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Mounting evidence suggests that during conscious states, the

electrodynamics of the cortex are poised near a critical point or

phase transition and that this near-critical behavior supports the

vast flow of information through cortical networks during con-

scious states. Here, we empirically identify a mathematically spe-

cific critical point near which waking cortical oscillatory dynamics

operate, which is known as the edge-of-chaos critical point, or

the boundary between stability and chaos. We do so by applying

the recently developed modified 0-1 chaos test to electrocor-

ticography (ECoG) and magnetoencephalography (MEG) record-

ings from the cortices of humans and macaques across normal

waking, generalized seizure, anesthesia, and psychedelic states.

Our evidence suggests that cortical information processing is

disrupted during unconscious states because of a transition of

low-frequency cortical electric oscillations away from this critical

point; conversely, we show that psychedelics may increase the

information richness of cortical activity by tuning low-frequency

cortical oscillations closer to this critical point. Finally, we analyze

clinical electroencephalography (EEG) recordings from patients

with disorders of consciousness (DOC) and show that assessing

the proximity of slow cortical oscillatory electrodynamics to the

edge-of-chaos critical point may be useful as an index of con-

sciousness in the clinical setting.

consciousness | criticality | anesthesia | epilepsy | psychedelics

What are the dynamical properties of electric brain activity
that are necessary for consciousness, and how are those

properties disrupted during unconscious states such as anesthe-
sia, generalized seizures, coma, and vegetative states?

One possibility, which is suggested by a large body of recent
evidence, is that the electrodynamics of the conscious brain are
poised near some sort of phase transition or “critical point”
and that this near-critical behavior supports the vast flow of
information through the brain during conscious states (1, 2).
A critical point refers to the knife’s edge in between different
phases of a system (e.g., liquid to solid water) or types of dy-
namical states (e.g., laminar to turbulent airflow). It is widely
believed that electrodynamics of both micro- and macroscale
cortical networks are poised near some critical point or perhaps
near several critical points, because power-law statistics, which
are a key signature of criticality (3), are consistently identified
in recordings of neural electrodynamics (4, 5). And such critical
behavior is known to have important computational benefits,
because critical and near-critical systems tend to have a high
capacity for encoding and transmitting information (6–9). For
these reasons, it is widely believed that being poised at—or

at least near (10–12)—criticality of some form endows neural
populations with a high capacity for encoding and communicat-
ing information (4, 5, 12, 13), particularly during conscious states
(1, 2). Conversely, because signatures of cortical criticality have
been observed to disappear or diminish during unconscious states
(4, 14, 15), it may be that a transition of cortical activity away from
some critical point is what underlies the disruption to cortical
information processing during unconscious states (2).

Although the existing evidence supports this conjectured
relationship between criticality, cortical information processing,
and conscious vs. unconscious brain states, prior empirical work
has, for the most part, relied on the detection of power-law
statistics in neural electrodynamics, most typically in the form
of “neuronal avalanches” or bursts of electric activity whose sizes
follow a power-law distribution, to infer neural criticality during
conscious states and a loss of criticality during unconscious states
(16). But the detection of power-law statistics alone cannot
specify the type of critical point a system is poised at, because
power-law statistics appear across many types of phase transi-
tions (3). Moreover, neuronal avalanches can arise in noncritical
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neural systems (17), and neural networks can display several
unique dynamical critical points, only one of which is the phase
transition that gives rise to neuronal avalanches (18). Although
some prior studies have attempted to use metrics other than
power-law statistics to assess the relationship between neural
criticality and consciousness (19–21), the precise form of criti-
cality under consideration has largely remained mathematically
unspecified (16), which leaves open the fundamental question:
What, exactly, is the phase transition (or transitions) near
which cortical electrodynamics seem to operate during conscious
states? Put another way, what, from a mathematical perspective,
are the dynamical phases that lie on either side of the critical
point(s) near which waking brain dynamics operate?

Terms like “order” and “disorder” have commonly been used
to describe the phases on either side of neural criticality, but
these terms are imprecise unless they are defined relative to
the breaking of a specific form of mathematical symmetry,
where the “ordered” phase of a system is the symmetry-broken
phase (in the way that ice is the ordered phase of water
relative to the freezing critical point, because water loses its
translational and rotational symmetry at this phase transition)—
see SI Appendix, Supplementary Note 1 for a more detailed
discussion of this point. Imprecise use of terms like order and
disorder can also be misleading in the context of neural criticality.
For example, chaos, which is defined as exponential sensitivity to
small perturbations, is often used interchangeably with disorder
in the literature on neural criticality (16), but chaos is in fact
the ordered phase of dynamical systems because it corresponds
to the breaking of the topological supersymmetry present in
all dynamical systems (22) (SI Appendix, Supplementary Note 1).
This inconsistency and lack of mathematical specificity in
definitions of neural criticality may underlie the apparent
variability of prior results relating criticality to different brain
states, where, for example, some purported metrics of criticality
seem to suggest that seizures constitute a departure from
criticality while others seem to suggest that seizures are in
fact critical phenomena (23). If, as has been proposed (1), the
disruption to cortical information processing during unconscious
states is mediated by an excursion of cortical electrodynamics
away from some sort of critical point during these states, then
mathematically precise identification of this critical point (or
points) may be crucial for improving both our theoretical and
clinical grasp on the neural correlates of consciousness.

Here, we provide direct empirical evidence for the hypothesis
(24) that during conscious states, cortical electrodynamics—and
specifically low-frequency cortical electrodynamics—operate
near a mathematically well-defined critical point known as edge-
of-chaos criticality or the phase transition from stable to chaotic
dynamics. We additionally provide evidence that slow cortical
oscillations may specifically operate on the chaotic side of this
critical point during normal waking states. Many systems (6–9, 25,
26), including deep neural networks (25), echo state networks (8),
and neuromorphic nanowire networks (26), have been shown to
exhibit their highest capacity for information processing precisely
at this specific critical point. In line with this well-replicated
phenomenon, we show that excursions of low-frequency cortical
oscillations away from this critical point during generalized
seizures and γ-aminobutyric acid agonist (GABAergic) anes-
thesia induce a loss of information in cortical dynamics as well
as a loss of consciousness. We moreover show that lysergic acid
diethylamide (LSD), a 5-HT2A receptor agonist characterized
as a hallucinogen or “psychedelic,” may tune slow cortical
dynamics closer to the edge-of-chaos critical point relative to
normal waking states, which increases the information richness
of cortical activity. Finally, we provide preliminary evidence that
low-frequency cortical electrodynamics return to the vicinity of
this critical point as patients with disorders of consciousness
(DOC) regain awareness, which suggests that assessing the

proximity of cortical dynamics to edge-of-chaos criticality may
be useful as an approach to track patient awareness. We provide
Matlab (R2020a) code for our analysis in the hopes of facilitating
further basic and translational research along these lines.

