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Form factors of the energy-momentum tensor (EMT) can be interpreted in certain frames in terms of
spatial distributions of energy, stress, linear and angular momentum, based on 2D or 3D Fourier transforms.
This interpretation is in general subject to “relativistic recoil corrections,” except when the nucleon moves
at the speed of light like e.g. in the infinite-momentum frame. We show that it is possible to formulate a
large-N . limit in which the probabilistic interpretation of the nucleon EMT distributions holds also in other
frames. We use the bag model formulated in the large-N, limit as an internally consistent quark model
framework to visualize the information content associated with the 2D EMT distributions. In order to
provide more intuition, we present results in the physical situation and in three different limits: by
considering a heavy-quark limit, a large system-size limit and a constituent-quark limit. The visualizations
of the distributions in these extreme limits will help to interpret the results from experiments, lattice QCD,

and other models or effective theories.
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I. INTRODUCTION

In recent years, the energy-momentum tensor (EMT) has
been recognized as a key object by the hadronic physics
community and attracted accordingly a lot of attention. It is
directly related to the questions of the nucleon mass and
spin decompositions which constitute two of the three pillars
of the Electron-Ion Collider project in the United States [1—
3]. High-energy scattering experiments and calculations in
lattice QCD and models can be used to constrain matrix
elements of the EMT, allowing us to study the mass [4—12],
spin [13—17], and spatial distributions of energy, momentum
and stress inside the nucleon [18-28]. This offers an
unprecedented picture of the nucleon structure and even a
glimpse into the question of its stability.

While both experimental [29-58] and lattice QCD data
[59-67] are accumulating, numerous fundamental ques-
tions are addressed and studied from the theory side,
ranging from the proper definition of the renormalized
EMT in QCD, the various possibilities for decomposing the
mass and the spin of a composite system, the understanding
of relativistic effects and frame dependence, and many
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more aspects (see [12] for the most recent account), to the
identification and suggestion of new processes and exper-
imental observables. At the present stage of our knowledge,
model calculations inspired by QCD are particularly useful
since they provide valuable predictions guiding experimen-
tal studies. They also allow one to test explicitly general
relations derived from formal considerations. A large
number of models and approaches have been developed
over the years and used to study particular parton distri-
butions or observables [68—116].

In this work we push further the study of the EMT using
the bag model in the large-N . limit studied in Ref. [109].
We focus here on the 2D spatial distributions which are
defined for arbitrary values of the nucleon average three-

momentum P [21,115-121]. Besides obtaining a 2D
picture of the nucleon in the physical situation, we will
also discuss in detail three insightful limits, namely a
heavy-quark limit, a large system-size limit, and a con-
stituent quark limit. While representing very different
physical situations, the limits have in common that the
quarks become effectively nonrelativistic and the quark
Compton wavelength becomes much smaller than the
system size. We will study the behavior of the EMT
distributions in these situations. This will show how, within
a quark model framework, the internal nucleon structure
changes as one goes away from the real-world situation
with tightly bound ultrarelativistic quarks forming a com-
pact nucleon, and approaches the different limits.
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The paper is organized as follows. In Sec. II we present
in a nutshell how 3D and 2D spatial distribution associated
with the EMT are constructed, along with various general
properties and the large-N,. limit. Then we remind in
Sec. III the analytical results of Ref. [109] for the 3D
distributions in the bag model, and introduce in Sec. IV the
various limits we will consider later (namely heavy quarks,
large system size, and constituent quarks). After showing in
Sec. V the 2D distributions in the physical situation, we
discuss in detail three different limits in Secs. VI-VIIL
Finally we study the mass structure of the nucleon within
the bag model picture in Sec. IX, and summarize our
findings in Sec. X. Additional discussions can be found in
Appendices.

II. EMT FORM FACTORS AND SPATIAL
DISTRIBUTIONS

In this section we introduce the EMT form factors, define
the 2D and 3D distributions in different reference frames,
review their relations, and discuss the description of these
EMT form factors and distributions in the large-N, limit.

A. Energy-momentum tensor and form factors

In QCD, the local gauge-invariant quark and gluon
contributions to the EMT are defined as'

e
TZD = l//qVMED /7D (la)

1
Ty = ~F“F + g F. (1b)

where Bﬂ = 5/4 - 5” —2igA, is the symmetric covariant
derivative in the fundamental representation, F** is the
gluon field-strength tensor in the adjoint representation,
and g,, = diag(+1,—1,-1,-1) is the Minkowski metric.
The EMT is a key object since many current fundamental
questions about the hadronic structure are related to its
components. Namely, the 00 component addresses the
question of the origin of the hadron mass [4-7,9,10,12],
the 0i and /0 components address the question of the origin
of the hadron spin [13,15,16], and the ij components
contain information about pressure forces inside the
nucleon [18,20,21,23].

The corresponding generalized angular momentum
(AM) tensor is given by [15,16,117]

Jub =N "L 4 Sy (2)
q q

where (€p123 = +1)

'See Refs. [7-9,122] for the case of a symmetric EMT
renormalized in MS scheme up to three loops.

LA = xahP — PThe, (3a)
st = L g (3b)
q 2 Wq}/J.YSan
TP — xotP _ PTH (3¢)

represent the quark orbital, quark spin, and gluon total AM

contributions. The tensors L and J*” are covariant
forms of 7 x p and will accordingly be qualified as orbital-
like. Lorentz symmetry implies that the generalized AM
tensor is conserved aﬂﬂ“‘/’ =0, and in turn relates the
antisymmetric part of the quark EMT to the quark spin

contribution

Q Q (4 1 Q
T = (1§ = T4 = =59,5¢". (4)

N[ =

In the literature, one often uses a symmetric EMT, known
as the Belinfante EMT, which in QCD is related to the
general asymmetric EMT as follows [16]:

v v 1 v %
R

The Belinfante generalized AM tensor reads

uap uof uaf
JBcl - Z‘]Bel,q + JBel,g’ (6)
q

with

Jﬂ af a Tﬂﬂ

— _ PTHa
Bel,a — X Bel,a X TBe].a’

a=q.9. (7)
Contrary to the kinetic generalized AM tensor J**, the
Belinfante version J‘é‘;ﬁ is purely orbital-like.

For a spin-1/2 target with mass My, the matrix elements
of the general asymmetric EMT evaluated at the space-time

origin x = 0 can be parametrized in the following way
[14,16,123]:

(P 573" (0)|p. 5)

prp PlrighiA,
05 Al T+ 00
AFAY — g A? Plric A
1D, TR ()
4My My
+CMyg u(p.5) (3)

where the kinematic variables are defined as

—

P=('+p). A=p-p 1=8% (9
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The unit vector 5 (5') indicates the direction along which
the initial (final) rest-frame spin is aligned. The form
factors for different parton species depend on the renorm-
alization scale y, e.g. A,(t) = A,(t, u*), which is usually
omitted for brevity. The total EMT form factors A(r) =
S, Aq(t, 4?) and analogs for J(t), D(t) are renormalization
scale invariant. The form factors C,(#, u?) account for
the nonconservation of the separate quark and gluon
EMTs. The total EMT being conserved, it follows that
>4 Col(t, 4?) = 0. Moreover, Poincaré symmetry implies
that A(0) =1 and J(0) = 1/2 [13,124-126]. Unlike the
gluon spin, the quark spin operator can be expressed in a
way that is both local and gauge invariant. As a result, the
quark contribution to the EMT receives in general an
antisymmetric contribution described by the form factor
S,(t). For the Belinfante EMT, the latter drops out owing
to Eq. (5).

B. 3D spatial distributions in the Breit frame
For a nucleon state with rest-frame polarization in the §
direction, a 3D spatial distribution of the EMT can be
defined in the Breit frame (BF) where P* = (PO,G) and
AF = (0,&) as follows [18,21,119,127]:

& @iuaﬂw%m

T = [ e

, (10)

P=0

p.5)
2P0

and can be expressed in terms of 3D Fourier transforms of
the EMT form factors. Its components give access to a
wealth of physical information.

The 00 component corresponds to the quark and gluon
energy distributions

(T2 (F) = €,(r), (11)
which are related to the nucleon mass by
> /d3rea(r) = My. (12)
a=q.g

The 0i and i0 components are related to the AM
distributions inside the nucleon,

€k ri (T e (7) = Ly (7), (13a)

ijk ,.j /7OK] SRS TSR IS
P (T ge(F) = =2 [Fx (VX 5,(F)]. (13b)
P (TP g (F) = T o (7). (13¢)
TP (T i (F) = J(F) = Ty ,(F). (13d)

which satisfy the AM sum rule [13,119]

> [ @rdsan =3, (14)

a=q.9

A similar sum rule holds for the asymmetric EMT
> S =L s
/d%{Zq:Lq(r) + zq:Sq(r) —Q—Jg(r)} =5. (15)

and involves the 3D distribution of quark spin in the BF:

. A —iAF (P’ 5w (0)y'ysw(0)|p.5)
Sal )_E/(zn)3e ’ { 2 ]

P=0
(16)

Note that Ji, (7) and L{(7) + S;(7) differ by a total
derivative [117]

PR B
Ly(F) + Sg(F) = ey (F) = 5 VI[r/S(7) = 877 - 54(7)]
(17)

which vanishes under spatial integration.

