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Abstract— We present a new data structure for repre-
sentation of polynomial variables in the parsing of sum-of-
squares (SOS) programs. In SOS programs, the variables
s(x;P) are polynomial in the independent variables x, but
linear in the decision variables P. Current SOS parsers,
however, fail to exploit the semi-linear structure of the
polynomial variables, treating the decision variables as
independent variables in their representation. This results
in unnecessary overhead in storage and manipulation of
the polynomial variables, prohibiting the parser from ad-
dressing larger-scale optimization problems. To eliminate
this computational overhead, we introduce a new repre-
sentation of polynomial variables, the “dpvar” structure,
that is affine in the decision variables. We show that the
complexity of operations on variables in the dpvar rep-
resentation scales favorably with the number of decision
variables. We further show that the required memory for
storing polynomial variables is relatively small using the
dpvar structure, particularly when exploiting the MATLAB
sparse storage structure. Finally, we incorporate the dpvar
data structure into SOSTOOLS 4.00, and test the perfor-
mance of the parser for several polynomial optimization
problems.

I. INTRODUCTION
Many problems in analysis and control of nonlinear systems

can be formulated as polynomial optimization problems. Since
testing nonnegativity of polynomials is NP-hard [1], polyno-
mial constraints of the form s(x) ≥ 0 for all x ∈ Rn are
often tightened to sum-of-squares (SOS) constraints s ∈ Σs,
where Σs denotes the set of functions that may be expanded as
s(x) =

∑
i pi(x)2 for some polynomial functions pi ∈ R[x].

Feasibility of s ∈ Σs in turn is equivalent to existence
of a positive semidefinite matrix Q ≥ 0 and a vector of
monomials Zd such that s(x) = Zd(x)TQZd(x), allowing
SOS constraints to be expressed as LMIs. In this manner, SOS
programs (SOSPs) can be formulated as semidefinite programs
(SDPs), which may be solved in polynomial time [2]. For
recent applications of SOS programming, see [3]–[5].

The typical process of numerically solving SOSPs consists
of two stages: the parsing of the SOSP, i.e. the implementation
of the program and conversion to an SDP; and the actual solv-
ing of this SDP. Unfortunately, the computational complexity
associated with both of these stages increases rapidly with the
size of the SOSP, as a result of which many large-scale appli-
cations of SOS programming remain unsolvable. This failure
to tackle large-scale problems has prompted several variations
on SOS programming to be proposed, reducing complexity of
the problem by imposing more restrictive constraints on the
positive semidefinite matrix Q [6]–[8]. However, the goal of
these modifications is primarily to reduce the computational

complexity of the solving stage of the SOS programming
process, offering little to no reduction in the cost of parsing the
SOSP. As such, even if larger-scale problems can be solved
with these modifications, the computational cost of parsing
such programs may still make numerical implementation im-
possible. In fact, in many cases, the computational complexity
of parsing the SOSP far exceeds that associated to solving the
resulting SDP (see Fig. 1), a discrepancy that will only be
exacerbated by reducing the complexity of the SDP.

For the greatest lower bound problem and robust stability
test presented in Subsection VI-A and VI-B, Fig. 1 shows
what percentage of the time required to solve each problem
is spent on parsing the SOSP. Results are shown using
the well-established SOS parsers SOSTOOLS 3.04 [9] and
YALMIP [10] to parse the problems, using SEDUMI [11] to
solve the resulting SDP. The results show that both parsers
consistently require more time to construct the SDP from
the SOSP than it takes to actually solve this SDP, frequently
spending more than 90% of the execution time on parsing.
In this paper, we show that the percentage of the time spent
on parsing can be significantly reduced, proposing a new
representation of polynomial variables that allows for more
efficient parsing of SOSPs.

Fig. 1: Percentage of execution time spent parsing the greatest lower bound
problem from Subsection VI-A (Eqn. (10)) and the robust stability problem
from Subsection VI-B (Eqn. (11)), using SOSTOOLS 3.04 and YALMIP.
Using either parser, less than 50% of the time spent on each problem is
actually spent on solving the associated SDP, with the parsing of the robust
stability program even taking up more than 90% of the time.

In converting an SOSP to an SDP, SOS parsers use finite
monomial bases Zd to represent the polynomial variables.
Here, we let Zd ∈ Rn1 [x] denote a vector containing all
monomials in variables x1, . . . , xp of degree at most d, where
n1 := (p+d)!

p!d! . These monomials may be numerically repre-
sented as a matrix ZM,d ∈ Nn1×p containing the degrees of
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each variable in each monomial, so that e.g.

Z2(x1, x2) =


1
x2

x2
2

x1

x1x2

x2
1

 and ZM,2 =

[x1,x2]︷ ︸︸ ︷
0 0
0 1
0 2
1 0
1 1
2 0

 .

Using such a monomial basis, an SOS variable s ∈ Σs of
degree at most 2d can be represented in the quadratic form

s(x;Q) = Zd(x)TQZd(x),

where now Q ∈ Sn1×n1 is a decision variable. Meanwhile,
any polynomial p ∈ R[x] of degree 2d is uniquely defined by
a vector of coefficients c ∈ Rn2 for n2 := (p+2d)!

p!(2d)! , and may
be represented in the linear pvar form as

p(x) = cTZ2d(x). (1)

Finally, interface with SDP solvers requires polynomial con-
straints g(x; ξ) = 0, parameterized by decision variables ξ, to
be expressed in the SDP format

0 = g(x; ξ) = (Aξ − b)TZ(x), imposing Aξ = b.

For example, letting s1(x1; ξ) =
[

1
x1

]T [ ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
for[

ξ1 ξ2
ξ2 ξ3

]
≥ 0, and defining p1(x1) :=1− 2x2

1, the constraint

0 = g1(x1; ξ) := s1(x1; ξ)p1(x1)− 1 + 4x4
1,

can be equivalently represented in the SDP format as

0 = g1(x1; ξ) =

(
1 0 0
0 2 0
−2 0 1
0 −4 0
0 0 −2


︸ ︷︷ ︸

A

[
ξ1
ξ2
ξ3

]
︸︷︷︸
ξ

−


1
0
0
0
−4


︸ ︷︷ ︸
b

)T 
1
x1

x2
1
x3

1
x4

1

 .
In order to derive this expression, however, an SOS parser
would have to compute the product s1(x; ξ)p1(x) without
knowing the values of the decision variables ξ. To this end, the
approach of current parsers is to treat the decision variables
as independent variables, and represent SOS variables s in the
linear form as

s(x; ξ) = cT Z̄2d(x; ξ)

where Z̄2d(x; ξ) :=
[
1
ξ

]
⊗Z2d(x) is now a vector of monomials

in the joint set of variables (x, ξ) – meaning Z2d will be rather
long. Although this linear format allows operations such as
multiplication to be performed relatively easily, using e.g.

cT1 Z2d(x)cT2 Z2d(x; ξ) = (c1 ⊗ c2)T
(
Z2d(x)⊗ Z2d(x; ξ)

)
,

the complexity of operations like multiplication will scale
poorly with the number of decision variables ξ. Moreover,
once the constraint has been converted to one of the form
0 = cT Z̄(x; ξ), substantial computational effort may still be
required to extract the decision variables ξ from Z̄, and define
the necessary matrix A ∈ Rm×n and vector b ∈ Rm to express
the constraint in the SDP format 0 = (Aξ − b)TZ(x).

To reduce the computational overhead associated with
parsing SOS programs, we propose a new representation of
polynomial decision variables which tracks more closely with
the SDP constraint format, while allowing for efficient concep-
tual and numerical manipulation of the resulting polynomial
objects. Specifically, we represent a polynomial variable s ∈
R[x; ξ], parameterized by decision variables ξ as

s(x; ξ) := Z1(ξ)TCZd(x) =

[
1
ξ

]T
CZd(x), (2)

so that, for example

s1(x1; ξ) =
[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
=

[
1
ξ1
ξ2
ξ3

]T C︷ ︸︸ ︷0 0 0
1 0 0
0 2 0
0 0 1


Z2(x1)︷ ︸︸ ︷[

1
x1

x2
1

]
.

We refer to this variable structure as the decision polynomial
variable, or dpvar representation – a generalization of the lin-
ear polynomial variable, or pvar representation to polynomials
with decision variables. As will be shown in Section III, use of
this format accounts for linearity with respect to the decision
variables and eliminates polynomial manipulations involving
decision variables. Furthermore, in this format, translation of
an equality constraint such as s(x; ξ) = 0 to SDP format is
trivial, in that

s(x; ξ) =

[
1
ξ

]T
CZd(x) =

[
1
ξ

]T [
cT1
CT2

]
Zd(x)

= (ξTCT2 + cT1 )Zd(x),

so that s = 0 may be equivalently expressed as an LMI
constraint C2ξ = −c1. Furthermore, by eliminating the need
for construction of extremely large transition matrices, mem-
ory requirements are significantly reduced. Finally, while the
resulting C matrices are still rather large (as is required for
densely-defined polynomial expressions), when the number of
terms in these matrices is small, the dpvar structure exploits
the sparse matrix representation features of MATLAB to
dramatically reduce computation time - see Section V.

