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Form factors of the energy-momentum tensor (EMT) can be interpreted in certain frames in terms of
spatial distributions of energy, stress, linear and angular momentum, based on 2D or 3D Fourier transforms.
This interpretation is in general subject to “relativistic recoil corrections,” except when the nucleon moves
at the speed of light like e.g. in the infinite-momentum frame. We show that it is possible to formulate a
large-Nc limit in which the probabilistic interpretation of the nucleon EMT distributions holds also in other
frames. We use the bag model formulated in the large-Nc limit as an internally consistent quark model
framework to visualize the information content associated with the 2D EMT distributions. In order to
provide more intuition, we present results in the physical situation and in three different limits: by
considering a heavy-quark limit, a large system-size limit and a constituent-quark limit. The visualizations
of the distributions in these extreme limits will help to interpret the results from experiments, lattice QCD,
and other models or effective theories.
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I. INTRODUCTION

In recent years, the energy-momentum tensor (EMT) has
been recognized as a key object by the hadronic physics
community and attracted accordingly a lot of attention. It is
directly related to the questions of the nucleon mass and
spin decompositionswhich constitute two of the three pillars
of the Electron-Ion Collider project in the United States [1–
3]. High-energy scattering experiments and calculations in
lattice QCD and models can be used to constrain matrix
elements of the EMT, allowing us to study the mass [4–12],
spin [13–17], and spatial distributions of energy,momentum
and stress inside the nucleon [18–28]. This offers an
unprecedented picture of the nucleon structure and even a
glimpse into the question of its stability.
While both experimental [29–58] and lattice QCD data

[59–67] are accumulating, numerous fundamental ques-
tions are addressed and studied from the theory side,
ranging from the proper definition of the renormalized
EMT in QCD, the various possibilities for decomposing the
mass and the spin of a composite system, the understanding
of relativistic effects and frame dependence, and many

more aspects (see [12] for the most recent account), to the
identification and suggestion of new processes and exper-
imental observables. At the present stage of our knowledge,
model calculations inspired by QCD are particularly useful
since they provide valuable predictions guiding experimen-
tal studies. They also allow one to test explicitly general
relations derived from formal considerations. A large
number of models and approaches have been developed
over the years and used to study particular parton distri-
butions or observables [68–116].
In this work we push further the study of the EMT using

the bag model in the large-Nc limit studied in Ref. [109].
We focus here on the 2D spatial distributions which are
defined for arbitrary values of the nucleon average three-
momentum P⃗ [21,115–121]. Besides obtaining a 2D
picture of the nucleon in the physical situation, we will
also discuss in detail three insightful limits, namely a
heavy-quark limit, a large system-size limit, and a con-
stituent quark limit. While representing very different
physical situations, the limits have in common that the
quarks become effectively nonrelativistic and the quark
Compton wavelength becomes much smaller than the
system size. We will study the behavior of the EMT
distributions in these situations. This will show how, within
a quark model framework, the internal nucleon structure
changes as one goes away from the real-world situation
with tightly bound ultrarelativistic quarks forming a com-
pact nucleon, and approaches the different limits.
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The paper is organized as follows. In Sec. II we present
in a nutshell how 3D and 2D spatial distribution associated
with the EMT are constructed, along with various general
properties and the large-Nc limit. Then we remind in
Sec. III the analytical results of Ref. [109] for the 3D
distributions in the bag model, and introduce in Sec. IV the
various limits we will consider later (namely heavy quarks,
large system size, and constituent quarks). After showing in
Sec. V the 2D distributions in the physical situation, we
discuss in detail three different limits in Secs. VI–VIII.
Finally we study the mass structure of the nucleon within
the bag model picture in Sec. IX, and summarize our
findings in Sec. X. Additional discussions can be found in
Appendices.

II. EMT FORM FACTORS AND SPATIAL

DISTRIBUTIONS

In this section we introduce the EMT form factors, define
the 2D and 3D distributions in different reference frames,
review their relations, and discuss the description of these
EMT form factors and distributions in the large-Nc limit.

A. Energy-momentum tensor and form factors

In QCD, the local gauge-invariant quark and gluon
contributions to the EMT are defined as1

T
μν
q ¼ ψ̄qγ

μ
i

2
D
↔ν

ψq; ð1aÞ

T
μν
g ¼ −FμλFν

λ þ
1

4
gμνF2; ð1bÞ

where D
↔

μ ¼ ∂⃗μ − ∂⃖μ − 2igAμ is the symmetric covariant
derivative in the fundamental representation, Fμν is the
gluon field-strength tensor in the adjoint representation,
and gμν ¼ diagðþ1;−1;−1;−1Þ is the Minkowski metric.
The EMT is a key object since many current fundamental
questions about the hadronic structure are related to its
components. Namely, the 00 component addresses the
question of the origin of the hadron mass [4–7,9,10,12],
the 0i and i0 components address the question of the origin
of the hadron spin [13,15,16], and the ij components
contain information about pressure forces inside the
nucleon [18,20,21,23].
The corresponding generalized angular momentum

(AM) tensor is given by [15,16,117]

Jμαβ ¼
X

q

L
μαβ
q þ

X

q

S
μαβ
q þ J

μαβ
g ; ð2Þ

where (ϵ0123 ¼ þ1)

L
μαβ
q ¼ xαT

μβ
q − xβT

μα
q ; ð3aÞ

S
μαβ
q ¼ 1

2
ϵμαβλψ̄qγλγ5ψq; ð3bÞ

J
μαβ
g ¼ xαT

μβ
g − xβT

μα
g ð3cÞ

represent the quark orbital, quark spin, and gluon total AM
contributions. The tensors L

μαβ
q and J

μαβ
g are covariant

forms of r⃗ × p⃗ and will accordingly be qualified as orbital-
like. Lorentz symmetry implies that the generalized AM
tensor is conserved ∂μJ

μαβ ¼ 0, and in turn relates the
antisymmetric part of the quark EMT to the quark spin
contribution

T
½αβ�
q ≡

1

2
ðTαβ

q − T
βα
q Þ ¼ −

1

2
∂μS

μαβ
q : ð4Þ

In the literature, one often uses a symmetric EMT, known
as the Belinfante EMT, which in QCD is related to the
general asymmetric EMT as follows [16]:

T
μν
Bel;a ¼ T

fμνg
a ≡

1

2
ðTμν

a þ T
νμ
a Þ: ð5Þ

The Belinfante generalized AM tensor reads

J
μαβ
Bel ¼

X

q

J
μαβ
Bel;q þ J

μαβ
Bel;g; ð6Þ

with

J
μαβ
Bel;a ¼ xαT

μβ
Bel;a − xβT

μα
Bel;a; a ¼ q; g: ð7Þ

Contrary to the kinetic generalized AM tensor Jμαβ, the
Belinfante version J

μαβ
Bel is purely orbital-like.

For a spin-1=2 target with massMN , the matrix elements
of the general asymmetric EMT evaluated at the space-time
origin x ¼ 0 can be parametrized in the following way
[14,16,123]:

hp0; s⃗0jTμν
a ð0Þjp; s⃗i

¼ ūðp0; s⃗0Þ
�

AaðtÞ
PμPν

MN

þ JaðtÞ
PfμiσνgλΔλ

MN

þDaðtÞ
Δ

μ
Δ

ν − gμνΔ2

4MN

− SaðtÞ
P½μiσν�λΔλ

MN

þ C̄aðtÞMNg
μν

�

uðp; s⃗Þ; ð8Þ

where the kinematic variables are defined as

P ¼ 1

2
ðp0 þ pÞ; Δ ¼ p0 − p; t ¼ Δ

2: ð9Þ1See Refs. [7–9,122] for the case of a symmetric EMT
renormalized in MS scheme up to three loops.
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The unit vector s⃗ (s⃗0) indicates the direction along which
the initial (final) rest-frame spin is aligned. The form
factors for different parton species depend on the renorm-
alization scale μ, e.g. AaðtÞ≡ Aaðt; μ2Þ, which is usually
omitted for brevity. The total EMT form factors AðtÞ≡
P

a Aaðt; μ2Þ and analogs for JðtÞ,DðtÞ are renormalization
scale invariant. The form factors C̄aðt; μ2Þ account for
the nonconservation of the separate quark and gluon
EMTs. The total EMT being conserved, it follows that
P

a C̄aðt; μ2Þ ¼ 0. Moreover, Poincaré symmetry implies
that Að0Þ ¼ 1 and Jð0Þ ¼ 1=2 [13,124–126]. Unlike the
gluon spin, the quark spin operator can be expressed in a
way that is both local and gauge invariant. As a result, the
quark contribution to the EMT receives in general an
antisymmetric contribution described by the form factor
SqðtÞ. For the Belinfante EMT, the latter drops out owing
to Eq. (5).

B. 3D spatial distributions in the Breit frame

For a nucleon state with rest-frame polarization in the s⃗
direction, a 3D spatial distribution of the EMT can be
defined in the Breit frame (BF) where Pμ ¼ ðP0; 0⃗Þ and
Δ

μ ¼ ð0; Δ⃗Þ as follows [18,21,119,127]:

hTμν
a iBFðr⃗Þ¼

Z
d3Δ

ð2πÞ3e
−iΔ⃗·r⃗

�hp0; s⃗jTμν
a ð0Þjp;s⃗i
2P0

�

P⃗¼0⃗

; ð10Þ

and can be expressed in terms of 3D Fourier transforms of
the EMT form factors. Its components give access to a
wealth of physical information.
The 00 component corresponds to the quark and gluon

energy distributions

hT00
a iBFðr⃗Þ ¼ ϵaðrÞ; ð11Þ

which are related to the nucleon mass by

X

a¼q;g

Z

d3rϵaðrÞ ¼ MN : ð12Þ

The 0i and i0 components are related to the AM
distributions inside the nucleon,

ϵijkrjhT0k
q iBFðr⃗Þ ¼ Li

qðr⃗Þ; ð13aÞ

ϵijkrjhT ½0k�
q iBFðr⃗Þ ¼ −

1

2
½r⃗ × ð∇⃗ × S⃗qðr⃗ÞÞ�

i
; ð13bÞ

ϵijkrjhTf0kg
q iBFðr⃗Þ ¼ JiBel;qðr⃗Þ; ð13cÞ

ϵijkrjhT0k
g iBFðr⃗Þ ¼ Jigðr⃗Þ ¼ JiBel;gðr⃗Þ; ð13dÞ

which satisfy the AM sum rule [13,119]

X

a¼q;g

Z

d3rJ⃗Bel;aðr⃗Þ ¼
s⃗

2
: ð14Þ

A similar sum rule holds for the asymmetric EMT

Z

d3r

�
X

q

L⃗qðr⃗Þ þ
X

q

S⃗qðr⃗Þ þ J⃗gðr⃗Þ
�

¼ s⃗

2
; ð15Þ

and involves the 3D distribution of quark spin in the BF:

Siqðr⃗Þ ¼
1

2

Z
d3Δ

ð2πÞ3 e
−iΔ⃗·r⃗

�hp0; s⃗jψ̄ð0Þγiγ5ψð0Þjp; s⃗i
2P0

�

P⃗¼0⃗

:

ð16Þ

Note that JiBel;qðr⃗Þ and Li
qðr⃗Þ þ Siqðr⃗Þ differ by a total

derivative [117]

Li
qðr⃗Þ þ Siqðr⃗Þ − JiBel;qðr⃗Þ ¼

1

2
∇j½rjSiqðr⃗Þ − δjir⃗ · S⃗qðr⃗Þ�

ð17Þ

which vanishes under spatial integration.
For a nucleon target polarized along s⃗, the spatial

dependence of any AM distribution (generically denoted
by Jia) can be decomposed into monopole [72] and
quadrupole [117,128] contributions:

Jiaðr⃗Þ ¼
�

δijJmono
a ðrÞ þ

�
rirj

r2
−
1

3
δij

�

J
quad
a ðrÞ

�

sj: ð18Þ

The monopole and quadrupole contributions are related to
each other as [128]

Jmono
a ðrÞ ¼ −

2

3
J
quad
a ðrÞ≡ JaðrÞ ð19Þ

for the orbital-like contributions Ja ∈ fLi
q; J

i
Bel;q; J

i
gg.

However, for the quark spin contribution Siq the monopole
and quadrupole contributions are independent.
The symmetric stress tensor can similarly be decom-

posed into monopole and quadrupole contributions [18],

hTfijg
a iBFðr⃗Þ ¼ δijpaðrÞ þ

�
rirj

r2
−
1

3
δij

�

saðrÞ; ð20Þ

which are interpreted as the (spin-independent) distribu-
tions of isotropic pressure and pressure anisotropy (or shear
forces), respectively. The so-called radial and tangential
pressures are then given by the combinations [20,21]

pr;aðrÞ ¼ paðrÞ þ
2

3
saðrÞ; pt;aðrÞ ¼ paðrÞ −

1

3
saðrÞ:

ð21Þ
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The conservation of total EMT ∂μT
μν ¼ 0 relates total

pressure anisotropy sðrÞ ¼
P

a saðrÞ and total isotropic
pressure pðrÞ ¼

P

a paðrÞ through a differential equation:

2

3

dsðrÞ
dr

þ 2sðrÞ
r

þ dpðrÞ
dr

¼ 0: ð22Þ

It indicates in particular that the variation of the radial
pressure is caused by shear forces.2 Other consequences of
EMT conservation are the following conditions:

Z
∞

0

drr2pðrÞ ¼ 0; ð23aÞ

Z
∞

0

drr

�

−
1

3
sðrÞ þ pðrÞ

�

¼ 0; ð23bÞ

Z
∞

0

dr

�

−
4

3
sðrÞ þ pðrÞ

�

¼ 0; ð23cÞ

where Eq. (23a) is called the von Laue condition (or
sometimes, more loosely, the equilibrium condition), while
Eqs. (23b) and (23c) are sometimes called the respective
lower-dimensional von Laue conditions (though they are
pertinent to the 3D pressure distribution, and should not be
confused with the 2D conditions discussed in Appendix A).
The relations (23) are necessary conditions for the
mechanical stability of an extended particle.