Results

Mean-Field Dynamics. To empirically assess whether cortical dy-
namics operate near the edge-of-chaos critical point during con-
scious states and whether this underpins the information richness
of cortical dynamics during conscious states (Fig. 1), we must
first assess varying levels of chaoticity and information richness
in a model of cortical electrodynamics and then test whether real
data agree with the model’s predictions. The reason we must
first analyze a model is because a system’s level of stability can
be detected with certainty only in a simulation, where noise and
initial conditions can be precisely controlled. For this reason,
it is generally agreed (27) that empirical evidence of varying
levels of chaos in a biological system requires comparison of real
data to an accurate model of the biological system of interest.
Toward that end, we assessed the mean-field model of macroscale
cortical electrodynamics developed by Steyn-Ross, Steyn-Ross,
and Sleigh (28), which is based on the earlier model developed
by Liley et al. (29, 30), because it has been shown to successfully
model the low-frequency macroscale cortical electrodynamics
of waking conscious (28), generalized seizure (28, 31, 32), and
GABAergic anesthesia (28, 33) states and thus can be compared
to real recordings of large-scale cortical electrodynamics across
these diverse brain states. The model also includes gap junction
coupling between cortical interneurons, which recent empirical
work in zebrafish has shown is an important mechanism for the
maintenance of criticality in electric neural activity (34). Using
this model, we generated 10-s simulations of macroscale cortical
electrodynamics corresponding to waking conscious, general-
ized seizure, and GABAergic anesthesia states (using parameter
ranges identified in past studies) (Materials and Methods). We
also performed a parameter sweep on the model to generate dy-
namics from 773 additional states, some of which may fall outside

Fig. 1. Hypothesized relationship between consciousness, edge-of-chaos

criticality, and cortical information processing. We suggest that the elec-

trodynamics of the cortex may be poised near the edge-of-chaos critical

point during conscious states and transition away from this specific critical

point during unconscious states. According to this hypothesis, transitions

of cortical electrodynamics away from this critical point—either into the

chaotic phase (leading to dynamical instability) or into the periodic phase

(leading to hyperstability)—should disrupt cortical information processing

and induce unconsciousness. In other words, we should expect to see an

inverse-U relationship between chaoticity and information processing in

the cortex, with cortical dynamics during conscious states near the top of

this inverse U (i.e., in the near-critical, information-rich regime), and we

should moreover expect to see cortical dynamics during unconscious states

at either the bottom right of this inverse U (i.e., the unstable, information-

poor regime) or at the bottom left of this inverse U (i.e., the hyperstable,

information-poor regime) (1, 2, 22). Such an inverse-U relationship between

chaoticity and information processing has been observed in many other

dynamical systems (6–9), but remains to be empirically observed in the brain.
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Fig. 2. Predictions relating brain states, information processing, and the criticality of low-frequency cortical electrodynamics and the testability of those

predictions in real data. (A) We calculated both the largest Lyapunov exponent (ground-truth instability) and Lempel–Ziv complexity (information richness) of

10-s mean-field simulations of low-frequency cortical electrodynamics during waking conscious (blue circle), generalized seizure (pink cross), and GABAergic

anesthesia (brown asterisk) states. We also performed a parameter sweep of the mean-field model to more generally assess the relationship between the

information richness of its dynamics and the proximity of those dynamics to this critical point (Materials and Methods); each small gray dot represents the

result of a single 10-s simulation with a unique parameter configuration that did not correspond to a biologically specific brain state. We found that all

three measures of information richness peak near the edge-of-chaos critical point (red vertical line) and that the simulated waking conscious dynamics

are near this critical, information-rich regime. Importantly, waking cortical dynamics are here predicted to lie on the unstable side of this critical point. All

three information measures drop in both the chaotic/unstable phase (positive largest Lyapunov exponent), where GABAergic anesthesia cortical dynamics

are predicted to lie, and the periodic/stable phase (negative largest Lyapunov exponent), where generalized seizure dynamics are predicted to lie. (B) The

modified 0-1 chaos test (Materials and Methods), when applied to the low-pass filtered simulated dynamics of the mean-field model, accurately tracks the

chaoticity of those dynamics and is able to recapitulate the ground-truth inverse-U relationship between chaoticity and information richness. This validates

the ability of the modified 0-1 chaos test to empirically evaluate these specific predictions relating consciousness, information processing, and the proximity

of low-frequency cortical electrodynamics to the edge-of-chaos critical point in real cortical recordings.

the physiological bounds for what may be considered waking,
seizure, or anesthesia, to more broadly assess the relationship
between proximity to edge-of-chaos criticality and information
richness (Materials and Methods). For each parameter configura-
tion of the model, we estimated the largest Lyapunov exponent of
the deterministic component of the model’s dynamics (i.e., with
the model’s noise inputs turned off) (Materials and Methods). The
largest Lyapunov exponent is a mathematically formal measure
of chaoticity: A largest Lyapunov exponent of 0 corresponds to
edge-of-chaos criticality, a positive largest Lyapunov exponent
corresponds to chaos, and a negative largest Lyapunov exponent
corresponds to periodicity. Note that exact calculation of largest
Lyapunov exponents is usually impossible, but that simulated
systems allow for accurate estimation of Lyapunov exponents,
by assessing how quickly initially similar simulations diverge
(Materials and Methods). We furthermore chose to assess the
information richness of the model’s stochastic dynamics (i.e.,
with noise inputs turned on) using three variants of Lempel–Ziv
complexity (Materials and Methods), as this measure has been
repeatedly shown to track level of consciousness (35) (see also

discussion in ref. 35 of purported dissociations between Lempel–
Ziv complexity and conscious vs. unconscious brain states). As a
measure of compressibility (36), Lempel–Ziv complexity quanti-
fies the amount of nonredundant information in a time series, as
compressibility is mathematically lower bounded by the amount
of unique information in a signal (37).

Consistent with the prediction that the cortex generates
information-rich dynamics during conscious states by operating
near the edge-of-chaos critical point, we found that the Lempel–
Ziv complexity of the model’s simulated electrodynamics (with
noise inputs) was maximal when the deterministic component
of its dynamics were poised near this critical onset of chaos
(red vertical line in Fig. 2A) and that the model’s simulation
of the conscious, waking state was near this critical, information-
rich regime. Importantly, the model specifically placed waking,
conscious cortical dynamics on the chaotic side of this critical
edge (blue circle in Fig. 2A) [note that, although some parameter
configurations on the periodic side of the phase transition
likewise yielded information-rich dynamics, Steyn-Ross et al.
(28) found that parameters in the range of physiological realism
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Table 1. Results of Simonsohn’s two-lines test of a U-shaped relationship (39)

Simonsohn’s two-lines test results

Regression line 1 Regression line 2

Simulation data

LLE vs. univariate LZc b = 0.1, z = 5.65, P < 10−4 b = −0.06, z = −5.44, P < 10−4

LLE vs. joint LZc b = 0.4, z = 11, P < 10−4 b = −0.08, z = −8.39, P < 10−4

LLE vs. concatenated LZc b = 0.29, z = 8.89, P < 10−4 b = −0.08, z = −6.98, P < 10−4

K vs. univariate LZc b = 0.71, z = 11.76, P < 10−4 b = −0.28, z = −11.99, P < 10−4

K vs. joint LZc b = 1.79, z = 25.4, P < 10−4 b = −0.32, z = −11.66, P < 10−4

K vs. concatenated LZc b = 1.49, z = 21.49, P < 10−4 b = −0.36, z = −12.62, P < 10−4

Empirical data

K vs. univariate LZc b = 0.26, z = 10.74, P < 10−4 b = −1.03, z = −8.42, P < 10−4

K vs. joint LZc b = 0.12, z = 1.99, P = 0.137 b = −1.38, z = −6.55, P < 10−4

K vs. concatenated LZc b = 0.33, z = 6.01, P < 10−4 b = −1.25, z = −10, P < 10−4

The test confirmed the U-shaped relationship (across different states of the mean-field model of cortical electrodynamics) between all three measures
of Lempel–Ziv complexity (LZc) and chaoticity, as measured by both ground-truth largest Lyapunov exponents (LLE) and the K statistic of the modified 0-1
chaos test. The test also confirmed the U-shaped relationship (across subjects) in our cortical recordings between chaoticity, as measured by the K statistic,
and both univariate and concatenated Lempel–Ziv complexity. P values were Bonferroni corrected for multiple comparisons against the same set of either
LLE or K statistic values.

for normal waking states generally produce weakly chaotic
electrodynamics]. Moreover, as predicted, the model exhibited
an inverse-U relationship between chaoticity and information
richness, with the amount of information generated by its
dynamics falling both in the chaotic phase (bottom right of
the inverse U) and in the periodic phase (bottom left of the
inverse U), similar to what has been shown in many other
systems (6–9, 38). Importantly, we found a similar relationship
between Lempel–Ziv complexity and this critical point in
three other noise-driven dynamical systems for which ground-
truth chaoticity could be calculated with even greater accuracy
(SI Appendix, Fig. S1). To quantitatively confirm this qualitative
result, we used Simonsohn’s two-lines statistical test of a U-
shaped relationship, which accepts a null hypothesis of no U-
shaped relationship if either of two opposite-sign regression
lines (one for high and one for low values of the x variable)
are statistically insignificant—see Simonsohn (39) for details on
this test. The two-lines test failed to reject the null hypothesis no
U-shaped relationship between largest Lyapunov exponents and
univariate, joint, or concatenated Lempel–Ziv complexity in the
mean-field model (Table 1). Finally, we note that the mean-field
model specifically placed GABAergic anesthesia in the strongly
chaotic/unstable phase and placed generalized seizures in the
periodic/stable phase, even though both simulated states led to
information loss (Fig. 2A) and increased spectral power at low
frequencies (SI Appendix, Figs. S2–S4).

