains exactly the Bars dictionary and the extra ele-
ments decay to nearly zero, as shown in Figure 6a.

When both ‖Ai‖ and π are being learned, a more stable solution is to
have duplicated dictionary elements with reduced activity. This is shown
in Figure 7a with a duplicated dictionary but halved activity (see Figure 7b).
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Figure 5: The distribution of nonzero coefficients of each of the three algo-
rithms. The dotted red line shows the prior of coefficients used in generating
the data set. The left panel of each subfigure shows the empirical distribution
when each algorithm is run with random dictionaries. The right panel shows
the the distribution with learned dictionaries. Only L0-LSC, with the correctly
trained dictionary, achieves the distribution matching the prior.

Figure 6: Learning the dictionary size. (a) Dictionary norms bifurcate, with half
decaying to nearly zero. (b) The remaining elements contain exactly one copy
of the dictionary elements used to generate the data.

4.3 Natural Image Patches. We ran the L0-LSC algorithm on a data set
of 8 × 8 image patches of whitened natural scenes from the Van Hateren
data set (van Hateren & Schaaf, 1998; Olshausen, 2013). First, the model ac-
tivity was fixed at π = 0.5, and we used L0-LSC to learn a 4× overcomplete
dictionary (K = 4 × 64 = 256). We can see in Figure 8 that a little more than
half of the dictionary was utilized. The unused dictionary elements had a
comparatively insignificant norm. In contrast to prior efforts to determine
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Figure 7: LSC is used to learn both the dictionary size and activation probability
of the same 2× overcomplete model. (a) The learned dictionary now contains
duplicated elements. (b) But the activation probability π is half of the actual
value used in generating the data.

Figure 8: With activity fixed (π = 0.5), only a fraction of the total dictionary
elements have significant norm; the rest vanish. The dictionary elements are
sorted by their respective norms.

the optimal number of dictionary elements based on approximating the log
likelihood (Berkes et al., 2008), this result emerges directly from dictionary
learning in Langevin sparse coding.

Then, unfixing π , we allow the activity to be learned. Repeating the
experiment at different levels of overcompleteness 
, a correspondence be-
tween the activity and overcompleteness is plotted in Figure 9a. This rela-
tionship happens to be very well modeled by π ∝ 
−1. As a consequence,
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Figure 9: (a) Using LSC to learn dictionaries for natural scenes at different levels
of completeness 
, the relationship π ∝ 1/
 is obtained. (b) This implies that
the mean number of dictionary elements used to code each image is constant
irrespective of the total number of dictionary elements learned. Error bars on
both plots denote the 10% to 90% range.

the expected number of active dictionary elements, π × K = π × 
 × D
stays nearly constant irrespective of the overcompleteness 
.

5 Discussion

Our main contribution in this letter is to show that by using Langevin
dynamics to sample from posterior distributions, we obtain a set of
continuous-time equations over analog state variables that enable proba-
bilistically correct inference and learning in a latent variable model. While
the use of Langevin dynamics for sampling in probabilistic models per se is
not new (Cheng, Chatterji, Bartlett, & Jordan, 2018), our emphasis here is to
show how these dynamics play out in the case of the sparse coding model
and to point the way toward their efficient implementation in analog, elec-
tronic circuits that harness natural sources of stochasticity, for which we
provide an example in appendix C. The basic operations involve comput-
ing inner products, thresholding, lateral inhibition, and thresholding, in ad-
dition to injection of a gaussian noise source. The first four of of these are
shared with LCA, for which there already exist examples of both efficient
analog implementations (Shapero, Charles, Rozell, & Hasler, 2012; Sheri-
dan et al., 2017), and digital implementation using spiking neurons (Davies
et al., 2021). In the latter case, LCA was shown to achieve the highest ef-
ficiency gains. The only additional component required for implementing
LSC or L0-LSC beyond these existing implementations is the injection of a
gaussian noise source. This would seem quite natural since noise is intrinsic
to any physical system; however, shaping the noise to be gaussian and i.i.d.,
and whether this is strictly required, remain important issues to resolve.
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Finding efficient implementations is key to making probabilistic models
tractable and scalable to practical problems of interest such as image anal-
ysis. Indeed, latent variable models such as Boltzmann machines are often
considered intractable due to the inner loop required to sample over hid-
den unit states conditioned on input data. For this reason, practitioners of-
ten turn to approximations such as restricted Boltzmann machines (RBMs;
(Hinton & Salakhutdinov, 2006)) or variational inference (VAEs; Kingma &
Welling, 2013) so as to make the problem tractable by eliminating “explain-
ing away”—that is, dependencies among hidden units conditioned on the
data. But for most problems of interest in perception, explaining away is
key (Olshausen, 2014). So doing away with explaining away in the interest
of making the problem tractable simply dodges the very problem that needs
to be solved. Here we show that there is an alternative approach that tackles
sampling from posteriors head-on and makes it tractable via dynamics that
could be naturally realized in a physical system.