In the remainder of this paper, we carefully detail and an-
alyze how an ideal parser should integrate the dpvar structure
into the parsing of SOS optimization problems. Specifically,
an ideal parser should

1) Exploit structure in polynomial computations. In particu-
lar, for polynomial multiplication, addition, substitution,
etc., the parser should exploit the affine appearance of
the decision variables to reduce computational overhead.

2) Be based on analytic expressions for the mathematical
operations.

3) Allow for fully dense polynomial structures.
4) Make efficient use of the platform-specific sparsity

structure to minimize memory usage and computational
complexity for sparse polynomial objects.

5) Be scalable to hundreds of thousands of decision vari-
ables.

In the following sections, we show how the dpvar structure can
be used to achieve these goals in the context of the MATLAB
programming language and associated sparsity package.



II. PRELIMINARIES

A. Notation

We denote Rm×n[x; ξ] as the set of m × n matrix-valued
polynomials in variables x and ξ. We denote Zd ∈ Rn[x] as
a vector consisting of all monomials in x up to degree d, and
Ẑd ⊆ Zd as a vector consisting of only a subset of these
monomials. We will often refer to Zd in terms of the degrees
of the variables appearing in each monomial, so that e.g.

x2
1x2x

4
4 =

[x1,x2,x3,x4]︷ ︸︸ ︷[
2 1 0 4

]
.

For any monomial basis Zd, we use ZM,d ∈ Nn×p to denote
the associated matrix of degrees, where N denotes the set of
nonnegative integers and p the number of independent vari-
ables. We let nnz(A) denote the number of nonzero elements
of a (sparse) matrix A ∈ Rn×m. We use big O notation
f(N) = O(g(N)) for scalar functions f, g to indicate that
there exists some constant C > 0 such that |f(N)| ≤ Cg(N)
for all N ∈ R.

B. Example Polynomials

Throughout the paper, various concepts will be illustrated
using the example polynomial p1(x1) = 1 − 2x2

1, and the
polynomial variable s1(x1; ξ) =

[
1
ξ1

]T [ ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
. Here, the

polynomial p1 can be represented in terms of the monomial
vector Z2(x1) in the pvar format as

p1(x1) = bT1 Z2(x1) =

[
1
0
−2

]T
︸ ︷︷ ︸
bT1

[
1
x1

x2
1

]
︸︷︷︸
Z2(x1)

. (3)

Similarly, the polynomial variable s1 can be represented in
terms of the monomial vectors Z1(ξ) and Z2(x1) in the dpvar
representation as

s1(x1; ξ) = Z1(ξ)TC1Z2(x1) =

 1
ξ1
ξ2
ξ3

T
︸ ︷︷ ︸
Z1(ξ)T

0 0 0
1 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

C1

[
1
x1

x2
1

]
.

(4)

or in terms of the monomial vector Z̄2(x1; ξ) in the pvar
representation as

s1(x1; ξ) = cT1 Z̄2(x1; ξ) =



0
0
0
1
0
0
0
2
0
0
0
1



T

︸ ︷︷ ︸
cT1



1
x1

x2
1
ξ1
ξ1x1

ξ1x2
1

ξ2
ξ2x1

ξ2x2
1

ξ3
ξ3x1

ξ3x2
1


︸ ︷︷ ︸
Z̄2(x1;ξ)

, (5)

Here, the monomial bases Z2 ∈ R3[x1] and Z̄2 ∈ R12[x1; ξ]
are numerically represented by degree matrices ZM,2 ∈ N3×1

and Z̄M,2 ∈ N12×4 respectively, defined as

ZM,2 :=

x1︷︸︸︷0
1
2

, and Z̄M,2 :=

[x1,ξ1,ξ2,ξ3]︷ ︸︸ ︷

0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 0 0
2 1 0 0
0 0 1 0
1 0 1 0
2 0 1 0
0 0 0 1
1 0 0 1
2 0 0 1


(6)

III. OPERATIONS IN THE DPVAR REPRESENTATION

We first show that, using the dpvar representation, standard
operations on polynomial variables s ∈ R[x; ξ] may be
performed at relatively low computational cost, by exploiting
the affine contribution of the decision variables. In particular,
we note that in the dpvar representation,

s(x; ξ) = Z1(ξ)TCZd(x) =

[
1
ξ

]T
CZd(x),

so the vector of linear monomials Z1(ξ) always takes the same
form. Therefore, there is no need to explicitly store or account
for the degrees of the monomials in Z1(ξ), and the complexity
of operations will be largely independent of the number of
decision variables ξ.

By contrast, in the pvar representation,

s(x; ξ) = cT Z̄d(x; ξ),

the decision and independent variables are included in a single
vector of monomials Z̄d(x; ξ), taking the form

Z̄d(x; ξ) =

[
1
ξ

]
⊗ Zd(x). (7)

In this format, the decision variables and independent variables
are represented using a single set of monomials. Implementing
a data structure based on the pvar representation, therefore,
the degrees of the decision variables ξ have to be explicitly
stored and processed when performing polynomial operations.
As a result, the computational complexity of operating on the
monomials will scale directly with the number of decision
variables, even if the considered operation does not affect the
decision variables (see Subsection III-C).

In the remainder of this section, we show how efficient
addition, multiplication, and differentiation of polynomial
variables may be performed using the dpvar representation.
For each operation, the reduction in complexity using the
dpvar representation is illustrated through a scalability test,
comparing the time required to perform the operation using
the dpvar data structure from SOSTOOLS 4.00, the pvar
and syms structures from SOSTOOLS 3.04, as well as the
YALMIP sdpvar structure. For the syms tests, the pre-
sented computation times include those necessary to convert
the output to a (pvar) representation in terms of monomial
degrees and coefficients, as needed for further processing in
SOSTOOLS 3.04. All tests were performed on a computer
with Intel Core i7-5960X CPU, and 128 GB of installed RAM.



A. Addition

We first consider the operation of adding two (scalar) poly-
nomial variables s1 ∈ R[x1, . . . , xp1 ; ξ1, . . . , ξq1 ] and s2 ∈
R[y1, . . . , yp2 ; η1, . . . , ηq2 ], written in the dpvar representation
as

s1(x; ξ) = Z1(ξ)TC1Zd1(x), s2(y; η) = Z1(η)TC2Zd2(y).

In this format, it is clear that the sum s3 = s1 + s2 of the
polynomials may be expressed as

s3(x, y; ξ, η) =

[
Z1(ξ)
Z1(η)

]T [
C1 0
0 C2

] [
Zd1(x)
Zd2(y)

]
.

The computational challenge, then, lies in defining the vari-
ables z, χ, monomial basis Ẑd3 ∈ Rn3 [z], and coefficients C3

to represent this result in the dpvar format,

s3(z;χ) = Z1(χ)TC3Ẑd3(z) =

[
1
χ

]T
C3Ẑd3(z).

This may be achieved through the following steps:
1) Combining the decision variables into a single vector

Z1(χ), where χ = unique(ξ; η).
2) Combining the monomial bases Zd1(x) and Zd2(y) into

a single vector Ẑd3(z), where z = unique(x; y), and
d3 = max{d1, d2}.

3) Rearranging and adding the elements of the coefficient
matrix diag(C1, C2) in accordance with the adjustments
performed in the previous two steps.

Performing this conversion to the dpvar format, the greatest
computational effort will generally be spent on the last two
steps. Specifically, as shown in Appx. A, the complexity
of merging degree matrices ZM,d1 ∈ Nn1×p1 and ZM,d2 ∈
Nn2×p2 is

O
(
(n1 + n2) log(n1 + n2)

)
,

where ni := (pi+di)!
pi! di!

denotes the number of monomials of
degree at most di in pi variables. For step 3, storing C1

and C2 as sparse matrices, the complexity of performing pre-
established row and column permutations on diag(C1, C2) will
scale directly with the total number of nonzero coefficients as

O
(
nnz(C1) + nnz(C2)

)
,

where the number of nonzero coefficients corresponds to the
number of terms in each polynomial. Notably, neither the
complexity associated with step 2 nor that associated with
step 3 depends directly on the number of decision variables,
increasing only indirectly with the number of decision vari-
ables through the number of nonzero coefficients.