C. 2D spatial distributions with arbitrary momentum

3D spatial distributions are restricted to the BF, where
the target has vanishing average momentum P⃗ ¼ 0⃗. The
concept of relativistic spatial distribution can however be
extended to the more general case P⃗ ≠ 0⃗, at the price of
losing one spatial dimension. Choosing for convenience the
z direction along P⃗, 2D spatial distributions of the EMT can
be defined in the class of elastic frames (EF), where the
energy transfer vanishes Δ0 ¼ 0, as follows [21,117–119]:

hTμν
a iEFðb;PzÞ

¼
Z

d2Δ⊥

ð2πÞ2 e
−iΔ⊥·b

�hp0; s⃗jTμν
a ð0Þjp;s⃗i
2P0

�

jP⊥j¼Δz¼0

: ð24Þ

The BF corresponds to the special EF wherePz → 0. In that
case, the 2D distributions simply reduce to the projection of
3D distributions onto the transverse plane

hTμν
a iEFðb; 0Þ ¼

Z

dzhTμν
a iBFðr⃗Þ ð25Þ

with r⃗ ¼ ðb; zÞ. We can then easily relate the 2D distribu-
tions in the BF to the 3D ones [21,117]:

ϵaðbÞ ¼
Z

dzϵaðrÞ; ð26aÞ

JiaðbÞ ¼
Z

dzJiaðr⃗Þ; ð26bÞ

paðbÞ ¼
Z

dz

�

paðrÞ þ
b2 − 2z2

6r2
saðrÞ

�

; ð26cÞ

saðbÞ ¼
Z

dz
b2

r2
saðrÞ; ð26dÞ

pr;aðbÞ ¼
Z

dz
b2pr;aðrÞ þ z2pt;aðrÞ

r2
; ð26eÞ

pt;aðbÞ ¼
Z

dzpt;aðrÞ; ð26fÞ

where Jia denotes either Li
q, Siq, JiBel;q or Jig ¼ JiBel;g. The

transformation from the 3D to 2D distributions with spheri-
cal symmetry is invertible and known as Abel transforma-
tion [24]. The pressure distributions pðbÞ and sðbÞ
correspond to the 2D monopole and quadrupole contribu-
tions to the transverse part (i; j ¼ 1; 2) of the symmetric
stress tensor

hTfijg
a iEFðb; 0Þ ¼ δ

ij
⊥paðbÞ þ

�
bibj

b2
−
1

2
δ
ij
⊥

�

saðbÞ: ð27Þ

Like in the 3D case, it follows from the conservation of the
total EMT that

1

2

dsðbÞ
db

þ sðbÞ
b

þ dpðbÞ
db

¼ 0: ð28Þ

For a longitudinally polarized nucleon, these 2D dis-
tributions satisfy the relations

X

a

Z

d2bϵaðbÞ ¼ MN ; ð29aÞ

X

a

Z

d2bJzBel;aðbÞ ¼
1

2
; ð29bÞ

X

a

Z

d2bpaðbÞ ¼ 0; ð29cÞ

2MN

X

a

Z

d2bb2paðbÞ ¼ Dð0Þ; ð29dÞ

2For macroscopic fluids in hydrostatic equilibrium and sub-
jected to an external gravitational field, the bulk pressure is
isotropic and decreases with height because of the external
anisotropic gravitational force. Isotropic pressure also suddenly
changes at the gas-liquid interface where anisotropic forces are
modeled in terms of a surface tension.
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−
MN

2

X

a

Z

d2bb2saðbÞ ¼ Dð0Þ; ð29eÞ

whereDð0Þ is theD-term [129]. Since relativistic boosts do
not commute with each other, 2D distributions get more
and more distorted as we increase Pz. In the infinite-
momentum frame (IMF), they coincide (up to a trivial
Jacobian factor) with the light-front (LF) spatial distribu-
tions [21,23] in the symmetric Drell-Yan frame defined by
Δ

þ ¼ 0 and Pμ ¼ ðP0; 0⊥; PzÞ,

lim
Pz→∞

hTμν
a iEFðb;PzÞ=

ffiffiffi

2
p

¼ lim
Pþ

→∞
hTμν

a iLFðbÞ; ð30Þ

where

hTμν
a iLFðbÞ¼

Z
d2Δ⊥

ð2πÞ2 e
−iΔ⊥·b

�hp0;λjTμν
a ð0Þjp;λi
2Pþ

�

jP⊥j¼Δ
þ¼0

:

ð31Þ

Here the LF components are defined as a� ¼ ða0 � a3Þ=
ffiffiffi

2
p

, and the LF momentum eigenstates with LF helicity λ

are normalized as hp0; λ0jp; λi ¼ 2Pþð2πÞ3δðp0þ − pþÞ×
δð2Þðp0⊥ − p⊥Þδλ0λ.

D. Stability requirements for 2D BF distributions

The 3D EMT distributions satisfy certain criteria which
are necessary (but not sufficient) requirements for mechani-
cal stability. Namely, in a 3D stable system, it is expected
(at least classically) [21] that at r ¼ 0 one has ϵð0Þ < ∞,
pð0Þ < ∞, sð0Þ ¼ 0, while at r > 0 the following inequal-
ities hold:

ϵðrÞ> 0; prðrÞ> 0;
dϵðrÞ
dr

< 0;
dprðrÞ
dr

< 0;

ϵðrÞþpiðrÞ≥ 0; ϵðrÞþ3pðrÞ≥ 0; ϵðrÞ≥ jpiðrÞj;
ð32Þ

where i ¼ r, t. (We remind that throughout this work we
use natural units with c ¼ 1 and ℏ ¼ 1.)
These constraints on the 3D distributions can be trans-

lated into 2D stability conditions. At b ¼ 0 we expect the
following to hold: ϵð0Þ < ∞, pð0Þ < ∞ and sð0Þ ¼ 0. For
b > 0 the other constraints are

ϵðbÞ≥0; prðbÞ≥0;
dϵðbÞ
db

≤0;
dprðbÞ
db

≤0;

ϵðbÞþpiðbÞ≥0; ϵðbÞþ2pðbÞ≥0; ϵðbÞ≥ jpiðbÞj:
ð33Þ

While alluded to in Ref. [21], to the best our knowledge
these constraints on the 2D BF distributions have not been

discussed explicitly before in literature, except the pos-
itivity of radial pressure expressed as pðbÞ þ 1

2
sðbÞ ≥ 0

[23]. The proofs of these relations, relying on the validity
of the corresponding 3D counterparts, are given in
Appendix A.

E. Large-Nc limit

In the large-Nc limit the nucleon mass behaves as
MN ∼ Nc, while the nucleon three-momenta are assumed
to scale like N0

c. This implies the hierarchy P0 ∼ Nc ≫

jP⃗j ∼ jΔ⃗j ∼ N0
c ≫ Δ

0 ∼ N−1
c . The initial four-momentum is

given by pμ ≈MNð1; v⃗Þ with the initial nucleon velocity
v⃗ ≈ p⃗=MN ∼ N−1

c , and similarly for the final state. Thus,
the motion of the nucleon is slow and nonrelativistic.
Independently of the nucleon being nonrelativistic as a
whole, the motion of its constituents may however range
from nonrelativistic (e.g. heavy quarks in nonrelativistic
quark models) to ultrarelativistic (e.g. light quarks in
relativistic models or QCD) as we shall discuss below.
The leading terms in the large-Nc expansions of the

nucleon matrix elements polarized along s⃗ for the different
quark EMT components are given by

hp0; s⃗jT00
Q ð0Þjp;s⃗i

¼ 2M2
N

�

AQðtÞþ C̄QðtÞþ
Δ⃗

2

4M2
N

DQðtÞ
�

þOðN0
cÞ; ð34aÞ

hp0; s⃗jTf0ig
Q ð0Þjp; s⃗i

¼ 2MN

�

PiAQðtÞ þ
iðs⃗ × Δ⃗Þi

2
JQðtÞ

�

þOðN0
cÞ; ð34bÞ

hp0; s⃗jT ½0i�
Q ð0Þjp; s⃗i ¼ −MNiðs⃗ × Δ⃗ÞiSQðtÞ þOðN0

cÞ;
ð34cÞ

hp0; s⃗jTfijg
Q ð0Þjp; s⃗i

¼ 2M2
N

�

−δijC̄QðtÞ þ
Δ

i
Δ

j − δijΔ⃗
2

4M2
N

DQðtÞ
�

þOðN0
cÞ;

ð34dÞ

hp0; s⃗jT ½ij�
Q ð0Þjp; s⃗i ¼ OðN0

cÞ: ð34eÞ

The large-Nc behavior of the EMT form factors for
the different u� d flavor combinations of the light quarks
is as follows: AuþdðtÞ ∼ N0

c, Ju−dðtÞ ∼ Nc, Su−dðtÞ ∼ Nc,
DuþdðtÞ ∼ N2

c, C̄uþdðtÞ ∼ N0
c are leading, while Au−dðtÞ∼

N−1
c , JuþdðtÞ ∼ N0

c, SuþdðtÞ ∼ N0
c,Du−dðtÞ ∼ Nc, C̄u−dðtÞ ∼

N−1
c are respectively subleading in the 1=Nc expansion

[20]. The total quark contribution denoted by the indexQ in
Eq. (34) is already exhausted by the uþ d flavor
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combination when working in a model in the SU(2) flavor
sector which we shall do in the following.
In the large-Nc limit, Pz remains always much smaller

than MN . Distortions of spatial distributions induced by
the motion of the target are therefore subleading in the
1=Nc expansion. The fundamental reason for this is that
the Lorentz group becomes the Galilean group in the limit
P0 ∝ Nc → ∞. An exception is the AM distributions for a
transversely polarized nucleon due to the appearance of
the term PiAQðtÞ in Eq. (34b). This term is expected
because it is associated with the center-of-mass motion of
the system. Indeed, let us consider a rigid block of matter
moving at some constant velocity without rotation, and
hence with vanishing internal AM. The spatial distribution
of momentum is nonzero inside the body, and the AM
distribution does not vanish. Integrating over space, one
finds that total AM is given by J⃗CM ¼ R⃗ × P⃗, where R⃗ is
the position of the center of mass relative to the origin of
the coordinate system. Choosing the origin along the
trajectory of the center of mass eliminates this external
contribution to the total AM, but does not set the
corresponding spatial distribution to zero. Notice that
this contribution drops out when considering a longitu-
dinally polarized nucleon (which we shall do throughout
in the following). Therefore, in the large Nc limit, the
Breit frame and elastic frame 2D distributions coincide for
a longitudinally polarized nucleon, and in the case of a
transversely polarized nucleon they differ for the AM
distribution by a trivial expected effect due to the center-
of-mass motion.
Note that we may also consider the infinite-momentum

limit Pz → ∞, but since the large-Nc limit was taken
first, the nucleon will never move with relativistic veloc-
ities, and hence will never coincide with the correspond-
ing LF spatial distributions. In the following we will
discuss a set of 2D distributions in the bag model in the
large-Nc limit with the understanding that for them no
distinction needs to be made between BF, EF and IMF
distributions.

III. THE BAG MODEL, AND A RECAP OF THE

ASSOCIATED 3D EMT DISTRIBUTIONS

In the bag model quarks are confined inside a spherical
cavity (“bag”) of radius R by appropriate boundary
conditions on its surface S. Baryons (mesons) are
described by placing Nc ¼ 3 noninteracting quarks
(a q̄q pair) in a color-singlet state inside the cavity
[130,131]. The Lagrangian of the bag model can be
written as [132]

L ¼
X

q

�

ψ̄q

�
i

2
∂

↔

−m

�

ψq

�

ΘV

þ 1

2

X

q

ψ̄qψqη
μ
∂μΘV − BΘV ; ð35Þ

where ∂

↔

μ ¼ ∂⃗μ − ∂⃖μ and B > 0 is the energy density inside
the bag. It is convenient to define (in the rest frame of the
bag)

ΘV ¼ΘðR−rÞ; ημ¼ð0; e⃗rÞ; e⃗r¼ r⃗=r; r¼jr⃗j: ð36Þ

From the Lagrangian (35) one obtains the equations of
motion for the (free) quarks ði∂ −mÞψq ¼ 0 for r < R

inside the bag, as well as the linear boundary condition
i=ηψq ¼ ψq for r⃗ ∈ S and the nonlinear boundary condition
− 1

2

P

q ημ∂
μðψ̄qψqÞ ¼ B. The boundary conditions are

such that there is no energy-momentum flow out of the
bag, i.e. ημTμνðt; r⃗Þ ¼ 0 for r⃗ ∈ S [130]. The ground state
has positive parity and is described by the wave function

ψ sðt; r⃗Þ ¼ e−iεitϕsðr⃗Þ;

ϕsðr⃗Þ ¼
A
ffiffiffiffiffiffi
4π

p
�
αþj0ðωir=RÞχs
α−j1ðωir=RÞiσ⃗ · e⃗rχs

�

;

A ¼
�

ΩiðΩi −mRÞ
R3j20ðωiÞð2ΩiðΩi − 1Þ þmRÞ

�
1=2

; ð37Þ

where α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�mR=Ωi

p

with Ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
i þm2R2

p

, σi

are 2 × 2 Pauli matrices, and χs are two-component
Pauli spinors. The single-quark energies are given by
εi ¼ Ωi=R. The ωi denote solutions of the transcendental
equation

ωi ¼ ð1 −mR − ΩiÞ tanωi: ð38Þ

The ground-state solution for massless quarks is ω0 ≈

2.04, and swipes the interval 2.04≲ ω0ðmRÞ ≤ π when
the product mR is varied from 0 to infinity. The constant A
in Eq. (37) is such that

R
d3rϕ†

s0ðr⃗Þϕsðr⃗Þ ¼ δs0s.
The nucleon mass is due to contributions from quarks

and the bag, and is given by

MN ¼ Nc

Ω0

R
þ 4π

3
R3B: ð39Þ

The condition M0
NðRÞ ¼ 0 is sometimes referred to as the

virial theorem and yields the relation

4πR4B ¼ Nc

2ðΩ0 − 1Þω2
0

2Ω0ðΩ0 − 1Þ þmR
: ð40Þ

Assuming SU(4) spin-flavor symmetry, the nucleon matrix
elements of quark operators are related to those of the
single quark by spin-flavor factors: Nq for nucleon spin-
independent matrix elements and Pq for spin-dependent

matrix elements. For the proton we have Nu ¼ Ncþ1

2
,

Nd ¼ Nc−1

2
, Pu ¼ Ncþ5

6
, Pd ¼ −Ncþ1

6
, where Nc ¼ 3 is the
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number of colors. For the neutron the labels u and d are
interchanged [133].
The bag model belongs to the class of so-called