Such predictions of varying degrees of chaoticity in real
biological systems have historically been difficult to test, but
recent mathematical developments in nonlinear time-series
analysis now allow for accurate detection of chaoticity from noisy
time-series data. In particular, the modified 0-1 chaos test has
emerged as a robust measure of chaoticity from noisy recordings
(27, 40–44) (Materials and Methods). Given a recorded time
series, the 0-1 chaos test outputs a statistic K, which estimates the
degree of chaoticity of a (predominantly) deterministic signal on
a scale from 0 to 1; lower values indicate periodicity and higher
values indicate chaos. To specifically assess the chaoticity of low-
frequency cortical electrodynamics (as simulated in the mean-
field model), we low-pass filtered all time-series data in this study
before applying the modified 0-1 chaos test. While low-pass filter
cutoffs of neural electrophysiology recordings are often selected
at canonical frequency bands, recent work has shown that this
approach can result in data with spurious oscillations when
no such neural electrodynamic oscillations are present and can
moreover obfuscate natural but meaningful variance in oscilla-
tion frequencies across channels, subjects, and species; for these
reasons, to select low-pass filter cutoffs in the 1- to 6-Hz range

for every channel in every trial, we used the data-driven “Fitting
Oscillations and One Over F” (“FOOOF”) algorithm, which
helps identify real channel-specific oscillations and their respec-
tive frequencies based on neural power spectra (45). We then ap-
plied the modified 0-1 chaos test to these low-pass filtered signals.
Note that a minority of channels for which no oscillations were
identified in the 1- to 6-Hz range were excluded from chaoticity
analysis (SI Appendix, Table S1) (see Materials and Methods for
more details). Importantly, we verified that the majority of
signals analyzed in this paper were generated by predominantly
deterministic processes (SI Appendix, Tables S4 and S5), which
is a key assumption of the modified 0-1 chaos test. Finally, where
applicable, our statistical analyses included these selected low-
pass filter frequencies as a covariate, to ensure that our results
are driven by the stability of low-frequency cortical oscillations,
rather than by their frequencies.

Confirming the ability of the modified 0-1 chaos test to detect
varying levels of chaoticity from real time-series data, we found
that its K statistic, when applied to the model’s simulated dynam-
ics (with noise inputs turned on) after low-pass filtering using
the FOOOF algorithm, was strongly correlated with the ground-
truth largest Lyapunov exponent of the deterministic component
of the mean-field model’s dynamics (which can be estimated only
in simulations) (r = 0.84, P < 10−4, Bonferroni corrected for
multiple chaos estimation tests [SI Appendix, Table S6]; and par-
tial correlation ρ = 0.82, P < 10−4 after controlling for selected
low-pass filter frequencies, Bonferroni corrected for multiple
chaos estimation tests [SI Appendix, Table S7]). Moreover, this
correlation was robust to high levels of both white measurement
noise (i.e., equal power at all frequencies f) and pink measure-
ment noise (i.e., 1/f noise, or noise power inversely proportional
to frequency) (SI Appendix, Tables S6 and S7). The K statistic of
these low-pass filtered signals was likewise correlated with the
stochastic Lyapunov exponents of the model (i.e., with Lyapunov
exponents calculated for partially stochastic simulations with
identical noise inputs) (r = 0.83, P< 10−4; and partial correlation
ρ = 0.81, P < 10−4 after controlling for selected low-pass filter
frequencies). Moreover, the K statistic was able to recapitulate
the inverse-U relationship between chaoticity and Lempel–Ziv
complexity in the model, as shown qualitatively in Fig. 2B. As
was the case for the ground-truth largest Lyapunov exponents,
Simonsohn’s two-lines test quantitatively confirmed the inverse-
U relationship between the K statistic and univariate, joint, and
concatenated Lempel–Ziv complexity (Table 1). These results
indicate that we can use the 0-1 test’s K statistic to directly em-
pirically test the above-mentioned predictions relating conscious-
ness, information richness, and cortical chaoticity relative to
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the edge-of-chaos critical point in real recordings of macroscale
cortical electrodynamics.

Cortical Electrodynamics ConfirmMean-Field Predictions. We there-
fore applied the modified 0-1 chaos test to low-frequency activity
extracted from surface electrocorticography (ECoG) recordings
of the cortical electrodynamics of two macaques and five human
epilepsy patients during normal waking states, of two macaques
and three human epilepsy patients under GABAergic (propofol
or propofol and sevoflurane) anesthesia, and of two human
epilepsy patients experiencing generalized seizures; we further
applied this test to magnetoencephalography (MEG) recordings
of the cortical electrodynamics of a third human epilepsy patient
experiencing a generalized seizure. We also applied the 0-1 chaos
test to the low-frequency component of MEG recordings of
the cortical electrodynamics of 16 human subjects under the
influence of either a saline placebo or LSD, as psychedelics are
the only known compounds to reliably increase the information
richness of cortical electrodynamics (1, 2, 46, 47) and are thought
to do so by tuning cortical dynamics closer to some critical point
(2, 48, 49). Psychedelics therefore allow us to test a specific
and counterintuitive prediction of this chaos vs. information-
processing framework: If cortical electrodynamics during normal
waking states do indeed lie on the chaotic side of the edge-
of-chaos critical point (as the mean-field model predicts), then
psychedelics should, counterintuitively, increase the information
richness of cortical activity by reducing the chaoticity of cortical
dynamics, as those dynamics approach the edge-of-chaos critical
point from the chaotic side of the phase transition (where normal
waking dynamics are predicted to lie).

Confirming our predictions, our empirical analysis yielded
an inverse-U relationship between chaoticity and information
richness (as measured by three variants of Lempel–Ziv com-
plexity) in our recordings of cortical electrodynamics, with
conscious states at the top of this inverse U, as shown qualitatively
in Fig. 3. To confirm this result quantitatively, we applied
Simonsohn’s two-lines test to the median of each subject’s K
statistic and Lempel–Ziv complexity over all trials from their
altered states (seizure, anesthesia, LSD), normalized to their