Now, compare this complexity to that of adding the same
polynomials in the pvar representation,

s1(x; ξ) = cT1 Z̄d1(x; ξ), s2(y; η) = cT2 Z̄d2(y; η),

where Z̄d is as in (7). Then

s3(x, y; ξ, η) =
[
cT1 cT2

] [Z̄d1(x; ξ)
Z̄d2(y; η)

]
,

once more requiring the monomial bases and coefficients to
be combined. In this case too, the complexity associated to
combining the coefficients will scale as

O
(
nnz(c1) + nnz(c2)

)
= O

(
nnz(C1) + nnz(C2)

)
,

requiring similar computational effort as when using the dpvar
representation. However, since the number of monomials n̄i
in each vector Z̄di now increases directly with the number of
decision variables qi in each polynomial,

n̄i = (qi + 1) · ni = (qi + 1)
(pi + di)!

pi! di!
.

the complexity of merging the bases will also increase with
the number of decision variables,

O
(
(n̄1 + n̄2) log(n̄1 + n̄2)

)
= O

((
[q1+1]n1 + [q2+1]n2

)
log
(
[q1+1]n1 + [q2+1]n2

))
.

For polynomials involving large numbers of decision variables
q1 and q2, this complexity will be substantially worse than that
of merging the bases in the dpvar representation.

Example: Consider the SOS variable s1(x1; ξ) :=[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
. Defining C1 ∈ R4×3 as in Eqn. (4), the

sum s3(x1; ξ) = s1(x1; ξ) + s1(x1; ξ) can then be represented
in the dpvar format as

s3(x1; ξ) =

[
Z1(ξ)
Z1(ξ)

]T [
C1 0
0 C1

] [
Z2(x1)
Z2(x1)

]
.

Here, the computational cost of merging the decision variables
is very small, and it is easy to recognize that the sum may be
equivalently represented as

s3(x1; ξ) = Z1(ξ)T
[
C1 C1

] [Z2(x1)
Z2(x1)

]
.

Similarly, it is computationally inexpensive to determine that
the monomial vector Ẑ2(x1) =

[
Z2(x1)

Z2(x1)

]
pertains only a single

independent variable x1, and therefore, this vector may be
numerically represented by the degree matrix

ẐM,2 =

[ x1 ]︷ ︸︸ ︷[
ZM,2
ZM,2

]
∈ N6×1,

where ZM,2 is as in Eqn. (6). Checking this matrix for unique
monomials, only six rows have to be compared, and relatively
little computational effort is necessary to establish a unique
set of degrees, and to merge the columns of the coefficient
matrix

[
C1 C1

]
to find

s3(x1; ξ) = Z1(ξ)T [C1 + C1]Z2(x1).

Consider now computing the sum s3(x1; ξ) = s1(x1; ξ) +
s1(x1; ξ) using the pvar representation as

s3(x1; ξ) =
[
cT1 cT1

] [Z̄2(x1; ξ)
Z̄2(x1; ξ)

]
.

where we define c1 ∈ R12 as in Eqn. (5). In this case, a unique
set of variables (x1, ξ1, ξ2, ξ3) can once again be established at
relatively low computational cost, finding that the monomials
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(a) Computation time for addition s1(x; ξ) + s2(y; η)
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(b) Computation time for multiplication s1(x; ξ)p2(y)

Fig. 2: Computation time for polynomial addition and multiplication using the syms, pvar, and dpvar data structures from respectively
SOSTOOLS 3.04 and 4.00, and the sdpvar structure from YALMIP to represent the polynomials. The rate at which the computation
time increases is relatively small using the dpvar structure compared to the alternatives, particularly for the multiplication operation. Only
YALMIP achieves better performance for addition, by representing each monomial as a single index rather than as a set of degrees, requiring
minimal computational effort to merge the bases of s1 and s2.

Ž2(x1; ξ) :=
[
Z̄2(x1;ξ)

Z̄2(x1;ξ)

]
can be represented by the degree

matrix

ŽM,2 =

[ (x1,ξ) ]︷ ︸︸ ︷[
Z̄M,2
Z̄M,2

]
∈ N24×4,

where Z̄M,2 is as in Eqn. (6). However, the number of rows
in this matrix is 4 times greater than that in the dpvar case,
thus requiring a substantially greater computational effort to
establish a unique set of degrees. This effect will be even worse
for polynomial variables involving larger numbers of decision
variables, offering a significant reduction in computation time
using the dpvar data structure.

The reduction in computation time offered by the dp-
var representation is illustrated in Figure 2a, displaying the
elapsed time for adding SOS variables s1(x1, x2; ξ1, . . . , ξq)
and s2(y1, y2; η1, . . . , ηq) using the dpvar, pvar, syms and
sdpvar (YALMIP) data structures, for increasing numbers
of decision variables q. For each value of q, coefficients for
s1 and s2 were randomly generated, and monomials Zd(x),
Zd(y) of maximal degree d = 4 were used. The decision
variables were chosen such that s1 and s2 shared 1

2q common
variables, letting ηj = ξj+ 1

2 q
for j ∈ {1, . . . , 1

2q}.

B. Multiplication

We now consider the operation of polynomial multiplica-
tion, showing that this operation may also be performed more
efficiently using the dpvar representation. For multiplication,
since decision variables must always appear linearly in any
SOS program, polynomial variables s ∈ R[x; ξ] may only be
multiplied by known polynomial functions p ∈ R[y]. In dpvar
format, these may be expressed as

s1(x; ξ) = Z1(ξ)TCZd1(x), p2(y) = bTZd2(y),

so that the product becomes

s1(x; ξ)p2(y) = Z1(ξ)T
(
bT ⊗ C

)(
Zd2(y)⊗ Zd1(x)

)
.

Performing this operation in MATLAB, the coefficients b, C
and monomial degrees ZM,d1(x), ZM,d2(y) may be stored as
sparse matrices. Then, performing the Kronecker product bT⊗

C will require multiplying at most nnz(C) ·nnz(b) elements,
invoking a worst-case complexity of

O
(
nnz(C)nnz(b)

)
.

To compute the product Zd2(y)⊗Zd1(x), the nonzero degrees
of all the variables in each monomial in Zd2 must be added to
the degrees of the same variables in each of the monomials in
Zd1 . In the worst-case scenario (e.g. x = y and Zd1 = Zd2 ),
this will require adding all nonzero degrees in ZM,d2 to all
nonzero degrees in ZM,d1 . The complexity of this operation
scales as

O
(
nnz(ZM,d1)nnz(ZM,d2)

)
.

Consider now computing the same product based on the pvar
representation,

s1(x; ξ) = cT Z̄d1(x; ξ), p2(y) = bTZd2(y),

so that

s1(x; ξ)p2(y) = (bT ⊗ cT )(Zd2(y)⊗ Z̄d1(x; ξ)).

As was the case in the dpvar representation, the cost of
computing the new coefficients will be

O
(
nnz(c)nnz(b)

)
= O

(
nnz(C)nnz(b)

)
,

scaling with the product of the number of terms in the two
polynomials. However, in the pvar representation, the number
of nonzero degrees in Z̄M,d1 increases linearly with the number
of decision variables q in s1, so that the complexity of
multiplying the bases will be

O
(
nnz(Z̄M,d1)nnz(ZM,d2)

)
= O

(
q·nnz(ZM,d1)nnz(ZM,d2)

)
.

This dependence on the number of decision variables is not
present when implementing the dpvar representation, resulting
in a substantial difference in computational complexity for
large values of q.

Example: Consider the polynomial function p1(x1) = 1−
2x2

1 and the SOS variable s1(x1; ξ) :=
[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
.

Defining b1 ∈ R3 as in Eqn. (3) and C1 ∈ R4×3 as in
Eqn. (4), the product s3(x1; ξ) = s1(x1; ξ)p1(x1) can then
be represented in the dpvar format as

s3(x1; ξ) = Z1(ξ)T
(
bT1 ⊗ C1

)(
Z2(x1)⊗ Z2(x1)

)
.
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Fig. 3: Computation time for differentiation, substitution, and integration of polynomial variables s(x; ξ) using the dpvar, pvar, and syms
data structures from SOSTOOLS 4.00, and the sdpvar data structure from YALMIP to represent s. Using the dpvar representation, the
required time to perform each operation remains almost constant as the number of decision variables increases, offering substantial reductions
in computation time for larger numbers of variables, compared to the alternative structures.

Similarly, defining c1 ∈ R12 as in Eqn. (5), the product
s3(x1; ξ) = s1(x1; ξ)p1(x1) can also be represented in the
pvar format as

s3(x1; ξ) =
(
bT1 ⊗ cT1

)(
Z2(x1)⊗ Z̄2(x1; ξ)

)
.

Here, the monomial vectors Z2 ∈ R3[x1] and Z̄2 ∈ R12[x1; ξ]
can be represented by respectively the degree matrix ZM,2 ∈
N3×1 and ZM,2 ∈ N12×4 as in Eqn. (6). However, where the
former degree matrix contains only 2 nonzero elements, the
latter matrix contains 17 nonzero elements. As such, the cost
of computing the degree matrix associated to the Kronecker
product Z2(x1)⊗ Z̄2(x1; ξ) will also be more than 8 times as
great as that of computing the degrees for Z2(x1)⊗ Z2(x1).

