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Cellular Automata Can Reduce Memory
Requirements of Collective-State Computing
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Abstract— Various nonclassical approaches of distributed
information processing, such as neural networks, reservoir com-
puting (RC), vector symbolic architectures (VSAs), and others,
employ the principle of collective-state computing. In this type
of computing, the variables relevant in computation are super-
imposed into a single high-dimensional state vector, the collective
state. The variable encoding uses a fixed set of random patterns,
which has to be stored and kept available during the computation.
In this article, we show that an elementary cellular automaton
with rule 90 (CA90) enables the space—time tradeoff for collective-
state computing models that use random dense binary repre-
sentations, i.e., memory requirements can be traded off with
computation running CA90. We investigate the randomization
behavior of CA90, in particular, the relation between the length
of the randomization period and the size of the grid, and how
CA90 preserves similarity in the presence of the initialization
noise. Based on these analyses, we discuss how to optimize
a collective-state computing model, in which CA90 expands
representations on the fly from short seed patterns—rather than
storing the full set of random patterns. The CA90 expansion is
applied and tested in concrete scenarios using RC and VSAs.
Our experimental results show that collective-state computing
with CA90 expansion performs similarly compared to traditional
collective-state models, in which random patterns are generated
initially by a pseudorandom number generator and then stored
in a large memory.

Index Terms— Cellular automata (CA), collective-state com-
puting, distributed representations, hyperdimensional computing,
random number generation, reservoir computing (RC), rule 90,
vector symbolic architectures (VSAs).

I. INTRODUCTION

OLLECTIVE-STATE computing is an emerging par-
adigm of computing, which leverages interactions of
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nodes or neurons in a highly interconnected network [1].
This paradigm was first proposed in the context of neural
networks and neuroscience for exploiting the parallelism of
complex network dynamics to perform challenging compu-
tations. The classical examples include reservoir comput-
ing (RC) [2]-[5] for buffering spatiotemporal inputs and
attractor networks for associative memory [6] and optimiza-
tion [7]. In addition, many other models can be regarded
as collective-state computing, such as random projection [8],
compressed sensing [9], [10], randomly connected feedforward
neural networks [11], [12], and vector symbolic architectures
(VSAs) [13]-[15]. Interestingly, these diverse computational
models share a fundamental commonality—they all include
an initialization phase in which high-dimensional independent
and identically distributed (i.i.d.) random vectors or matrices
are generated, which have to be memorized.

In different models, these memorized random vectors or
matrices serve a similar purpose: to represent inputs and
variables that need to be manipulated as distributed patterns
across all neurons. For example, in RC, random matrices
are used as weights for projecting input to the reservoir
(commonly denoted as Wi") as well as weights of recurrent
connections between the neurons in the reservoir (commonly
denoted as W). The collective state is the (linear) superposition
of these distributed representations. Decoding a particular
variable from the collective state can be achieved by a linear
projection onto the corresponding representation vector. Since
high-dimensional random vectors are pseudo-orthogonal, the
decoding interference is rather small, even if the collective
state contains many variables.! In contrast, if representations
of different variables are not random but contain correlations
or statistical dependencies, then the interference becomes large
when decoding and collective-state computing ceases to work.
In order to achieve near orthogonality and low decoding
interference, a large dimension of the random vectors is
essential.

When implementing a collective-state computing model in
hardware [e.g., in field-programmable gate arrays (FPGAs)],
the memory requirements are typically a major bottleneck for
scaling the system [16]. It seems strangely counterintuitive to
spend a large amount of memory just to store random vectors.
Thus, our key question is whether collective-state computing

! Although decoding by projection would work even better for exactly
orthogonal distributed patterns, such a coding scheme is less desirable: i.i.d
random generation of distributed patterns is computationally much cheaper
and does not pose a hard limit on the number of encoded variables to be
smaller or equal than the number of nodes or neurons.
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can be achieved without memorizing the full array of random
vectors. Instead of memorization, can memory requirements
be traded off by computation?

Cellular automata (CA) are simple discrete computations
capable of producing complex random behavior [17]. Here,
we study the randomization behavior of an elementary cellular
automaton with rule 90 (CA90) for generating distributed
representations for collective-state computing. CA90 is chosen
because of its highly parallelizable implementation and ran-
domization properties, which, in our opinion, are amenable for
collective-state computing (see Section II-C). We demonstrate
in the context of RC and VSAs that collective-state computing
at full performance is possible by storing only short random
seed patterns, which are then expanded “on the fly” to the
full required dimension by running rule CA90. Thus, CA90
provides the space—time tradeoff for collective-state computing
models since, instead of memorizing random vectors/matrices,
CA90 allows to recompute them in real time while using
only a fraction of the fully memorized solution at the cost
of running CA90 computations every time when the access
is required. This work is partially inspired by [18], which
proposed that RC, VSAs, and CA can benefit from each
other, by expanding low-dimensional representations via CA
computations into high-dimensional representations that are
then used in RC and VSA models. The specific contributions
of this article are given in the following.

1) Characterization of the relation between the length of
the randomization period of CA90 and the size of its
grid.

2) Analysis of the similarity between CA90 expanded rep-
resentations in the case when the seed pattern contains
errors.

3) Experimental evidence is that for RC and VSAs, the
CA90 expanded representations are functionally equiv-
alent to the representations obtained from a standard
pseudorandom number generator.>

This article is structured as follows. The main concepts used
in this study are presented in Section II. The effect of random-
ization of states by CA90 is described in Section III. The use
of RC and VSAs with the CA90 expanded representations is
reported in Section IV. The findings and their relation to the
related work are discussed in Section V.