own normal waking baseline (as shown in Fig. 3). The test
failed to reject the null hypothesis of no inverse-U relationship
between the normalized K statistic and both univariate and
concatenated Lempel–Ziv complexity, but not joint Lempel–Ziv
complexity (Table 1). Moreover, as predicted, our within-subject
analyses showed significant increases in chaoticity coinciding
with significant drops in Lempel–Ziv complexity in the anesthesia
state, small but significant reductions in chaoticity coinciding with
significant increases in Lempel–Ziv complexity in the LSD state,
and significant reductions in both chaoticity and Lempel–Ziv
complexity during generalized seizures (SI Appendix, Fig. S5).
Furthermore, we observed that the degree of reduction in
chaoticity during the LSD state relative to placebo (assessed
by normalizing each subject’s median K statistic during the
LSD state by the subject’s median during the normal waking
state, as in Fig. 3) was significantly correlated with subjects’
behavioral ratings (Materials and Methods) of the intensity
of the LSD experience (partial correlation ρ = 0.55, P =
0.033, controlling for differences between placebo and LSD
states in the median frequency at which signals were low-
pass filtered). Importantly, even though there was a significant
correlation between relative low-frequency spectral power (i.e.,
total power under the frequency selected for low-pass filtering,
divided by total power under 45 Hz) in the mean-field model
(ρ = 0.55, P < 0.001), an analysis of covariance (ANCOVA)
analysis revealed that neither low-frequency filter cutoff nor
relative spectral power under that cutoff significantly explained
the empirically observed variance of chaoticity estimates,
whereas brain state did—both for chaoticity estimates nor-
malized to subjects’ normal waking baselines (F = 90.644, P
= 0.001) and for nonnormalized chaoticity estimates (F =
43.477, P = 0.001) (SI Appendix, Tables S2 and S3). This result
suggests that the chaoticity of cortical electrodynamics may
offer unique insights about brain states and neural information
processing over and above the insights offered by their spectral
properties. Importantly, we found a similar overall inverse-U
trend between chaoticity and information richness when using
fixed low-pass filter frequency cutoffs rather than channel-
specific oscillation frequencies, although with less consistent

Fig. 3. Transitions of low-frequency cortical electrodynamics away from the edge-of-chaos critical point induce a loss of information in cortical dynamics

during unconscious states. We applied the modified 0-1 chaos test to ECoG and MEG recordings from humans and macaques across different brain states to

empirically assess the predicted relationship between proximity to edge-of-chaos criticality, consciousness, and the information richness of cortical dynamics.

Here, eachmarker represents themedian estimated chaoticity and information richness of cortical dynamics across each individual subject’s trials, normalized

to the median of the subject’s normal waking baseline. The observed inverse-U relationship between stability and information richness, with cortical

dynamics during conscious states at the top of this inverse U, validates the prediction that cortical dynamics operate near the edge-of-chaos critical point

during conscious states, transition deeper into the chaotic/unstable phase under GABAergic anesthesia, and transition into the periodic/stable phase during

generalized seizures. These results support our hypothesis that these transitions away from edge-of-chaos criticality during unconscious states induce a loss

of information in electrical cortical activity. Moreover, the counterintuitive reduction of chaoticity coinciding with increased information richness in the LSD

state supports our prediction that waking cortical dynamics operate on the chaotic side of this critical point. See SI Appendix, Fig. S5 for statistical analysis

of within-subject results and SI Appendix, Fig. S6 for a plot of all subjects’ nonnormalized chaoticity estimates.
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results for any given brain state (SI Appendix, Fig. S7), which
highlights the importance of data-driven selection of frequency
cutoffs. Furthermore, our analyses of surrogate time series
not only suggest that low-frequency cortical electrodynamics
are predominantly deterministic, but also show no difference
in the level of stochasticity of cortical dynamics across brain
states (SI Appendix, Tables S5 and S6), which suggests that these
between-condition differences were likely driven by changes in
the relative stability of cortical dynamics as predicted, rather
than by changing levels of intrinsic noise in cortical networks.
Finally, we compared the low-frequency power spectral densities
of our real and simulated cortical electrodynamics and observed
spectral changes that were consistent across our real and
simulated data (SI Appendix, Figs. S2–S4), which lends further
support to the model’s prediction of increased or decreased
chaoticity relative to the edge-of-chaos critical point in these
different states.

Edge-of-Chaos Criticality Is a Potential Clinical Index of Conscious-

ness. The above findings support the hypothesis that the low-
frequency electrodynamics of the cortex during conscious states
are poised near the edge-of-chaos critical point and specifically
operate on the chaotic side of this phase transition. This implies
that use of the modified 0-1 chaos test (or other chaoticity tests)
to assess the proximity of slow cortical oscillations to edge-of-
chaos criticality, or to the unstable side of this phase transition,
may be clinically useful as a tool for monitoring depth of anes-
thesia or diagnosing and monitoring emergence from disorders
of consciousness—a group of conditions for which additional
biomarkers are sorely needed (50). Toward that end, we here
introduce a time-series estimate c of proximity to edge-of-chaos
criticality, based on a nonlinear transformation of the K statistic
(Materials and Methods). Our measure c includes a parameter α,
set between 0 and 1, such that c will approach 1 as the K statistic
approaches α and will approach 0 as the K statistic approaches
either 0 (periodicity) or 1 (chaos). In other words, our measure c
will assign low values for clearly periodic dynamics (K statistic
near zero) and clearly chaotic dynamics (K statistic near one)
and will assign high values to dynamics that are neither clearly
periodic nor clearly chaotic (K statistic near α). Note that α

values nearer to 0 will likely bias our criticality measure to assign
higher values to systems on the periodic side of the edge-of-chaos
critical point, while α values nearer to 1 will likely bias our mea-
sure to assign higher values to systems within the chaotic phase
(although in general the overall relationship between ground-
truth chaoticity,α, and c will vary on a system-by-system basis). To
test the diagnostic utility of this criticality measure c, we applied
our chaos analysis pipeline (i.e., low-pass filtering at a frequency
determined by the FOOOF algorithm followed by application
of the modified 0-1 chaos test) to clinical EEG data recorded
from four traumatic brain injury patients as they recovered con-
sciousness (Materials and Methods). Degree of consciousness was
assessed using the Glasgow Coma Scale (GCS) as part of con-
ventional bedside neurobehavioral testing. Following prior work
(51, 52), data were split into conscious and unconscious states
based on the verbal and motor subscores of the GCS. Patients
were considered conscious if either their GCS verbal subscore
was greater than or equal to four (meaning that they could
answer questions) or if their motor subscore was greater than
or equal to five (meaning that they displayed clearly purposeful
movement). We considered patients unconscious if their verbal
subscore was less than four and motor subscore was less than five,
although we note that this criterion cannot differentiate between
unconsciousness and unresponsiveness/disconnectedness.

To test the utility of our criticality measure as an index of
consciousness, we converted the median (unnormalized) K
statistics of these four patients in their unconscious and conscious
states, along with the median K statistics of our five anesthesia

subjects and three generalized seizure subjects in their waking
and unconscious states, to our criticality estimate c, using 19
unique values of its parameterα ranging from 0.05 to 0.95 in steps
of 0.05. For each value of α, we performed a cross-subject, right-
tailed Wilcoxon rank-sum test to compare estimates of proximity
to edge-of-chaos criticality in conscious versus unconscious
states. Before correcting for multiple comparisons, estimates
of criticality were significantly higher during conscious states for
all α values between 0.65 and 0.85; after conservative Bonferroni
correction, c at α = 0.85 remained significantly higher across
subjects during conscious states than during unconscious states
(P < 10

−4 before Bonferroni correction, P = 0.016 after Bon-
ferroni correction) (SI Appendix, Fig. S8) (Fig. 4A). Note that,
as mentioned above, an α of 0.85 will likely bias our criticality
measure c to assign higher values to dynamics on the chaotic side
of the edge-of-chaos critical point, and so the finding of higher
values of c during conscious states, with α set to 0.85, may be
considered additional evidence that slow cortical oscillations are
weakly chaotic during waking states. See SI Appendix, Fig. S9
for a bivariate plot of unnormalized chaoticity estimates versus
criticality estimates for each subject and brain state. A cross-
subject Wilcoxon rank-sum test revealed no significant difference
in the median low-pass filter frequencies selected by the
FOOOF algorithm in conscious vs. unconscious states (P =
0.795), while right-tailed Wilcoxon rank-sum tests showed that,
across subjects, consciousness corresponded to significantly
higher values of univariate Lempel–Ziv complexity (P = 0.003)
(Fig. 4B) and concatenated Lempel–Ziv complexity (P = 0.0265)
(SI Appendix, Fig. S10) but not joint Lempel–Ziv complexity
(P = 0.107) (SI Appendix, Fig. S10). Furthermore, after control-
ling for the median frequency at which signals were low-pass
filtered across these 12 subjects (4 DOC patients, 5 anesthesia
subjects, and 3 generalized seizure subjects), our criticality mea-
sure c (at α = 0.85) was significantly correlated with cross-trial
median univariate Lempel–Ziv complexity (partial correlation
ρ = 0.66, P < 10