The reduction in complexity offered by the dpvar repre-
sentation can also be observed in Figure 2b, displaying the
elapsed time for multiplying a randomly generated variable
s1(x1, x2; ξ1, . . . , ξq) (see Subsection III-A) and polynomial
p2(y1, y2) using the different data structures.

C. Differentiation, Substitution, and Integration
Finally, we consider the operations of differentiation, substi-

tution and integration. For an arbitrary polynomial s ∈ R[x; ξ]
in the dpvar representation,

s(x; ξ) = Z1(ξ)TCZd(x),

these operations will involve only adjusting the monomial
vector Zd, and associated columns in the coefficient matrix
C. For example, let zij = [Zd]ij denote the element in row i
and column j of the degree matrix ZM,d ∈ Nn×p, and let Ci
denote the ith column of the coefficient matrix C ∈ R(q+1)×n.
Then, differentiation with respect to xj may be performed by
multiplying all elements in each column Ci for i = 1, . . . , n
with zij , and subtracting a value of 1 from all nonzero degrees
in column j of ZM,d ∈ Nn×p. The complexity of this operation
depends only indirectly on the number of decision variables,
as each decision variable adds a row to the coefficient matrix
C ∈ R(q+1)×n.

By contrast, performing the same operations using the pvar
representation,

s(x; ξ) = bT Z̄d(x; ξ),

the decision variables are included in the monomial basis
Z̄d. Therefore, the complexity of finding and adjusting the

appropriate degrees of the monomials to account for e.g.
differentiation with respect to a variable xj , will directly
increase with the number of decision variables, despite the fact
that the decision variables themselves are invariant under these
operations. In this sense, unnecessary computational overhead
is introduced when performing differentiation, substitution
and integration in the pvar representation, which is avoided
implementing the dpvar representation.

Example: Consider the SOS variable s1(x1; ξ) :=[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
, represented in the dpvar representation

as

s1(x1; ξ) = Z1(ξ)TC1Z2(x1) =

 1
ξ1
ξ2
ξ3

T 0 0 0
1 0 0
0 2 0
0 0 1

[ 1
x1

x2
1

]
Then the derivative of this variable with respect to x1 can be
easily obtained by multiplying each column in C1 with their
associated degree in ZM,2 ∈ N3×1, and reducing all nonzero
degrees with a value of 1:

∂

∂x1
s(x1) =

 1
ξ1
ξ2
ξ3

T 0 0 0
0 0 0
0 2 0
0 0 2

[ 1
1
x1

]
=

 1
ξ1
ξ2
ξ3

T 0 0
0 0
2 0
0 2

[ 1
x1

]
.

Numerically, this requires only multiplying two nonzero de-
grees with two nonzero coefficients, and then subtracting a
value of 1 from these two nonzero degrees. By contrast, in
the pvar representation,

s1(x1; ξ) = cT1 Z̄2(x1; ξ) =



0
0
0
1
0
0
0
2
0
0
0
1



T 

1
x1

x2
1
ξ1
ξ1x1

ξ1x2
1

ξ2
ξ2x1

ξ2x2
1

ξ3
ξ3x1

ξ3x2
1


,

the degree matrix Z̄M,2 ∈ N24×4 has eight nonzero elements
in the column associated to the variable x1. Although the
computational cost of subtracting a value of 1 from each of
these degrees will not be substantial in this case, for exam-
ples involving larger numbers of decision variables, this may
amount to a nontrivial reduction in computational complexity
using the dpvar representation.



The reduced computation time allowed by the dpvar rep-
resentation for larger-scale tests is illustrated in Figure 3,
presenting the elapsed time for differentiation, substitu-
tion and integration of a randomly generated polynomial
s1(x1, x2; ξ1, . . . , ξq) with respect to the variable x2, using
the different SOSTOOLS and YALMIP data structures, and
for increasing numbers of decision variables q.

IV. STORAGE AND MANIPULATION OF DPVARS

Having analyzed the complexity of standard operations in
the dpvar representation, in this section, we show how this
representation also allows the memory burden and general
computational overhead that comes with parsing an SOS
program to be reduced. In particular, implementing the dpvar
representation in MATLAB, we define a polynomial variable
S ∈ Rm1×m2 [x; ξ] using the dpvar data structure, storing

• The independent variables x1, . . . , xp.
• The decision variables ξ1, . . . , ξq .
• The monomial degrees ZM,d ∈ Nn×p.
• The coefficient matrix C ∈ Rm1(q+1)×m2n.

Decomposing the polynomial in this manner, the greatest
storage cost will be that associated to the monomial degrees
ZM,d and coefficient matrix C. However, storing both of these
fields as sparse matrices in MATLAB, the memory overhead
will be minimal, as we show in Subsection IV-A. In addition,
exploiting the structure of dpvar objects, matrix operations
such as concatenation can be performed with relatively low
computational overhead, as detailed in Subsection IV-B.

A. Memory Complexity of Storing dpvar Objects
Exploiting linearity of the decision variables in its structure,

the dpvar representation allows polynomial variables to be
stored in programming languages with sparsity structures
using minimal memory with respect to the number of deci-
sion variables. Specifically, consider storing a matrix-valued
polynomial variable S ∈ Rm1×m2 [x1, . . . , xp; ξ1, . . . , ξq], ex-
pressed in the dpvar representation as

S(x; ξ) =
(
Im1 ⊗ Z1(ξ)

)T
C
(
Im2 ⊗ Zd(x)

)
. (8)

As mentioned, the greatest memory burden in representing
this variable in MATLAB will be that associated to storing
the coefficient matrix C ∈ Rm1(q+1)×m2n1 , and the monomial
degrees ZM,d ∈ Nn1×p. Storing both objects as sparse matri-
ces, only the nonzero coefficients and degrees are retained, so
that the required memory scales as

O
(
nnz(C) + nnz(ZM,d)

)
.

This cost does not depend directly on the number of decision
variables.

Consider now storing the same variable in the pvar format,

S(x; ξ) := BT
(
Im2
⊗ Z̄d(x; ξ)

)
, (9)

where B ∈ Rm1×m2n2 and Z̄d =

[
1
ξ

]
⊗ Zd(x) ∈ Rn2 [x; ξ].

Using this representation, the storage cost will also mostly be
determined by the number of nonzero coefficients and degrees.
Since the number of nonzero coefficients is independent of

the representation, the cost of storing these coefficients will
be roughly the same using the dpvar and pvar structures,
scaling with nnz(C) = nnz(B). However, when considering
q decision variables, each monomial appearing in the vector
Zd(x) will appear q+1 times in the vector Z̄d(x; ξ). Therefore,
each nonzero degree in ZM,d ∈ Nn1×p will also appear q + 1
times in Z̄M,d ∈ N(q+1)n1×(q+p). Moreover, for each of the
n1 monomials included in Zd(x), the nonzero degrees of the
decision variables will also need to be stored, amounting to a
total number of nnz(Z̄M,d) = (q+1)nnz(ZM,d)+qn1 nonzero
degrees,

nnz(Z̄M,d) = (q + 1)nnz(ZM,d) + qn1

The cost of storing the coefficients and monomials in the pvar
representation thus scales with

O
(
nnz(C) + (q + 1)nnz(ZM,d) + qn1

)
.

Implementing the pvar representation, the required memory of
storing the monomials increases directly with the number of
decision variables. For large numbers of decision variables q,
this amounts to a substantial storage cost that may be avoided
using the dpvar structure.

Example: Numerically representing the SOS variable

s1(x1; ξ) :=
[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
in the dpvar format

(Eqn. (4)), only 2 nonzero degrees have to be stored. By con-
trast, representing this variable in the pvar format (Eqn. (5)),
17 nonzero degrees have to be stored. Including the 3 nonzero
coefficients in each representation, the total number of nonzero
elements that need to be stored to represent s1 is 4 times
smaller using the dpvar structure than using the pvar
structure (see also Section V).

B. Matrix Operations on dpvar Objects
In many SOS programs, the polynomial decision variables

appear as matrix-valued objects. Therefore, in addition to the
standard polynomial operations discussed in Section III, matrix
operations such as concatenation must also be efficiently im-
plemented in any SOS parser. Using the dpvar representation,
this can be achieved by exploiting the block structure of the co-
efficient matrix. In particular, for a variable S ∈ Rm1×m2 [x; ξ],
the coefficient matrix C ∈ Rm1(q+1)×m2n is comprised of
m1 × m2 blocks Cij ∈ R(q+1)×n, each corresponding to a
single element of the matrix-valued variable. This allows for
efficient assignment and modification of individual elements
of the polynomial variable. In addition, for two matrix-valued
polynomial variables S1, S2 ∈ Rm1×m2 [x; ξ], defined in terms
of the same monomial basis Zd as

Si(x; ξ) =
(
Im1 ⊗ Z1(ξ)

)T
Ci
(
Im2 ⊗ Zd(x)

)
,

concatenation of S1 and S2 merely requires concatenating
the coefficient matrices C1 and C2. For example, vertical
concatenation of S1, S2 may be represented as[

S1(x; ξ)
S2(x; ξ)

]
=
(
I2m1 ⊗ Z1(ξ)

)T [C1

C2

] (
Im2 ⊗ Zd(x)

)
,

requiring almost no computational effort. Of course, if S1 and
S2 are defined in terms of different monomial bases, these
bases would have to be merged first, for which we refer to the
discussion in Subsection III-A.