For a nucleon target polarized along &, the spatial
dependence of any AM distribution (generically denoted
by J)) can be decomposed into monopole [72] and
quadrupole [117,128] contributions:

rirl 1

Ji(F) = {5"1'J‘a“°“°(r) + ( > —55"/>J2“ad(r)} sl (18)

The monopole and quadrupole contributions are related to
each other as [128]

sy = =21 = 0,00 (19)
for the orbital-like contributions J, € {L{, /g ./}
However, for the quark spin contribution S/, the monopole
and quadrupole contributions are independent.

The symmetric stress tensor can similarly be decom-
posed into monopole and quadrupole contributions [18],

r'r 1

(TP =870 + (=38 ) 20

which are interpreted as the (spin-independent) distribu-
tions of isotropic pressure and pressure anisotropy (or shear
forces), respectively. The so-called radial and tangential
pressures are then given by the combinations [20,21]

= palr) + 25401,

pr,a(r) 3

Pralr) = palr) = 3 5a(r).
e1)
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The conservation of total EMT 9,T*" = 0 relates total
pressure anisotropy s(r) = >_,s,(r) and total isotropic
pressure p(r) = >, p.(r) through a differential equation:
2ds(r)  2s(r) dp(r)

= =0. 22
3 dr r + dr (22)

It indicates in particular that the variation of the radial
pressure is caused by shear forces.” Other consequences of
EMT conservation are the following conditions:

/O " drPp(r) =0, (23a)
A " drr [—%s(r) n p(r)} —0, (23b)
Am dr {—:s(r) + p(r)] =0, (23¢)

where Eq. (23a) is called the von Laue condition (or
sometimes, more loosely, the equilibrium condition), while
Egs. (23b) and (23c) are sometimes called the respective
lower-dimensional von Laue conditions (though they are
pertinent to the 3D pressure distribution, and should not be
confused with the 2D conditions discussed in Appendix A).
The relations (23) are necessary conditions for the
mechanical stability of an extended particle.

C. 2D spatial distributions with arbitrary momentum

3D spatial distributions are restricted to the BF, where
the target has vanishing average momentum P = (. The
concept of relativistic spatial distribution can however be

extended to the more general case P #0, at the price of
losing one spatial dimension. Choosing for convenience the

z direction along P,2D spatial distributions of the EMT can
be defined in the class of elastic frames (EF), where the
energy transfer vanishes A° =0, as follows [21,117-119]:

(Ta )pr(b; P,)

_ /JZALE_ML,, {<p’,§ITZ”(O)Ip,§>} |
(2”)2 2P° |P,|=A,=0

(24)

The BF corresponds to the special EF where P, — 0. In that
case, the 2D distributions simply reduce to the projection of
3D distributions onto the transverse plane

*For macroscopic fluids in hydrostatic equilibrium and sub-
jected to an external gravitational field, the bulk pressure is
isotropic and decreases with height because of the external
anisotropic gravitational force. Isotropic pressure also suddenly
changes at the gas-liquid interface where anisotropic forces are
modeled in terms of a surface tension.

(T (b:0) = / dz(T )55 () (25)

with 7 = (b, z). We can then easily relate the 2D distribu-
tions in the BF to the 3D ones [21,117]:

ulb) = [ dze0) (264)

Ji(B) = / dzJi (7). (26b)

pa0) = [ e[ put+ Zo ). 20
sal0) = [ syl (260)

pra(b) = / g 2Pralr) ;zzpt,a(r), (26¢)
pial0) = [ dzpialr) (26f)

where J|, denotes either L, S}, Jp, or Jy = Jg, - The
transformation from the 3D to 2D distributions with spheri-
cal symmetry is invertible and known as Abel transforma-
tion [24]. The pressure distributions p(b) and s(b)
correspond to the 2D monopole and quadrupole contribu-
tions to the transverse part (i, j = 1,2) of the symmetric

stress tensor
; ; by 1,
(Ter:0) =) + (=500 )sa0). 1)

Like in the 3D case, it follows from the conservation of the
total EMT that

Lds(b) | s(b) | dp(b)
2 db b db

= 0. (28)

For a longitudinally polarized nucleon, these 2D dis-
tributions satisfy the relations

> / d2be,(b) = My, (29a)
S [ Ebhane) =5, (290)
> / dbp,(b) =0, (29¢)
My / d?bb*p,(b) = D(0), (29d)
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_%z / d*bb*s,(b) = D(0), (29e)

where D(0) is the D-term [129]. Since relativistic boosts do
not commute with each other, 2D distributions get more
and more distorted as we increase P,. In the infinite-
momentum frame (IMF), they coincide (up to a trivial
Jacobian factor) with the light-front (LF) spatial distribu-
tions [21,23] in the symmetric Drell-Yan frame defined by
At =0and P* = (P°,0,,P,),

Pl.igloo<TZy>EF(b;Pz)/\/§: lim (T&")1(), (30)

Pt

where

(TE)us0)= [ 2 i [ ATE O3

(31)

Here the LF components are defined as a* = (a° + a?)/
v/2, and the LF momentum eigenstates with LF helicity A
are normalized as (p',X|p,A) = 2P (2x)35(p'" — p*)x
5 P —PpL)ows

D. Stability requirements for 2D BF distributions

The 3D EMT distributions satisfy certain criteria which
are necessary (but not sufficient) requirements for mechani-
cal stability. Namely, in a 3D stable system, it is expected
(at least classically) [21] that at » = 0 one has ¢(0) < oo,
p(0) < o0, 5(0) = 0, while at r > 0 the following inequal-
ities hold:

e(r)>0, p.(r)>0, dz(rr)<0’ dpatir)<0’
e(r)+pi(r)20, e(r)+3p(r)20, e(r)=|p;(r)l,
(32)

where i = r, t. (We remind that throughout this work we
use natural units with ¢ =1 and 7 =1.)

These constraints on the 3D distributions can be trans-
lated into 2D stability conditions. At b = 0 we expect the
following to hold: ¢(0) < o0, p(0) < oo and 5(0) = 0. For
b > 0 the other constraints are

¢(b)20. p,(b)20, dil(:)SO, d’;’f,b) <0
(33)

While alluded to in Ref. [21], to the best our knowledge
these constraints on the 2D BF distributions have not been

2P* } PLl=A"=0

discussed explicitly before in literature, except the pos-
itivity of radial pressure expressed as p(b) +3s(b) >0
[23]. The proofs of these relations, relying on the validity
of the corresponding 3D counterparts, are given in
Appendix A.

E. Large-N, limit
In the large-N,. limit the nucleon mass behaves as
My ~ N, while the nucleon three-momenta are assumed
to scale like NY. This implies the hierarchy P’ ~ N, >
|P| ~ |A| ~ N? > A® ~ N7!. The initial four-momentum is
given by p* ~ My(1,7) with the initial nucleon velocity
U~ p/My ~ N7', and similarly for the final state. Thus,
the motion of the nucleon is slow and nonrelativistic.
Independently of the nucleon being nonrelativistic as a
whole, the motion of its constituents may however range
from nonrelativistic (e.g. heavy quarks in nonrelativistic
quark models) to ultrarelativistic (e.g. light quarks in
relativistic models or QCD) as we shall discuss below.
The leading terms in the large-N, expansions of the
nucleon matrix elements polarized along s for the different
quark EMT components are given by

(p"5ITR0)|p.5)
2

=2M3 {AQ(I) +Cy(1) DQ(I)] +O(N?), (34a)

+—
aM3,

(9375 (0)]p. 5)

i(sx A)i
2

=2My {PiAQ(l) + lJQ(t):| + O(N?), (34b)

(P SIT(0)|p.5) = —Myi(5 x A)iSo(1) + O(NY),

(34c¢)
(P 3IT5(0)] p. 5)
AIAT — 5§17 A?
= 2M}y | =8YCo(r) + =7 Dol(r) | + O(NY),
N
(34d)
(p'.5ITH(0)]p.5) = O(NY). (34e)

The large-N,. behavior of the EMT form factors for
the different u 4= d flavor combinations of the light quarks
is as follows: A“*4(¢) ~ N9, J“=d(¢) ~N,, §“=(¢) ~N,,
D“t(t) ~ N2, C*™4(1) ~ N? are leading, while A“~9(¢)~
N7 Jutd (1) ~ NO, S“H4(f) ~ N9, D*=4(t) ~ N, C*=%(t) ~
NZ! are respectively subleading in the 1/N, expansion
[20]. The total quark contribution denoted by the index Q in
Eq. (34) is already exhausted by the u+d flavor
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combination when working in a model in the SU(2) flavor
sector which we shall do in the following.