“independent-particle models” in which one encounters
technical difficulties when evaluating one-body operators
such as the EMT [68]. The large-Nc limit allows one to
avoid these problems and to consistently evaluate EMT
form factors [109]. In the following we shall therefore
assume that we work in the large-Nc limit (when presenting
numerical results we of course set Nc ¼ 3). One important
advantage of working in the large-Nc limit is that the
system as a whole moves with nonrelativistic velocities, so
that the 2D and 3D distributions can be thought of as actual
densities, and not only as quasidensities [118].
In the bag model the kinetic quark EMT operator is

given by

T
μν
q ¼ ψ̄qγ

μ
i

2
∂

↔ν

ψq: ð41Þ

The expressions for EMT form factors associated with the
symmetric part were derived for Nc ¼ 3 in [68] and in the
large-Nc limit in [109]. When calculating matrix elements
of local operators in the large-Nc limit, one naturally
obtains expressions for the form factors which are given
by Fourier transforms of 3D distributions [72]. (We do not
repeat here the expressions for the EMT form factors
derived in the bag model in large-Nc limit in [109] but
other examples can be found in Appendices C and D,
namely the electric and axial form factors included for
comparison.)
The 3D quark and “gluon” EMT distributions are

given by

T00
q ðrÞ ¼ NqA

2

4π

Ω0

R
ðα2þj20 þ α2−j

2
1ÞΘV ; ð42aÞ

T0k
q ðr⃗Þ ¼ −

PqA
2

4π

�

α2−
j21
r

�

ϵklmelrS
m
ΘV ; ð42bÞ

Tk0
q ðr⃗Þ ¼ −

PqA
2

4π

�

2αþα−
Ω0

R
j0j1

�

ϵklmelrS
m
ΘV ; ð42cÞ

Tik
q ðr⃗Þ¼

NqA
2

4π
αþα−

×

��

j0j
0
1−j00j1−

j0j1

r

�

eire
k
rþ

j0j1

r
δik

�

ΘV ; ð42dÞ

T
μν
g ðrÞ ¼ gμνBΘV : ð42eÞ

The arguments of the spherical Bessel functions are
ji ¼ jiðω0r=RÞ; primes denote differentiation with respect
to r. The contribution T

μν
g ðrÞ ¼ gμνBΘV is due to the bag,

i.e. due to nonfermionic degrees of freedom. It is essential
to bind the quarks, and in this sense it can be associated

with “gluonic” effects in QCD [68,109]. The derivation of
the results in (42) is described in detail in Ref. [109], except
that the antisymmetric contribution related to the spin
distribution (4) was not computed. These are new results
obtained in this work. Equation (42) is the starting point for
the developments in this work.
For completeness let us summarize in the following the

explicit results for the EMT distributions. The total energy
distribution ϵðrÞ inside the nucleon is the sum of the
contributions to the T00 component of the EMT. Hence,
both quarks and the bag contribute to the energy distribu-
tion. Their overall contribution is given by

ϵðrÞ ¼
�
NcA

2

4π

Ω0

R
ðα2þj20 þ α2−j

2
1Þ þ B

�

ΘV : ð43aÞ

The AM distribution is determined from the T0k com-
ponents of the asymmetric EMT. It receives no contribution
from the bag and consists only of spin and orbital angular
momentum (OAM) contributions due to quarks. Choosing
the nucleon polarization along the z direction the total AM,
OAM and spin distributions are given by

Jzðr⃗Þ ¼
X

q

½Lz
qðr⃗Þ þ Szqðr⃗Þ�; ð43bÞ

Lz
qðr⃗Þ ¼

PqA
2

4π
½α2−j21ð1 − cos2θÞ�ΘV ; ð43cÞ

Szqðr⃗Þ ¼
PqA

2

8π
½α2þj20 þ α2−j

2
1ð2cos2θ − 1Þ�ΘV ; ð43dÞ

JzBel;qðr⃗Þ¼
PqA

2

8π

�
2Ω0

R
αþα−rj0j1þα2−j

2
1

�

ð1− cos2θÞΘV ;

ð43eÞ

where the angle θ is defined by the projection of r⃗ on the z
axis (with the unit vector e⃗z) as e⃗z · r⃗ ¼ r cos θ.
The isotropic pressure and pressure anisotropy distribu-

tions are related to the symmetric part of Tij (the anti-
symmetric contribution to Tij is zero in the leading order of
the large-Nc expansion). Both the bag and quark degrees of
freedom contribute to the isotropic pressure, which is
related to the trace of Tij. The pressure anisotropy sðrÞ,
being related to the symmetric traceless part of Tij, is due to
quarks only. The model expressions are given by

pðrÞ ¼
�
NcA

2

12π
αþα−

�

j0j
0
1 − j00j1 þ

2

r
j0j1

�

− B

�

ΘV

¼ pqðrÞ − BΘV ; ð43fÞ

sðrÞ ¼
�
NcA

2

4π
αþα−

�

j0j
0
1 − j00j1 −

1

r
j0j1

��

ΘV ð43gÞ

which satisfy the differential relation (22), and pðrÞ
satisfies the conditions (23). In Eq. (43f) we defined the
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quark contribution pqðrÞ to the total pressure for later
convenience.

IV. LIMITS WITHIN THE BAG MODEL

It will be instructive to study 2D EMT distributions not
only in the physical situation (which we shall do in Sec. V),
but also in various limiting situations within the bag model
(in Secs. VI–VIII). For that we will explore three limits
corresponding to three different physical situations as
explained in this section.
The bag model is uniquely defined by specifying two out

of the following three parameters: the bag constant B
representing QCD properties in the vacuum sector, the
quark mass m reflecting QCD properties in the quark
sector, and the bag radius R which is a key property
characterizing hadronic properties. The nucleon mass plays
a special role because the bag solution is determined by
minimizing the nucleon mass as a function of the bag
radius,MNðRÞ. Moreover, in the physical situation one can
choose the parameters to reproduce the experimental value
of MN (this can and will be relaxed in some of the limits).
All the other hadronic properties are then automatically
determined.
The limits are therefore uniquely defined by specifying

one parameter which will be taken to infinity, and one
quantity which will be kept fixed. The three limits
considered in this work will be referred to as L1, L2,
L3. In the limit L1, the quark mass m will be taken to
infinity keeping the bag constant B fixed. In the limit L2,
the bag radius will be taken to infinity while the quark
mass m is fixed. In the limit L3, we finally will take the
quark mass to approach 1=Nc of the nucleon mass with
the latter kept fixed at its physical value (in the limits
discussed here, Nc is always a constant). The limits
are summarized in Table I which features the quantities
B;R;m;MN showing which is varied, which is kept
fixed, and the behavior (“response”) of the respectively
other quantities in these limits. Some comments are
in order.
In a general situation, the exact relation between the

parameters is complicated and governed by two equations,
namely the transcendental equation (38) determining the
frequency ω0 of the ground state bag solution for given m
and R, and the virial theorem (40) which determines the
minimum of the nucleon massMN understood as a function

of R for specified3 m and B. Therefore, in the general case,
no analytic relations exist between the parameters.
However, in each of the three limits, the dimensionless
variable mR → ∞ goes to infinity.
Physically, this means that the quark Compton wave-

length becomes much smaller than the system size. In the
three limits the dynamics becomes effectively nonrelativ-
istic. This may not be intuitive at first glance, especially in
the limit L2 where we can choose the quarks to have any
(nonzero) mass, and light quarks are always associated with
relativistic effects. However, a clear criterion revealing that
a system is nonrelativistic is that the quark massm makes a
dominant contribution to the quark energy Ω0=R. This
condition is met in all three limits, i.e. we have

Ω0=R −m

m
≪ 1: ð44Þ

Notice thatω0 ¼ ω0ðmRÞ is a function ofmR. The situation
simplifies considerably in the limit mR → ∞ because the
transcendental bag equation (38) can then be solved ana-
lytically with ω0ðmRÞ¼π−π=ð2mRÞþOð1=ðmRÞ3Þ [109],
and the virial theorem (40) assumes the form

4mBR5 ¼ Ncπ þ � � � ; ð45Þ

where the dots indicate subleading terms suppressed
by powers of 1=ðmRÞ for large mR (notice that power
corrections in Eq. (45) can be determined analytically if
needed [109]).
From Eq. (45) we see that in the heavy quark limit L1,

m → ∞ with B fixed, the bag radius decreases like
R ∝ m−1=5, while the nucleon mass in Eq. (39) approaches
the limit MN → Ncm → ∞, cf. the “Response” column in
Table I. Notice that in this limit the inertia of the quarks
increases, and the dynamics of the system becomes non-
relativistic. We will comment more on this limit in Sec. VI.

TABLE I. Limits within the bag model considered in this work. L1: heavy quark limit with the bag constant B kept fixed. L2: large
system size limit with quark massm kept fixed. L3: constituent quark limit with the nucleon massMN kept fixed. The varied parameters
are stressed in bold in column 2. The behavior of unconstrained quantities is shown in columns 4 and 5.

Acronym Limit, varied parameter Fixed quantity Response of other quantities

L1 Heavy quark limit, m → ∞ B ¼ fixed R ∼m−1=5 MN → Ncm → ∞

L2 Large system size limit, R → ∞ m ¼ fixed B ∼ R−5 MN → Ncm ¼ fixed
L3 Constituent quark limit, m → MN=Nc MN ¼ fixed R → ∞ B ∼ R−5

3In this system of equations, the four quantities B, R, m, and
ω0 are connected by two equations, Eqs. (38) and (40), meaning
that two of these four quantities can be eliminated. This leaves
two free parameters which must be specified or fixed in some
way, as described in the text. Notice that in the text ω0 is not
considered to be a model parameter and is always implicitly
assumed to be eliminated.
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In the large system size limit L2,R → ∞withm fixed, we
read off from Eq. (45) that B decreases like R−5. The bag
contribution to the nucleon mass 4

3
πR3B ∼ R−2 decreases in

the large-R limit. The nucleon mass becomes smaller and
approachesMN → Ncm similarly to the limit L1, albeit now
m is fixed and (if we choose to work with light quarks)MN

can be small. Interestingly, even though m > 0 can be
chosen to be small, one dealswith a nonrelativistic dynamics
also in this case. This can be understood by considering that
as the system size increases, the uncertainty on the quark
positions Δx ∼ R grows while the momenta ∼1=R decrease
according to Heisenberg’s uncertainty principle. We will
discuss further features of this limit in Sec. VII.
In the constituent quark mass limit L3, we will keep the

nucleon mass fixed (at its physical value) and make m
approach one third of the nucleon mass. Hence, in this limit
the system has the mass of the physical nucleon, but its mass
is asymptotically given by the masses of the “constituent
quarks” added up. This in turn means that the system size
must grow R → ∞ which must be accompanied by a
decreasing strength of the interaction with B ∼ R−5 per
Eq. (45). We will come back to this limit in Sec. VIII.
In the limit L1 the strength of the bag interactions

remains constant. The limits L2 and L3 have in common that
in both cases the strength of the interactions decreases,
which makes the system size large. The general connection
between system size and strength of interaction is nicely
illustrated in Bohr’s semiclassical H-atom model, where the
electronmoveswith “velocity” vn ¼ αc=n in the nth “orbit”
with the “radius” rn ¼ λen

2=α, where λe ¼ ℏ=ðmecÞ
denotes the electron Compton wavelength and me the
(reduced) mass. Thus, atoms have large sizes of Oð1 ÅÞ
and can be described to a good approximation in terms of a
nonrelativistic Schrödinger equation, because the electro-
magnetic coupling constant α ≃ 1=137 is small.
In the bag model, the strength of the interaction is

encoded in the bag constant B. This can be intuitively
understood in various ways. For instance, taking B → 0 at
the Lagrangian level in Eq. (35) one recovers the free Dirac
theory. Another way to convince oneself that B is respon-
sible for producing a finite-size bound state is to notice that
setting B → 0 in Eq. (39) yields MNðRÞ ∝ R−1 (using
massless quarks for sake of simplicity in this argument),
and the nucleon mass as a function of R assumes its
minimum at R → ∞ which means that the quarks are
unbound. Yet another way to see that no bound state exists
when B is absent is provided by the von Laue condition
(23): when B ¼ 0 the 3D pressure has no node, and one
finds

R
∞
0
drr2pðrÞ > 0 meaning that the nucleon explodes

[109]. This corresponds to the situation in the Bogoliubov
model [134] which can be viewed historically as a
predecessor of the bag model [132].
These three limits represent very different physical

situations, but as already mentioned they have in common
that the product mR → ∞, even though m and R behave

differently in each case. As a consequence the EMT
distributions have common leading expressions in these
three limits which can be expressed as [109]

ϵðrÞ ¼ Ncmc0j0ðκrÞ2ΘV þ � � � ; ð46aÞ

JzBelðr⃗Þ¼
1

2
c0κrj0ðκrÞj1ðκrÞð1−cos2 θÞΘV þ��� ; ð46bÞ

Szðr⃗Þ ¼ 1

2
c0j0ðκrÞ2ΘV þ � � � ; ð46cÞ

Lzðr⃗Þ ¼ π2

4ðmRÞ2 c0j1ðκrÞ
2ð1 − cos2 θÞΘV þ � � � ; ð46dÞ

sðrÞ ¼ Ncπ

2mR
c0

�

−j00ðκrÞj1ðκrÞ −
1

r
j0ðκrÞj1ðκrÞ

þ j0ðκrÞj01ðκrÞ
�

ΘV þ � � � ; ð46eÞ

pðrÞ ¼ Ncπ

6mR
c0

�

−j00ðκrÞj1ðκrÞ þ
2

r
j0ðκrÞj1ðκrÞ

þ j0ðκrÞj01ðκrÞ
�

ΘV − BΘV þ � � � ; ð46fÞ

where c0 ¼ π=ð2R3Þ, κ ¼ π=R, and the normalization is
such that

R
d3rc0j0ðκrÞ2ΘV ¼ 1. The dots indicate in each

case subleading terms that are suppressed by 1=mR with
respect to the corresponding leading contributions. The
leading expression for the energy distribution in Eq. (46a)
satisfies

R
d3rϵðrÞ ¼ Ncmwhich is the mass of the nucleon

in each of the three limits. The leading expression for the
Belinfante AM in Eq. (46b) satisfies

R
d3rJzBelðr⃗Þ ¼ 1

2
. In

the limit of mR → ∞, the leading term of the total kinetic
AM

R
d3r½Lzðr⃗Þ þ Szðr⃗Þ� ¼ 1

2
is dominated by the spin

contribution in Eq. (46c) with the OAM being suppressed
by 2 orders of the small parameter 1=ðmRÞ. The kinetic AM
Jz and intrinsic spin distribution Sz become equal and
isotropic. In contradistinction to that, the Belinfante AM
retains its monopole and quadrupole decompositions
for mR → ∞.
For the following discussions it is of importance to note

that in the expression for the 3D pressure the bag constant
enters as pðrÞ ¼ � � � − BΘV , see Eqs. (43f) and (46f). The
practical implication of this is that pðrÞ has the same
behavior as B in the limits in Table I. Being tightly
connected to the pressure by Eqs. (22) and (23), sðrÞ must
also scale like B in the different limits.
For completeness, let us remark that one could formulate

further limits in the bag model. For instance, in Ref. [109]
the limit m → ∞ with R fixed was considered, which is
different from the L1 limit discussed here. (However,
the limits L2 and L3 were defined in [109] exactly as in
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this work, and used to study 3D EMT distributions and the
D-term.)
After discussing the physical situation in the next

section, we shall investigate the behavior of 2D EMT
distributions in the limits introduced here.