V. EXPLOITING SPARSITY IN STORAGE AND OPERATION

Having presented the benefits of using the dpvar represen-
tation in parsing SOS programs, we finally show how the
dpvar data structure exploits the MATLAB built-in sparsity
structure to minimize memory and computational overhead in
numerically representing polynomial variables. In particular,
in Subsection V-A, we outline how sparse matrices are im-
plemented in MATLAB and analyze how this format affects
memory and computational complexity. In Subsection V-B, we
subsequently show how the dpvar data structure exploits this
format in storing the coefficient matrix and monomial degrees,
to optimize performance.

A. The Compressed Sparse Column Format
In MATLAB, the built-in sparse storage structure is opti-

mized for storing and operating on matrices with relatively few
columns. In particular, sparse matrices are implemented using
a Compressed Sparse Column (CSC) format [12], representing
a matrix A ∈ Rm×n with nnz(A) nonzero elements through
three arrays:

1) An array a ∈ Rnnz(A) of nonzero elements.
2) An array r ∈ Rnnz(A) of row indices.
3) An array cp ∈ Rn+1 of column pointers.

In the first of these arrays, a ∈ Rnnz(A), all nonzero elements
of the matrix are collected in column-major order. That is,
letting {a1, . . . , an} denote the columns of the matrix A, and
letting {ā1, . . . , ān} denote the nonzero elements from these
columns, the first array a may be constructed as:

a =
[
āT1 , . . . , āTn

]T ∈ Rnnz(A).

Corresponding row numbers for these nonzero elements are
then stored in the array r, so that the kth nonzero element
a(k) appears in row r(k) of the matrix A. Finally, for each
of the columns j = 1, . . . , n of the matrix, a column pointer
is stored in the array cp. Letting `j = nnz(aj), this column
pointer is defined as

cp =
[
1, 1 + `1, . . . , 1 +

∑n−1
j=1 `j ,

∑n
j=1 `j

]
∈ Rn+1,

so that a
(
cp(j)

)
provides the first nonzero element of column

j ∈ {1, . . . , n} of A ∈ Rm×n.
Using this data structure to store (sparse) matrices, the

required memory will be minimal for matrices with few
columns. In particular, although the cost of storing a ∈
Rnnz(A) and r ∈ Rnnz(A) depends only on the number of
nonzero elements nnz(A), the memory necessary to store the
array cp ∈ Rn+1 is determined by the number of columns n
of the matrix. Therefore, the memory burden for storing sparse
matrices increases with the number of columns in this matrix,
even if these columns do not contain any nonzero elements.

In addition, using the CSC storage format, the complexity of
operations involving full or partial columns of the matrix will
generally be smaller than those involving full or partial rows
of the matrix. Indeed, for any column j ∈ {1, . . . , n} of A, the
nonzero elements appearing in this column are known to be
stored at positions k ∈ {cp(j),cp(j) + 1, . . . ,cp(j+ 1)−1}
within the array a, requiring minimal effort to access these

elements. On the other hand, in order to access elements of
a particular row i ∈ {1, . . . ,m} of the matrix, all indices
k ∈ {1, . . . , nnz(A)} with associated row index r(k) = i
have to be found, potentially requiring the full array r to be
analyzed. This introduces additional computational overhead
when operating on full or partial rows of the matrix, gen-
erally making “row-based” operations more computationally
demanding than “column-based” equivalents.

B. Sparsity in the dpvar Structure
We now show how, using the dpvar data structure, the CSC

storage format may be exploited to minimize the storage and
operational cost of representing and manipulating polynomial
variables. To illustrate, consider storing a variable

s(x; ξ) = Z1(ξ)CZd(x) ∈ R[x1, . . . xp; ξ1, . . . ξq].

Storing the coefficient matrix C ∈ R(q+1)×n and monomial
degrees ZM,d ∈ Nn×p using the CSC structure, the required
memory will be relatively small. In particular, since p variables
allow n = (p+d)!

p!d! monomials of degree at most d, the
number of rows in the monomial degree matrix ZM,d ∈ Nn×p
will in general vastly exceed the number of columns. In
addition, in SOS programs, a monomial [Zd]k is often paired
with multiple decision variables ξj . As a consequence, the
number of decision variables tends to exceed the number of
monomials, and thus the number of rows in the coefficient
matrix C ∈ R(q+1)×n also tends to be at least as large as the
number of columns. Since the memory cost of storing a matrix
in the CSC format increases with the number of columns, the
fact that both the coefficient matrix and monomial degree table
contain relatively few columns allows polynomial variables to
be efficiently stored using the dpvar data structure.

Similarly, the complexity of performing operations on vari-
ables in the dpvar structure may be minimized using the
sparse storage structure. In particular, as discussed in Subsec-
tion III-A, a significant part of the computational complex-
ity in performing operations such as addition comes from
having to merge the rows of the monomial degree matrix
ZM,d ∈ Rn×p, and associated columns of the coefficient
matrix C ∈ R(q+1)×n. Here, although the CSC storage format
is poorly-suited for comparing the large amounts of rows
in the monomial matrix, the small number of columns in
ZM,d ensures the complexity of this process remains relatively
small. Moreover, the column-major storage structure allows
the columns of the coefficient matrix to be permuted with
relatively high efficiency, invoking a complexity that does not
depend directly on the number of rows (q + 1) of C. Thus,
exploiting the MATLAB sparse storage structure, the dpvar
data structure allows the computational cost of operations
like addition to be minimized with respect to the number of
decision variables q.

Example: Consider the SOS variable s1(x1; ξ) :=[
1
x1

]T [ξ1 ξ2
ξ2 ξ3

] [
1
x1

]
, which can be represented in the dpvar

format as

s1(x1; ξ) = Z1(ξ)TC1Z2(x1) =

 1
ξ1
ξ2
ξ3

T0 0 0
1 0 0
0 2 0
0 0 1

[ 1
x1

x2
1

]
,



and in the pvar format as

s1(x1; ξ) = cT1 Z̄2(x1; ξ) =



0
0
0
1
0
0
0
2
0
0
0
1



T 

1
x1

x2
1
ξ1
ξ1x1

ξ1x2
1

ξ2
ξ2x1

ξ2x2
1

ξ3
ξ3x1

ξ3x2
1


,

where, the monomial bases Z2 ∈ R3[x1] and Z̄2 ∈ R12[x1; ξ]
are numerically represented by matrices

ZM,2 =

x1︷︸︸︷0
1
2

, and Z̄M,2 =

[x1,ξ1,ξ2,ξ3]︷ ︸︸ ︷

0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 0 0
2 1 0 0
0 0 1 0
1 0 1 0
2 0 1 0
0 0 0 1
1 0 0 1
2 0 0 1


.

Then, in the dpvar format, the coefficients C1 can be stored
in the CSC format as

aC1
=

1
2
1

 , rC1
=

2
3
4

 , cpC1
=


1
2
3
3

 ,
where a denotes the array of nonzero elements, r the array of
row numbers, and cp the array of column pointers. Similarly,
the degree matrix ZM,2 can be stored in the CSC format as

aZ2
=

[
1
2

]
, rZ2

=

[
2
3

]
, cpZ2

=

[
1
2

]
,

requiring a total of 16 values to be stored in order to represent
the coefficients and degrees using the dpvar structure. On the
other hand, using the pvar structure, the coefficients c1 are
stored in CSC format as

ac1 =

1
2
1

 , rc1 =

 4
8
12

 , cpC1
=

[
1
3

]
,

and the degrees Z̄M,2 are stored as

aZ̄2
=



1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
1
1



, rZ̄2
=



2
3
5
6
8
9
11
12
4
5
6
7
8
9
10
11
12



, cpZ̄2
=


1
9
12
15
17

 .

Although the pvar structure allows the coefficients to be
stored slightly more efficiently, the memory required to store
the degrees will be substantially larger, amounting to a total
of 47 values to be stored to represent both the degrees and
coefficients. This is almost 3 times as many values as using
the dpvar structure, exemplifying the significant reduction in
memory requirements that the dpvar structure allows.