In the large-N, limit, P, remains always much smaller
than M. Distortions of spatial distributions induced by
the motion of the target are therefore subleading in the
1/N,. expansion. The fundamental reason for this is that
the Lorentz group becomes the Galilean group in the limit
P? x N, = 0. An exception is the AM distributions for a
transversely polarized nucleon due to the appearance of
the term P'Ay(r) in Eq. (34b). This term is expected
because it is associated with the center-of-mass motion of
the system. Indeed, let us consider a rigid block of matter
moving at some constant velocity without rotation, and
hence with vanishing internal AM. The spatial distribution
of momentum is nonzero inside the body, and the AM
distribution does not vanish. Integratmg over space, one

finds that total AM is given by JCM =R x P where R is
the position of the center of mass relative to the origin of
the coordinate system. Choosing the origin along the
trajectory of the center of mass eliminates this external
contribution to the total AM, but does not set the
corresponding spatial distribution to zero. Notice that
this contribution drops out when considering a longitu-
dinally polarized nucleon (which we shall do throughout
in the following). Therefore, in the large N, limit, the
Breit frame and elastic frame 2D distributions coincide for
a longitudinally polarized nucleon, and in the case of a
transversely polarized nucleon they differ for the AM
distribution by a trivial expected effect due to the center-
of-mass motion.

Note that we may also consider the infinite-momentum
limit P, — oo, but since the large-N. limit was taken
first, the nucleon will never move with relativistic veloc-
ities, and hence will never coincide with the correspond-
ing LF spatial distributions. In the following we will
discuss a set of 2D distributions in the bag model in the
large-N, limit with the understanding that for them no
distinction needs to be made between BF, EF and IMF
distributions.

III. THE BAG MODEL, AND A RECAP OF THE
ASSOCIATED 3D EMT DISTRIBUTIONS

In the bag model quarks are confined inside a spherical
cavity (“bag”) of radius R by appropriate boundary
conditions on its surface S. Baryons (mesons) are
described by placing N, =3 noninteracting quarks
(a gq pair) in a color-singlet state inside the cavity
[130,131]. The Lagrangian of the bag model can be
written as [132]

e ool

1 _
+ Ezq:wqqu"a,@v - BOy, (35)

where 9, = 5ﬂ - 5” and B > 0 is the energy density inside
the bag. It is convenient to define (in the rest frame of the
bag)

®y =0(R-1), r=|7. (36)

e, =rfr,

n= (Ov gr)’

From the Lagrangian (35) one obtains the equations of
motion for the (free) quarks (id —m)y, =0 for r <R
inside the bag, as well as the linear boundary condition
iy, =w, for 7 € S and the nonlinear boundary condition

3>, m0(W,w,) = B. The boundary conditions are
such that there is no energy-momentum flow out of the
bag, i.e. n,7"(t,7) = 0 for 7 € S [130]. The ground state
has positive parity and is described by the wave function

W (1.) = T (),

¢(7):A(a+jo(wir/R>)(s >
’ \/4_77 a—jl(wir/R)ig'ngs ’

1/2
A:<R3 2(;) (29;(Q; — 1)—|—mR)> :

where ay = /1 £ mR/Q; with Q; = \/&? + m*R?, o
are 2 x 2 Pauli matrices, and y, are two-component
Pauli spinors. The single-quark energies are given by
e; = Q;/R. The w; denote solutions of the transcendental
equation

Q;(Q; —mR)

(37)

= (1l —mR - Q;)tan w;. (38)

The ground-state solution for massless quarks is @y =
2.04, and swipes the interval 2.04 < wo(mR) < 7 when
the product mR is varied from O to infinity. The constant A
in Eq. (37) is such that [d*r¢’ (), (7) = .

The nucleon mass is due to contributions from quarks
and the bag, and is given by

Q 4
=04 R, (39)

My =N,
N R '3

The condition M), (R) = 0 is sometimes referred to as the
virial theorem and yields the relation

2(Qy — 1)}

47R*B = N .
" “200(Q — 1) + mR

(40)

Assuming SU(4) spin-flavor symmetry, the nucleon matrix
elements of quark operators are related to those of the
single quark by spin-flavor factors: N, for nucleon spin-

independent matrix elements and P, for spin-dependent
matrix elements. For the proton we have N, = N;l,

N, = 2_1, P, = N6+5, P, = Nﬁ“, where N, = 3 is the
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number of colors. For the neutron the labels u and d are
interchanged [133].

The bag model belongs to the class of so-called
“independent-particle models” in which one encounters
technical difficulties when evaluating one-body operators
such as the EMT [68]. The large-N, limit allows one to
avoid these problems and to consistently evaluate EMT
form factors [109]. In the following we shall therefore
assume that we work in the large-N . limit (when presenting
numerical results we of course set N. = 3). One important
advantage of working in the large-N,. limit is that the
system as a whole moves with nonrelativistic velocities, so
that the 2D and 3D distributions can be thought of as actual
densities, and not only as quasidensities [118].

In the bag model the kinetic quark EMT operator is
given by

i

TZU = l/_/qyﬂ
The expressions for EMT form factors associated with the
symmetric part were derived for N. = 3 in [68] and in the
large-N,. limit in [109]. When calculating matrix elements
of local operators in the large-N, limit, one naturally
obtains expressions for the form factors which are given
by Fourier transforms of 3D distributions [72]. (We do not
repeat here the expressions for the EMT form factors
derived in the bag model in large-N, limit in [109] but
other examples can be found in Appendices C and D,
namely the electric and axial form factors included for
comparison.)
The 3D quark and “gluon” EMT distributions are
given by

N, A? Q
TP(r) == — ¢ ([@jg+ajh)®y.  (42a)
P AZ 2
) == (@) mdsron.
(0= p,A? Qo .\ kim i om
TP = ——— 2aca- = joj1 |ef"els"Oy,  (42¢)
i N, A?
qu(f’): e aLa_
x Kjoh JoJr@)ere 1] 15”‘} Oy, (42d)
sz(r) = g”UB®V. (426)

The arguments of the spherical Bessel functions are
Ji = ji(wgr/R); primes denote differentiation with respect
to r. The contribution T%"(r) = ¢**BOy is due to the bag,
i.e. due to nonfermionic degrees of freedom. It is essential
to bind the quarks, and in this sense it can be associated

with “gluonic” effects in QCD [68,109]. The derivation of
the results in (42) is described in detail in Ref. [109], except
that the antisymmetric contribution related to the spin
distribution (4) was not computed. These are new results
obtained in this work. Equation (42) is the starting point for
the developments in this work.

For completeness let us summarize in the following the
explicit results for the EMT distributions. The total energy
distribution €(r) inside the nucleon is the sum of the
contributions to the 7% component of the EMT. Hence,
both quarks and the bag contribute to the energy distribu-
tion. Their overall contribution is given by

NAQO
4r R

e(r) = (% jd+ a2 j2) + B|Oy. (43a)

The AM distribution is determined from the 7% com-
ponents of the asymmetric EMT. It receives no contribution
from the bag and consists only of spin and orbital angular
momentum (OAM) contributions due to quarks. Choosing
the nucleon polarization along the z direction the total AM,
OAM and spin distributions are given by

JA(F) = [L5(F) + S5(7)], (43b)
Lf](?) = Pq: [a? ]1(1 — ¢0s%0)]|0y, (43c)
S:(F) = g—ﬂz [@2 j2 + a2 j2(2c0s?0 — 1)]®y,  (43d)

P A% 20,
J]ZSel,q(?): é]ﬂ' TO(Z_,,_(X r]0J1+6¥ ]1 (1—C0529)®V,

(43e)

where the angle 0 is defined by the projection of 7 on the z
axis (with the unit vector €,) as €, - 7 = rcos 6.

The isotropic pressure and pressure anisotropy distribu-
tions are related to the symmetric part of T (the anti-
symmetric contribution to 7% is zero in the leading order of
the large-N . expansion). Both the bag and quark degrees of
freedom contribute to the isotropic pressure, which is
related to the trace of T/. The pressure anisotropy s(r),
being related to the symmetric traceless part of 7%/, is due to
quarks only. The model expressions are given by

N_.A? . L. 2
p(r) = { o O+ <JoJ/1 — JoJ +;Joh> —B] 0y
= py(r) — BOy, (43f)
N A2 o 1
_ R TP | P
S(") [4” 0‘+a—<JoJ1 JoJ1 rJOJ1>:| 1% ( g)

which satisfy the differential relation (22), and p(r)
satisfies the conditions (23). In Eq. (43f) we defined the
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TABLE L.