II. CONCEPTS
A. Collective-State Computing

As explained in Section I, collective-state computing sub-
sumes numerous types of network computations that employ
distributed representation schemes based on i.i.d. random vec-
tors. One type is VSA or hyperdimensional computing [13],
[19], [20], which has been proposed in cognitive neuroscience
as a formalism for symbolic reasoning with distributed rep-
resentations. Recently, the VSA formalism has been used to
formulate other types of collective-state computing models,
such as RC [5], compressed sensing [21], and randomly

ZPlease note that while a (pseudo-) random number generator is not part
of collective-state computing models (RC, VSA, and so on) during run time,
it is required for model initialization.
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connected feedforward neural networks [12] such as random
vector functional link networks [11] and extreme learning
machines [22]. Following this lead, we will formulate the types
of collective-state computing, which are used in Section IV to
study the CA90 expansion.?

VSAs are defined for different spaces (e.g., real or complex),
but here, we focus on VSAs with dense binary [23] or
bipolar [24] vectors where the similarity between vectors is
measured by normalized Hamming distance (denoted as dj,)
for binary vectors or by dot product for bipolar ones (denoted
as dy). The VSA formalism will be introduced as we go. Please
also refer to Section S.2 in the Supplementary Materials for a
concise introduction to VSAs.

1) Item Memory With Nearest Neighbor Search: A common
feature in collective-state computing is that a set of basic con-
cepts/symbols” is defined and assigned with i.i.d. random high-
dimensional atomic vectors. In VSAs, these atomic vectors are
stored in the so-called item memory (denoted as H), which
in its simplest form is a matrix with the size dependent on
the dimensionality of vectors (denoted as K) and the number
of symbols (denoted as D). The item memory H enables
associative or content-based search, that is, for a given query
vector q, it returns the nearest neighbor. Given such a noisy
query, the memory returns the best match using the nearest
neighbor search

arg min(d;, (H;, q)). 1

The search returns the index of the vector that is closest to
the query in terms of the similarity metric [e.g., the Hamming
distance as in (1)]. In VSAs and, implicitly, in most types
of collective-state computing, this content-based search is
required for selecting and error-correcting results of compu-
tations that, in noisy form, have been produced by dynamical
transformations of the collective state.

2) Memory Buffer: RC is a prominent example of
collective-state computing as in echo state networks [3], liquid
state machines [2], and state-dependent computation [35].
In these models, the dynamics of a recurrent network is
used to memorize or buffer the structure of a spatiotemporal
input pattern. In essence, the memory buffer accumulates the
input history over time into a compound vector. For example,
the recurrent network dynamics of echo state networks can
be viewed as attaching time stamps to the inputs arriving
at different times.> The time stamps can be used to isolate
past inputs at a particular time from the compound vector
describing the present network state. For a detailed explanation
of this view of echo state networks, see [5].

It has been recently shown how the memory buffer task can
be analyzed using the VSA formalism [5], [36], which builds

3There are several different terms, describing computations in CA,
e.g., “expansion,” “evolution,” and development. In the context of this article,
we use terms expansion and evolution interchangeably. The term “expansion”
is used to emphasize the fact that CA90 is used to produce distributed
representations, while the term “evolution” is used when referring to running
CA computations.

4Examples of the basic concepts are distinct features in machine learning
problems [25]-[28] or distinct symbols in data structures [29]-[34].

SThis is done implicitly since the recurrent connection matrix is applied a
different number of times to inputs presented at different time stamps.
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on earlier VSA proposals of the memory buffer task under the
name trajectory association task [37], [38].

Here, we use a simple variant of the echo state network [39],
called integer echo state network [40], which uses a random
binary matrix for projecting the input to the reservoir. The
memory buffer involves the item memory and two other VSA
operations: permutation and bundling. The item memory con-
tains a random binary/bipolar vector assigned for each symbol
from a dictionary of symbols of size D. The item memory
corresponds to Wi weight matrix for projecting input to the
reservoir. A fixed permutation (rotation) of the components of
the vector (denoted as p)° is used to represent the position of a
symbol in the input sequence. In other words, the permutation
operation is used as a systematic transformation of a symbol
as a function of its serial position. For example, a symbol
a represented by a is associated with its position i in the
sequence by the result of permutation (denoted as r) as

r=p'(a) 2

where p’ (%) denotes that some fixed permutation p() has been
applied i times.

The bundling operation forms a linear superposition of
several vectors, which in some form is present in all collective-
state computing models. Its simplest realization is a compo-
nentwise addition. However, when using the componentwise
addition, the vector space becomes unlimited, and therefore,
it is practical to limit the values of the result. In general, the
normalization function applied to the result of superposition
is denoted as f, (x).” The vector x resulting from the bundling
of several vectors, e.g.,

x=fa(a+b+c) 3)

is similar to each of the bundled vectors, which allows storing
information as a superposition of multiple vectors [5], [41].
Therefore, in the context of the memory buffer, the bundling
operation is used to update the buffer with new symbols.

The memory buffer task involves two stages: memorization
and recall, which are done in discrete time steps. At the
memorization stage, at every time step #, we add a vector
H, () representing the symbol s(¢) from the sequence s to the
current memory buffer x(¢), which is formed as

xX(1) = fu(p(x(t — 1)) + Hy()) “)

where x(r — 1) is the previous state of the buffer. Note that
the symbol added d step ago is represented in the buffer as
P Hg(—a)).-

At the recall stage, at every time step, we use x(f) to
retrieve the prediction of the delayed symbol stored d steps ago
[8(t —d)] using the readout matrix (W?) for particular d using
the nearest neighbor search

S(t —d) =arg max(dd(W?, x(t))). 5)

1

The cyclic shift is used frequently due to its simplicity.