−4) (Fig. 4C) and concatenated Lempel–Ziv
complexity (ρ = 0.66, P < 10

−4) but not with joint Lempel–
Ziv complexity (ρ = 0.36, P = 0.093) (SI Appendix, Fig. S10);
these correlations support the hypothesis that proximity to the
edge-of-chaos critical point mediates the information richness
of cortical electrodynamics as well as consciousness. Finally,
we used a one-tailed block bootstrap test (block size = 30 s
of data), which controls for the nonindependence of successive
timepoints by preserving local time-series autocorrelations,
to test for within-subject increases in c as patients recovered
consciousness. We found significant increases in c for all
four DOC patients (Fig. 4D), which supports the potential
diagnostic utility of this criticality measure. Significant within-
subject increases in univariate Lempel–Ziv complexity were
also observed within all four DOC patients as they regained
consciousness, but not in joint or concatenated Lempel–Ziv
complexity (SI Appendix, Fig. S11).

Discussion

In this paper, we present empirical evidence that during con-
scious states, the cortex generates information-rich activity by
tuning its low-frequency electrodynamics toward the mathemat-
ically specific critical point separating periodicity and chaos. Our
evidence was based on the application of the recently modified
0-1 chaos test to neural electrophysiology data. Many systems,
including deep neural networks (25), have been shown to exhibit
their highest information-processing capacity when poised near
this transition from periodicity to chaos (6–9, 26, 38), likely be-
cause dynamics near this critical point optimally balance stability
with flexibility and responsiveness to inputs (53).

We further present evidence that transitions of low-frequency
cortical electrodynamics away from the edge-of-chaos critical
point—either into the chaotic phase, as our evidence suggests is
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Fig. 4. Low-frequency criticality predicts consciousness. (A) Using our time-series measure of criticality (derived from the 0-1 chaos test) (Materials and

Methods), we estimated the proximity of low-frequency cortical dynamics to edge-of-chaos criticality in 12 subjects for whom data were available from

both conscious and unconscious states (namely, 5 GABAergic anesthesia subjects, 3 generalized seizure subjects, and 4 DOC patients). Our criticality measure

includes a parameter α, which we here set to 0.85, based on our parameter analysis (SI Appendix, Fig. S8). Estimates of proximity to edge-of-chaos criticality

were significantly higher (P < 10−4 before Bonferroni correction for comparisons at multiple values of α, and P = 0.0157 after Bonferroni correction) in

conscious states than in unconscious states (significance was tested using a right-tailed Wilcoxon rank-sum test). (B) Cross-trial, within-subject medians of

univariate Lempel–Ziv complexity were significantly higher (P = 0.003) during conscious states than during unconscious states. See SI Appendix, Fig. S6 for

comparisons using joint and concatenated Lempel–Ziv complexity. (C) Across the waking (blue square) and nonwaking (red circle) states of all 12 subjects

exhibiting transitions between consciousness and unconsciousness, cross-trial medians of estimated proximity to edge-of-chaos criticality (with α = 0.85)

were significantly correlated with cross-trial medians of univariate Lempel–Ziv complexity (partial correlation ρ = 0.66, P < 10−4, controlling for median

frequency at which signals were low-pass filtered). See SI Appendix, Fig. S10 for comparisons using joint and concatenated Lempel–Ziv complexity. (D) As

was the case for our cross-subject analysis (A), our within-subject, cross-trial analysis revealed significant increases in our criticality measure (with α = 0.85)

in four DOC patients as they recovered consciousness. Significance was assessed using a left-tailed overlapping block bootstrap test (which controls for

dependencies across data points by preserving local time-series autocorrelations) with a block size of three trials (30 s of recording), to test against the

null hypothesis that median estimated proximity to criticality during conscious states is not greater than median estimated proximity to criticality during

unconscious states. Circles correspond to cross-trial medians, and error bars indicate SE of the median (estimated by taking the SD of a bootstrap distribution

of sample medians) *P < 0.05, **P < 0.01.

the case for GABAergic anesthesia, or into the periodic phase,
as our evidence suggests is the case for generalized seizures—
precipitate a loss of information richness in cortical dynamics,
thus resulting in unconsciousness. These results are consistent
with previous findings of a loss of empirical signatures of criti-
cality during these states of unconsciousness (4, 14, 15), but go
beyond prior analyses in specifying whether dynamics in these
states are subcritical or supercritical with respect to a specific,
mathematically well-defined critical point (in this case, the edge-
of-chaos critical point). Finally, we present evidence that LSD
is increasing the Lempel–Ziv complexity of cortical activity while
stabilizing (i.e., reducing the chaoticity of) low-frequency cortical
electrodynamics and that the degree of this stabilization corre-
lates with the subjective intensity of the LSD experience. To the
degree to which we also believe that approaching the edge-of-
chaos critical point should increase Lempel–Ziv complexity—
which we support with simulations of both the cortex (Fig. 2) and
three other dynamical systems (SI Appendix, Fig. S1)—this result
supports prior findings suggesting a transition closer to criticality
in the LSD state (48). Importantly, this result constitutes our
primary empirical evidence that waking low-frequency cortical
electrodynamics specifically lie on the chaotic side of the edge-
of-chaos critical point, as it implies that LSD is tuning slow cor-
tical dynamics toward edge-of-chaos criticality from the chaotic
side of the edge. However, we note that we observed increased

variance in the K statistic near criticality (SI Appendix, Fig. S12),
and that the K statistic is sensitive to choices of preprocessing
steps (SI Appendix, Tables S6 and S7 and Fig. S12), which raises
the potential risk of misclassifying waking cortical dynamics as
lying on the periodic or on the chaotic side of the edge-of-
chaos critical point. Thus, despite our observation of reduced
chaoticity in the LSD state (Fig. 3 and SI Appendix, Fig. S5), it
will be imperative to replicate this observation in other cortical
recordings from subjects experiencing psychedelic states and to
develop additional or improved tools for estimating the chaoticity
of cortical dynamics (see below).

Our finding that waking slow cortical dynamics may specifically
operate on the chaotic side of this phase transition supports
the decades-old conjecture that the waking brain’s large-scale
electrodynamics might be at least weakly chaotic (54–61). His-
torically, this hypothesis has been difficult to test, owing to the
shortcomings of classic chaos detection algorithms—limitations
that are largely (but not fully) overcome by the time-series analy-
sis tools utilized here (27). Although our empirical results are in
accord with the large body of modeling literature showing that bi-
ologically realistic simulations of neural networks are frequently
chaotic (at all spatial scales) (54–65), our results may appear
to contradict prominent work in artificial intelligence research,
which has largely focused on nonchaotic neural systems, owing
to the failure of some learning algorithms to converge in chaotic
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recurrent neural networks (RNNs) (66). Importantly, however,
this is not a universal phenomenon, as a number of training
algorithms (66–72), including several biologically realistic algo-
rithms based on Hebbian learning (73–75), have been shown
to successfully converge in chaotic RNNs. Moreover, there are
possible benefits to neural networks being poised on the chaotic
side of this phase transition. For example, it has been analytically
shown that while the memory and decodability of recurrent
networks are highest at the edge-of-chaos critical point, these
computational capacities decay more slowly in the chaotic phase
than they do in the periodic phase (76). Thus, in the absence
of fine tuning of parameters (which is difficult to achieve in
both real and artificial neural systems), high memory and input
decodability are more easily attainable on the chaotic side of
this phase transition (76). Additionally, it has been shown that
some amount of chaos is not only useful (72), but also in some
cases necessary (75), for some RNNs to learn complex target
functions, because weak chaoticity can expand neural networks’
dynamical repertoire. Finally, although it has often been assumed
that chaos inevitably disrupts the consistency of input–output
mappings required for computation in some RNNs (77, 78), it
is now recognized that weakly chaotic systems in general (79–
82), and weakly chaotic RNNs in particular (72), can generate
consistent responses to their inputs. However, because input–
output consistency generally breaks down in strongly chaotic
systems (79, 80), it is likewise computationally reasonable for
waking cortical electrodynamics to remain only weakly chaotic,
in the vicinity of the edge-of-chaos critical point.