Limits within the bag model considered in this work. L1: heavy quark limit with the bag constant B kept fixed. L2: large

system size limit with quark mass m kept fixed. L3: constituent quark limit with the nucleon mass My kept fixed. The varied parameters
are stressed in bold in column 2. The behavior of unconstrained quantities is shown in columns 4 and 5.

Acronym Limit, varied parameter Fixed quantity Response of other quantities

L1 Heavy quark limit, m — oo B = fixed R~m™'/5 My - N.m — o
L2 Large system size limit, R — o m = fixed B~RS My — N.m = fixed
L3 Constituent quark limit, m — My /N, My = fixed R — o0 B~R™

quark contribution p,(r) to the total pressure for later
convenience.

IV. LIMITS WITHIN THE BAG MODEL

It will be instructive to study 2D EMT distributions not
only in the physical situation (which we shall do in Sec. V),
but also in various limiting situations within the bag model
(in Secs. VI-VIII). For that we will explore three limits
corresponding to three different physical situations as
explained in this section.

The bag model is uniquely defined by specifying two out
of the following three parameters: the bag constant B
representing QCD properties in the vacuum sector, the
quark mass m reflecting QCD properties in the quark
sector, and the bag radius R which is a key property
characterizing hadronic properties. The nucleon mass plays
a special role because the bag solution is determined by
minimizing the nucleon mass as a function of the bag
radius, My (R). Moreover, in the physical situation one can
choose the parameters to reproduce the experimental value
of M (this can and will be relaxed in some of the limits).
All the other hadronic properties are then automatically
determined.

The limits are therefore uniquely defined by specifying
one parameter which will be taken to infinity, and one
quantity which will be kept fixed. The three limits
considered in this work will be referred to as L1, L2,
L3. In the limit L1, the quark mass m will be taken to
infinity keeping the bag constant B fixed. In the limit L2,
the bag radius will be taken to infinity while the quark
mass m is fixed. In the limit L3, we finally will take the
quark mass to approach 1/N,. of the nucleon mass with
the latter kept fixed at its physical value (in the limits
discussed here, N, is always a constant). The limits
are summarized in Table I which features the quantities
B,R,m, My showing which is varied, which is kept
fixed, and the behavior (“response”) of the respectively
other quantities in these limits. Some comments are
in order.

In a general situation, the exact relation between the
parameters is complicated and governed by two equations,
namely the transcendental equation (38) determining the
frequency w, of the ground state bag solution for given m
and R, and the virial theorem (40) which determines the
minimum of the nucleon mass M understood as a function

of R for speciﬁed3 m and B. Therefore, in the general case,
no analytic relations exist between the parameters.
However, in each of the three limits, the dimensionless
variable mR — oo goes to infinity.

Physically, this means that the quark Compton wave-
length becomes much smaller than the system size. In the
three limits the dynamics becomes effectively nonrelativ-
istic. This may not be intuitive at first glance, especially in
the limit L2 where we can choose the quarks to have any
(nonzero) mass, and light quarks are always associated with
relativistic effects. However, a clear criterion revealing that
a system is nonrelativistic is that the quark mass m makes a
dominant contribution to the quark energy ,/R. This
condition is met in all three limits, i.e. we have

Qo/R = m < 1. (44)
m

Notice that wy = w(mR) is a function of mR. The situation
simplifies considerably in the limit mR — oo because the
transcendental bag equation (38) can then be solved ana-
lytically with wy(mR)=z—x/(2mR)+O(1/(mR)?) [109],
and the virial theorem (40) assumes the form

4mBR® = N, + -+, (45)

where the dots indicate subleading terms suppressed
by powers of 1/(mR) for large mR (notice that power
corrections in Eq. (45) can be determined analytically if
needed [109]).

From Eq. (45) we see that in the heavy quark limit L1,
m — oo with B fixed, the bag radius decreases like
R « m~'/3, while the nucleon mass in Eq. (39) approaches
the limit My, — N.m — oo, cf. the “Response” column in
Table I. Notice that in this limit the inertia of the quarks
increases, and the dynamics of the system becomes non-
relativistic. We will comment more on this limit in Sec. VL.

*In this system of equations, the four quantities B, R, m, and
@, are connected by two equations, Eqgs. (38) and (40), meaning
that two of these four quantities can be eliminated. This leaves
two free parameters which must be specified or fixed in some
way, as described in the text. Notice that in the text w, is not
considered to be a model parameter and is always implicitly
assumed to be eliminated.
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In the large system size limit .2, R — oo with m fixed, we
read off from Eq. (45) that B decreases like R™>. The bag
contribution to the nucleon mass 3 7R*B ~ R~* decreases in
the large-R limit. The nucleon mass becomes smaller and
approaches My — N.m similarly to the limit L1, albeit now
m is fixed and (if we choose to work with light quarks) My
can be small. Interestingly, even though m > 0 can be
chosen to be small, one deals with a nonrelativistic dynamics
also in this case. This can be understood by considering that
as the system size increases, the uncertainty on the quark
positions Ax ~ R grows while the momenta ~1/R decrease
according to Heisenberg’s uncertainty principle. We will
discuss further features of this limit in Sec. VII.

In the constituent quark mass limit L3, we will keep the
nucleon mass fixed (at its physical value) and make m
approach one third of the nucleon mass. Hence, in this limit
the system has the mass of the physical nucleon, but its mass
is asymptotically given by the masses of the “constituent
quarks” added up. This in turn means that the system size
must grow R — oo which must be accompanied by a
decreasing strength of the interaction with B ~ R~ per
Eq. (45). We will come back to this limit in Sec. VIIL.

In the limit L1 the strength of the bag interactions
remains constant. The limits L2 and L3 have in common that
in both cases the strength of the interactions decreases,
which makes the system size large. The general connection
between system size and strength of interaction is nicely
illustrated in Bohr’s semiclassical H-atom model, where the
electron moves with “velocity” v,, = ac/n in the nth “orbit”
with the “radius” r, = A,n*/a, where A, = h/(m,c)
denotes the electron Compton wavelength and m, the
(reduced) mass. Thus, atoms have large sizes of O(1 A)
and can be described to a good approximation in terms of a
nonrelativistic Schrodinger equation, because the electro-
magnetic coupling constant @ ~ 1/137 is small.

In the bag model, the strength of the interaction is
encoded in the bag constant B. This can be intuitively
understood in various ways. For instance, taking B — 0 at
the Lagrangian level in Eq. (35) one recovers the free Dirac
theory. Another way to convince oneself that B is respon-
sible for producing a finite-size bound state is to notice that
setting B — 0 in Eq. (39) yields My(R)  R~! (using
massless quarks for sake of simplicity in this argument),
and the nucleon mass as a function of R assumes its
minimum at R — oo which means that the quarks are
unbound. Yet another way to see that no bound state exists
when B is absent is provided by the von Laue condition
(23): when B = 0 the 3D pressure has no node, and one
finds [ drr’p(r) > 0 meaning that the nucleon explodes
[109]. This corresponds to the situation in the Bogoliubov
model [134] which can be viewed historically as a
predecessor of the bag model [132].

These three limits represent very different physical
situations, but as already mentioned they have in common
that the product mR — oo, even though m and R behave

differently in each case. As a consequence the EMT
distributions have common leading expressions in these
three limits which can be expressed as [109]

e(r) = Nomcyjo(kr)?@y + -, (46a)
Jaa(P) = 5eokrialkr)js(kr)(1 ~cos0)@y + - (46b)
$(7) = 5 cololkrVOy + -+ (46¢)
]7;2

L (7) = WCOJI (kr)?(1 =cos?>0)®y +---,  (46d)

5() = 3o o = o) = nCer) )
+ jo(kr)f} (KI’))@V +--, (46e)

N.n , . 2. .

p() = g o er) + 2 o) )

+ jo(kr)j (KI’))@V —BOy +---, (46f)

where ¢y = 7n/(2R%), k = n/R, and the normalization is
such that [ d®rcgjy(xkr)?©y = 1. The dots indicate in each
case subleading terms that are suppressed by 1/mR with
respect to the corresponding leading contributions. The
leading expression for the energy distribution in Eq. (46a)
satisfies [ d®re(r) = N,.m which is the mass of the nucleon
in each of the three limits. The leading expression for the
Belinfante AM in Eq. (46b) satisfies [ d*rJ,(F) =31 In
the limit of mR — oo, the leading term of the total kinetic
AM [ &®r[L*(F) + §°(F)] =1 is dominated by the spin
contribution in Eq. (46¢) with the OAM being suppressed
by 2 orders of the small parameter 1/(mR). The kinetic AM
J* and intrinsic spin distribution $° become equal and
isotropic. In contradistinction to that, the Belinfante AM
retains its monopole and quadrupole decompositions
for mR — oo.