V. 2D EMT DISTRIBUTIONS IN THE BAG MODEL

IN THE PHYSICAL SITUATION

In the physical situation the proton is made of light
quarks. For definiteness we choose m ¼ 5 MeV and
neglect isospin breaking effects. The physical nucleon
mass is reproduced for the bag radius R ¼ 1.7 fm.
Figure 1 shows the results for the 2D distribution of
energy, pressure, shear force, kinetic and Belinfante form
of AM. The 2D energy distribution has the physical
dimension of energy per unity area, the 2D pressure and
shear force have the dimensions of force per unit length,
and all three distributions can be expressed in units of
MeV=fm2. The AM distributions have the physical dimen-
sion ðareaÞ−1 and can be expressed in units of 1=fm2 (we
use ℏ ¼ c ¼ 1).
In the bag model all (2D or 3D) spatial distributions are

nonzero only inside the bag, which is expected in this
model. A first and generic observation regarding the 2D
distributions is that they go to zero at the bag radius R.
This is in contradistinction to 3D distributions which in
general do not vanish at the bag boundary. In fact, there is
no reason why 3D spatial distributions should drop to
zero at “the edge of a system.” The bag model 3D
distributions exhibit characteristic discontinuities due
to the ΘðR − rÞ functions in (43) at r ¼ R. Such dis-
continuities may seem “unphysical” at first glance, but
this is a consistent description of 3D spatial distributions
in this model [109].
One notable exception is the normal force where 2

3
sðrÞ þ

pðrÞ > 0 must hold for all values of r within a system, and
the point where the normal force becomes zero defines the
edge of the system. This necessary condition for mechani-
cal stability [19] is the only physical constraint for 3D EMT
distributions for r → R we are aware of, and the bag model

complies with it [109]. In other cases the 3D EMT
distributions are not constrained to vanish at r ¼ R
and do not do so. This is different in the case of 2D
distributions. From their relations to 3D distributions (26) it
follows that 2D distributions must vanish when b → R as
we will see in the following.
The energy distribution ϵðbÞ is largest in the center

(b ¼ 0) and decreases monotonously until it becomes zero
at b ¼ R, see Fig. 1(a). At small b we find the behavior
ϵðbÞ ¼ ϵð0Þ − aϵb

2 þOðb4Þ. The coefficients ai (here
i ¼ ϵ) are defined as positive quantities here and in the
following. The short distance physics is, however, beyond
what nonperturbative approaches like the bag model can
meaningfully describe. As b → R the behavior of 2D
distributions is determined by the integral relations (26).
For instance, if we denote by T00ðRÞ ≠ 0 the value of the
3D energy distribution at r ¼ R, then the behavior of the
2D EMT distribution is given by ϵðbÞ ¼ T00ðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − b2
p

modulo subleading terms when approaching the bag
boundary from the inside. In particular the slope of ϵðbÞ
diverges for b → R.
It is instructive to compare the energy distribution to the

electric charge distribution of the proton whose expression
is derived in Appendix D. For that we plot in Fig. 1(a) the
energy distribution ϵðbÞ normalized with respect to the
nucleon mass, such that the integrals

R
d2b… yield unity in

both cases. The bag model predicts that the 2D distributions
of electric charge and energy in the nucleon are similar. It
will be interesting to test this prediction in other models and
lattice QCD.
The pressure and shear force are shown in Fig. 1(b).

They behave like pðbÞ ¼ pð0Þ − apb
2 þOðb4Þ and

sðbÞ ¼ asb
2 þOðb4Þ close to the center. The behavior

when b approaches the bag boundary is analogous to that of
the energy distribution discussed above. The shear force is
positive for 0 < b < R. The pressure is positive in the inner
region and is negative in the outer region with a node at
b ¼ 1.1 fm. The 2D pressure obeys the von Laue condition
(29c), and the 2D shear forces and pressure satisfy the
differential relation (28).
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FIG. 1. 2D distributions in the bag model in the physical situation with m ¼ 5 MeV,MN ¼ 938 MeV: (a) electric charge distribution
and energy distribution normalized to unity, (b) pressure and shear forces, (c) spin and kinetic OAM distributions, (d) total kinetic and
Belinfante form of AM. All distributions vanish at the bag radius R ¼ 1.7 fm.
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In Fig. 1(c) the spin SzðbÞ and kinetic OAM LzðbÞ
distributions are shown. The former is larger and finite at
b ¼ 0, while the latter is smaller and vanishes for b → 0.
This is to be expected from the factor of rj appearing in the
definition of OAM distribution (13). The magnitudes of
these distributions reflect the fact that 65.8% of nucleon
AM is due to quark spin, and 34.2% due to OAM. These are
typical values in relativistic quark models. The spin
distribution does not exhibit the characteristic vertical slope
as b → R like the other distributions in Fig. 1, because the
corresponding 3D distribution Szqðr⃗Þ vanishes for jr⃗j ¼ R

(for any value of the quark mass m).
The total (kinetic) AM distribution JzðbÞ ¼ LzðbÞ þ

SzðbÞ is depicted in Fig. 1(d). For comparison the
Belinfante AM distribution JzBelðbÞ is shown. Both distri-
butions have the same normalization

R
d2bJzðbÞ ¼

R
d2bJzBelðbÞ ¼ 1

2
but have much different shapes, see the

discussion in Appendix B. This has been observed also in
other models [117,135]. The key difference is that the
Belinfante OAM distribution has by definition a pure
orbital form (13), whereas the kinetic AM distribution
receives both spin and orbital contributions.

VI. 2D EMT DISTRIBUTIONS IN THE HEAVY

QUARK LIMIT

In this section, we discuss 2D EMT distributions in the
limit L1 in which m → ∞ with the bag constant B fixed.
From Eq. (45) we conclude that the bag radius decreases as
R ∝ m−1=5 for m → ∞, cf. Table I. Consequently, the
size of heavy hadrons decreases4 with increasing m.
This feature is intuitively expected, although in QCD the
hadron size goes like 1=m in the heavy quark limit. It is
important to keep in mind that here we deal with a
simplistic implementation of a heavy quark limit within
a quark model.
The masses of the hadrons, however, scale correctly in

this limit: the nucleon mass is given by MN ¼ Ncm up to
subleading terms suppressed by powers of 1=mR [109].
(This general result holds also for mesons where the
number of colors Nc is replaced by the number of
constituents Nconst ¼ 2.) In principle, one could implement
a “more correct” heavy quark limit, where hadron masses
grow linearly with m and hadron radii decrease as 1=m, by
keeping BR4 fixed which implies via Eq. (45) that the
system size would decrease like 1=m. While this might be
an interesting exercise in itself, it is not obvious whether
such an approach would yield a more realistic heavy quark
limit in the bag model. We therefore content ourselves with

the m → ∞ limit with B ¼ fixed. This is sufficient for our
purposes to study the behavior of the EMT properties in a
system where the constituents become massive.
Dimensional analysis tells us that ϵðrÞ ∼MN=R

3,
Jzðr⃗Þ ∼ R−3. As shown in Sec. IV, the 3D distributions
pðrÞ and sðrÞ have the same behavior as the bag constant B
which is kept fixed in the limit L1. It then follows that the
3D distributions scale like ϵðrÞ ∼m8=5, Jzðr⃗Þ ∼m3=5, sðrÞ
and pðrÞ ∼m0 when m → ∞. This is consistent with
Eq. (45) and the scaling relations (46). Hence, the 3D
energy and AM distributions increase, while the mechani-
cal 3D forces do not scale whenm → ∞. A similar analysis
can be applied to 2D distributions. As one spatial dimen-
sion is integrated out, the large-m scaling of 2D distribu-
tions differs from that of the respective 3D distributions
by one power of R ∝ m−1=5. In particular, one obtains
ϵðbÞ ∼m7=5, JzðbÞ ∼m2=5, sðbÞ, and pðbÞ ∼m−1=5. We see
that as m → ∞, the 2D energy and AM distributions
increase, but the mechanical 2D forces inside the nucleon
decrease. It should be stressed that these are “geometric
effects” due to looking at EMT properties through “3D
glasses” or “2D glasses.”
Having studied the 2D energy distribution in the physical

situation for light quarks of m ¼ 5 MeV in Sec. V, we now
show ϵðbÞ in Fig. 2(a) for selected heavier quark masses
m ¼ 0.3, 0.5, 0.7 GeV. While far from a heavy quark limit,
these values clearly show the trend: the energy distribution
inside the nucleon grows rapidly with increasing m as one
would intuitively expect, because the mass of the nucleon
grows while the available “2D volume” shrinks.
In Fig. 2(b) we compare the rescaled energy distribution

ϵðbÞ=MN to the 2D electric charge distribution ρchðbÞ. As
Fig. 2(b) shows, ϵðbÞ=MN and ρchðbÞ become more and
more similar with increasing m: e.g. they become nearly
indistinguishable for m ¼ 2 GeV at the scale of Fig. 2(b).
This is an interesting result. In general, viewing the nucleon
structure through the distributions of electric charge or
energy gives different pictures. But as the constituents
of the system become more massive, the difference
between the two pictures becomes negligible. In the limit
m → ∞, the asymptotic expressions for these two distri-
butions become indeed equal. This can be seen by
comparing the expression for ϵðbÞ=MN from Eq. (46a)
and the expression for the electric charge distribution in
Eq. (D6) of Appendix D.
Figure 2(b) also nicely illustrates another intuitive

feature. As the quark mass increases, the 2D energy
(and charge) distributions become more strongly localized:
for smaller m the 2D energy and charge distributions are
small in the center and widespread until the edge of the
system (at b ¼ R where R shrinks as m−1=5). For larger m,
the distributions grow in the center, and decrease in the
region closer to the edge of the system. This result is
intuitive because one naturally expects fast-moving ultra-
relativistic light quarks to have widely spread out

4Notice that the proton size can be characterized e.g. in terms
of the mean square charge radius and does not coincide with the
bag radius. But the latter effectively sets the length scale in
the bag model. Thus, if R decreases as m → ∞, so does the
hadron size.
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distributions, while slowly moving nonrelativistic heavy
quarks are expected to have more localized distributions.
In the last plot related to ϵðbÞ in Fig. 2(c) we show the

dimensionless rescaled distribution R2ϵðbÞ=MN as a func-
tion of b=R for the values m ¼ 1, 3, and 10 GeV. This
rescaled distribution has a well-defined finite limit
limm→∞ R2ϵðbÞ=MN which we include in the plot.
Integrating this limiting curve over the rescaled 2D volume,
d2b=R2, yields unity. Figure 2(c) shows that the rescaled
2D energy distribution R2ϵðbÞ=MN rapidly approaches its
limiting shape. In fact, the curves for m ¼ 10 GeV and
m → ∞ agree within a few percent. As the m → ∞ limit is
approached, also the rescaled distribution R2ϵðbÞ=MN

becomes more strongly localized towards the center.
Finally, we remark that the vertical slopes of the 2D

distribution at b ¼ R observed for m ¼ 5 MeV in Sec. V
are in principle present also for large m, but they become
less and less pronounced.
We discuss next the 2D force distributions in Fig. 3.