"In the case of dense binary VSAs, the arithmetic sum vector of two or
more vectors is thresholded back to binary space vector by using the majority
rule/sum [denoted as f;, ()] where ties are broken at random.

Due to the use of a normalization function f,(x), the
memory buffer possesses the recency effect, and therefore, the
average accuracy of the recall is higher for smaller values of
delay. There are several approaches how to form the readout
matrix W¢ and the normalization function f,(x). Please see
Section S.1 in the Supplementary Materials for additional
details on integer echo state networks.

3) Factorization With Resonator Network: General sym-
bolic manipulations with VSA require one other operation,
in addition to bundling, permutation, and item memory. The
representation of an association of two or more symbols, such
as a role-filler pair, is achieved by a binding operation, which
associates several vectors (e.g., a and b) together and produces
another vector (denoted as z) of the same dimensionality

Z=XDYy (6)

where the notation & denotes componentwise XOR used for
the binding in dense binary VSAs. While bundling leads
to a vector that is correlated with each of its components,
in binding, the resulting vector z is pseudo-orthogonal to the
component vectors. Another important property of binding is
that it is conditionally invertible. Given all but one compo-
nents, one can simply compute from the binding representation
of the unknown factor, e.g., ZEX=xDXPy =Y.

If none of the factors are given, but are contained in the
item memory, the unbinding operation is still feasible but
becomes a combinatorial search problem, whose complexity
grows exponentially with the number of factors. This problem
often occurs in symbolic manipulation problems, for example,
in finding the position of a given item in a tree structure [42].
Let us assume that each component (factor, denoted as f;)
comes from a separate item memory (‘H,2H, ...), which is
called factor item memory, e.g., a general example of a vector
with four factors is

fiof, ®f; O 1y @)

Recent work [43] proposes an elegant mechanism called
the resonator network to address the challenge of factoring.
In the nutshell, the resonator network [43] is a novel recurrent
neural network design that uses VSAs principles to solve
combinatorial optimization problems.

To factor the components from the input vector
fiof, ®f; & f; representing the binding of several vectors,
the resonator network uses several populations of units,
f1(1),£,(t), . .., each of which tries to infer a particular factor
from the input vector. Each population, called a resonator,
communicates with the input vector and all other neighboring
populations to invert the input vector using the following
dynamics:

tie+1) = f,("HH (zo b o k() @ ()
fZ(t + 1) = fn

(‘e ( )
(ren( )
e+ = (3H3HT (z ofinebhon e ﬁ(t))

(‘nmr( )

zd b)) @ 10)

e+ =f("HH (zof )b @f:())). (8

N N N S’
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Note that the process is iterative and progresses in discrete
time steps, ¢. In essence, at time ¢, each resonator f'i (t) can
hold multiple weighted guesses for a vector from each factor
item memory through the VSAs principle of superposition,
which is used for the bundling operation. Each resonator also
uses the current guesses for factors from other resonators.
These guesses from the other resonators are used to invert
the input vector and infer the factor of interest in the given
resonator. The principle of superposition allows a population
to hold multiple estimates of factor identity and test them
simultaneously. The cost of superposition is a crosstalk noise.
The inference step is, thus, noisy when many guesses are
tested at once. However, the next step is to use factor item
memory ‘H to remove the extraneous guesses that do not
fit. Thus, the guess f, for each factor is cleaned up by
constraining the resonator activity only to the allowed atomic
vectors stored in ‘H. Finally, a regularization step [denoted
as f,(x)] is needed. Successive iterations of this inference
and clean-up procedure (8) eliminate the noise as the factors
become identified and find their place in the input vector.
When the factors are fully identified, the resonator network
reaches a stable equilibrium and the factors can be read out
from the stable activity pattern. Please refer to Section S.3
in the Supplementary Materials for additional motivation and
explanation of the resonator network.

B. CA-Based Expansion

The CA is a discrete computational model consisting of a
regular grid of cells [17] of size N. Each cell can be in one of
a finite number of states (the elementary CA is binary). States
of cells evolve in discrete time steps according to some fixed
rule. In the elementary CA, the new state of a cell at the next
step depends on its current state and the states of its immediate
neighbors. Despite the seeming simplicity of the system,
among the elementary CAs, there are rules (e.g., rule 110) that
make CA dynamics operate at the edge of chaos [44] and were
proven to be Turing complete [45]. In the scope of this article,
we consider another rule—rule 90 (CA90) as it possesses sev-
eral properties highly relevant for collective-state computing.

In the elementary CA, the state of a cell is updated using the
current states of the cell itself and its left and right neighboring
cells. A computation step in CA refers to the simultaneous
update of states of all the cells in a grid. CA with binary
states, there are in total 2° = 8 possible input combinations
for each input there are two possible assignments for the output
cell, which makes in total 2% = 256 combinations where each
particular assignment defines a rule. Fig. 1 shows all input
combinations and corresponding assignment of output states
for CA90. CA90 assigns the next state of a central cell based
on the previous states of the neighbors. In particular, the new
state is the result of XOR operation on the states of the neigh-
boring cells. This is particularly attractive because CA90 has
a computational advantage since the CA implementation can
be easily vectorized and implemented in hardware (especially
when working with cyclic boundary conditions®). For example,

8Cyclic boundary condition means that the first and the last cells in the grid
are considered to be neighbors.
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Fig. 1. Assignment of new states for a center cell when the CA uses rule 90.

A hollow cell corresponds to zero state, while a shaded cell marks one state.

if at time step ¢, vector x(¢) describes the states of the CA grid,
then the grid state at # + 1 is computed as

x(t +1) = p™'(x(1)) & p~' (x(t)) )

where p*!:~1} is the notation for cyclic shift to the right or
left by one. Note that (9) is identical to one step of evolution
of CA90 with cyclic boundary conditions. This observation
is important as it allows for highly parallelized implementa-
tion in, e.g., FPGA or application-specific integrated circuits
(ASICs).