For the following discussions it is of importance to note
that in the expression for the 3D pressure the bag constant
enters as p(r) = --- — BOy, see Egs. (43f) and (46f). The
practical implication of this is that p(r) has the same
behavior as B in the limits in Table I. Being tightly
connected to the pressure by Egs. (22) and (23), s(r) must
also scale like B in the different limits.

For completeness, let us remark that one could formulate
further limits in the bag model. For instance, in Ref. [109]
the limit m — oo with R fixed was considered, which is
different from the L1 limit discussed here. (However,
the limits L2 and L3 were defined in [109] exactly as in
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FIG. 1. 2D distributions in the bag model in the physical situation with m = 5 MeV, My = 938 MeV: (a) electric charge distribution

and energy distribution normalized to unity, (b) pressure and shear forces, (c) spin and kinetic OAM distributions, (d) total kinetic and
Belinfante form of AM. All distributions vanish at the bag radius R = 1.7 fm.

this work, and used to study 3D EMT distributions and the
D-term.)

After discussing the physical situation in the next
section, we shall investigate the behavior of 2D EMT
distributions in the limits introduced here.

V. 2D EMT DISTRIBUTIONS IN THE BAG MODEL
IN THE PHYSICAL SITUATION

In the physical situation the proton is made of light
quarks. For definiteness we choose m =35 MeV and
neglect isospin breaking effects. The physical nucleon
mass is reproduced for the bag radius R = 1.7 fm.
Figure 1 shows the results for the 2D distribution of
energy, pressure, shear force, kinetic and Belinfante form
of AM. The 2D energy distribution has the physical
dimension of energy per unity area, the 2D pressure and
shear force have the dimensions of force per unit length,
and all three distributions can be expressed in units of
MeV/fm?. The AM distributions have the physical dimen-
sion (area)~! and can be expressed in units of 1/fm? (we
use A=c=1).

In the bag model all (2D or 3D) spatial distributions are
nonzero only inside the bag, which is expected in this
model. A first and generic observation regarding the 2D
distributions is that they go to zero at the bag radius R.
This is in contradistinction to 3D distributions which in
general do not vanish at the bag boundary. In fact, there is
no reason why 3D spatial distributions should drop to
zero at “the edge of a system.” The bag model 3D
distributions exhibit characteristic discontinuities due
to the ®(R — r) functions in (43) at r = R. Such dis-
continuities may seem ‘‘unphysical” at first glance, but
this is a consistent description of 3D spatial distributions
in this model [109].

One notable exception is the normal force where % s(r) +
p(r) > 0 must hold for all values of r within a system, and
the point where the normal force becomes zero defines the
edge of the system. This necessary condition for mechani-
cal stability [19] is the only physical constraint for 3D EMT
distributions for r — R we are aware of, and the bag model

complies with it [109]. In other cases the 3D EMT
distributions are not constrained to vanish at r =R
and do not do so. This is different in the case of 2D
distributions. From their relations to 3D distributions (26) it
follows that 2D distributions must vanish when b — R as
we will see in the following.

The energy distribution e(b) is largest in the center
(b = 0) and decreases monotonously until it becomes zero
at b = R, see Fig. 1(a). At small b we find the behavior
e(b) = €(0) — a.b> + O(b*). The coefficients a; (here
i =€) are defined as positive quantities here and in the
following. The short distance physics is, however, beyond
what nonperturbative approaches like the bag model can
meaningfully describe. As b — R the behavior of 2D
distributions is determined by the integral relations (26).
For instance, if we denote by T%(R) # 0 the value of the
3D energy distribution at r = R, then the behavior of the
2D EMT distribution is given by e(b) = T®(R)VR* — b?
modulo subleading terms when approaching the bag
boundary from the inside. In particular the slope of €(b)
diverges for b — R.

It is instructive to compare the energy distribution to the
electric charge distribution of the proton whose expression
is derived in Appendix D. For that we plot in Fig. 1(a) the
energy distribution e(b) normalized with respect to the
nucleon mass, such that the integrals [ d®b... yield unity in
both cases. The bag model predicts that the 2D distributions
of electric charge and energy in the nucleon are similar. It
will be interesting to test this prediction in other models and
lattice QCD.

The pressure and shear force are shown in Fig. 1(b).
They behave like p(b) = p(0) —a,b*+ O(b*) and
s(b) = ab* + O(b*) close to the center. The behavior
when b approaches the bag boundary is analogous to that of
the energy distribution discussed above. The shear force is
positive for 0 < b < R. The pressure is positive in the inner
region and is negative in the outer region with a node at
b = 1.1 fm. The 2D pressure obeys the von Laue condition
(29¢), and the 2D shear forces and pressure satisfy the
differential relation (28).
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In Fig. 1(c) the spin S$?(b) and kinetic OAM L%(b)
distributions are shown. The former is larger and finite at
b = 0, while the latter is smaller and vanishes for b — 0.
This is to be expected from the factor of 7/ appearing in the
definition of OAM distribution (13). The magnitudes of
these distributions reflect the fact that 65.8% of nucleon
AM is due to quark spin, and 34.2% due to OAM. These are
typical values in relativistic quark models. The spin
distribution does not exhibit the characteristic vertical slope
as b — R like the other distributions in Fig. 1, because the
corresponding 3D distribution S%(7) vanishes for [F| = R
(for any value of the quark mass m).

The total (kinetic) AM distribution J*(b) = L*(b) +
S%(b) is depicted in Fig. 1(d). For comparison the
Belinfante AM distribution J§ () is shown. Both distri-
butions have the same normalization [d?bJ%(b) =
[ d*bJ,(b) =1 but have much different shapes, see the
discussion in Appendix B. This has been observed also in
other models [117,135]. The key difference is that the
Belinfante OAM distribution has by definition a pure
orbital form (13), whereas the kinetic AM distribution
receives both spin and orbital contributions.

VI. 2D EMT DISTRIBUTIONS IN THE HEAVY
QUARK LIMIT

In this section, we discuss 2D EMT distributions in the
limit L1 in which m — oo with the bag constant B fixed.
From Eq. (45) we conclude that the bag radius decreases as
R« m™'/5 for m — oo, cf. Table I. Consequently, the
size of heavy hadrons decreases’ with increasing .
This feature is intuitively expected, although in QCD the
hadron size goes like 1/m in the heavy quark limit. It is
important to keep in mind that here we deal with a
simplistic implementation of a heavy quark limit within
a quark model.

The masses of the hadrons, however, scale correctly in
this limit: the nucleon mass is given by My = N.m up to
subleading terms suppressed by powers of 1/mR [109].
(This general result holds also for mesons where the
number of colors N, is replaced by the number of
constituents N, = 2.) In principle, one could implement
a “more correct” heavy quark limit, where hadron masses
grow linearly with m and hadron radii decrease as 1/m, by
keeping BR* fixed which implies via Eq. (45) that the
system size would decrease like 1/m. While this might be
an interesting exercise in itself, it is not obvious whether
such an approach would yield a more realistic heavy quark
limit in the bag model. We therefore content ourselves with

*Notice that the proton size can be characterized e.g. in terms
of the mean square charge radius and does not coincide with the
bag radius. But the latter effectively sets the length scale in
the bag model. Thus, if R decreases as m — oo, so does the
hadron size.

the m — oo limit with B = fixed. This is sufficient for our
purposes to study the behavior of the EMT properties in a
system where the constituents become massive.

Dimensional analysis tells us that e(r) ~My/R?,
J*(F) ~R73. As shown in Sec. IV, the 3D distributions
p(r) and s(r) have the same behavior as the bag constant B
which is kept fixed in the limit L1. It then follows that the
3D distributions scale like e(r) ~ m®/3, J3(F) ~ m®/3, s(r)
and p(r) ~m® when m — co. This is consistent with
Eq. (45) and the scaling relations (46). Hence, the 3D
energy and AM distributions increase, while the mechani-
cal 3D forces do not scale when m — oo. A similar analysis
can be applied to 2D distributions. As one spatial dimen-
sion is integrated out, the large-m scaling of 2D distribu-
tions differs from that of the respective 3D distributions
by one power of R « m~'/5. In particular, one obtains
e(b) ~m’3, J:(b) ~ m*>, s(b), and p(b) ~ m™'/>. We see
that as m — oo, the 2D energy and AM distributions
increase, but the mechanical 2D forces inside the nucleon
decrease. It should be stressed that these are “geometric
effects” due to looking at EMT properties through “3D
glasses” or “2D glasses.”