Beyond the known benefits of being poised on the chaotic side
of the edge-of-chaos critical point, the possibility that waking
low-frequency cortical electrodynamics are weakly chaotic may
additionally explain a number of empirical results regarding the
variability of neural activity and how that variability relates to
attention and conscious perception. A salient feature of chaotic
RNNs is their ability to transiently stabilize their dynamics in
response to external or feedback signals (65–67, 69, 83), which
appears to be important for their trainability (65–67, 69). Indeed,
this ability to temporarily stabilize in response to inputs is a
general and well-established feature of chaotic systems (84). If
normal waking cortical dynamics are weakly chaotic as our evi-
dence suggests, then this feature of chaotic systems might explain
several key empirical findings regarding the trial-by-trial variabil-
ity of neuronal activity. In general, biological neural dynamics
exhibit significant variation across trials (85–87), which has been
linked in both simulation (65, 69) and empirical (88) studies to
chaos. But, just as in artificial RNNs (65–67, 69), the trial-by-trial
variability of real neural dynamics has been empirically shown to
drop after the onset of a sensory stimulus (89, 90); this suggests
that in some cases, sensory stimuli might transiently stabilize real
neural dynamics, just as they do in simulated chaotic RNNs (65–
67, 69, 83). Similarly, the finding that trial-by-trial neural variabil-
ity is lower when stimuli are consciously perceived (91, 92) might
suggest that weaker chaos—i.e., chaotic dynamics closer to the
edge-of-chaos critical point—can support successful conscious
perception, perhaps owing to the more robust transmission of in-
formation nearer to this critical point. Finally, because attention
also appears to reduce this trial-by-trial neural variability (93),
it may be that attentional mechanisms can transiently stabilize
local, weakly chaotic neural dynamics, pulling them closer to
the edge-of-chaos critical point—and thereby facilitate the trans-
mission of the attended information. These possibilities warrant
further empirical investigation, which we hope will be aided by
the time-series analysis tools described here.

Despite our evidence that low-frequency cortical activity
during waking states may operate on the chaotic side of the
edge-of-chaos critical point, as well as the known benefits of weak
chaoticity, the question of what “side” of this critical point normal
waking brain dynamics operate near, and how this might vary

across different parts of the brain, is far from settled. First, we
note that in our mean-field simulations, dynamics apparently on
the periodic side of this critical point likewise yielded high values
of Lempel–Ziv complexity (Fig. 2), and so neural dynamics on
the periodic side of this phase transition may be as information
rich as dynamics on the chaotic side. Additionally, there are
some neural circuits, such as the suprachiasmatic nucleus, whose
functioning crucially depends on their ability to produce highly
regular oscillations (94), which would make weak chaoticity (or
even edge-of-chaos criticality) likely unfavorable. Moreover, the
computations of some other neural circuits, such as the CA3
region of the hippocampus, are thought to resemble those of
a Hopfield network (95), which depends on the ability of the
network’s dynamics to converge to a stable fixed-point attractor
(96), therefore ruling out chaos (although we note that chaotic
neural networks have also been shown to support associative
memory storage, similar to Hopfield networks) (97). Thus, the
question of whether the normal waking brain’s dynamics operate
on the periodic or the chaotic side of the edge-of-chaos critical
point, and how this might vary across different neural circuits
and brain areas, will need to be investigated further in future
research.

Our finding—that slow cortical electrodynamics may be op-
erating on the chaotic side of the edge-of-chaos critical point
during waking states—may appear to conflict with prior reports
suggesting that the waking brain may operate on the ordered
side of some phase transition. As noted in our Introduction, this
apparent inconsistency likely lies in imprecise and/or inconsistent
definitions of “criticality,” order, and disorder in the literature
on neural criticality. In the context of phase transitions, terms
such as order and disorder are meaningful only when used with
reference to the breaking of some specific form of mathematical
symmetry: Ice water is ordered precisely because it lacks the
rotational and translational symmetries of liquid water, ferro-
magnets are ordered because their magnetic spins lack rotational
symmetry, and chaotic systems are ordered because they lack de
Rham or topological supersymmetry. It is for this reason that
terms more specific than criticality, order, and disorder should
be used when studying phases and phase transitions and why
it is likewise important to utilize mathematical tools that are
precisely tailored for assessing proximity to a particular type of
critical point (rather than using less specific tools, such as power-
law statistics, detrended fluctuation analysis, phase coherence,
etc.). Because we were interested in specifically studying the
edge-of-chaos critical point, which has long been associated with
optimal computation and information processing (Introduction),
we studied neural dynamics using the K statistic of the modified
0-1 chaos test, which directly tracks the quantity of interest
(i.e., largest Lyapunov exponents). That said, we note that it is
possible, and even likely, that normal waking brain dynamics
operate near several distinct critical points, only one of which
is the edge-of-chaos critical point, which would potentially allow
the brain to flexibly transition between different types of activity
states as needed (28). Indeed, in the mean-field model analyzed
here, normal waking brain activity is modeled as being poised
near four critical points (namely, a Turing bifurcation, a Hopf
bifurcation, the onset of chaos, and a transition from a high-firing
phase to a low-firing phase), and anesthesia is modeled as a phase
transition across only one of these critical points (from a high-
firing to a low-firing phase) (28).

Although both our simulation and empirical work focused on
the chaoticity of low-frequency cortical electrodynamics, it would
be fruitful to repeat our analyses in other frequency bands in
future work. In particular, it will be important to further explore
potential contributions of the varying chaoticity of alpha (8-
to 12-Hz) waves, as cortical electrodynamics in this frequency
range exhibit marked changes in anesthesia (98), disorders of
consciousness (99), and psychedelic states (100). At present, it
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is difficult to predict how this framework will extend to other
higher-frequency bands or whether the chaoticity of higher-
frequency processes can be meaningfully disentangled from the
chaoticity of low-frequency processes.

We note that our finding of increased low-frequency instability
during GABAergic anesthesia may appear to conflict with a prior
report by Solovey et al. (101) of increased stability in the cortical
dynamics of macaques during propofol anesthesia. This seeming
discrepancy rests on differing notions of stability, as well as differ-
ent assumptions about data: Solovey et al. (101) defined stability
in terms of the eigenvalues of regression matrices estimated
from ECoG recordings, a notion of stability that indicates only
that a process will not diverge to infinity and further assumes
that data are both linear and stochastic (an assumption not
supported by our analyses) (SI Appendix, Tables S4 and S5). In
contrast, we assessed stability in terms of chaos, or sensitivity
to perturbations/inputs, and also used time-series analysis tools
that do not assume linearity and therefore capture features of
data that cannot by definition be captured by linear analysis tools
such as autoregressive models. It is also worth noting that two
of the four ECoG datasets used in the report by Solovey et al.
(101) were the same as the macaque anesthesia data used here
(data were downloaded from the same repository) (Materials and
Methods), and yet we found robust increases in instability in the
anesthetized state for these two macaques, as we did in our three
human anesthesia subjects (Fig. 2 and SI Appendix, Fig. S5).