Since, in the context of this study, we use CA90 for the
purposes of randomization, we will call the state of the grid
x(0) at the beginning of computations as an initial short seed.
It is worth pointing out that CA90 formulated as in (9) is a
sequence of VSA operations [46]. Given the vector x as an
argument, by performing two rotations (p*'(x) and p~'(x))
and then binding the results of rotations together (p*!(x) @
p~1(x)), we implement CA90.

The core idea of this article is to use CA90 to generate
a distributed representation of expanded dimensionality that
can be used within the context of collective-state computing.
This expansion must have certain randomization properties and
be robust to perturbations. Fig. 2 presents the basic idea of
obtaining an expanded dense binary distributed representation
from a short initial seed. In essence, the seed is used to
initialize the CA grid. Once initialized, CA90 computations
are applied for several steps (denoted as L).

To illustrate the idea, let us consider a concrete example.
In the context of RC, the CA90 expansion might be used to
significantly reduce the memory footprint required to store a
random matrix W of an echo state network containing the
weights between input and reservoir layers. Normally, Wi €
[K x u], where K corresponds to the size of the reservoir
and u denotes the size of the input. Instead of storing the
whole Win, the use of CA90 expansion allows storing a smaller
matrix S(0) € [N x u], with N = K /L. Thus, the usage of
CA90 in RC reduces the memory requirements by a factor of
L. In order to explicitly rematerialize W™ obtained from the
expansion, S(0) is used to initialize the grid and CA90 (9) is
run for L — 1 steps

W = [S(0): p*'(S(0) ® p~ (S(0)); ...; p*(S(L —3))
@ p ' (S(L—=3): p™SL~2) @ p~ (S ~2))]
(10)

where [-, -] denotes the concatenation along the vertical dimen-
sion and S(i) = p*'(SG — 1) ® p~'(SG — 1),1< i <
L — 1. Thus, the expansion comes at a computational cost
of executing L — 1 steps of CA90. At every step i of CA90
evolution, the states of the grid in S(i) provide a new burst
of N x u bits, which can be either used on the fly (without
memorization) to make the necessary manipulations and then
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N-dimensional random initial short seed
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Fig. 2. Basic scheme for expanding distributed representations with CA90

from some initial short seed. The dimensionality of the seed N is equal to
the size of the CA grid.

erased or concatenated [with memorization as shown in (10)]
to the previous states if the distributed representation should
be rematerialized explicitly. In any case, the dimensionality of
the expanded representation is K = NL.

C. CA90 and VSAs

Section V presents the joint use of RC, VSAs, and CA90
expansion. Among the related works discussed [47]-[52] (see
Section V-B1), [50] is the most relevant, as it uses the random-
ization property of CA90. In particular, this work identified the
following useful properties of CA90 for VSAs:

1) random projection;

2) preservation of the binding operation;

3) preservation of the cyclic shift.

By random projection, we mean that when CA90 is initial-
ized with a random state x(0) (p; & po =~ 0.5), which should
be seen as an initial short seed, its evolved state at step ¢ is a
vector x() of the same size and density. Moreover, during the
randomization period (see Section III-A), x(¢) is dissimilar to
the initial short seed x(0), i.e., d;(x(0), x(¢)) ~ 0.5 as well as
to the other states in the evolution of the seed.

The preservation of the binding operation refers to the fact
that if a seed ¢(0) is the result of the binding of two other
seeds: ¢(0) = a(0) @ b(0), then after  computational steps of
CA90, the evolved state ¢(r) can be obtained by binding the
evolved states of the initial seeds a(0) and b(0) used to form
¢(0), i.e., c(t) = a(r) ® b(7).

Finally, CA90 computations preserve a special case of
the permutation operation—cyclic shift by i cells. Suppose
that d(0) = pi(a(0)) is an initial seed. After t com-
putational steps of CA90, the cyclic shift of the evolved
seed a(t) by i cells equals the evolved shifted seed
d(?) so that d,,(d(z), p' (a(t)) = 0.

III. RANDOMIZATION OF STATES BY CA
A. Errorless Randomization

Usually, distributed representations in collective-state com-
puting use i.i.d. random vectors. Similarly, we start with
i.i.d. random vectors for short seeds. However, in contrast
to the conventional approach, we are going to expand the
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Fig. 3. Normalized degrees of freedom for different values of the grid size
of CA90. The evolution of CA90 is reported for 5000 steps. The number
of short seeds in the item memory was fixed to 100. The reported values
were averaged over 100 simulations randomizing initial short seeds. Note the
logarithmic scales of the axes.

dimensionality of the seed vectors via CA90 with boundary
conditions. An important question for expansion is what are
the limits of CA90 in terms of producing randomness?

One very useful empirical tool for answering this question
is calculation of degrees of freedom from the statistics of nor-
malized Hamming distances between binary vectors (see [53]
for an example). Given that p; denotes the average normalized
Hamming distance and o;, denotes its standard deviation, the
degrees of freedom are calculated as

F = py(1 = pp)/o;. (1)

Due to the randomization properties of CA90, we expect
that after a certain number of steps, it will produce new degrees
of freedom. To be able to compare different grid sizes, we will
report the degrees of freedom normalized by the grid size,
i.e., F/N. In other words, if a single step of CA90 increased
F by N (best case), the normalized value would increase by 1.