Having studied the 2D energy distribution in the physical
situation for light quarks of m = 5 MeV in Sec. V, we now
show ¢(b) in Fig. 2(a) for selected heavier quark masses
m = 0.3, 0.5, 0.7 GeV. While far from a heavy quark limit,
these values clearly show the trend: the energy distribution
inside the nucleon grows rapidly with increasing m as one
would intuitively expect, because the mass of the nucleon
grows while the available “2D volume” shrinks.

In Fig. 2(b) we compare the rescaled energy distribution
e(b)/My to the 2D electric charge distribution p, (b). As
Fig. 2(b) shows, €(b)/My and pg,(b) become more and
more similar with increasing m: e.g. they become nearly
indistinguishable for m = 2 GeV at the scale of Fig. 2(b).
This is an interesting result. In general, viewing the nucleon
structure through the distributions of electric charge or
energy gives different pictures. But as the constituents
of the system become more massive, the difference
between the two pictures becomes negligible. In the limit
m — oo, the asymptotic expressions for these two distri-
butions become indeed equal. This can be seen by
comparing the expression for e¢(b)/My from Eq. (46a)
and the expression for the electric charge distribution in
Eq. (D6) of Appendix D.

Figure 2(b) also nicely illustrates another intuitive
feature. As the quark mass increases, the 2D energy
(and charge) distributions become more strongly localized:
for smaller m the 2D energy and charge distributions are
small in the center and widespread until the edge of the
system (at b = R where R shrinks as m~!/%). For larger m,
the distributions grow in the center, and decrease in the
region closer to the edge of the system. This result is
intuitive because one naturally expects fast-moving ultra-
relativistic light quarks to have widely spread out
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FIG. 2. The 2D energy distribution in the bag model for fixed B and increasing m. (a) Energy distribution ¢(b). (b) Normalized energy
distribution ¢(b)/My in comparison to the 2D electric charge distribution p.,(b). (c) The scaling of R?e(b)/My for m — co.
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FIG. 3. The 2D EMT shear force distribution s(b) in the bag model for fixed B and (a) selected increasing values of m > 1 GeV.

(b) The rescaled dimensionless distribution s()/(BR). Similarly, the 2D pressure p(b) for (c) selected m, and (d) the rescaled 2D

pressure distribution p(b)/(BR).

distributions, while slowly moving nonrelativistic heavy
quarks are expected to have more localized distributions.

In the last plot related to ¢(b) in Fig. 2(c) we show the
dimensionless rescaled distribution R?¢(b)/M as a func-
tion of b/R for the values m = 1, 3, and 10 GeV. This
rescaled distribution has a well-defined finite limit
lim,,_,, R*¢(b)/My which we include in the plot.
Integrating this limiting curve over the rescaled 2D volume,
d’*b/R?, yields unity. Figure 2(c) shows that the rescaled
2D energy distribution R%e(b)/M y rapidly approaches its
limiting shape. In fact, the curves for m = 10 GeV and
m — oo agree within a few percent. As the m — oo limit is
approached, also the rescaled distribution R%e(b)/My
becomes more strongly localized towards the center.

Finally, we remark that the vertical slopes of the 2D
distribution at b = R observed for m =5 MeV in Sec. V
are in principle present also for large m, but they become
less and less pronounced.

We discuss next the 2D force distributions in Fig. 3.
Initially, the 2D shear force distribution grows with
increasing quark mass up to about m =~ 0.8 GeV. Being
interested in the large-m behavior, we do not show plots in

this low-m region. For m > 0.8 GeV the shear force
distribution starts to decrease which is illustrated in
Fig. 3(a). In Fig. 3(b) we show the rescaled dimensionless
quantity s(b)/(BR). Notice that lim,,_,, s(b)/(BR) exists
and assumes a well-defined value which is included in the
plot (it is convenient to include B to have a dimensionless
quantity). The 2D pressure distribution shows the same
pattern: the modulus of p(b) increases with m up to about
0.9 GeV, and starts to decrease for m 2 0.9 GeV as shown
in Fig. 3(c). Also the rescaled pressure p(b)/(BR) has a
well-defined limit lim,,_,, p(b)/(BR) and Fig. 3(d) shows
how this limit is approached. It is worth remarking
that p(b) at b =0 is proportional to the expression for
the 3D surface tension defined as y = [° drs(r). The
initial increase of the 2D pressure at b =0 and the
subsequent decrease at m = 0.8 GeV is therefore tied to
the m dependence of the 3D surface tension y. We
stress that at any value of m the distributions s(b) and
p(b) satisfy the differential equation (28), and p(b)
satisfies the 2D von Laue condition (29c). This is true
also for the limiting values of the rescaled quantities
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FIG. 4. The 2D angular momentum distributions in the bag model for fixed B and increasing m. (a) Intrinsic spin S%(b) distributions.
(b) Kinetic orbital angular momentum LZ(b) distributions. (c) The scaling of R>J*(b) for m — co.

Next we proceed with the discussion of the 2D AM
distributions in bag model for selected quark masses m. In
Fig. 4(a) we show the spin distribution $*(b) for m = 0.1,
0.5, 1 GeV. We see that the spin distribution continuously
increases with increasing m in the inner region and
decreases in the outer region, i.e. it becomes more strongly
localized. In contrast, the kinetic OAM distribution con-
tinuously decreases as m grows, see Fig. 4(b). Already for
the range of mass values selected in Figs. 4(a) and 4(b), the
spin distribution strongly dominates over the kinetic OAM
distribution [notice that the scale on the y axis is 15 times
larger in Fig. 4(a) as compared to Fig. 4(b)]. This is an
interesting observation which can also be intuitively under-
stood. As m increases, the inertia of the quarks becomes
larger and larger (i.e. quarks become more and more
nonrelativistic) making orbital motion less and less impor-
tant for the spin budget of the nucleon. In Fig. 4(c) we show
the rescaled total kinetic AM distribution J*(b) = L*(b) +
S%(b) multiplied by R? which for m > 1 GeV practically
coincides with S%(b). Notice that this quantity has a

well-defined limit lim,,_., R>J?(b) which is included in
Fig. 4(c).

In Fig. 5(a) we show the 2D Belinfante AM distribution
Jie(b) form = 0.1, 0.5, 1 GeV which grows continuously
with m. In Fig. 5(b) we show the rescaled Belinfante AM
distribution R2J§,(b) which has a well-defined limit
lim,, o, R*J5,(b) included in the figure. Also for the
Belinfante AM distribution we observe that it becomes
more strongly localized as m grows. Note that by con-
struction J§,(0) = 0 whereas J*(0) = S¢(0) # 0.

The kinetic and Belinfante AM distributions are, how-
ever, much different even in the heavy quark limit. In
Fig. 5(c) we show the rescaled distributions 2zbRJ?(b)
and 27zbRJ5, (D) as functions of b/R which have both
well-defined limits for m — oo. Very clearly, as m grows
and the limit is reached, the two distributions exhibit
a much different behavior—even though all curves in
Fig. 5(c) yield { upon integration over the rescaled
variable b/R.

Jia(b) [1/m®] (@) A Jia(b) (b) 2nbJ7(b)R (c)
m=1GeV osof m=1GeV Jgad) m=1GeV
0.12} 1 LN e m=3GeV 10} SO N e 3 Gev
o10b 05 025+ L0 TN e m =10 GeV ; Mo eo
— Mo 0.8}
020}
.08} 01
06f
0.06[ 015}
004l 0.10f o4r
0.02| ] 005} 02t
0.0 05 10 15 bm 00 02 04 06 08 10 DR 00 02 04 06 08 10 DR
FIG. 5. The 2D angular momentum distribution in the bag model fixed B and increasing m. (a) Belinfante-form J,(b) angular

momentum distributions. (b) The scaling of R?J,(b) for m — oo. (¢) The scaling of 2zbJ?(b)R for m — co.
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FIG. 6. 2D distributions in the bag model for fixed m and increasing bag radii R. (a) Energy distribution ¢(b). (b) Normalized energy
distribution ¢(b)/My in comparison to the 2D electric charge distribution pg,(b). (c) The scaling of R?e(b)/M for R — co.
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FIG.7. The 2D EMT shear force and pressure distributions in the bag model for fixed m and increasing R. (a) Shear force s(b). (b) The
rescaled dimensionless distribution s(b)/(BR). (c) Pressure p(b). (d) The rescaled dimensionless distribution p(b)/(BR).