VI. INCORPORATION INTO SOSTOOLS
Having demonstrated the advantages of using the dpvar

data structure for parsing polynomial variables, we now con-
sider the incorporation of this structure in SOSTOOLS. Specif-
ically, for SOSTOOLS version 4.00 [13], we have modified all
functions to use the dpvar data structure for definition and
manipulation of (polynomial) decision variables. To illustrate
the enhanced performance this offers, in this section, we
consider several polynomial optimization problems that are
commonly solved with SOSTOOLS. For each problem, we
compare the time required for parsing the problem using
SOSTOOLS 3.04, SOSTOOLS 4.00, and using the batch
parser YALMIP [10]. To solve the resulting SDP, in each
case, SEDUMI [11] was used. More details on the exact
implementation of each problem in SOSTOOLS may be found
in Appx. B.

A. Greatest Lower Bound
As a first problem, we seek the greatest lower bound (GLB)

γ on some function f ,

max
γ

γ, s.t. γ ≤ f(x) ∀x1, x2 ∈ [−12, 12],

where f(x) = x4
1 + x4

2 − 2x2x
3
1 − 3x2

2x
2
1 + 150(x2

1 + x2
2). To

enforce the constraints x1, x2 ∈ [−12, 12], we require

g1(x) = 122 − x2
1 ≥ 0, g2(x) = 122 − x2

2 ≥ 0,

g3(x) = 2 · 122 − (x2
1 + x2

2) ≥ 0.

Invoking Putinar’s Positivstellensatz [14] (Psatz), we enforce
a single SOS constraint

(f(x)− γ)− s1g1(x)− s2g2(x)− s3g3(x) ∈ Σs, (10)

with SOS variables s1, s2, s3 ∈ Σs.
In parsing the GLB program, the maximal degree of mono-

mials d appearing in the variables si = Zd(x)TPZd(x) may
be increased, allowing for more accurate results at the expense
of a higher computational complexity. Increasing this degree
from d = 2 to d = 30, the time required for parsing and
solving the program using the dpvar, pvar, syms and
sdpvar (YALMIP) implementations was determined. The
results are displayed in Fig. 4a.

Solving the GLB problem with SOSTOOLS 3.04, the pars-
ing complexity increases rapidly with the monomial degree,
already exceeding a computation time of one hour for mono-
mial degrees 10 (syms) or 12 (pvar). This rate of increase
is substantially improved using SOSTOOLS 4.00, display-
ing a slope similar to that using YALMIP, though reducing
computation time by a factor of around 102. Moreover, the
dpvar data structure is able to achieve a much more favorable
solve-to-setup time ratio, with in general less than 20% of the
computation time spent on parsing.



(a) Greatest lower bound test, Subsection VI-A (b) Robust stability test, Subsection VI-B (c) Local stability test, Subsection VI-C

Fig. 4: Elapsed time parsing the polynomial optimization problems from Section VI, using SOSTOOLS 3.04 with the syms and pvar data
structures, SOSTOOLS 4.00 with the dpvar data structure, and using the batch parser YALMIP. Tests in each case were discontinued when
the parsing time exceeded 3600 seconds, or the solver ran out of memory. The percentage of time spent parsing each problem was computed
by dividing the absolute time spent parsing the SOS program by the sum of the time spent parsing the SOSP and solving the resulting SDP,
for each implementation. The results show that, using the dpvar data structure, SOSTOOLS 4.00 is able to parse common SOS problems
with an efficiency comparable to, or even greater than that using the batch parser YALMIP.

B. Robust Stability

As a second example, we consider testing robust stability
of a linear ODE

ẋ(t) = A(p)x(t),

with state x(t) ∈ Rn at any t ≥ 0 and uncertain parameters
p ∈ G := {p ∈ R2 | g(p) ≥ 0}, where g(p) = 1 − p2

1 − p2
2.

Using a quadratic Lyapunov function V (p, x) = xTP (p)x, we
may determine stability of this system by testing for existence
of a matrix-valued polynomial P (p) such that P (p) > 0 and
P (p)A(p) +AT (p)P (p) ≤ 0 for any p ∈ G. Using the Psatz,
we approach this as an SOS problem

P − εIn ∈ Σs[p], −Qg − PA−ATP ∈ Σs[p], (11)

where Q ∈ Σs[p], and we let ε = 10−4.
In parsing this problem, we considered a polynomial matrix

A ∈ Rn×n[p] with all lower diagonal elements equal to
0.25p1, all upper diagonal elements equal to −0.25p2, and all
diagonal elements equal to 1. The time required for parsing
was computed for problem sizes up to n = 30 and for each of
the different implementations, using a variable P of maximal
degree 2d = 4. The results are displayed in Fig. 4b.

The results again show that the dpvar implementation
requires significantly less time to parse than the alternative
implementations. This time also scales much more favorably
using the dpvar data structure, in general offering an order
102 reduction in computation time compared to all other
implementations. In fact, even for n = 50, the dpvar
structure allowed the problem to be parsed in just 374 seconds,
a threshold exceeded by YALMIP at n = 13.

C. Local Stability
As a final example, we test local stability of a chain of n

Van der Pol oscillators. In particular, we consider the system

presented in [15], given by ẋ(t) = f(x), where x = (y, z) =
(y1, . . . , yn, z1, . . . , zn) and

fi(y, z) = −2zi, ∀i ∈ {1, . . . , n}
fn+j(y, z) = 0.8yj + 10(1.22y2

j − 0.21)zj + εjzj+1yj ,

∀j ∈ {1, . . . , n− 1}
f2n(y, z) = 0.8yn + 10(1.22y2

n − 0.21)zn,

where we let εj = −0.5 for each j. We test stability inside
a ball of radius r = 0.5, so that x ∈ {x ∈ R2n | g(x) ≥ 0},
where g(x) = r2 − ‖x‖2. To this end, we once again use a
Lyapunov function V ∈ Σs[x], imposing a Psatz condition

−[∇V (x)]T f(x)− s(x)g(x) ∈ Σs[x] (12)

where s ∈ Σs. Parsing this problem for increasing values of
n, we once more determined the time required for parsing
and solving the problem using the different implementations,
using a function V of degree 2d = 4. The results are presented
in Fig. 4c. Note that the SDP solver ran out of memory for
problems involving more than 2n = 14 independent variables,
prohibiting further tests.

Solving the local stability problem with both the pvar and
syms implementations, the required time to parse the SOS
program almost consistently accounts for more than 80% of
the total computation time. This issue is resolved using the
dpvar data structure, allowing SOSTOOLS 4.00 to parse the
problem with an efficiency similar to that of YALMIP.

VII. CONCLUSION

In this paper, we have introduced a new representation of
polynomial variables, which is affine in the decision variables.
We showed that, using this dpvar representation, computation
time for polynomial operations such as addition, multiplication
and differentiation remains relatively small, increasing favor-
ably with the number of involved decision variables. Exploit-
ing the MATLAB built-in sparsity structure, we also showed



that the computational and memory overhead for storing and
manipulating variables in the dpvar representation is minimal,
allowing for efficient parsing of SOS programs. Incorporating
this representation in SOSTOOLS 4.00, performance of this
parser was drastically enhanced, requiring computation times
similar to or even less than those using the batch parser
YALMIP to parse common optimization problems.
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APPENDIX

A. Computational Complexity of Merging Monomial
Bases

Representing polynomial variables using either the pvar
or dpvar data formats, almost all binary operations re-
quire the monomial bases of the considered polynomial
variables to be merged. For example, recall from Sub-
section III-A the problem of adding two (scalar) polyno-
mial variables s1 ∈ R[x1, . . . , xp1 ; ξ1, . . . , ξq1 ] and s2 ∈
R[y1, . . . , yp2 ; η1, . . . , ηq2 ], written in the dpvar representation
as

s1(x; ξ) = Z1(ξ)TC1Zd1(x),

s2(y; η) = Z1(η)TC2Zd2(y).

It is clear that the sum s3 = s1 +s2 of these polynomials may
be represented as

s3(x, y; ξ, η) =

[
Z1(ξ)
Z1(η)

]T [
C1 0
0 C2

] [
Zd1(x)
Zd2(y)

]
.

To express this result in the dpvar representation, we have to
define the variables z, χ, monomial basis Ẑd3 ∈ Rn3 [z], and
coefficients C3 such that

s3(z;χ) = Z1(χ)TC3Ẑd3(z) =

[
1
χ

]T
C3Ẑd3(z).

Here, merging the bases Zd1(x) and Zd2(y) into a single
(incomplete) basis Ẑd3(z) of monomials of degree at most
d3 := max{d1, d2} in variables z = unique(x; y) requires sig-
nificant computational effort, often accounting for the greatest
computational cost in performing operations like addition.