Fig. 3 presents the normalized degrees of freedom measured
for 5000 steps of CA90 for different grid sizes using the
same values as in [17, p. 259]. From the figure, we can draw
several interesting observations. First, for all of the consid-
ered grid sizes, the degrees of freedom grow linearly at the
beginning (following the reference, black dashed line, which
indicates degrees of freedom in random binary vectors of the
corresponding size). At some point, however, the degrees of
freedom reach a maximum value and start to saturate, as we
would expect. We are interested in the period of linear growth,
and we call this the randomization period. Second, we see
that larger grid sizes typically have longer randomization
periods. For example, the longest randomization period of
2047 steps was observed for N = 23 (but this is not the largest
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Fig. 4. Empirically measured randomization period (blue) and the analytical
periodic cycles [54] (red) for the grid size in the range [9, 46]. Note the
logarithmic scale of y-axis.

grid size).” Third, the randomization period of odd grid sizes
is always longer than that of the even ones. For example, the
randomization periods for N = 22 and N = 24 were only
31 and 7, respectively (cf. 2047 for N = 23). Thus, there is
a dependency between N and the randomization period, but,
despite the above observations, there is no clear general pattern
connecting the grid size to the length of the randomization
period.

The good news, however, is that the length of the ran-
domization period is closely related to the length of periodic
cycles (denoted as ITy) in CA90 discovered in [54]. In short,
the irregular behavior of randomization periods and periodic
cycles is a consequence of their dependence on number
theoretical properties of N; Martin er al. [54] provided the
following characterization of periodic cycles I1y in CA90.

1) For CA90 with N of the form 2/, Ty = 1.

2) For CA90 with N even but not of the form 2/, [Ty =

2y .

3) For CA90 with N odd, TTy|IT} = 25°9v® — 1, where
sordy(2) is the multiplicative “suborder” function of 2
modulo N, defined as the least integer j such that
2/ =41 mod N.

Fig. 4 presents the empirically measured randomization
periods as well as analytically calculated periodic cycles
IT3, [54] for the grid size in the range [9, 46]. First, we see that
when N is odd, the randomization period equals the periodic
cycle. The only exception is the case when N = 37, but this
is just the first exception where Iy = II} /3. Second, when
N is of the form 2/, the randomization period does not equal
one because CA90 is producing activity for 2/~! steps, which
increases the degrees of freedom. In fact, the randomization
period in this case is 2/=2 _ 1. Third, when N is even,

the CA90 produces IIy unique grid states but the patterns
of Hamming distances between the states evolved from two
random initial short seeds start to repeat after Ily/2 steps,

9As will be explained later in this section, this is because the length
of the randomization period depends on N and primes tend to have long
randomization periods. Since N = 23 is the largest prime used in Fig. 3, this
grid size exhibits the longest randomization period among all considered grid
sizes.
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Fig. 5. Normalized Hamming distance between the original and noisy vectors
obtained from short seeds for N = 37 during the first 256 steps of CA90
evolution. The reported values were averaged over 500 simulations where
both initial short seeds and errors were chosen at random. Note the logarithmic

scales of axes.

and thus, they do not contribute new degrees of freedom.
Therefore, the randomization period is two times lower than
the periodic cycle. Aggregating these points, with respect to
the randomization period of CA90, we have the following.
1) For CA90 with N of the form 2/, the randomization
period is 2/72 — 1.
2) For CA90 with N even but not of the form 2/, the
randomization period is Iy .
3) For CA90 with N odd, the randomization period is
divide of ITj = 25rv® — 1.

B. Effect of Noise in the Short Seed

In Section III-A, we have seen how CA90 can be used to
expand initial short seeds into longer randomized represen-
tations. This property could be utilized by a collective-state
system for efficient communication by exchanging only short
seeds and expanding the seed with CA90. Since, in reality,
communication channels are noisy, one must be able to handle
some amount of error in the communicated short seeds.
Therefore, it is important to understand how the evolution of
an expanded distributed representation is affected by errors in
the initial short seed.

We address this issue by observing the empirical behavior
for N 37 and the first 256 steps of CA90 evolution.
Fig. 5 reports the averaged normalized Hamming distance
for an errorless short seed and a noisy version of it, where
either 2 (dashed-dotted line), 4 (solid line), or 8 (dashed line)
bits were flipped randomly. The results reported are for the
corresponding states of the grid at a given step, not for the
concatenated states. This shows that even a single step of
CA90 increases the normalized Hamming distance between
the evolved states. For example, when 4 bits were flipped,
the normalized Hamming distance between the seeds was
4/37 ~ 0.11, while after a single step of CA90, it increased
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Grid state

Fig. 6. Evolution of CA90 for 65 steps, N = 37; the initial state includes one
active cell, which can be thought as introducing one bit flip to some random
initial short seed. All steps of the form 2/ are highlighted by red rectangles.

to almost 0.2, almost doubling. Furthermore, we observe that
the normalized Hamming distance will never be lower than
after the first step.

What is very interesting is that the distances induced by
errors change in a predictable manner. We see that the errors
reset to the lowest possible value at regular intervals: each
CA90 step of the form 27. This behavior of CA90 suggests
that we can mitigate the impact of errors when expanding
short seeds. In order to minimize the distance between the
errorless evolutions and their noisy versions, one should only
use the CA90 expansion in steps of the form 2/, which
places additional limits for the possibility of dimensionality
expansion.