Initially, the 2D shear force distribution grows with
increasing quark mass up to about m ≈ 0.8 GeV. Being
interested in the large-m behavior, we do not show plots in

this low-m region. For m > 0.8 GeV the shear force
distribution starts to decrease which is illustrated in
Fig. 3(a). In Fig. 3(b) we show the rescaled dimensionless
quantity sðbÞ=ðBRÞ. Notice that limm→∞ sðbÞ=ðBRÞ exists
and assumes a well-defined value which is included in the
plot (it is convenient to include B to have a dimensionless
quantity). The 2D pressure distribution shows the same
pattern: the modulus of pðbÞ increases with m up to about
0.9 GeV, and starts to decrease for m≳ 0.9 GeV as shown
in Fig. 3(c). Also the rescaled pressure pðbÞ=ðBRÞ has a
well-defined limit limm→∞ pðbÞ=ðBRÞ and Fig. 3(d) shows
how this limit is approached. It is worth remarking
that pðbÞ at b ¼ 0 is proportional to the expression for
the 3D surface tension defined as γ ¼

R
∞
0

drsðrÞ. The
initial increase of the 2D pressure at b ¼ 0 and the
subsequent decrease at m≳ 0.8 GeV is therefore tied to
the m dependence of the 3D surface tension γ. We
stress that at any value of m the distributions sðbÞ and
pðbÞ satisfy the differential equation (28), and pðbÞ
satisfies the 2D von Laue condition (29c). This is true
also for the limiting values of the rescaled quantities
limm→∞ sðbÞ=ðBRÞ and limm→∞ pðbÞ=ðBRÞ.
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FIG. 2. The 2D energy distribution in the bag model for fixed B and increasingm. (a) Energy distribution ϵðbÞ. (b) Normalized energy
distribution ϵðbÞ=MN in comparison to the 2D electric charge distribution ρchðbÞ. (c) The scaling of R2ϵðbÞ=MN for m → ∞.
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Next we proceed with the discussion of the 2D AM
distributions in bag model for selected quark masses m. In
Fig. 4(a) we show the spin distribution SzðbÞ for m ¼ 0.1,
0.5, 1 GeV. We see that the spin distribution continuously
increases with increasing m in the inner region and
decreases in the outer region, i.e. it becomes more strongly
localized. In contrast, the kinetic OAM distribution con-
tinuously decreases as m grows, see Fig. 4(b). Already for
the range of mass values selected in Figs. 4(a) and 4(b), the
spin distribution strongly dominates over the kinetic OAM
distribution [notice that the scale on the y axis is 15 times
larger in Fig. 4(a) as compared to Fig. 4(b)]. This is an
interesting observation which can also be intuitively under-
stood. As m increases, the inertia of the quarks becomes
larger and larger (i.e. quarks become more and more
nonrelativistic) making orbital motion less and less impor-
tant for the spin budget of the nucleon. In Fig. 4(c) we show
the rescaled total kinetic AM distribution JzðbÞ ¼ LzðbÞ þ
SzðbÞ multiplied by R2 which for m > 1 GeV practically
coincides with SzðbÞ. Notice that this quantity has a

well-defined limit limm→∞ R2JzðbÞ which is included in
Fig. 4(c).
In Fig. 5(a) we show the 2D Belinfante AM distribution

JzBelðbÞ for m ¼ 0.1, 0.5, 1 GeV which grows continuously
with m. In Fig. 5(b) we show the rescaled Belinfante AM
distribution R2JzBelðbÞ which has a well-defined limit
limm→∞ R2JzBelðbÞ included in the figure. Also for the
Belinfante AM distribution we observe that it becomes
more strongly localized as m grows. Note that by con-
struction JzBelð0Þ ¼ 0 whereas Jzð0Þ ¼ Szð0Þ ≠ 0.
The kinetic and Belinfante AM distributions are, how-

ever, much different even in the heavy quark limit. In
Fig. 5(c) we show the rescaled distributions 2πbRJzðbÞ
and 2πbRJzBelðbÞ as functions of b=R which have both
well-defined limits for m → ∞. Very clearly, as m grows
and the limit is reached, the two distributions exhibit
a much different behavior—even though all curves in
Fig. 5(c) yield 1

2
upon integration over the rescaled

variable b=R.

0.0 0.5 1.0 1.5

0.05

0.10

0.15

0.20

0.25

0.30 m=1 GeV

0.5

0.1

(a)S
z(b) [1/fm2]

b [fm] 0.0 0.5 1.0 1.5

0.005

0.010

0.015

0.020 m = 0.1 GeV

0.3

1

(b)L
z(b) [1/fm2]

b [fm]

m = 1 GeV

m = 3 GeV

m = 10 GeV

m

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)R
2
J

z(b)

b/R

FIG. 4. The 2D angular momentum distributions in the bag model for fixed B and increasing m. (a) Intrinsic spin SzðbÞ distributions.
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0.0 0.5 1.0 1.5

0.02

0.04

0.06

0.08

0.10

0.12
m = 1 GeV

0.5

0.1

(a)JBel
z (b) [1/fm2]

b [fm]

m = 1 GeV

m = 3 GeV

m = 10 GeV

m

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

(b)R
2
JBel

z (b)

b/R

m = 1 GeV

m = 3 GeV

m

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 J
z(b)

JBel
z (b)

(c)2 bJ
i

z(b)R

b/R

FIG. 5. The 2D angular momentum distribution in the bag model fixed B and increasing m. (a) Belinfante-form JzBelðbÞ angular
momentum distributions. (b) The scaling of R2JzBelðbÞ for m → ∞. (c) The scaling of 2πbJzi ðbÞR for m → ∞.

2D ENERGY-MOMENTUM TENSOR DISTRIBUTIONS OF … PHYS. REV. D 106, 014012 (2022)

014012-13



VII. 2D KINETIC EMT DISTRIBUTIONS IN THE

LARGE SYSTEM SIZE LIMIT

In this section, we discuss 2D EMT distributions in the
limit of large bag radius R for fixed quark mass m which
will keep fixed at 5 MeV, corresponding to the physical
situation of Sec. V. The large-R limit belongs to a class of
limits, in which the interaction in the bag model becomes
small. As in the heavy quark limit of Sec. VI, also in this
case the dynamics of the system becomes nonrelativistic,
however for a different reason.
In fact, even though both limits lead to nonrelativistic

situations, the physics is significantly different in the two
cases. For instance, the internal forces behave much
differently in the two limits which can be understood as
follows. In the limit R → ∞ with m fixed, the bag constant
scales as B ∝ R−5 which follows from the virial theorem
(45). We recall that the bag constant naturally sets the
scaling for pðrÞ and sðrÞ, see Sec. IV.
The behavior of the 3D energy distribution is different.

As R → ∞, we have Nc quarks bound by a “mean field”
which is more and more diluted as the size of the system
grows and B ∼ R−5 decreases. In this situation, the mass of
the system approaches MN ∼ Ncm which (is 15 MeV in
our case, and) implies for the 3D energy distribution the
scaling ϵðrÞ ∼ R−3. The total kinetic and Belinfante AM
distributions scale as R−3, and OAM as R−5. The 2D
distributions are obtained by integrating out one spatial

dimension, and the associated 2D distributions scale
as ϵðbÞ ∼ R−2, JzðbÞ ∼ R−2, JzBelðbÞ ∼ R−2, LzðbÞ ∼ R−4,
sðbÞ ∼ R−4, pðbÞ ∼ R−4.
In Fig. 6(a) we depict ϵðbÞ as function of b for increasing

values of R ¼ 10; 15; 20 fm which shows the trend of
how the system size grows and the energy distribution
becomes more and more diluted. The normalized energy
distribution ϵðbÞ=MN is shown in Fig. 6(b) in comparison
to the electric charge distribution ρchðbÞ for selected values
R ¼ 10; 15; 20 fm. Also here we see how the distribution
becomes more and more diluted as the system size grows.
In addition, we see that the difference between ϵðbÞ=MN

and ρchðbÞ decreases as R increases. In Fig. 6(c) we
display the scaling of the dimensionless quantity
R2ϵðbÞ=MN for R ¼ 100; 250; 1000 fm. The limiting curve
of limR→∞ R2ϵðbÞ=MN is included in the plot, and we see
that it is approached very slowly. Even when R is 3 orders
of magnitude larger than in the physical situation, we can
still distinguish R2ϵðbÞ=MN from its limiting curve. For
R ¼ 1 Å, when the size of the system corresponds to that of
an atom, the model result would be indistinguishable from
the limiting curve on the scale of Fig. 6(c).
In Fig. 7 we investigate the 2D force distributions. In

Fig. 7(a) we depict the 2D shear force distribution sðbÞ for
increasing values of R ¼ 10; 15; 20 fm. The figure shows
that sðbÞ strongly decreases for growing R. The “scaling
regime” sðbÞ ∼ R−4 is, however, approached only when R
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is 2 orders of magnitude above the physical value of
R ¼ 1.7 fm as illustrated in Fig. 7(b) which shows the
dimensionless quantity sðbÞ=ðBRÞ including its limit
limR→∞ sðbÞ=ðBRÞ. In the case of the pressure pðbÞ shown
in Fig. 7(c) and the rescaled quantity pðbÞ=ðBRÞ displayed
in Fig. 7(d) we make the same observations.
The behavior of the 2D AM distributions in the large

system size limit is shown in Fig. 8. The intrinsic spin
distribution SzðbÞ is shown in Fig. 8(a) for R ¼
10; 15; 20 fm, and that of the kinetic OAM distribution
LzðbÞ is depicted in Fig. 8(b) for the samevalues ofR. Notice
the different scales in these two figures, showing that the
OAM plays a much smaller role in the spin budget as R
increases. In the limit R → ∞, the OAM distribution
becomes less and less important compared to the intrinsic
spin distribution. This is not apparent for theRvalues chosen
in Figs. 8(a) and 8(b) but the intrinsic spin distribution
decreases as SzðbÞ ∼ R−2, i.e. much more slowly than the
OAM distribution which is suppressed as LzðbÞ ∼ R−4.
It is an interesting observation that OAM becomes

irrelevant as R increases. It is important to keep in mind
that the quarks can be light and one would expect that a
relativistic description is necessary for any R. However, the
increasing bag radius R simulates a more and more weakly
bound system amenable to a nonrelativistic description.
This can be understood by invoking Heisenberg’s uncer-
tainty principle: with a larger volume provided to the

quarks to “fill out,” their motion becomes slower, and with
that the role of OAM decreases. The scaling of the kinetic
angular momentum distribution R2JzðbÞ for increasing R is
shown in Fig. 8(c) along with the limiting curve for
limR→∞ R2JzðbÞ. As in the case of the other EMT dis-
tributions, the scaling behavior becomes apparent when
R is at least 2 orders of magnitude larger than in the
physical situation.
In Fig. 9(a) we depict the 2D Belinfante AM distribution

for selected values of R ¼ 10; 15; 20 fm and Fig. 9(b)
shows the dimensionless rescaled distribution R2JzBelðbÞ
as a function of b=R including its limiting curve
limR→∞ R2JzBelðbÞ. Finally, in Fig. 9(c) we compare respec-
tively the dimensionless rescaled kinetic and Belinfante
AM distributions 2πbJzðbÞR and 2πbJzBelðbÞR, including
their R → ∞ limits. We see that the two different distri-
butions clearly differ also in the large system size limit.

VIII. 2D KINETIC EMT DISTRIBUTIONS IN

CONSTITUENT QUARK LIMIT

In this section, we discuss the behavior of 2D EMT
distributions in the limit L3 where m → MN=Nc with
the nucleon mass kept fixed at its physical value.
For the following it is convenient to introduce the mass
mmax ¼ MN=Nc, i.e. the maximal mass a quark can
asymptotically take in the limit L3. For massless quarks,
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3=4 of the nucleon mass is due to the kinetic energy of the
ultrarelativistic quarks and 1=4 is due to the bag energy (we
will say more about nucleon mass decomposition in
Sec. IX). As the limit m → mmax is approached, the quark
mass constitutes nearly all of the nucleon mass, while the
contributions of quark kinetic energy and bag energy
become negligible. The limit L3 can therefore be consid-
ered as a constituent quark limit. As a consequence of the
limit m → mmax, the motion of the quarks becomes
nonrelativistic.
In the limit L3, the 3D distributions scale as ϵðrÞ ∼ R−3,

Szðr⃗Þ ∼ R−3, Jzðr⃗Þ ∼ R−3, JzBelðr⃗Þ ∼ R−3, Lzðr⃗Þ ∼ R−5,
sðrÞ ∼ R−5, pðrÞ ∼ R−5, see Sec. IV. Integrating the 3D
distributions over the z axis produces the scaling behavior
of the associated 2D distributions as ϵðbÞ ∼ R−2, SzðbÞ∼
R−2, JzðbÞ ∼ R−2, JzBelðbÞ ∼ R−2, LzðbÞ ∼ R−4, sðbÞ ∼ R−4,
pðbÞ ∼ R−4. We see that similarly to the large-system size
limit L2, also here the EMT distributions become more and
more diluted, although the underlying physical situations
are much different. In fact, in L2 we start with a compact
proton of mass 938 MeV made of 5 MeV quarks and let the
system size R → ∞ which drives the total mass of the
system asymptotically to 15 MeV. In L3, we start and end
with a system mass of 938 MeVand varym from 5 MeV to
mmax and as a response to that the size of the system R
becomes large.

Figure 10(a) illustrates ϵðbÞ as a function of b for
increasing values of m ¼ 0.1; 0.3; 0.5mmax. We see how
the size of the system increases. AsMN is kept constant and
all contributions to the energy distribution and nucleon
mass are positive, in the limit L3 the kinetic energy of the
quarks (as well as the bag energy Ebag ¼ 4

3
πR3B) must

decrease. By the Heisenberg uncertainty principle, the
kinetic energy of a bound quantum particle decreases if
the particle is provided a larger volume to fill out. Hence the
bag radius grows in this limit. With the mass of the nucleon
being fixed at its physical value, the energy distribution
inside the system becomes more dilute. The electric charge
distribution follows a similar pattern which we show in
Fig. 10(b) where we compare the normalized energy
distribution ϵðbÞ=MN with the electric charge distribution
ρchðbÞ for selected values of m ¼ 0.1; 0.5; 0.7mmax. We see
that the difference between two distributions becomes
less and less apparent for larger quark masses. Finally in
Fig. 10(c) we depict the scaling of the dimensionless
quantity R2ϵðbÞ=MN for m ¼ 0.9; 0.96; 0.99mmax, includ-
ing the curve associated with m → mmax. When m ¼
0.99mmax the size of the system reaches R ¼ 17.76 fm.
Next, we discuss our results regarding the 2D force

distributions. In Figs. 11(a) and 11(c) we depict the 2D
shear force sðbÞ and pressure pðbÞ distributions for
increasing values of m ¼ 0.1; 0.3; 0.4mmax. The figures
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(b) Normalized energy distribution ϵðbÞ=MN in comparison to the 2D electric charge distribution ρchðbÞ. (c) The scaling of R2ϵðbÞ=MN
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illustrate how 2D force distributions decrease for
m → mmax. As the quark masses increase and constitute
nearly the entire nucleon mass, the 2D force distributions
scale as R−4 which is to be contrasted with the R−2 scaling
of the energy distribution. Thus, the force distributions
become much more dilute than the 2D energy distribution.
This illustrates that the matter of the system is bound by
weaker and weaker forces as the constituent quark limit is
approached. This illustrates why the system size grows in
this limit. Figures 11(b) and 11(d) display the scaling
behavior of 2D force distributions in terms of the dimen-
sionless quantities sðbÞ=ðBRÞ and pðbÞ=ðBRÞ, respec-
tively, for m ¼ 0.9; 0.96; 0.99mmax, including the curves
associated with m → mmax.
Figure 12 shows how the 2D kinetic AM distributions

behave in the constituent quark limit. The 2D intrinsic spin
distributions SzðbÞ for quark masses m ¼ 0.1; 0.3; 0.5mmax
are shown in Fig. 12(a), and the 2D OAM distributions
LzðbÞ for the same quark masses are illustrated in
Fig. 12(b). The contribution of the two AM distributions
to the total AM differs significantly by magnitude and
the difference widens for growing m. As m → mmax, the
relative OAM contribution to the total AM approaches zero
and the total AM is constituted solely by the intrinsic
spin distribution. Finally, Fig. 12(c) displays the scaling of
the dimensionless kinetic AM distribution R2JzðbÞ for

increasing values of m including the limiting curve asso-
ciated with m → mmax.
In Fig. 13(a), the 2D Belinfante AM distribution is

shown for selected values of m ¼ 0.1; 0.3; 0.5mmax, and
in Fig. 13(b) the dimensionless rescaled distribution
R2JzBelðbÞ is shown as a function of b=R. Figure 13(c)
compares the dimensionless rescaled kinetic and
Belinfante AM distributions 2πbJzðbÞR and 2πbJzBelðbÞR,
including the limiting curves associated with m → mmax.
Once again, the kinetic AM distribution is more skewed
towards the bag center. In contrast, the Belinfante AM
distribution shifts towards the bag boundary due to its
orbital-like behavior.