While the finding that GABAergic anesthetics destabilize low-
frequency cortical electrodynamics may be counterintuitive, we
found that known correlates of anesthetic depth—namely, delta
(1- to 4-Hz) power (102, 103), multiscale sample entropy (104),
and spectral slope (105, 106)—all changed in the simulation of
anesthesia cortical electrodynamics in ways that are consistent
with prior empirical results (SI Appendix, Fig. S13). In addition,
recent recordings of extracellular potentials have shown that
desflurane, a GABAergic anesthetic, increases the trial-by-trial
variability of neuronal spike timing (107), which, given both the
empirical (88) and simulation-based (65) evidence of a rela-
tionship between spike-timing variability and chaos (see above),
accords with the hypothesis that GABAergic anesthetics induce a
transition to strong chaos. That said, we point out that some func-
tional magnetic resonance imaging studies have found reduced
temporal variability of the blood oxygenation level-dependent
(BOLD) signal during GABAergic anesthesia (108, 109), while
others have found increased variability of BOLD signals in some
regions but decreases in others (110); however, we note that
the relationship between the chaoticity of low-frequency cortical
electrodynamics and the variability of the BOLD signal is unclear
and warrants investigation. Finally, it has been predicted that
strongly chaotic low-frequency cortical electrodynamics during
GABAergic anesthesia should disrupt the coherence between
electric cortical oscillations at low frequencies (28), which has
been empirically confirmed for occipital, frontal, and frontal–
occipital electrode pairs, but not for right–left temporal elec-
trodes (111), although we point out that phase coherence is at
best only an indirect correlate of chaoticity (given the well-known
ability of chaotic oscillators to synchronize given particular net-
work structures) (112).

In an attempt to facilitate potential translational applications
of this framework, we developed a time-series measure c of
proximity to edge-of-chaos criticality, based on a transforma-
tion of the K statistic of the 0-1 chaos test. We found that
c was significantly higher in conscious states than in diverse
states of unconsciousness and likewise was significantly corre-
lated with the Lempel–Ziv complexity of cortical electrodynam-
ics (Fig. 4). That said, we note that despite the significant increase
in c in all four DOC patients as they regained consciousness,
estimates of low-frequency chaoticity were significantly higher
(within subject) during unconsciousness in only three of four of

the patients (similar to the GABAergic anesthesia state) and
were significantly lower during unconsciousness in the fourth
patient (similar to generalized seizures) (SI Appendix, Fig. S11).
This may imply that disorders of consciousness constitute a
heterogeneous set of conditions with respect to the stability
of cortical electrodynamics, a possibility we hope to explore
more fully in future work. We further note that the distributions
of both this measure c and univariate Lempel–Ziv complexity
in conscious vs. unconscious states were partially overlapping
(Fig. 4), even though both measures displayed consistent within-
subject increases from unconscious to conscious states (Fig. 4 and
SI Appendix, Figs. S5 and S11). This suggests that these measures
may perhaps best be used as within-patient indexes of recovery of
consciousness rather than as cross-sectional biomarkers. Addi-
tionally, we point out one important limitation in our analysis of
DOC patients, which is the potential confounding effect of drugs
administered to the patients: Patients were occasionally adminis-
tered several painkillers and anesthetics on the same day as GCS
assessments and EEG data collection (SI Appendix, Table S8)
(Materials and Methods). We were unable to ascertain the precise
timing of drug administration relative to behavioral assessments
and, as such, we cannot rule out the possibility that observed
differences in cortical stability/criticality in unconscious states
versus conscious states in these DOC patients were possibly
driven by the effects of these drugs on their slow cortical elec-
trodynamics. Moreover, our sample size of DOC patients who
regained consciousness was small (n = 4), and so the utility of our
criticality measure c as an index of consciousness in patients with
disorders of consciousness warrants validation in a larger dataset.
Along the same lines, if this framework is to be used in the
aid of diagnosis, then it will be imperative to develop additional
methods for estimating changing levels of chaoticity in cortical
electrodynamics. This might be achieved, for example, by observ-
ing the consistency of cortical responses to external stimuli (e.g.,
in response to transcranial magnetic stimulation), which should
degrade as cortical electrodynamics become strongly chaotic—a
possibility we plan to explore in future work.

Finally, we note that it would be fruitful to further study
neural computation near the edge-of-chaos critical point on a
more theoretical level. While important advances have been
made along these lines, for example in establishing relationships
between this critical point and the trainability of deep neural
networks (25), the memory capacity and decodability of recurrent
networks (76), information complexity (6–9), and Bayes-optimal
perceptual categorization (113), much theoretical work remains
to be done to understand the implications of these findings for
neural computation. If the slow electrodynamics of the cortex
during conscious states are poised near this critical point, as our
work suggests, then improving our theoretical understanding of
computation and information flow at the onset of chaos will also
improve our understanding of how, precisely, neural information
processing is disrupted in unconsciousness.

Materials and Methods
Mean-FieldModel of Slow Cortical Electrodynamics. Wehere study themean-

field model of Steyn-Ross, Steyn-Ross, and Sleigh (28). The model allows

for straightforward manipulation of both the strength and balance of

postsynaptic inhibition and excitation, which have long been thought to be

key in tuning neural dynamics to chaotic (62), critical (114), and information-

rich (114) states. Furthermore, the model is unique in its inclusion of gap

junction coupling between inhibitory interneurons, which recent empirical

work in zebrafish has shown are also likely important for tuning neural

dynamics toward and away from criticality (34).

Themodel simulates GABAergic anesthesia (e.g., propofol or sevoflurane)

as an increase in cortical inhibition coupled with a mild decrease in gap

junction coupling between inhibitory interneurons, based on findings that

GABAa agonists (115), and GABAergic anesthetics more specifically (116),

inhibit gap junction communication (115, 116) and that these compounds

also increase postsynaptic inhibition by prolonging inhibitory postsynaptic
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potentials (117). The model treats waking conscious states as a balance

between excitation and inhibition, with strong gap junction coupling be-

tween inhibitory interneurons, which yields weak chaos (near edge-of-

chaos criticality) in the model’s deterministic component (Fig. 2A), arising

from interacting Turing (spatial) and Hopf (temporal) instabilities. Finally,

a strong reduction of inhibitory gap junction coupling results in a Hopf

bifurcation that produces periodic dynamics reminiscent of whole-of-cortex,

generalized seizures (28). This is consistent with observations of increased

seizure frequency following either genetic ablation (118) or drug-induced

reduction (119) of gap junction coupling between inhibitory interneurons.

See SI Appendix, Supplementary Methods for model equations and param-

eters and for details on how ground-truth largest Lyapunov exponents of

the model were calculated.

Lempel–Ziv Complexity. Lempel–Ziv complexity is a measure of the size of

a signal following Lempel–Ziv compression and thus tracks the amount

of nonredundant information in a signal (36). To compute Lempel–Ziv

complexity, a continuous recording must first be discretized. Following prior

work (46, 120), we binarized both our simulated and recorded data by

thresholding at the mean of the signal’s instantaneous amplitude, which is

the absolute value of the analytic signal. We then computed three measures

of Lempel–Ziv complexity: 1) the median univariate Lempel–Ziv complexity

across all recorded channels (“univariate LZc”); 2) the joint Lempel–Ziv

complexity between all channels, using the method described by Zozor et

al. (121); and 3) the Lempel–Ziv complexity of all channels concatenated,

timepoint by timepoint, into a single string, following themethod described

by Schartner et al. (46, 120). Typically, Lempel–Ziv complexity is then normal-

ized to provide a single value between 0 and 1. We compared several dif-

ferent normalization approaches and found that the approach most robust

against changes to a signal’s spectral profile was to divide the Lempel–Ziv

complexity of a signal by the Lempel–Ziv complexity of a phase-randomized

surrogate of that signal (SI Appendix, Fig. S14), following Brito et al. (122);

note that phase-randomized surrogates were generated independently for

each channel-x trial in all recordings for the calculation of the Lempel–Ziv

complexity measures. All measures of Lempel–Ziv complexity reported in this

paper were normalized in this fashion and were calculated for data low-pass

filtered at 45 Hz. Data were low-pass filtered at 45 Hz to avoid potential

confounds introduced by muscle activity at higher frequencies.