To understand the observed cyclic behavior of CA90,
we examine the case when the initial state of the grid includes
only one active cell. Due to the fact that CA90 is additive, the
active cell can be interpreted as one bit flip of error introduced
to some random initial short seed. Fig. 6 shows the evolution
of the considered configuration for the first 65 steps. Red
rectangles in Fig. 6 highlight the steps of the form 2/. At these
steps, there are only two active cells. The behavior of the
configuration with the single active cell explains both why for
a small number of bit flips in Fig. 5 the normalized Hamming
distance approximately doubled after the first step and why
the distance reset for every step of the form 2/,

Given the bit error rate (BER; number of bit flips) in
the short seed (puf), we can calculate the BER after CA90

0.5
0.4
<
©]
5 03"
b
©
f 0.2
m
0.1- s |
4 —— Analytical
/- - - Empirical
0 L L L L
0 0.1 0.2 0.3 0.4 0.5
BER before CA
Fig. 7. Expected BER for CA90 steps of the form 2/ against the BER in

the short seeds. The solid line is the analytical calculation, while the dashed
line was measured empirically. The empirical results were averaged over ten
simulations.

expansion (denoted as pca) for steps of the form 2/ as follows:

pea = 2pa(1=por) +2pue(1 — por)® = 2ppe(1 — por).  (12)

The intuition here is that due to the local interactions of CA,
it is enough to only consider cases as in Fig. 1. In particular,
we are only interested in cases, which result in active cells at
the next step. There are only four such cases: two with two
active cells and two with one active cell, enumerated in (12).

Fig. 7 plots the analytical pca according to (12) against the
empirical one obtained in numerical simulations, and we see
that the curves match.

IV. EXPERIMENTAL DEMONSTRATION OF CA90
EXPANSION FOR COLLECTIVE-STATE COMPUTING

This section focuses on using CA90 expansion for RC and
VSAs. In several scenarios, we provide empirical evidence
that expanded vectors obtained via CA90 computations are
functionally equivalent to i.i.d. random vectors.!” The code
for reproducing the results of the experiments is available as
the Supplementary Materials to this article.

A. Nearest Neighbor Search in Item Memories

One potential application of CA90 expansion of vectors will
be for “on the fly” generation of item memories as used in RC
and VSAs. An item memory is used to decode the output
of a collective-state computation, where often the nearest
neighbor to a query vector within the item memory is to be
found. As mentioned before, when there is noise in the query
vector, the outcome of the search may not always be correct.
Therefore, we explored the accuracy of the nearest neighbor
search when the query vector was significantly distorted by

101n the scope of this article by random vectors, we mean vectors generated
with the use of a standard pseudorandom number generator. Thus, strictly
speaking, they should be called pseudorandom vectors, but the term random
is used to oppose them to the vectors obtained with CA90 computations.
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Fig. 8. Usage of i.i.d. random vectors against the CA90 expanded repre-
sentations in the item memory. The figure reports the accuracy of the nearest
neighbor search where a query was a noisy version of one of the vectors
stored in the item memory. The noise was introduced in the form of bit
flips. Three different values of BERs were simulated ({0.30, 0.35, 0.40}). The
dimensionality of the initial short seeds was set to N = 23. The size of the
item memory was set to 100. The reported values were averaged over 1000
simulations randomizing initial short seeds, random item memories, and noise
added to queries.

noise. We compare two item memories: one with i.i.d. random
vectors and the other with CA90 expanded vectors where
only initial short seeds (N = 23) were i.i.d. random. Fig. 8
shows the accuracy results of simulation experiments. The item
memory with vectors based on CA90 expansion demonstrated
the same accuracy as the item memory with fully i.i.d. random
vectors.

B. Memory Buffer

Next, we demonstrate the use of CA90 expanded represen-
tations in the memory buffer task described in Section II-A2.
These experiments were done with integer echo state networks.
In these experiments, we measured the accuracy of recall
from the memory buffer when the item memory was created
from initial short seeds (N = 37) by concatenating the
results of CA90 computations for several steps so that K =
NL. As a benchmark, we used an item memory with i.i.d.
random vectors of matching dimensionality. Three different
values of delay were considered: {5, 10, 15}. The results are
reported in Fig. 9. As expected, we observe that increasing the
dimensionality of the memory buffer increased the accuracy of
the recall. The main point, however, is that the memory buffer
made from CA90 expanded representations demonstrates the
same accuracy as the memory buffer made from i.i.d. random
vectors.

C. Resonator Network Factoring in the Errorless Case

To further assess the quality of vectors obtained via the
results of CA90 computations, we also examined their use
in the resonator network [42]. Please see Section II-A3 and
Section S.3 in the Supplementary Materials for details of the
resonator network.

It is important to emphasize that due to the preservation
of the binding operation by CA90, multiple aspects of the
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Fig. 9. Usage of i.i.d. random vectors against the CA90 expanded representa-
tions in the memory buffer task; D = 27 in the experiments. The figure reports
the accuracy of the correct recall of symbols for three different values of delay
({5, 10, 15}). The dimensionality of the initial short seeds was set to N = 37.
The reported values were averaged over ten simulations randomizing initial
short seeds, random item memories, and traces of symbols to be memorized.

resonator network can benefit from CA90 expansion. Both the
composite input vector and the factor item memories do not
have to be memorized explicitly, but rather can be expanded
from seeds. The factorization process is computed at each level
of CA90 expansion, with the vector dimensions increasing by
N for each CA step. The outputs of the resonator network are
collected and compared to the ground truth and averaged over
many randomized simulation experiments. Fig. 10 presents the
average accuracies (left column) and the average iterations
until convergence (right column) for three different dimension-
alities of initial short seeds {100, 200, 300} and three sizes of
factor item memories {8, 16, 32}. The number of factors was
set to four. The simulations considered the first 100 steps of
CA90, which was less than the randomization period (1023)
of the shortest seed (N = 100).

The performance of the resonator network was as expected.
For a given dimensionality of short seed and item memory
size, the average accuracy increased with the increased number
of CA90 steps—as practically it means using vectors of larger
dimensionality. The number of iterations in contrast decreased
for larger vectors. Importantly, there was no notable difference
in the performance of the resonator network both in terms of
the accuracy and number of iterations when operating with
CA90 expanded representations. This further confirms that it
is reasonable to use CA90 expanded representations in order
to trade off memory for computation.