IX. MASS DECOMPOSITION IN THE BAGMODEL

The decomposition of the nucleon mass in QCD into
contributions from quarks and gluons has attracted a lot of
attention in recent literature [4–7,9,10,12]. It is interesting
to address this question in a quark model framework where
technical difficulties due to quantum anomalies do
not occur.
Let us introduce thenotation hOi¼hNj

P

q

R
d3rψ†

qOψqjNi
for the expectation value of a Dirac operator O in the
nucleon states in the rest frame, and consider the quark
Dirac Hamiltonian
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(a) Intrinsic spin SzðbÞ distributions. (b) Orbital angular momentum LzðbÞ distributions. (c) The scaling of R2JzðbÞ for R → ∞.
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Hq ¼ α⃗ · p⃗þ γ0m ð47Þ

which we express in momentum space. In this notation
and considering the bag contribution (due to “gluons”),
the nucleon mass can be decomposed in the bag model into
three terms as

MN ¼ hα⃗ · p⃗i þ hγ0mi þ 4

3
πR3B: ð48Þ

The first term in (48) is the kinetic energy of the quarks
inside the nucleon, and is given by

Ekin¼hα⃗ · p⃗i¼NcA
2

4π
αþα−

Z

d3r

�

j0j
0
1− j00j1þ

2j0j1

r

�

ΘV :

ð49Þ

The second term is the quark mass contribution to the
nucleon mass

Emass ¼ hγ0mi ¼ m
NcA

2

4π

Z

d3r½α2þj20 − α2−j
2
1�ΘV ; ð50Þ

and the last term is the volume contribution from the bag
vacuum energy

Ebag ¼
4

3
πR3B: ð51Þ

It is worth noticing that the quark kinetic energy in
Eq. (49) is exactly 3 times the quark contribution to the
volume integral over the 3D pressure, see Eq. (43f), where
the factor 3 is the space dimension, i.e. we have

hα⃗ · p⃗i ¼ 3

Z

d3rpqðrÞ ð52Þ

with pqðrÞ defined in Eq. (43f). The term
R
d3rpqðrÞ can

be viewed as the pressure-volume work of quarks analo-
gous to PV in thermodynamics. It is not accidental that the
quark contribution to the pressure makes an appearance in
the mass decomposition. The deeper reason for that is the
connection between the von Laue condition (23) and virial
theorem (40), which are equivalent in the bag model [109]
and in other models like chiral quark-soliton model [72],
Skyrme model [75] or Q-balls [79]. Notice that hγ0mi in

Eq. (50) is related to the pion-nucleon sigma term and the
sum rule

P

q mq

R
dxeqðxÞ, where eqðxÞ is a twist-3 parton

distribution function [136] (recall that we use m ¼ mu ¼
md and neglect isospin violating effects in this work).
We first focus on the case m ¼ 0 where Ekin ¼ Ncω0=R

and obviously Emass ¼ 0. Keeping the number of space
dimensions n general, the nucleon mass is MNðRÞ ¼
Ncω0=Rþ bnR

nB where bn ¼ 2πn=2=Γðn=2Þ. The virial
theorem (40) corresponds to M0

NðRÞ ¼ 0 and yields
Ncω0 ¼ nbnR

nþ1B implying that for massless quarks
Ekin ¼ nEbag. Thus, in the physical situation in n ¼ 3

space dimensions, 3=4 of the nucleon mass is due to the
quark kinetic energy and 1=4 is due to the bag contribution
which is a crude model for gluonic effects. In QCD such
decompositions are scale dependent, and the above decom-
position of the nucleon is valid at a low hadronic scale
μ0 < 1 GeV associated with the bag model. This relation is
often used to eliminate the bag contribution and express the
nucleon mass in the bag model asMN ¼ 4ω0=R forNc ¼ 3

colors and n ¼ 3 space dimensions [137].
When m ≠ 0 the situation is different. Evaluating the

integrals in Eqs. (49) and (50) yields lengthy expressions
for Ekin and Emass which, making use of the transcendental
equation (38), can be rewritten as

Ekin ¼
2ðΩ0 − 1Þω2

0

2Ω0ðΩ0 − 1Þ þmR

Nc

R
; ð53aÞ

Emass ¼
2ðΩ0 − 1ÞmRþ Ω0

2Ω0ðΩ0 − 1Þ þmR
Ncm: ð53bÞ

The kinetic and mass contributions to the nucleon mass add
up to

Eq ¼ Ekin þ Emass ¼ hα⃗ · p⃗i þ hγ0mi ¼ NcΩ0

R
¼ hHqi;

ð54Þ

i.e. to the total quark contribution to the nucleon mass, Eq,
which corresponds to the expectation value of the quark
Hamiltonian operator Hq.
In Table II we show the nucleon mass decomposition

in the physical situation, and for selected examples from

TABLE II. The mass decomposition in the bag model in the physical situation and for selected values as encountered in the limits L1,
L2, L3. The respective parameters m, R, MN and individual contributions Ekin; Ebag; Emass are listed along with the relative partitioning
Ekin∶Ebag∶Emass with the bag energy as a reference point. The ratio Ekin∶Ebag is equal to 3∶1 exactly in all cases. Recall that mmax is
defined as one third of the physical proton mass 938.272 MeV.

Situation Parameters MN=MeV Ekin=MeV Ebag=MeV Emass=MeV Ekin∶Ebag∶Emass

Physical R ¼ 1.72 fm, m ¼ 5 MeV 938.272 698.233 233.744 7.295 3∶1∶0.031
Limit L1 R ¼ 1.29 fm, m ¼ 2 GeV 6257.562 299.615 99.872 5858.075 3∶1∶58.656
Limit L2 R ¼ 1000 fm, m ¼ 5 MeV 15.182 0.216 0.0719 14.895 3∶1∶207.225
Limit L3 R ¼ 2.70 fm, m ¼ 0.6mmax 938.272 375.342 125.114 437.817 3∶1∶3.499

LORCÉ, SCHWEITZER, and TEZGIN PHYS. REV. D 106, 014012 (2022)

014012-18



the limits L1, L2, L3. Interestingly, the relative ratio
Ekin∶Ebag ¼ 3∶1 remains valid (in three space dimensions)
not only in the massless case as discussed above, but for
any m which is nontrivial. When m ≠ 0 it is important
to keep in mind that the quark energy Eq ¼ NcΩ0=R

in Eq. (54) depends for m ≠ 0 on R also through
Ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 þ ðmRÞ2

p

, where ω0 ¼ ω0ðmRÞ is an implicit
function of R due to Eq. (38). Noting that the variation of
ω0 with respect to R can be expressed as [109]

∂ω0

∂R
¼ mω0

2Ω0ðΩ0 − 1Þ þmR
; ð55Þ

we obtain the remarkable identity

∂Eq

∂R
¼ ∂

∂R

�
NcΩ0

R

�

¼ −
Ekin

R
; ð56Þ

i.e. in the bag model the variation of the total quark energy
Eq ¼ Ekin þ Emass with respect to R is simply related to the
quark kinetic energy. Equipped with the identity (56) we
can express the virial theorem (40) as

Ekin ¼ 3Ebag ð57Þ

which holds for any m. However, as illustrated Table II this
is only the relative partition of the quark kinetic and bag
energy. For m ≠ 0 in addition the mass term Emass enters
whose contribution is not given by a simple ratio.
Table II illustrates that one deals with much different

nucleon mass decompositions in the different limits. This is
not surprising because, as explained in Sec. IV, the three
limits correspond to different physical situations. The three
limits have in common that Emass contributes for mR → ∞

asymptotically 100% of the nucleon mass, while the
contributions of Ekin and Ebag vanish. But the underlying
physics is much different. In fact, in each case we “start”
with the physical nucleon mass, but we end up asymptoti-
cally at very different values for MN, namely (cf. Table I)

(i) in L1 (m → ∞, B fixed): MN → Ncm → ∞,
(ii) in L2 (R→∞, m¼5MeV fixed): MN→Ncm¼

15MeV,
(iii) in L3 (m→mmax¼MN=3¼fixed): MN ¼ 938 MeV

is fixed at its physical value.
Considering the different physical situations, it is remark-
able that the relative contributions to the nucleon mass
defined as Ekin=MN , Ebag=MN , Emass=MN and plotted as a
function of mR (which in all limits goes to infinity, albeit
for different reasons), all coincide and are described by
universal curves in Fig. 14.
Ekin=MN and Ebag=MN assume respectively the values

3=4 and 1=4 at mR ¼ 0, and are monotonically decreasing.
They go to zero formR → ∞ satisfying Ekin∶Ebag ¼ 3∶1 at
each value ofmR. The mass contribution is zero atmR ¼ 0,
and Emass=MN is monotonically increasing for finite mR
approaching 100% as mR → ∞. When mR ≈ 1 the relative

contributions of the bag energy and the mass term become
equal. WhenmR ≈ 2.3 the relative contribution of the mass
term catches up to that of the quark kinetic energy, and
becomes the dominant contribution beyond that.
This was the nucleon mass decomposition in the bag

model as based on the bag energy and two quark contri-
butions in the Hamiltonian, namely quark kinetic energy
hα⃗ · p⃗i and quark mass term hγ0mi. In literature, it was
proposed [4,5,10] that the nucleon mass should be decom-
posed in terms of the trace part (rank-0 scalar operator,
contributing 1=4) and the traceless part of the EMT (rank-2
tensor, contributing 3=4 to the nucleon mass), i.e.

Tμν ¼ 1

4
gμνTα

α þ T
μν
traceless; ð58Þ

with the latter simply defined as Tμν
traceless ¼ Tμν − 1

4
gμνTα

α.
In QCD, such a decomposition is natural. For instance,
the trace part receives a contribution from the trace
anomaly and is twist-4, while the traceless part of the
EMT is related to matrix elements of twist-2 operators
whose quark and gluon contributions are constrained by
information on parton distribution functions from deep-
inelastic scattering experiments. One obtains a nucleon
mass decomposition based on contributions from the trace
part 1

4
g00Tα

α and the traceless part T00
traceless [4,5,10].

In the bag model, the situation is simpler as there is no
trace anomaly, and all matrix elements of the EMT are
explicitly known, see Eq. (42). The trace contributes to the
nucleon mass the portion,

MN;trace¼
1

4
g00

Z

d3rTα
αðr⃗Þ¼

1

4

Z

d3rðT00
q þT00

bag−3pðrÞÞ

¼ 1

4

�
NcΩ0

R
þ4

3
πR3B

�

¼ 1

4
MN ; ð59Þ
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FIG. 14. Nucleon mass decomposition in the bag model.
Shown are the relative contributions of Ekin=MN , Ebag=MN ,
Emass=MN as functions of mR.
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where we used the von Laue condition, Eq. (23a). The
contribution from the traceless part is

MN;traceless ¼
Z

d3rT00
tracelessðr⃗Þ

¼ 3

4

Z

d3rðT00
q þ T00

bag þ pðrÞÞ

¼ 3

4

�
NcΩ0

R
þ 4

3
πR3B

�

¼ 3

4
MN ð60Þ

using again the von Laue condition. While it is correct, one
does not gain much insight from considering the trace and
traceless parts separately. This is consistent with the general
discussion of Refs. [6,12].

X. CONCLUSIONS

This work was dedicated to the study of 2D energy-
momentum tensor (EMT) distributions of the nucleon. We
have obtained several general results, and presented results
from the quark model calculations in the bag model.
Among the model-independent results are explicit proofs
of several conditions for 2D EMT distributions based on
mechanical stability criteria. Another important model-
independent result is the demonstration that the different
definitions of 2D EMT distributions in the Breit, elastic and
infinite-momentum frames coincide in the large-Nc limit
for a longitudinally polarized nucleon. (For AM distribu-
tions in a transversely polarized nucleon this is not the case,
due to a trivial contribution from the center-of-mass
motion.)
We then employed the bag model formulated in the

large-Nc limit to study these 2D EMT distributions. The
large-Nc limit is important for the 3D interpretation EMT
distributions [72] and to make calculations of EMT form
factors in the bag model justified [109]. We have presented
numerical results for the 2D EMT distributions, and
demonstrated the consistency of the model description.
In the physical situation, for which we chose to use a
current quark mass of 5 MeVand bag radius of 1.7 fm, the
distributions of mass and electric charge in the proton
resemble each other. The 2D pressure distribution obeys the
pertinent von Laue condition, and the kinetic AM is
dominated by the intrinsic spin contribution which con-
tributes 66% of the nucleon spin, with the remaining 34%
being due to orbital angular momentum (OAM).
We then studied the EMT distributions in three different

limits, which helps deepen our understanding of the 2D
structure of the nucleon. In the “heavy-quark limit” limit
L1, we increased the quark massm → ∞ while keeping the
strength of the strong forces (mimicked by the bag constant
B) fixed. In this limit the nucleon mass grows like MN →