Extracting Low-Frequency Cortical Activity. The mean-field model described

above specifically simulates the low-frequency (< 4-Hz) component of

macroscale electric cortical oscillations. To compare themodel results against

real data, we therefore extracted the low-frequency component of both our

simulated and real cortical signals. Although different frequencies of cortical

electrodynamics have historically been studied at fixed, canonical frequency

bands, with choices of oscillation center frequencies and bandwidths varying

across studies, there is growing evidence that these center frequencies and

bandwidths vary considerably as a function of age, brain state, subject,

and species and that low-pass filtering at fixed canonical frequencies can

therefore produce spurious oscillations where no oscillations exist (45).

Given that our analyses span diverse brain states, species, and imaging

modalities, it was important to identify subject-, trial-, and channel-specific

neural oscillation frequencies.We therefore identified low-frequency neural

activity for each channel, for each trial, using the recently developed FOOOF

algorithm, which automatically parameterizes neural signals’ power spectra

(45). The algorithm fits a neural power spectrum as a linear combination of

the background 1/f component with oscillations at specific frequencies that

rise above this background 1/f component as peaks in the power spectrum.

The algorithm fits the spectral power P as

P = L+

N
∑

n=0

GN, [1]

where L is the background 1/f power spectrum, and each Gn is a Gaussian fit

to a peak rising above the 1/f background,

Gn = a ∗ exp(
−(F − c)2

2w2
), [2]

where a is a given oscillation’s amplitude, c is its center frequency, w is

its bandwidth, and F is a vector of input frequencies. The 1/f background

component L is modeled as an exponential in semilog-power space (i.e., with

log-power values as a function of linear frequencies):

L= b− log(k + F
χ
), [3]

where b is a broadband power offset, χ is the spectral slope, k controls the

“knee” at which the 1/f power spectrum bends, and F is a vector of input

frequencies.

To specifically extract the low-frequency component of neural oscilla-

tions, we set the input frequency range F to 1 to 6 Hz. The FOOOF algorithm

then identifies the center frequencies and bandwidths of putative oscilla-

tions that rise above the 1/f background within this frequency range. For all

channels-x trials in our data, we extracted the lowest-frequency oscillation

identified by the algorithm, by low-pass filtering at the high-frequency

end of the bandwidth of the slowest identified oscillation. If the FOOOF

algorithm failed to identify any oscillation in the 1- to 6-Hz range for a

particular channel in a particular trial, then data for that channel in that trial

were excluded from further analysis of chaoticity. See SI Appendix, Table S1

for the percentage of channels that were thus excluded from chaoticity

estimates for each subject and brain state. Across all datasets, the mean

frequency selected using this approach was 3.27 Hz, with a SD of 0.48 Hz.

We then low-pass filtered all signals using EEGLAB’s two-way least-squares

finite impulse response low-pass filtering, where the filter order was set to

3×
sampling rate

lowpass frequency cutoff (the default of EEGLAB). Note that using the FOOOF

algorithm improved our ability to track chaoticity in the mean-field model

of cortical electrodynamics, where the ground-truth chaoticity is known

(SI Appendix, Tables S6 and S7), and that estimates of the chaoticity of data

low-pass filtered using the FOOOF algorithm were stable across different

simulations compared to alternative methods (SI Appendix, Fig. S12), which

validates its utility in tracking chaoticity in real low-frequency cortical

electrodynamics.

The Modified 0-1 Test for Chaos. The 0-1 chaos test was developed by

Gottwald andMelbourne (40) as a simple tool for testing whether a discrete-

time system is chaotic, using only a single time series recorded from that

system. Gottwald and Melbourne (41) provided an early modification to

the test, which made it more robust against measurement noise. Dawes

and Freeland (43) added additional modifications to the test, improving

its ability to distinguish between chaotic dynamics and strange nonchaotic

or quasiperiodic dynamics. The modified test outputs a statistic K as an

estimate of chaoticity. As the length of a time series is increased, K will

approach 1 for chaotic systems and will approach 0 for periodic systems,

and it will track degree of chaos for finite-length time series (40–43).

See SI Appendix, Supplementary Methods for a mathematically detailed

description of the test.

The 0-1 test is designed to track chaos in discrete-time systems, and thus

signals recorded from non–time-discrete processes (like neural electrody-

namics) must first be transformed into discrete-time signals before applica-

tion of the test (42). Two approaches have been proposed for time discretiza-

tion prior to application of the test: downsampling (42) and taking all local

minima andmaxima of a continuous signal (44).We used the latter approach

for all datasets (real and simulated), as it yielded best correspondence to the

ground truth in our simulations (SI Appendix, Tables S6 and S7).

A Time-Series Estimate of Proximity to Edge-of-Chaos Criticality. With an eye

toward clinical applications of this edge-of-chaos criticality framework in

the study of unconsciousness, we here introduce a time-series estimate

of proximity to the edge-of-chaos critical point, based on the K statistic

outputted by the modified 0-1 chaos test (see above). This measure c is

defined as follows:

c =

{

K
α

K < α

1 − K−α

1−α
K ≥ α

, [4]

where K is the output of the 0-1 chaos test and α is a parameter that takes

on a value between 0 and 1. This criticality measure c will approach 1 as

K approaches α and will approach 0 as K approaches either 0 (periodicity)

or 1 (strong chaos). As noted in Results, precise choice of α may bias c

toward either periodic near-critical or chaotic near-critical dynamics (i.e.,

to dynamics on either the stable or the unstable side of the edge-of-

chaos critical point), and thus the optimal value of α for potential clinical

assessments of consciousness using c will need to be determined by further

empirical work.

Empirical Data. Previously published cortical recordings from psychedelic

states (100) and generalized seizures (123, 124) were reanalyzed in this work

(see SI Appendix, Supplementary Methods for more details). In addition to

these previously described datasets, surface ECoG recordings from three hu-

man epilepsy patients given propofol anesthesia prior to surgical resection

of their epileptic focus were analyzed. Data were collected at the University

of California, Irvine, Medical Center. Patients provided informed andwritten

consent in accordance with the local ethics committees of the University of

California, Irvine (University of California, Irvine Institutional Review Board
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Protocol no. 2014-1522) and University of California, Berkeley (University

of California, Berkeley Committee for the Protection of Human Subjects

Protocol no. 2010-01-520), which approved the study. Data were also col-

lected from four traumatic brain injury patients admitted at the University

of California, Los Angeles (UCLA) Ronald Reagan University Medical Center

intensive care unit. The UCLA institutional review board approved the study,

and informed consent was obtained according to local regulations. See

SI Appendix, Supplementary Methods for more details.

Data Availability. Anonymized summary statistics/values required to recre-
ate the figures and statistical analyses of this paper have been deposited in
Figshare (https://figshare.com/articles/software/Consciousness_is_supported
_by_near-critical_cortical_electrodynamics/12949355) (DOI: 10.6084/m9.
figshare.12949355). Previously published data were used for this work

(https://doi.org/10.1371/journal.pone.0022561, https://doi.org/10.1016/j.cmp
b.2010.08.011).
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