D. Resonator Network Factoring in the Case of Errors

In order to examine the capabilities of CA90 expanded
representations when the initial short seeds were subject to
errors, we performed simulations for two dimensionalities of
initial short seeds (N = 37 and N = 39). Similar to the
experiments in Fig. 10, we used the resonator network to
reconstruct a randomly chosen combination of factors. The
difference was that some bit flips were added to the initial
short seed (i.e., vector to be factored) where the number of
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Fig. 10. Usage of random vectors against CA90 expanded representations in the resonator network. Left column reports the average accuracies, while right
column reports the average number of iterations until convergence. The maximal number of iterations was set to 500. The dimensionality of the initial short
seeds varied between {100, 200, 300}. The evolution of CA90 is reported for the first 100 steps. The size of an individual item memory varied between
{8, 16, 32}. The number of factors was fixed to four. The reported values were averaged over 100 simulations randomizing initial short seeds.

bit flips was in the range [0, 5] with step 1. The results are
reported in Fig. 11. To minimize the noise introduced by CA90
computations, we only used steps (x-axis in Fig. 11) of the
form 2/ (cf. Fig. 6) to expand the dimensionality. Columns in
Fig. 11 correspond to different amounts of information carried
by the vector to be factored.

The experiments were done for two configurations of the
resonator network: with three factors (dashed lines) and with
four factors (solid lines). Clearly, when given the same con-
ditions, the resonator network with three factors outperforms
the one with four factors. This observation is in line with the
expected behavior of the resonator network. It should be noted,
however, that the resonator network with three factors requires
larger item memories in order to store the same amount of
information. For example, for 16.00 bits in the case of four
factors, the size of individual item memory was 16, while in
the case of three factors, it was 40, i.e., the resonator network
with three factors required about 2.5 times more memory.
Thus, the use of a resonator network with fewer factors results
in a better performance, but it requires more memory to be
allocated.

We also see that even in the absence of errors
(BER = 0.00), the accuracy is not perfect when a vector car-
ries a lot of information because we are limited by the capacity
of the resonator network—which does fail at factorization
when the size of the factorization problem is too large. For
example, for 16.00 bits, none of the expanded dimensionalities
reached the perfect accuracy as opposed to the other two cases.
Naturally, the inclusion of errors hurts the accuracy, but the
performance degradation is gradual.

When comparing the performance of the resonator networks
for the expanded vectors using all 21 CA90 steps, we made a
counterintuitive observation that the performance for N = 37
is better despite shorter vectors and higher BERs. Recall from
Fig. 4 that the chosen grid sizes have different randomization
periods: 87381 and 4095 for N = 37 and N = 39, respec-
tively. The longer randomization period for N = 37 means
that the use of N = 37 provides more randomness for a large
number of CA90 steps. This is the main reason for the counter-
intuitive observation that the use of shorter seed at higher BER
resulted in a better performance. When considering only the
steps of the form 2/, the corresponding randomization period
results in about 16.41 and 12.00. These are exactly the values
for which the performance of the resonator networks starts
to saturate since concatenating additional dimensions after the
randomization period stops adding extra randomness.

V. DISCUSSION
A. Summary of Our Results

The use of CA computations for the generation of ran-
dom numbers is not new, for instance, a seminal work [55]
has proposed to generate random sequences with CA with
rule 30."" Numerous studies followed on building CA-based
pseudorandom number generators, e.g., [56] (see [57] for a
recent overview of this work, some of it specifically investi-
gating CA90). Here, we focused on how collective-state com-
puting can benefit from the randomness produced by CA90.

1CA with rule 30 is also used for random number generation in Wolfram
Mathematica [17].
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Usage of the CA90 expanded representations in the resonator network in the case when the initial short seed might have errors. The upper panels

report the case for N = 37 while the lower panels correspond to N = 39. The noise was introduced in the form of bit flips. The number of bit flips was
in the range [0, 5] with step 1. The legends show the corresponding BERs relative to N. The solid lines depict the resonator network with four factors,
while the dashed lines depict the resonator network with three factors. Columns correspond to different amount of information carried by a vector, which
was determined by the size of an item memory for one factor. The sizes of item memories for resonator networks with three and four factors were set to
approximately match each other in terms of amount of information. The reported values were averaged over 100 simulations randomizing initial short seeds

as well as introduced bit flips.

Our results are based on a key observation that collective-
state computing typically relies on high-dimensional random
representations, which have to be initially generated and stored
for, e.g., being accessible by nearest neighbor searches during
compute time. In many models, the representations are dense
binary random patterns. Rather than storing the full random
representations in memory (e.g., W in RC), we proposed to
store just short seed patterns and to use CA90 for remateri-
alizing the full random representations when required. The
usage of CA90 expanded high-dimensional representations
was demonstrated in the context of RC and VSAs. Our results
provided empirical evidence that the expansion of represen-
tations on-demand (rematerialization solution) is functionally
equivalent to storing the full i.i.d. random representations in
the item memory (memorization solution).

Specifically, we have shown that the randomization period
of CA90 is closely connected to its periodic cycle length and
depends on the size of the grid. We provided the exact relation
between the grid size and the length of the randomization
period. The general trend is that larger grid sizes yield longer
randomization periods. However, period length depends on the
number-theoretic properties of the grid size integer. In general,
odd-numbered grid sizes have longer randomization periods
than even-numbered ones. In particular, one should avoid grid

sizes that are powers of two (2/), as they have the shortest
randomization period. The longest periods are obtained when
the size of the grid is a prime number. Thus, given a memory
constraint, it is best to choose the largest prime within the
constraint.