VIIL 2D KINETIC EMT DISTRIBUTIONS IN THE
LARGE SYSTEM SIZE LIMIT

In this section, we discuss 2D EMT distributions in the
limit of large bag radius R for fixed quark mass m which
will keep fixed at 5 MeV, corresponding to the physical
situation of Sec. V. The large-R limit belongs to a class of
limits, in which the interaction in the bag model becomes
small. As in the heavy quark limit of Sec. VI, also in this
case the dynamics of the system becomes nonrelativistic,
however for a different reason.

In fact, even though both limits lead to nonrelativistic
situations, the physics is significantly different in the two
cases. For instance, the internal forces behave much
differently in the two limits which can be understood as
follows. In the limit R — oo with m fixed, the bag constant
scales as B o« R~ which follows from the virial theorem
(45). We recall that the bag constant naturally sets the
scaling for p(r) and s(r), see Sec. IV.

The behavior of the 3D energy distribution is different.
As R — oo, we have N, quarks bound by a “mean field”
which is more and more diluted as the size of the system
grows and B ~ R™ decreases. In this situation, the mass of
the system approaches My ~ N.m which (is 15 MeV in
our case, and) implies for the 3D energy distribution the
scaling €(r) ~ R=3. The total kinetic and Belinfante AM
distributions scale as R~3, and OAM as R™>. The 2D
distributions are obtained by integrating out one spatial

dimension, and the associated 2D distributions scale
as €(b) ~R72, J5(b) ~R72, J5,(b) ~R72, L*(b) ~ R4,
s(b) ~R™*, p(b) ~R™*.

In Fig. 6(a) we depict ¢(b) as function of b for increasing
values of R = 10,15,20 fm which shows the trend of
how the system size grows and the energy distribution
becomes more and more diluted. The normalized energy
distribution €(b)/M is shown in Fig. 6(b) in comparison
to the electric charge distribution p, () for selected values
R =10, 15,20 fm. Also here we see how the distribution
becomes more and more diluted as the system size grows.
In addition, we see that the difference between e(b)/My
and p.,(b) decreases as R increases. In Fig. 6(c) we
display the scaling of the dimensionless quantity
R%e(b)/M y for R = 100,250, 1000 fm. The limiting curve
of limg_,o, R%¢(b)/My is included in the plot, and we see
that it is approached very slowly. Even when R is 3 orders
of magnitude larger than in the physical situation, we can
still distinguish R?e(b)/M ) from its limiting curve. For
R = 1 A, when the size of the system corresponds to that of
an atom, the model result would be indistinguishable from
the limiting curve on the scale of Fig. 6(c).

In Fig. 7 we investigate the 2D force distributions. In
Fig. 7(a) we depict the 2D shear force distribution s(b) for
increasing values of R = 10, 15,20 fm. The figure shows
that s(b) strongly decreases for growing R. The “scaling
regime” s(b) ~ R™* is, however, approached only when R
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FIG. 8.

The 2D angular momentum distributions in the bag model for fixed m and increasing bag radii R. (a) Intrinsic spin S%(b)

distributions. (b) Orbital angular momentum LZ(b) distributions. (c) The scaling of R>J*(b) for R — co.
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FIG.9. The 2D angular momentum distribution in the bag model for fixed m and increasing bag radii R. (a) Belinfante-form J§,(b)
angular momentum distributions. (b) The scaling of R*J5,,(b) for R — oo. (c) The scaling of 2zbJ3(b)R for R — co.

is 2 orders of magnitude above the physical value of
R = 1.7 fm as illustrated in Fig. 7(b) which shows the
dimensionless quantity s(b)/(BR) including its limit
limg_ ., s(b)/(BR). In the case of the pressure p(b) shown
in Fig. 7(c) and the rescaled quantity p(b)/(BR) displayed
in Fig. 7(d) we make the same observations.

The behavior of the 2D AM distributions in the large
system size limit is shown in Fig. 8. The intrinsic spin
distribution S$%(b) is shown in Fig. 8(a) for R =
10, 15,20 fm, and that of the kinetic OAM distribution
L*(b) is depicted in Fig. 8(b) for the same values of R. Notice
the different scales in these two figures, showing that the
OAM plays a much smaller role in the spin budget as R
increases. In the limit R — oo, the OAM distribution
becomes less and less important compared to the intrinsic
spin distribution. This is not apparent for the R values chosen
in Figs. 8(a) and 8(b) but the intrinsic spin distribution
decreases as S°(b) ~ R2, i.e. much more slowly than the
OAM distribution which is suppressed as L?(b) ~ R™*.

It is an interesting observation that OAM becomes
irrelevant as R increases. It is important to keep in mind
that the quarks can be light and one would expect that a
relativistic description is necessary for any R. However, the
increasing bag radius R simulates a more and more weakly
bound system amenable to a nonrelativistic description.
This can be understood by invoking Heisenberg’s uncer-
tainty principle: with a larger volume provided to the

quarks to “fill out,” their motion becomes slower, and with
that the role of OAM decreases. The scaling of the kinetic
angular momentum distribution R?J*(b) for increasing R is
shown in Fig. 8(c) along with the limiting curve for
limg_, o, R2J7(b). As in the case of the other EMT dis-
tributions, the scaling behavior becomes apparent when
R is at least 2 orders of magnitude larger than in the
physical situation.

In Fig. 9(a) we depict the 2D Belinfante AM distribution
for selected values of R = 10,15,20 fm and Fig. 9(b)
shows the dimensionless rescaled distribution R2J3,,(b)
as a function of bH/R including its limiting curve
limg_, o R2J5, (). Finally, in Fig. 9(c) we compare respec-
tively the dimensionless rescaled kinetic and Belinfante
AM distributions 2zbJ*(b)R and 2zbJj, (b)R, including
their R — oo limits. We see that the two different distri-
butions clearly differ also in the large system size limit.

VIIL 2D KINETIC EMT DISTRIBUTIONS IN
CONSTITUENT QUARK LIMIT

In this section, we discuss the behavior of 2D EMT
distributions in the limit L3 where m — My/N,. with
the nucleon mass kept fixed at its physical value.
For the following it is convenient to introduce the mass
Mpax = My/N,, ie. the maximal mass a quark can
asymptotically take in the limit L3. For massless quarks,

014012-15



LORCE, SCHWEITZER, and TEZGIN

PHYS. REV. D 106, 014012 (2022)

€(b) [GeV/im?] (@) [1/m?]

m = 0.1Mmax 0.20 ™= 01 Mmax

0.15
0.10f =

0.05¢

(b) R€(b)/My ©

ponld) ]
v €(D) My 12F.

=== m=0.96 Mpay ]
m=0.99 My
—— M > Mpax

00 05 10 15 20 25 30b0ml 0002 04 06 08

20 b ()]

0.0 05 1.0 15

1.0 b/R

FIG. 10. 2D distributions in the bag model for fixed nucleon mass M and increasing quark masses m. (a) Energy distribution ¢(b).
(b) Normalized energy distribution e(b)/ M in comparison to the 2D electric charge distribution pg, (b). (c) The scaling of R%e(b)/M

for m — my,,.

3/4 of the nucleon mass is due to the kinetic energy of the
ultrarelativistic quarks and 1/4 is due to the bag energy (we
will say more about nucleon mass decomposition in
Sec. IX). As the limit m — m,,, is approached, the quark
mass constitutes nearly all of the nucleon mass, while the
contributions of quark kinetic energy and bag energy
become negligible. The limit .3 can therefore be consid-
ered as a constituent quark limit. As a consequence of the
limit m — mp,,, the motion of the quarks becomes
nonrelativistic.

In the limit L3, the 3D distributions scale as (r) ~ R~3,
S ~ R, T(F) ~ R, Tog(7) ~ R, LAF) ~ R,
s(r)~R7, p(r) ~R™>, see Sec. IV. Integrating the 3D
distributions over the z axis produces the scaling behavior
of the associated 2D distributions as e(b) ~ R72, S%(b)~
R72,J3(b) ~R72, J5,(b) ~R72, L*(b) ~R™*, s(b) ~R™*,
p(b) ~ R™*. We see that similarly to the large-system size
limit L2, also here the EMT distributions become more and
more diluted, although the underlying physical situations
are much different. In fact, in L2 we start with a compact
proton of mass 938 MeV made of 5 MeV quarks and let the
system size R — oo which drives the total mass of the
system asymptotically to 15 MeV. In L3, we start and end
with a system mass of 938 MeV and vary m from 5 MeV to
My and as a response to that the size of the system R
becomes large.