To get an estimate of the complexity associated with
merging the bases, let Zd1 ∈ Rn1 [x1, . . . , xp1 ] and Zd2 ∈
Rn2 [y1, . . . , yp] consist of respectively n1 and n2 monomials,
in respectively p1 and p2 variables. The bases can then be
represented as matrices ZM,d1 ∈ Nn1×p1 and ZM,d2 ∈ Nn2×p2

containing the degrees of each variable in each monomial,
so that the full vector of monomials

[
ZM,d1

(x)

ZM,d2
(y)

]
can be

represented by the matrix

[ x , y ]︷ ︸︸ ︷[
ZM,d1 0

0 ZM,d2

]
∈ N(n1+n2)×(p1+p2).

Conversion of this matrix into a degree matrix ẐM,d3 ∈
Nn3×p3 for the merged basis Ẑd3 ∈ Rn3 [z] is performed in 3
steps.

1) Merging the variables: First, a unique set of variables
z1, . . . , zp3 is determined from x1, . . . , xp1 and y1, . . . , yp2 .
This can be done very efficiently using e.g. a quicksort
algorithm to sort the variables, and discarding redundant
appearances of each variable, requiring a cost of

O
(
(p1 + p2) log(p1 + p2)

)
.



In defining these variables z, we also obtain permutation
matrices P1 ∈ Np1×p3 and P2 ∈ Np2×p3 such that x1

...
xp1

 = P1

 z1

...
zp3

 , and

 y1

...
yp2

 = P2

 z1

...
zp3

 .
Using these permutation matrices, the full vector of monomials[
Zd1

(x)

Zd2
(y)

]
may be equivalently represented by the degree matrix[

Ẑd1
Ẑd2

]
=

[
ZM,d1P1

ZM,d2P2

]
∈ N(n1+n2)×p3 ,

describing the degrees of each monomial in terms of the new
variables z.

2) Sorting the monomials: Next, the rows of
[
ẐM,d1
ẐM,d2

]
are

ordered in lexicographical order. For this, a weight is assigned
to each monomial, collected in a vector ẑ ∈ Nn1+n2 , computed
as

ẑ =

[
[ẐM,d1 ]1 [ẐM,d1 ]2 . . . [ẐM,d1 ]p3
[ẐM,d2 ]1 [ẐM,d2 ]2 . . . [ẐM,d2 ]p3

]
(d3 + 1)p3

(d3 + 1)(p3−1)

...
(d3 + 1)1

 .
(13)

Here, [ẐM,di ]k ∈ Nni denotes column k of ẐM,di ∈ Nni×p3 ,
and d3 := max{d1, d2} is the maximal degree of all mono-
mials, so that [ẐM,di ]jk < d3 + 1 for any j ∈ {1, . . . , ni}
and k ∈ {1, . . . , p3}. This ensures that ẑj > ẑi ∈ N for

i, j ∈ {1, . . . , n1 + n2} if and only if row j of
[
ẐM,d1
ẐM,d2

]
is

greater than row i of this matrix in a lexicographical sense.
The vector ẑ is then sorted calling the MATLAB inherent
function sort, applying the quicksort algorithm, invoking a
complexity of

O
(
(n1 + n2) log(n1 + n2)

)
.

Sorting the monomials, we obtain a permutation matrix

Psort ∈ N(n1+n2)×(n1+n2) so that Z̃M,d3 := Psort

[
ẐM,d1
ẐM,d2

]
∈

N(n1+n2)×p3 contains the degrees of all monomials in lexico-
graphical order.

3) Discarding duplicate monomials: Finally, a unique set of
monomials can be obtained from the ordered set by comparing
subsequent rows of the matrix Z̃M,d3 , retaining only the first
of each pair [Z̃M,d3 ]j = [Z̃M,d3 ]j+1 of identical rows. Since
the degrees are stored as a sparse matrix, only nonzero values
need to be compared, resulting in a complexity

O
(
nnz(Z̃M,d3)

)
= O

(
nnz(ẐM,d1) + nnz(ẐM,d2)

)
= O

(
nnz(ZM,d1) + nnz(ZM,d2)

)
.

We obtain a matrix Punique ∈ Nn3×(n1+n2) such that

ẐM,d3 := PuniqueZ̃M,d3 = PuniquePsort

[
ẐM,d1

ẐM,d2

]
∈ Nn3×p3

is a matrix of degrees associated to the unique combination of
monomials in Zd1(x) and Zd2(y).

In performing these steps, it is clear that the sorting (Step 2)
and subsequent comparing (Step 3) of the monomials Z̄d3 ∈
N(n1+n2)×p3 will require the greatest computational effort. We
note here that, for pi variables and a maximal degree di, the
total number ni of possible monomials is

ni =
(pi + di)!

pi!di!
.

Moreover, the number of nonzero elements in the degree
matrix ZM,di ∈ Nni×pi associated to these monomials is given
by

nnz(ZM,di) =
(pi + di)!− pi [(pi − 1 + di)!]

(pi − 1)! di!

=

[
pi −

p2
i

pi + di

]
ni

For sufficiently large values of pi and di, here,[
pi −

p2
i

pi + di

]
≤ log

(
(pi + di)!

pi!di!

)
= log(ni),

and thus, in general, the complexity of sorting the monomials

in
[
ẐM,d1
ẐM,d2

]
will be greater than that of merging duplicate

monomials in the sorted Z̃M,d3 . We conclude that the com-
plexity of merging the monomial bases Zd1 ∈ Rn1 [x] and
Zd2 ∈ Rn2 [y] is roughly

O
(
(n1 + n2) log(n1 + n2)

)
.

Here, ni := (pi+di)!
pi!di!

, so that the cost of adding two polynomial
variables increases rapidly with the number of independent
variables p1 and p2. In this sense, the dpvar representation
offers a significant advantage over the pvar representation, by
not storing decision variables as independent variables, and
thus maintaining relatively small values for pi.

It should be noted that the monomial sorting of
[
ẐM,d1
ẐM,d2

]
∈

N(n1+n2)×p3 described in Step 2, may require additional steps
when considering large numbers of independent variables. In
particular, for large values of p3 and d3, the weights ẑj of
each monomial, computed as in Equation (13), may exceed the
maximal numerical values MATLAB can (effectively) handle.
Under these circumstances, sorting may have to be performed
in stages, sorting only based on a subset of the columns of[
ẐM,d1
ẐM,d2

]
at each stage. This will increase the complexity with

a factor dependent on the number of stages in which the sorting
has to be performed. This additional complexity is in general
avoided when using the dpvar representation, as the number of
variables and monomial degree in common SOS programs are
usually sufficiently small. However, using the pvar representa-
tion, since the decision variables are included as independent
variables in the monomial, the number of columns p3 will
be drastically increased, thus requiring further computational
effort that can be avoided with the dpvar representation.



B. A SOSTOOLS Implementation of Several Polynomial
Optimization Problems

1) Greatest Lower Bound: The greatest lower bound prob-
lem from Subsection VI-A takes the form

max
γ

γ,

s.t. γ ≤ f(x) ∀x1, x2 ∈ [−12, 12],

where f(x) = x4
1 + x4

2 − 2x2x
3
1 − 3x2

2x
2
1 + 150(x2

1 + x2
2).

Defining,

g1(x) = 122 − x2
1 ≥ 0, g2(x) = 122 − x2

2 ≥ 0,

g3(x) = 2 · 122 − (x2
1 + x2

2) ≥ 0,

and invoking Putinar’s Positivstellensatz (Psatz) [14] (Psatz),
we enforce a single SOS constraint

F (x) := (f(x)− γ)− s1g1(x)− s2g2(x)− s3g3(x) ∈ Σs,

with SOS variables s1, s2, s3 ∈ Σs. This SOS problem may
be implemented in SOSTOOLS 4.00 by first initializing a
program structure sos in the independent variables x1, x2 and
decision variable γ, as

> pvar x1 x2
> dpvar gam
> sos = sosprogram([x1,x2],gam);

Note here that the independent variables x1, x2 are imple-
mented as polynomial (pvar) class objects, whereas the
decision variable γ is implemented as a dpvar class object.
Next, SOS variables si(x;C) = Zd(x)CiZd(x) for each
i ∈ {1, 2, 3} are initialized as,

> Zd = monomials([x1;x2],0:d)
> [sos,s1] = sossosvar(sos,Zd);
> [sos,s2] = sossosvar(sos,Zd);
> [sos,s3] = sossosvar(sos,Zd);

where now Zd will be a polynomial class object, repre-
senting a monomial vector Zd(x) of maximal degree d, and
si will be dpvar class objects. Implementing the functions
f and gi as polynomial class objects f and gi, the SOS
constraint F ∈ Σs is finally imposed as

> F = f-gam - s1*g1 - s2*g2 - s3*g3;
> sos = sosineq(sos,F);

at which point the program can be solved by calling

> sos = sossolve(sos);

2) Robust Stability: In Subsection VI-B, we consider a linear
ODE

ẋ(t) = A(p)x(t),

with state x(t) ∈ Rn at any t ≥ 0 and uncertain parameters
p ∈ G := {p ∈ R2 | g(p) ≥ 0}, where g(p) = 1 − p2