We have also demonstrated that it is possible to use the
expansion even in the presence of errors in the short seed
patterns. Unfortunately, CA90 introduces additional errors
to the ones present in the seed pattern, so the error rate
after CA90 increases. The distribution of introduced errors
is, however, not uniform—some of the steps introduce more
errors than the others. We have shown that the lowest amount
of errors (cf. Fig. 5) is introduced for CA90 steps that are
powers of two (2/). Thus, in order to minimize the errors in
the expanded representation, one should use only steps of the
form 2/. This, of course, limits the possibilities for expansion
as practically not that many steps of the form 2/ can be
computed (e.g., we used up to 20 in the experiments).

B. Related Work

1) Combining RC, VSAs, and CA: Tt has been demonstrated
recently [5], [40] that echo state networks [39], an instance
of RC, can be formulated in the VSA formalism. CA has
been first introduced to RC and VSA models for expanding
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low-dimensional feature representations into high-dimensional
representations to improve classification [18], [47]. Due to
the local interactions in CA, the evolution of the initial state
(i.e., low-dimensional representation) over several steps pro-
duces a richer and higher dimensional representation of fea-
tures while preserving similarity. This method was applied to
activation patterns from neural networks [47] and to manually
extracted features [58]. The expanded representations were
able to improve classification results for natural [47] and
medical [59] images.

Works [18], [47] suggested that the expanded representa-
tions could be seen as a reservoir, but they have not studied
its memorization capabilities in detail. The characteristics of
a formed memory were studied in [48]. Later, work [49]
proposed to form a reservoir using a pair of CA by first
evolving the initial state for several steps with one CA and
then continuing the computations with some other CA rule.
Similarly, works [51], [52] investigated nonuniform binary
CA [51] and CA rules with larger neighborhoods [52] (five)
and more states (three, four, and five).

Similar to these works, our approach also employs CA to
expand the dimension of representations. However, we have
applied expansion not to feature vectors, but just to i.i.d.
random seed patterns. All we need is the property of CA90
that the resulting high-dimensional vectors are still pseudo-
orthogonal. In our study, similarity preservation is only
required if the random seed patterns contain errors.

Our work is most directly inspired by [16] and [50] who
both used CA to expand item memory with short [16] or
long [50] i.i.d. random seed patterns. In [16], the expansion
was done with the CA30 rule, which is known to exhibit
chaotic behavior. Here, as in [50], we used the CA90 rule.'?

For collective-state computing, CA90 has the great advan-
tage that it distributes over the binding and the cyclic shift
operation. We have seen this advantage in action when study-
ing the resonator network in Section IV-C. Since CA90 dis-
tributes over the binding operation, it was possible to expand
the collective-state (i.e., the input vector (7) with factors) on-
demand during the factorization. Going beyond [50] and [60],
we also systematically explored the randomization properties
of CA90, such as the length of the randomization period.
Moreover, none of the previous work has studied the random-
ization behavior of CA90 in the presence of errors in the initial
seed.

2) Other Computation Methods That Use Randomness:
A complementary approach of computing with randomness
is sampling-based computation [61]. This approach differs
fundamentally from collective-state computing, which exploits
a concentration of mass phenomenon of random patterns mak-
ing them pseudo-orthogonal. Once generated, a fixed set of
random patterns can serve as unique and well distinguishable
identifiers for handling variables and values during compute
time. In contrast, in the sampling-based computation, each
compute step produces independent randomness to provide
good mixing properties. Good mixing ensures that even a

2Note that McDonald and Davis [60] extended [50] by studying other
elementary rules and their suitability for cloning VSA vectors.

small set of samples is representative for the entire probability
distribution and, therefore, constitutes a compact, faithful rep-
resentation (see [62, Ch. 29]). We should add that the “frozen”
randomness in VSA can be used to form different types
of compact representation of probability distributions. For
example, a combination of binding and bundling can constitute
compact representations of large histograms describing the n-
gram statistics of languages [30]. The advantage of such a
representation is that it is a vector of the same fixed dimension
as the atomic random patterns, somewhat independent of the
number of nonzero entries in the histogram.

C. Future Work

1) Potential for Hardware Implementation: The space—time
or memory—computation tradeoff introduced by the inclu-
sion of CA can be used to optimize the implementation of
collective-state computations in hardware. Of course, this opti-
mization depends on the context of a computational problem
and a particular hardware platform, which is outside the scope
of this article.

Furthermore, despite the fact that the use of CA90 incurs
additional computational costs, it enables highly energy-
efficient collective-state computing models. For example,
recently, an ASIC hardware implementation of an RC system
with the proposed CA90 expansion has been reported [63].
This work reports that the CA90 expansion improved the
energy efficiency by 4.8x over state-of-the-art implementa-
tions. The reason for this is that the use of CA90 allows to
flexibly choose the operation point between the two (subopti-
mal extremes): large leakage power when storing all randomly
generated parts of the model explicitly (no CA90 expansion)
versus large dynamic power due to many CA90 computational
steps (with CA90 expansion when N is very small relative to
K). All told, we expect the CA90 expansion to become a
standard primitive for designing efficient hardware implemen-
tations of collective-state computing models.

The optimized hardware implementation of models we
described involves another interesting topic for future research,
the question how to parallelize the computation of CA90.
While the implementation of CA90 in FPGA is quite straight-
forward, see (9), the implementation with neural networks and
on neuromorphic hardware [64] is still an open problem.

2) Integration of CA Computations in Neural Associative
Memories: Another interesting future direction is to inves-
tigate how associative memories [65] can trade off synaptic
memory with neural computation implementing the CA. Such
CA-based approaches could be compared to other suggestions
in the literature how to replace memory by computation,
e.g., [66].
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