An important next step will be to improve the efficiency of sampling
by developing richer dynamical models. It is well known that the first-
order Langevin dynamics we have used here can be slow to mix and reach
equilibrium (Hennequin, Aitchison, & Lengyel, 2014). Adding higher-order
terms to the dynamics such as momentum or even third-order terms has
been shown to dramatically improve mixing time (Mou, Ma, Wainwright,
Bartlett, & Jordan, 2021), and it has even been proposed that the balanced
excitatory and inhibitory recurrent networks in cortex could serve such
a function (Hennequin et al., 2014; Echeveste et al., 2020). The model we
have proposed here could be modified along similar lines, and indeed
this is a topic of ongoing work. Yet another route is to harness recent im-
provements in Hamiltonian Monte Carlo (Sohl-Dickstein, Mudigonda, &
DeWeese, 2014).

With an efficient sampler in place, it becomes possible to adapt param-
eters of a sparse coding model beyond the dictionary, such as the level
of sparsity or overcompleteness, which has not been possible in previous
MAP-estimate-based approaches. Furthermore, through application of a
threshold function to the stochastic dynamics, we demonstrate that inference
with an L0-sparse prior, which has been avoided in most approaches by using L1

as a proxy, can be readily computed and implemented (see section 3). As shown
in section 4.1, L0-LSC is better at sampling from the posterior distribution
as well as capable of learning the activation probability π of the latent vari-
ables s. In applying the model to natural images (see section 4.3), we found
that the mean number of dictionary elements used to encode an image
is mostly invariant to the total dictionary size. This runs counter to pre-
vious results (Olshausen, 2013) showing that, on average, the number of
elements required for reconstructing a given image decreases with larger
dictionaries in which the elements take on more specific and diverse
shapes. This discrepancy could possibly be reconciled by the fact that the
previous work utilized MAP estimates rather than sampling, and so the
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learning was biased accordingly. Nonetheless, it is still intriguing that the
mean number of dictionary elements in our case was near constant, suggest-
ing that overcompleteness is an under used degree of freedom. However,
another likely culprit is the assumption of a factorial prior, and it may be
that an overcomplete dictionary loses its explanatory power under such a
prior. Thus, it will be important to consider group sparse coding or other
approaches for modeling statistical dependencies among latent variables
(Garrigues & Olshausen, 2007, 2010) in order to fully realize the gains from
overcompleteness.

Finally, another contribution of this work is to show how both learning
and inference can be mapped to simultaneous dynamics at two different
timescales. An underlying assumption in all implementations of probabilis-
tic models on digital systems is the notion of a global clock. But the global
clock is an impossibility for neural systems of any significant complexity.
Our work presents an alternative approach to computing sparse coding,
which allows for simultaneous updates of both latent variables and model
parameters such as the dictionary elements. This type of concurrent dynam-
ics removes the need of any such global clock.

More generally, the mixed timescale analog sampling framework on
which LSC is based opens the way to learning richer generative models that
capture dependencies among latent variables via horizontal connections
(Garrigues & Olshausen, 2007) or top-down priors (Boutin, Franciosini,
Ruffier, & Perrinet, 2020). And this goes beyond just sparse coding. In the
future, we hope to develop analogous procedures for learning other latent
variable models such as Boltzmann machines and hierarchical Bayesian
models (Lee & Mumford, 2003).
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