Ncm → ∞ while the nucleon size shrinks, which implies,
for instance, an increase of the 2D energy distribution. In
the large system size limit L2, we kept the mass of the

quarks fixed at 5 MeV and gave them a larger and larger
volume to fill out by taking the bag radius R → ∞. All
EMT distributions become diluted in this limit which is
supported by numerical results. As R → ∞ with m ¼
5 MeV fixed, the nucleon mass goes to m ¼ 15 MeV.
The forces encoded in the bag constant decrease like
B ∼ R−5, which implies for the 2D distributions sðbÞ
and pðbÞ a scaling of the type R−4. In the constituent-
quark limit L3, we let the quark mass approach MN=Nc

while the nucleon mass MN was kept at its physical value.
Thus, this limit creates a situation where the nucleon
mass is nearly entirely due to the masses of the quarks. By
taking m → MN=Nc drives the bag radius to become
larger and B to decrease. Both limits L2 and L3 belong
to a class of “weak-binding limits.” Even though the
binding forces decrease, the quarks remain always con-
fined in the bag model.
In all three limits, one effectively deals with nonrela-

tivistic dynamics. Also the distinction between the energy
and the electric charge distributions becomes less and less
apparent. Asymptotically we have ϵðbÞ=MN ¼ ρchðbÞ in
the three limits, i.e. the mass and electric charge in the
proton are distributed in exactly the same way. Another
interesting observation is that in all three limits the quark
OAM becomes negligible compared to the intrinsic spin
distribution. The kinetic AM (defined in terms of the
asymmetric EMT) and the Belinfante AM (associated with
the symmetric part of the EMT) have significantly different
shapes, even though both consistently integrate to the value
1=2 for the nucleon spin. The difference has two different
origins, namely (i) a quadrupole contribution which is
present in 3D as well as in 2D Belinfante AM but not in the
kinetic AM, and (ii) a total derivative term. The character-
istic difference of these two AM distributions is not only
present in the physical situation, but persists in all con-
sidered limits.
We have also studied the mass decomposition. In the bag

model, one can unambiguously define three contributions
to the nucleon mass, namely due to (i) quark kinetic energy
Ekin ¼ hα⃗ · p⃗i, (ii) quark mass Emass ¼ hγ0mi, and (iii) bag
energy Ebag ¼ 4

3
πR3B which simulates the confining

effects of gluons within the bag model. We showed that
the ratio of quark kinetic energy to bag energy is 3∶1

independently of the quark mass. This is the case in the
physical situation, and in the limits. Another interesting
insight is that the relative mass decompositions Ekin=MN ,
Emass=MN , Ebag=MN as functions of the product mR are
described by the same universal curves in all three limits.
This is remarkable considering the different physical
situations in the three limits. Finally we note that starting
from the EMT distributions, the contributions to the mass
do not separate naturally in the bag model into quark mass
and kinetic terms. Rather one directly encounters a decom-
position into two terms, the bag energy and total quark
energy. The latter can of course be further decomposed into
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the kinetic energy and mass term of quarks, but this
requires the evaluations of the expectation values of the
separate operators α⃗ · p⃗ and γ0m in the Dirac Hamiltonian.
We hope our study will stimulate further model inves-

tigations of 2D EMT distributions. One interesting and
natural extension of this work could be the consideration of
effects due to chiral symmetry as modeled e.g. in the cloudy
bag model [114] similarly to what has been done in the
chiral quark-soliton model [115]. As illustrated by the
present work, the studies in models play an important role
for the understanding and interpretation of the nucleon
structure.
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APPENDIX A: STABILITY REQUIREMENTS FOR

2D BF DISTRIBUTIONS

In this appendix we provide the detailed proofs of the
stability requirements for the 2D EMT distributions in the
BF discussed in Sec. II D. In this appendix we do not work
in any specific limit, e.g. the number of colors Nc is finite,
and the proofs are general and model independent.
The 3D EMT distributions satisfy certain criteria which

are necessary (but not sufficient) requirements for mechani-
cal stability. In particular, in a 3D stable system, the
following conditions are expected [21]:
(1) ϵðrÞjr¼0 < ∞, pðrÞjr¼0 < ∞ and sðrÞjr¼0 ¼ 0,

(2) dϵðrÞ
dr

< 0 and dprðrÞ
dr

< 0,

(3) ϵðrÞ > 0 and prðrÞ > 0,
(4) (Null energy condition) ϵðrÞ þ piðrÞ ≥ 0,
(5) (Weak energy condition) ϵðrÞ þ piðrÞ ≥ 0 and

ϵðrÞ≥0,
(6) (Strong energy condition) ϵðrÞ þ piðrÞ ≥ 0 and

ϵðrÞ þ 3pðrÞ ≥ 0,
(7) (Dominant energy condition) ϵðrÞ ≥ jpiðrÞj where

i ¼ r, t.
Owing to Eq. (25), analogous conditions exist for the 2D

EMT distributions in the BF. Some of these conditions were
mentioned in the main text in Sec. II D. Below we will state
all conditions and provide explicit proofs that if the
corresponding 3D condition is true, then also its 2D
counterpart is true. To the best of our knowledge, these
2D conditions and their proofs have not been discussed
explicitly in literature before and will be presented and
proven below for the first time.
The above-stated 3D stability conditions can be trans-

lated into 2D stability conditions as follows:

(1) ϵðbÞjb¼0 < ∞, pðbÞjb¼0 < ∞ and sðbÞjb¼0 ¼ 0.
Proof.—Let us write ϵðbÞ as

ϵðbÞ ¼
Z

∞

−∞

dzϵðrÞ ¼ 2

Z
∞

b

dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − b2
p ϵðrÞ: ðA1Þ

Then, at b ¼ 0 we get ϵðbÞjb¼0 ¼ 2
R
∞
0

drϵðrÞ < ∞ where
it is clear that the integral is finite becauseMN ¼

R
d3rϵðrÞ

is finite. Similarly,

pðbÞ¼
Z

∞

−∞

dz

�

pðrÞþb2−2z2

6r2
sðrÞ

�

¼ 2

Z
∞

b

dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−b2
p

�

pðrÞþ3b2−2r2

6r2
sðrÞ

�

: ðA2Þ

At b ¼ 0, the expression yields pðbÞjb¼0 ¼
2
R
∞
0
dr½pðrÞ − 1

3
sðrÞ�. Therefore, by using the 1D von

Laue stability condition Eq. (23c), we get

pðbÞjb¼0 ¼ 2

Z
∞

0

drsðrÞ ¼ 2γ < ∞: ðA3Þ

Finally, sðbÞjb¼0 ¼ 0 is satisfied by the definition
of sðbÞ ¼

R
∞
−∞

dz b2

r2
sðrÞ.

(2) dϵðbÞ
db

≤ 0 and dprðbÞ
db

≤ 0.

Proof.—First, let us suppose dϵðrÞ
dr

< 0. Then

dϵðbÞ
db

¼ 2

Z
∞

b

dr
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − b2
p dϵðrÞ

dr
≤ 0: ðA4Þ

Similarly by using the equation dprðbÞ
db

¼ −
sðbÞ
b
, as given in

[21], we get

dprðbÞ
db

¼ −
2

b

Z
∞

b

dr
b2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − b2
p sðrÞ

|{z}

>0

≤ 0; ðA5Þ

where we used the equation dprðrÞ
dr

¼ −
2sðrÞ
r

and the 3D

stability condition dprðrÞ
dr

< 0 to determine the sign of sðrÞ.
(3) ϵðbÞ ≥ 0 and prðbÞ ≥ 0.
Proof.—Suppose ϵðrÞ > 0, then

ϵðbÞ ¼
Z

∞

−∞

dzϵðrÞ ¼ 2

Z
∞

b

dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − b2
p ϵðrÞ ≥ 0: ðA6Þ

Next, writing prðbÞ in terms of

prðbÞ ¼ 2

Z
∞

b

dr
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − b2
p

�

prðrÞ −
r2 − b2

r2
sðrÞ

�

ðA7Þ

yields at b ¼ 0
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prðbÞjb¼0 ¼ 2

Z
∞

0

dr

�

pðrÞ − 1

3
sðrÞ

�

: ðA8Þ

Then by using the 1D von Laue relation Eq. (23c) we
conclude that

prðbÞjb¼0 ¼ 2

Z
∞

0

drsðrÞ ¼ 2γ > 0: ðA9Þ

On the other hand, prðbÞjb→∞ ¼ 0. Moreover, from con-

dition 2 above, we know that dprðbÞ
db

≤ 0. As a result, we
conclude that the radial pressure prðbÞ decreases mono-
tonically from b ¼ 0 to b → ∞ and can only take non-
negative values, i.e. prðbÞ ≥ 0.
(4) (Null energy condition) ϵðbÞ þ piðbÞ ≥ 0.
Proof.—First, by using the 2D condition 3, we conclude

that ϵðbÞ þ prðbÞ ≥ 0. Next, let us suppose ϵðrÞ þ ptðrÞ ≥
0. Then

ϵðbÞ þ ptðbÞ ¼
Z

∞

−∞

dzϵðrÞ þ
Z

∞

−∞

dzptðrÞ ≥ 0: ðA10Þ

(5) (Weak energy condition) ϵðbÞ þ piðbÞ ≥ 0 and
ϵðbÞ ≥ 0.

Proof.—This condition is satisfied as a result of the 2D
conditions 3 and 4.
(6) (Strong energy condition) ϵðbÞ þ piðbÞ ≥ 0 and

ϵðbÞ þ 2pðbÞ ≥ 0.
Proof.—Suppose ϵðrÞ þ ptðrÞ ≥ 0. Then

ϵðbÞ þ 2pðbÞ ¼
Z

∞

−∞

dz

�

ϵðrÞ þ 2pðrÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

≥pðrÞþ1
3
sðrÞ

þ b2 − 2z2

3r2
sðrÞ

�

≥

Z
∞

−∞

dz

�

pðrÞ þ 1

3
sðrÞ þ b2 − 2z2

3r2
sðrÞ

�

¼ prðbÞ: ðA11Þ

Since prðbÞ ≥ 0, we get ϵðbÞ þ 2pðbÞ ≥ 0.
(7) (Dominant energy condition) ϵðbÞ ≥ jpiðbÞj.
Proof.—First, let us suppose that ϵðrÞ ≥ jprðrÞj. Since

ϵðrÞ > 0 and prðrÞ > 0, we get

Z

dzϵðrÞ ≥
Z

dzjprðrÞj: ðA12Þ

On the other hand, by taking into account prðbÞ ≥ 0 as well
as sðrÞ > 0, we obtain

Z

dzprðrÞ ≥
Z

dz

�

prðrÞ −
z2

r2
sðrÞ

�

¼ prðbÞ: ðA13Þ

Therefore

ϵðbÞ ≥ jprðbÞj: ðA14Þ

The proof that ϵðbÞ ≥ jptðbÞj follows directly from the
definitions. Suppose ϵðrÞ ≥ jptðrÞj. Then

Z

dzϵðrÞ ≥
Z

dzjptðrÞj ≥ j
Z

dzptðrÞj: ðA15Þ

Hence

ϵðbÞ ≥ jptðbÞj: ðA16Þ

APPENDIX B: RELATION OF KINETIC AND

BELINFANTE AM DISTRIBUTIONS

In this appendix, we explicitly show that the difference
between the kinetic and Belinfante AM distributions is a
total derivativewhich yields zero under the volume integral.
From Eqs. (43c) and (43d), the total kinetic AM distribu-
tion reads

Jzðr⃗Þ ¼ A2

8π
½α2þj20 þ α2−j

2
1�ΘV ; ðB1Þ

whereas the total Belinfante AM can be expressed as

JzBelðr⃗Þ ¼
A2

8π

�
2ω0

R
rj0j1 þ α2−j

2
1

�

ð1 − cos2θÞΘV : ðB2Þ

One can decompose the Belinfante AM distribution in
terms of its monopole and quadrupole contributions by
using the relation ð1 − cos2 θÞ ¼ 2

3
P0ðcos θÞ − 2

3
P2ðcos θÞ

as follows:

Jzmonoðr⃗Þ ¼
A2

12π

�
2ω0

R
rj0j1 þ α2−j

2
1

�

ΘV ; ðB3Þ

Jzquadðr⃗Þ ¼ −
A2

12π

�
2ω0

R
rj0j1 þ α2−j

2
1

�

P2ðcos θÞΘV : ðB4Þ

The difference between the kinetic and Belinfante AM
distributions can therefore be written as

r2ðJz−JzBelÞðr⃗Þ¼
A2R2

24ω2
0π

½3α2þx2j20ðxÞþα2−x
2j21ðxÞ

−4x3j0ðxÞj1ðxÞ�ΘV − r2Jzquadðr⃗Þ; ðB5Þ

where we defined a new variable x ¼ ω0r=R. By using the
spherical Bessel function relations j00ðxÞ ¼ −j1ðxÞ and
j01ðxÞ ¼ j0ðxÞ − 2

x
j1ðxÞ one can express the difference in

terms of a total derivative and a quadrupole term

r2ðJz − JzBelÞðr⃗Þ ¼
A2R2

24πω2
0

d

dx
ðx3½α2þj20ðxÞ − α2−j

2
1ðxÞ�ÞΘV

− r2Jzquadðr⃗Þ: ðB6Þ
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Under volume integration, the quadrupole term drops out,
while the contributions from the monopole terms in (B6)
correspond to a total derivative with respect to r. The latter
evidently vanishes at the lower integration limit, and is
proportional to α2þj

2
0ðω0Þ − α2−j

2
1ðω0Þ at the upper integra-

tion limit which is zero due to the transcendental
equation (38).

APPENDIX C: AXIAL FORM FACTORS,

INTRINSIC SPIN DISTRIBUTION, AND PROOF

OF EQ. (17)

In this appendix, let us first include for completeness the
definition of the nucleon axial form factors and their
relation to the 3D quark spin density (16) in the BF which
are given by

hp0; s⃗0jψ̄qð0Þγiγ5ψqð0Þjp; s⃗i

¼ ūðp0; s⃗0Þ
�

γiγ5G
q
AðtÞ þ

Δ
iγ5

2MN

G
q
PðtÞ

�

uðp; s⃗Þ

¼ 2P0

Z

d3reiΔ⃗·r⃗2Siqðr⃗Þ: ðC1Þ

Since it is defined in terms of two independent form factors,
the monopole and quadrupole contributions to Siqðr⃗Þ are
independent of each other as mentioned in Sec. II B. This is
in contrast to the other “orbital-like” angular distributions
related to a single form factor like, e.g. JiBel;qðr⃗Þ which is
defined solely in terms of JqðtÞ.
Evaluating the bag model expression for the contribution

of the quark flavor q to the axial form factor in Eq. (C1) in
the large-Nc limit yields the result

G
q
AðtÞ ¼ 4πA2R6

Z
d3k

ð2πÞ3 ½α
2
þt0ðkÞt0ðk0Þ

− α2−e
3
ke

3
k0t1ðkÞt1ðk0Þ�; ðC2Þ

where k⃗
0 ¼ k⃗þ Δ⃗ and k ¼ jk⃗j, k0 ¼ jk⃗0j. The tiðkÞ are

defined in terms of Fourier transforms of the spherical
Bessel functions in the bag [109]. The model expression for
the form factor SqðtÞ was derived in the Appendix of
Ref. [109]. It is important to remark that in the bag model
these two form factors satisfy the general relation5

[14,16,117]

SqðtÞ ¼
1

2
G

q
AðtÞ: ðC3Þ

This is another consistency test of the model [109].