1 −
p2

2. Robust stability is determined by testing for existence of
a matrix-valued polynomial P (p) such that P (p) > 0 and
P (p)A(p) + AT (p)P (p) ≤ 0 for any p ∈ G, enforced as an
SOS problem

P − εIn ∈ Σs[p], −Qg − PA−ATP ∈ Σs[p],

where Q ∈ Σs[p], and we let ε = 10−4. In SOSTOOLS 4.00,
after initializing an SOS program as

> pvar p1 p2
> sos = sosprogram([p1,p2]);

the robust stability test may be implemented by first defining
the positive definite polynomial variable P ∈ Σs[p] in terms
of monomials of degree 2 as

> Z=monomials([p1;p2],0:2)
> [sos,P]=sospolymatrixvar(sos,Z,[n n]);
> eps=1e-4;
> [sos]=sosmatrixineq(sos,P-eps*eye(n));

where now P is a dpvar class object representing the SOS
variable P (p;C) = Z2(p)TCZ2(p), and satisfying P − εI ∈
Σs[p]. Next, defining polynomial class objects A and g to
represent the functions A(p) and g(p) respectively, negativity
of the derivative is enforced as

> [sos,Q]=sospolymatrixvar(sos,Z,[n n]);
> [sos]=sosmatrixineq(sos,Q);
> [sos]=sosmatrixineq(sos,-Q*g-A’*P-P*A);

at which point the program can be solved by calling

> sos = sossolve(sos);

3) Local Stability: In Subsection VI-C, we consider a system
presented in [15], given by ẋ(t) = f(x), where x = (y, z) =
(y1, . . . , yn, z1, . . . , zn) and

fi(y, z) = −2zi, ∀i ∈ {1, . . . , n}
fn+j(y, z) = 0.8yj + 10(1.22y2

j − 0.21)zj + εjzj+1yj ,

∀j ∈ {1, . . . , n− 1}
f2n(y, z) = 0.8yn + 10(1.22yn2− 0.21)zn,

where we let εj = −0.5 for each j. Local stability of this
system is tested inside a ball of radius r = 0.5, so that x ∈
G := {x ∈ R2n | g(x) ≥ 0}, where g(x) = r2−‖x‖2. To this
end, a Lyapunov function V ∈ Σs[x] is sought, imposing an
SOS constraint

−[∇V (x)]T f(x)− s(x)g(x) ∈ Σs[x]

where s ∈ Σs. This SOS problem may be implemented as a
program structure sos in SOSTOOLS, initialized as

> pvar y1 ... yn;
> pvar z1 ... zn;
> sos = sosprogram([y1,...,zn]);

Next, we construct a variable V (x;C) = Z2(x)TCZ2(x),

> Z = monomials([y1,...,zn],0:2);
> [sos,V] = sossosvar(sos,Z);

defining a dpvar class object V representing the Lyapunov
function. Defining polynomial class objects f and g to
represent the desired functions f(x) and g(x), the derivative
of the Lyapunov function is finally enforced to be negative in
the desired domain

> Vd = jacobian(V,[y1,...,zn])*f;



> [sos,s] = sossosvar(sos,Z);
> [sos] = sosineq(sos,-Vd-s*g);

at which point the program can be solved by calling

> sos = sossolve(sos);

C. The sosquadvar Function
In addition to incorporating the dpvar data structure,

SOSTOOLS 4.00 also introduces the sosquadvar function,
for efficient implementation of general polynomial decision
variables. In its simplest form, sosquadvar takes as input
a SOSTOOLS program structure sos, and two monomial
vectors Zd1 ∈ Rk1 [x] and Zd2 ∈ Rk2 [y], implemented as
polynomial (pvar) class objects Z1 and Z2. Calling

> [sos,P] = sosquadvar(sos,Z1,Z2);

a dpvar class object P is returned, representing a polyno-
mial variable P (x, y;Q) = Zd1(x)TQZd2(y), for decision
variables Q ∈ Rk1×k2 . The decision variables are also added
to the output program structure sos. Using the sosquadvar
function, monomial vectors Zd1 = 1 or Zd2 = 1 may
also be specified, allowing e.g. linear polynomial variables
P (y; q) = qTZd2(y) to be added to the program. Moreover,
optional matrix dimensions m and n may also be passed to the
function as

> [sos,P] = sosquadvar(sos,Z1,Z2,m,n);

producing a dpvar object P associated to the m× n matrix-
valued variable

P (x, y;Q) = (Im ⊗ Zd1(x))TQ(In ⊗ Zd2(y)),

where now Q ∈ Rmk1×nk2 .
In addition to the dimensions of the variable, positivity

properties of the variable can be specified when calling
sosquadvar. In particular, the function allows a sixth (op-
tional) input to be passed, taking one of two values:

1) ‘sym’, requiring the decision variable Q ∈ Rmk1×nk2
to be symmetric, or

2) ‘pos’, requiring the decision variable Q ∈ Rmk1×nk2
to be (symmetric) positive semi-definite.

Naturally, both of these options only make sense if the matrix
Q is square, allowing these options to be specified only if
m = n and k1 = k2. Using the pos input, an SOS variable
S(x;Q) = (Im ⊗ Zd1(x))TQ(Im ⊗ Zd1(x)) with Q ≥ 0 can
be added to the program by calling

> [sos,S]=sosquadvar(sos,Z1,Z1,m,m,’pos’);

In calling the function with this pos input, the constraint Q ≥
0 on the decision variables of S(x;Q) will be added to the
program structure sos. Note, however, that unless the left
and right monomial vectors are identical, the resulting variable
S(x, y;Q) need not be an SOS variable.

As a final functionality, sosquadvar allows variables to
be specified for which positivity is coupled between mul-
tiple polynomial variables. Specifically, consider two sets
{Zd1,1 , . . . , Zd1,r} and {Zd2,1 , . . . , Zd2,p} of respectively r ∈
N and p ∈ N monomial vectors, where Zd1,i ∈ Rk1,i [xi] and

Zd2,j ∈ Rk1,j [xj ] for each i ∈ {1, . . . , r} and j ∈ {1, . . . , p}.
For each pair of monomials (Zd1,i , Zd2,j ), sosquadvar can
be used to construct a polynomial variable

Pi,j(xi, yj ;Qi,j) = (Imi
⊗ Zd1,i(xi))TQi,j(Inj

⊗ Zd2,j (yj))

∈ Rmi×nj [xi, yj ;Qi,j ],

parameterized by decision variables Qi,j ∈ Rmik1,i×nik2,j .
Defining such variables for each pair (i, j) separately, however,
positivity of the matrices Qi,j is not necessary or sufficient for
positivity of the composite matrix

Q =

Q1,1 . . . Q1,p

...
. . .

...
Qr,1 . . . Qr,p

 ∈ R
∑r

i=1mik1,i×
∑p

j=1mjk2,j (14)

as a whole. Instead, to construct the polynomials
Pi,j ∈ Rmi×nj [xi, yj ;Qi,j ] while enforcing Q ≥ 0,
sosquadvar can be called with MATLAB cell structures
Z1={Z11,...,Z1r} and Z2={Z21,...,Z2p}, where
Z1i and Z1j are polynomial class objects defining the
desired monomial vectors Zd1,i and Zd2,j . Using vectors
m=[m1,...,mr] and n=[n1,...,np] to specify the
matrix dimensions, sosquadvar can be called as before,

> [sos,P]=sosquadvar(sos,Z1,Z2,m,n,’pos’);

producing an r × p cell structure P, where each element
P{i,j} is a dpvar class object representing the polynomial
variable Pi,j ∈ Rmi×nj [xi, yj ;Qi,j ], and where the matrix
Q as in Eqn. (14) is required to satisfy Q ≥ 0. Calling
sosquadvar with cell inputs, the pos and sym options
can only be used if r = p, and mi = ni and k1,i = k2,i

for each i ∈ {1, . . . , r}. If for each i further Zd1,i =
Zd2,i , and the pos option is specified, the composite variable
P ∈ R

∑r
i=1mi×

∑r
i=1 ni [x;Q] will be an SOS variable, though

the individual functions Pi,j(xi, xj ;Qi,j) (for i 6= j) will
generally not be.

Through the sosquadvar function, SOSTOOLS 4.00
allows straightforward implementation of a wide class of poly-
nomial variables, substantially expanding the scope of vari-
ables that could be specified in SOSTOOLS 3.04. Constructing
these variables directly as dpvar objects, sosquadvar also
increases efficiency compared to the functions sossosvar,
sospolyvar, sosposmatrvar, etc., used for constructing
different types of polynomial variables in SOSTOOLS 3.04.
Accordingly, each of these functions has been updated to
outsource computations to sosquadvar where possible,
enhancing efficiency and transparency in the parsing of SOS
programs.