To show that in the bag model the difference between the
kinetic and Belinfante AM can be expressed as the total
derivative of the intrinsic spin distribution, let us first
rewrite the right-hand side of Eq. (17) as

1

2
∇jðrj½Siqðr⃗Þ�s0s − δjir⃗ · ½S⃗qðr⃗Þ�s0sÞ

¼ ½Siqðr⃗Þ�s0s þ
1

2
rjð∇j½Siqðr⃗Þ�s0s −∇i½Sjqðr⃗Þ�s0sÞ; ðC4Þ

where we use the spin density notation for a nucleon
polarized along a general direction. In the main text, the
AM distributions are defined for a nucleon in a spin-up
state with respect to a chosen polarization axis. Then,
Eq. (17) is equivalent to

½Li
qðr⃗Þ�s0s− ½JiBel;qðr⃗Þ�s0s ¼

1

2
rjð∇j½Siqðr⃗Þ�s0s−∇i½Sjqðr⃗Þ�s0sÞ:

ðC5Þ

The evaluation of the spin (16) and (C1), OAM (13a), and
Belinfante AM (13c) quark distributions for a nucleon
polarized along an arbitrary i direction yields in the large-
Nc limit the bag model expressions

½Siqðr⃗Þ�s0s¼
PqA

2

8π
½α2þj20σis0sþα2−j

2
1ð2eirêr · σ⃗s0s−σi

s0sÞ�ΘV ;

ðC6Þ

½Li
qðr⃗Þ�s0s ¼ −

PqA
2

4π
½α2−j21ðeirêr · σ⃗s0s − σi

s0sÞ�ΘV ; ðC7Þ

½JiBel;qðr⃗Þ�s0s ¼ −
PqA

2

8π

�
2Ω0

R
αþα−rj0j1 þ α2−j

2
1

�

× ðeirêr · σ⃗s0s − σi
s0sÞΘV ; ðC8Þ

where σi
s0s ¼ χ

†

s0σ
iχs. The left-hand side of Eq. (C5) then

can be written as

½Li
qðr⃗Þ�s0s − ½JiBel;qðr⃗Þ�s0s

¼ PqA
2

8π
ðeirêr · σ⃗s0s − σi

s0sÞ
�
2ωr

R
j0j1 − α2−j

2
1

�

ΘV : ðC9Þ

To evaluate the right-hand side of Eq. (C5), we first
compute

∇j½Siqðr⃗Þ�s0s¼
PqA

2

8π

�

e
j
r
ω

R
ð2α2þj0j00σis0s

þ2α2−j1j
0
1ð2eirêr · σ⃗s0s−σi

s0sÞÞ

þ2

r
α2−j

2
1ððδij−2eire

j
rÞêr · σ⃗s0sþeirσ

j

s0sÞ
�

ΘV ;

ðC10Þ

5Notice that the notation the form factor associated with the
antisymmetric part of the kinetic EMT is such that 2SqðtÞthis work
corresponds to −F

q
canðtÞ in Ref. [109] and −DqðtÞ in Ref. [21].

Notice also that the D-term form factor DqðtÞthis work corresponds
to 4CqðtÞ in Ref. [21].
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and obtain a similar expression for∇i½Sjqðr⃗Þ�s0s by exchang-
ing i↔ j in Eq. (C10). Then, by using the Bessel function
identities j00ðxÞ ¼ −j1ðxÞ and j01ðxÞ ¼ j0ðxÞ − 2

x
j1ðxÞ, one

obtains

∇j½Siqðr⃗Þ�s0s −∇i½Sjqðr⃗Þ�s0s

¼ PqA
2

4π
ðeirσjs0s − e

j
rσ

i
s0sÞ

�
2ω

R
j0j1 −

1

r
α2−j

2
1

�

ΘV : ðC11Þ

Therefore,

1

2
rjð∇j½Siqðr⃗Þ�s0s−∇i½Sjqðr⃗Þ�s0sÞ

¼PqA
2

8π
ðeirêr · σ⃗s0s−σi

s0sÞ
�
2ωr

R
j0j1−α2−j

2
1

�

ΘV ðC12Þ

yields the same result as in Eq. (C9).

APPENDIX D: ELECTRIC CHARGE

DISTRIBUTION OF THE PROTON

In this appendix, we derive the bag model expression for
the electric charge distribution of the proton which is used
in the main text for a comparison to the energy distribution.
The matrix elements of the electromagnetic current oper-
ator jμ can be parametrized in terms of electric and
magnetic Sachs form factors, GE and GM, as follows [118]:

hp0; s⃗0jjμð0Þjp;s⃗i

¼ ūðp0; s⃗ 0Þ
�
MNP

μ

P2
GEðtÞþ

iϵμαβλΔαPβγλγ5

2P2
GMðtÞ

�

uðp;s⃗Þ:

ðD1Þ

The electric Sachs form factor GEðtÞ encodes the charge
distribution which can be obtained by the Fourier transform

ρchðr⃗Þ ¼
Z

d3Δ

ð2πÞ3 e
−iΔ⃗·r⃗MN

P0
GEðtÞ: ðD2Þ

To obtainGEðtÞ from Eq. (D1), one can choose μ ¼ 0 in the
Breit frame, i.e. P⃗ ¼ 0⃗, and set s⃗ ¼ s⃗0. This yields

hp0; s⃗jψ̄γ0ψ jp; s⃗i ¼ 2MNGEðtÞ: ðD3Þ

We evaluate the electric Sachs form factor GEðtÞ in the bag
model in the large-Nc limit, by choosing the nucleon
polarization along the z axis and momentum transfer
Δ⃗ ¼ ð0; 0;Δ3Þ. The result then reads

GEðtÞ ¼ 4πA2R6

Z
d3k

ð2πÞ3 ½α
2
þt0ðkÞt0ðk0Þ

þ α2−e⃗k · e⃗k0t1ðkÞt1ðk0Þ�; ðD4Þ

with k⃗
0 and k⃗ as defined in Eq. (C2). Carrying out the

Fourier transform in Eq. (D2) yields the charge distribution

ρchðrÞ ¼
A2

4π
½α2þj20 þ α2−j

2
1�ΘV : ðD5Þ

In the limit mR → ∞ which may be realized in various
physical situations, see Sec. IV, the electric charge dis-
tribution of the proton becomes

ρchðrÞ ¼ c0j0ðκrÞ2ΘV þ � � � ; ðD6Þ

where the dots indicate terms which are suppressed by
powers of 1=ðmRÞ. The constants κ and c0 are defined in
the sequel of Eq. (46). The normalization is such that
R
d3rc0j0ðκrÞ2ΘV ¼ 1, see Sec. IV.
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[56] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder,

A. Trawiński, and J. Wagner, Eur. Phys. J. C 81, 300
(2021).

[57] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, arXiv:2104
.02031.

[58] F. Georges et al. (Jefferson Lab Hall A Collaboration),
Phys. Rev. Lett. 128, 252002 (2022).

[59] N. Mathur, S. J. Dong, K. F. Liu, L. Mankiewicz, and N. C.
Mukhopadhyay, Phys. Rev. D 62, 114504 (2000).

[60] P. Hägler, J. W. Negele, D. B. Renner, W. Schroers,
Th. Lippert, and K. Schilling (LHPC and SESAM Col-
laborations), Phys. Rev. D 68, 034505 (2003).

[61] M. Göckeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A.
Schäfer, G. Schierholz, and W. Schroers (QCDSF Col-
laboration), Phys. Rev. Lett. 92, 042002 (2004).

[62] P. Hägler et al. (LHPC Collaboration), Phys. Rev. D 77,
094502 (2008).

[63] M. Deka, T. Doi, Y. B. Yang, B. Chakraborty, S. J. Dong,
T. Draper, M. Glatzmaier, M. Gong, H. W. Lin, K. F. Liu
et al., Phys. Rev. D 91, 014505 (2015).

[64] Y. B. Yang, J. Liang, Y. J. Bi, Y. Chen, T. Draper, K. F. Liu,
and Z. Liu, Phys. Rev. Lett. 121, 212001 (2018).

[65] P. E. Shanahan and W. Detmold, Phys. Rev. Lett. 122,
072003 (2019).

[66] P. E. Shanahan and W. Detmold, Phys. Rev. D 99, 014511
(2019).

[67] C. Alexandrou, S. Bacchio, M. Constantinou, J.
Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou,
H. Panagopoulos, and G. Spanoudes, Phys. Rev. D 101,
094513 (2020).

[68] X. D. Ji, W. Melnitchouk, and X. Song, Phys. Rev. D 56,
5511 (1997).

[69] V. Y. Petrov, P. V. Pobylitsa, M. V. Polyakov, I. Börnig, K.
Goeke, and C. Weiss, Phys. Rev. D 57, 4325 (1998).

[70] P. Schweitzer, S. Boffi, and M. Radici, Phys. Rev. D 66,
114004 (2002).

[71] J. Ossmann, M. V. Polyakov, P. Schweitzer, D. Urbano,
and K. Goeke, Phys. Rev. D 71, 034011 (2005).

[72] K. Goeke, J. Grabis, J. Ossmann, M. V. Polyakov, P.
Schweitzer, A. Silva, and D. Urbano, Phys. Rev. D 75,
094021 (2007).

[73] K. Goeke, J. Grabis, J. Ossmann, P. Schweitzer, A. Silva,
and D. Urbano, Phys. Rev. C 75, 055207 (2007).

[74] M. Wakamatsu, Phys. Lett. B 648, 181 (2007).
[75] C. Cebulla, K. Goeke, J. Ossmann, and P. Schweitzer,

Nucl. Phys. A794, 87 (2007).
[76] J. H. Jung, U. Yakhshiev, and H. C. Kim, J. Phys. G 41,

055107 (2014).
[77] H. C. Kim, P. Schweitzer, and U. Yakhshiev, Phys. Lett. B

718, 625 (2012).

2D ENERGY-MOMENTUM TENSOR DISTRIBUTIONS OF … PHYS. REV. D 106, 014012 (2022)

014012-25



[78] J. H. Jung, U. Yakhshiev, H. C. Kim, and P. Schweitzer,
Phys. Rev. D 89, 114021 (2014).

[79] M. Mai and P. Schweitzer, Phys. Rev. D 86, 076001
(2012).

[80] M. Mai and P. Schweitzer, Phys. Rev. D 86, 096002
(2012).

[81] M. Cantara, M. Mai, and P. Schweitzer, Nucl. Phys. A953,
1 (2016).

[82] I. Gulamov, E. Nugaev, A. Panin, and M. Smolyakov,
Phys. Rev. D 92, 045011 (2015).

[83] E. Nugaev and A. Shkerin, J. Exp. Theor. Phys. 130, 301
(2020).

[84] J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343
(1991).

[85] B. Kubis and U. G. Meissner, Nucl. Phys. A671, 332
(2000); A692, 647(E) (2001).

[86] A. V. Belitsky and X. Ji, Phys. Lett. B 538, 289 (2002).
[87] S. I. Ando, J. W. Chen, and C.W. Kao, Phys. Rev. D 74,

094013 (2006).
[88] M. Diehl, A. Manashov, and A. Schäfer, Eur. Phys. J. A 29,

315 (2006).
[89] H. Alharazin, D. Djukanovic, J. Gegelia, and M. V.

Polyakov, Phys. Rev. D 102, 076023 (2020).
[90] H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650,

421 (2007).
[91] B. Pasquini and S. Boffi, Phys. Lett. B 653, 23 (2007).
[92] D. S. Hwang and D. Mueller, Phys. Lett. B 660, 350

(2008).
[93] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 78,

025032 (2008).
[94] Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 095007

(2008).
[95] Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 115021

(2008).
[96] Z. Abidin and C. E. Carlson, Phys. Rev. D 79, 115003

(2009).
[97] W. Broniowski and E. R. Arriola, Phys. Rev. D 78, 094011

(2008).
[98] B. Pasquini, M. V. Polyakov, and M. Vanderhaeghen,

Phys. Lett. B 739, 133 (2014).
[99] D. Chakrabarti, C. Mondal, and A. Mukherjee, Phys. Rev.

D 91, 114026 (2015).
[100] N. Kumar, C. Mondal, and N. Sharma, Eur. Phys. J. A 53,

237 (2017).
[101] C. Mondal, D. Chakrabarti, and X. Zhao, Eur. Phys. J. A

53, 106 (2017).
[102] J. Hudson and P. Schweitzer, Phys. Rev. D 96, 114013

(2017).
[103] J. Hudson and P. Schweitzer, Phys. Rev. D 97, 056003

(2018).
[104] S. Kumano, Q. T. Song, and O. V. Teryaev, Phys. Rev. D

97, 014020 (2018).

[105] I. Anikin, Phys. Rev. D 99, 094026 (2019).
[106] C. Granados and C. Weiss, Phys. Lett. B 797, 134847

(2019).
[107] A. Freese and I. C. Cloët, Phys. Rev. C 100, 015201

(2019).
[108] A. Freese and I. C. Cloët, Phys. Rev. C 101, 035203

(2020).
[109] M. J. Neubelt, A. Sampino, J. Hudson, K. Tezgin, and P.

Schweitzer, Phys. Rev. D 101, 034013 (2020).
[110] K. Azizi and U. Özdem, Eur. Phys. J. C 80, 104 (2020).
[111] U. Özdem and K. Azizi, Phys. Rev. D 101, 054031 (2020).
[112] U. Özdem and K. Azizi, Phys. Rev. D 101, 114026 (2020).
[113] M. Varma and P. Schweitzer, Phys. Rev. D 102, 014047

(2020).
[114] S. Owa, A.W. Thomas, and X. G. Wang, Phys. Lett. B

829, 137136 (2022).
[115] J. Y. Kim and H. C. Kim, Phys. Rev. D 104, 074019 (2021).
[116] J. Y. Kim, U. Yakhshiev, and H. C. Kim, arXiv:2204

.10093.
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[135] L. Adhikari and M. Burkardt, Phys. Rev. D 94, 114021

(2016).
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