Figure 10(a) illustrates e(b) as a function of b for
increasing values of m = 0.1,0.3,0.5m,,,,. We see how
the size of the system increases. As M is kept constant and
all contributions to the energy distribution and nucleon
mass are positive, in the limit L3 the kinetic energy of the
quarks (as well as the bag energy Ey,, = %‘nR3B) must
decrease. By the Heisenberg uncertainty principle, the
kinetic energy of a bound quantum particle decreases if
the particle is provided a larger volume to fill out. Hence the
bag radius grows in this limit. With the mass of the nucleon
being fixed at its physical value, the energy distribution
inside the system becomes more dilute. The electric charge
distribution follows a similar pattern which we show in
Fig. 10(b) where we compare the normalized energy
distribution €(b)/My with the electric charge distribution
pen () for selected values of m = 0.1, 0.5, 0.7m,,,,. We see
that the difference between two distributions becomes
less and less apparent for larger quark masses. Finally in
Fig. 10(c) we depict the scaling of the dimensionless
quantity R?e(b)/My for m = 0.9,0.96,0.99m,,,,, includ-
ing the curve associated with m — m,,,. When m =
0.99m,,,.x the size of the system reaches R = 17.76 fm.

Next, we discuss our results regarding the 2D force
distributions. In Figs. 11(a) and 11(c) we depict the 2D
shear force s(b) and pressure p(b) distributions for
increasing values of m = 0.1,0.3,0.4m,,,,. The figures

s(b) [MeV/fm?] (a) (b) p(b) [MeV/im?]
m = 0.1Mmax ' ,

8l

0.3
6l 0.4
4l
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oL

00 05 10 15  20bfm 00 02 04 06 08 10 bR 00 05 10 15 _ 20 bim] 00 02 04 06 08 10 bR
FIG. 11. 2D distributions in the bag model for fixed nucleon mass M and increasing quark masses m. (a) Shear force s(b). (b) The

rescaled dimensionless distribution s(b)/(BR). (c) Pressure p(b). (d) The rescaled dimensionless distribution p(b)/(BR).
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FIG. 12. The 2D angular momentum distributions in the bag model for fixed nucleon mass M and increasing quark masses m
(a) Intrinsic spin S$%(b) distributions. (b) Orbital angular momentum L*(b) distributions. (c) The scaling of R?J?(b) for R — co.

illustrate how 2D force distributions decrease for
m — My, As the quark masses increase and constitute
nearly the entire nucleon mass, the 2D force distributions
scale as R™* which is to be contrasted with the R~2 scaling
of the energy distribution. Thus, the force distributions
become much more dilute than the 2D energy distribution.
This illustrates that the matter of the system is bound by
weaker and weaker forces as the constituent quark limit is
approached. This illustrates why the system size grows in
this limit. Figures 11(b) and 11(d) display the scaling
behavior of 2D force distributions in terms of the dimen-
sionless quantities s(b)/(BR) and p(b)/(BR), respec-
tively, for m = 0.9,0.96,0.99m,,,,, including the curves
associated with m — m,,.

Figure 12 shows how the 2D kinetic AM distributions
behave in the constituent quark limit. The 2D intrinsic spin
distributions S%(b) for quark masses m = 0.1, 0.3, 0.5m,,,,
are shown in Fig. 12(a), and the 2D OAM distributions
L*(b) for the same quark masses are illustrated in
Fig. 12(b). The contribution of the two AM distributions
to the total AM differs significantly by magnitude and
the difference widens for growing m. As m — miy,,, the
relative OAM contribution to the total AM approaches zero
and the total AM is constituted solely by the intrinsic
spin distribution. Finally, Fig. 12(c) displays the scaling of
the dimensionless kinetic AM distribution R?J*(b) for

increasing values of m including the limiting curve asso-
ciated with m — nmy,,.

In Fig. 13(a), the 2D Belinfante AM distribution is
shown for selected values of m = 0.1,0.3,0.5m,,,,, and
in Fig. 13(b) the dimensionless rescaled distribution
R2J, (b) is shown as a function of b/R. Figure 13(c)
compares the dimensionless rescaled kinetic and
Belinfante AM distributions 2zbJ*(b)R and 2zbJ5 (D)R,
including the limiting curves associated with m — m,,.
Once again, the kinetic AM distribution is more skewed
towards the bag center. In contrast, the Belinfante AM
distribution shifts towards the bag boundary due to its
orbital-like behavior.

IX. MASS DECOMPOSITION IN THE BAG MODEL

The decomposition of the nucleon mass in QCD into
contributions from quarks and gluons has attracted a lot of
attention in recent literature [4-7,9,10,12]. It is interesting
to address this question in a quark model framework where
technical difficulties due to quantum anomalies do
not occur.

Letus introduce the notation (0)=(N|3", [d*ry§ Oy, N)
for the expectation value of a Dirac operator O in the
nucleon states in the rest frame, and consider the quark
Dirac Hamiltonian

Jei(b) [1/fmP) (a) R J3ei(b) (b) 27bJf(B)R (©
0.07 | m=0.1Mpax 0301L 121 . m=0.9 Mpay
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FIG. 13.

The 2D angular momentum distribution in the bag model for fixed nucleon mass M, and increasing quark masses m

(a) Belinfante-form J§,(b) angular momentum distributions. (b) The scaling of R*J§,(b) for R — co. (c) The scaling

of 2zbJ; (b)R for R — .
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TABLE II.

The mass decomposition in the bag model in the physical situation and for selected values as encountered in the limits L1,

L2, 1.3. The respective parameters m, R, My and individual contributions Ey;;, Eyqes Emass are listed along with the relative partitioning
Exin * Ebag  Emass With the bag energy as a reference point. The ratio Ey, : Ey,g 1s equal to 3:1 exactly in all cases. Recall that myy,,, is

defined as one third of the physical proton mass 938.272 MeV.

Situation Parameters My /MeV Eyin/MeV Eyye/MeV E s/ MeV Eyin * Evag * Erass
Physical R =1.72 fm, m =5 MeV 938.272 698.233 233.744 7.295 3:1:0.031
Limit L1 R =1.29 fm, m = 2 GeV 6257.562 299.615 99.872 5858.075 3:1:58.656
Limit L2 R =1000 fm, m = 5 MeV 15.182 0.216 0.0719 14.895 3:1:207.225
Limit L3 R =2.70 fm, m = 0.6m 938.272 375.342 125.114 437.817 3:1:3.499
H,=a-p+ y'm (47)  Eq. (50) is related to the pion-nucleon sigma term and the

which we express in momentum space. In this notation
and considering the bag contribution (due to “gluons”),
the nucleon mass can be decomposed in the bag model into
three terms as
> 2 0 4 o3

My={(a-p)+(y m>+§ﬂ'R B. (48)
The first term in (48) is the kinetic energy of the quarks
inside the nucleon, and is given by

. .. N.A? 2joJ
Eyin=(a-p)=—; o]

r

. a+0‘—/d3”[jof/1—j6jl + Oy.

(49)

The second term is the quark mass contribution to the
nucleon mass

N A

Emass = T /d%[aij% - O’%Jﬂ@v’ (50)

(Y'm) =m

and the last term is the volume contribution from the bag
vacuum energy
4 o
Ebag == gﬂ'R B.
It is worth noticing that the quark kinetic energy in
Eq. (49) is exactly 3 times the quark contribution to the
volume integral over the 3D pressure, see Eq. (43f), where
the factor 3 is the space dimension, i.e. we have

(1)

@ p)=>3 / Prp,(r) (52)
with p,(r) defined in Eq. (43f). The term [ d*rp,(r) can
be viewed as the pressure-volume work of quarks analo-
gous to PV in thermodynamics. It is not accidental that the
quark contribution to the pressure makes an appearance in
the mass decomposition. The deeper reason for that is the
connection between the von Laue condition (23) and virial
theorem (40), which are equivalent in the bag model [109]
and in other models like chiral quark-soliton model [72],
Skyrme model [75] or Q-balls [79]. Notice that (y°m) in

sum rule ) m, [ dxe?(x), where e?(x) is a twist-3 parton
distribution function [136] (recall that we use m = m, =
my and neglect isospin violating effects in this work).

We first focus on the case m = 0 where Ey;, = N.wy/R
and obviously E, . = 0. Keeping the number of space
dimensions n general, the nucleon mass is My(R) =
N.wy/R + b,R"B where b, = 27"/?/T'(n/2). The virial
theorem (40) corresponds to M) (R) =0 and yields
N.wy = nb,R"'B implying that for massless quarks
Eyin = nEy,,. Thus, in the physical situation in n =3
space dimensions, 3/4 of the nucleon mass is due to the
quark kinetic energy and 1/4 is due to the bag contribution
which is a crude model for gluonic effects. In QCD such
decompositions are scale dependent, and the above decom-
position of the nucleon is valid at a low hadronic scale
o < 1 GeV associated with the bag model. This relation is
often used to eliminate the bag contribution and express the
nucleon mass in the bag model as My = 4wy/R for N, = 3
colors and n = 3 space dimensions [137].

When m # 0 the situation is different. Evaluating the
integrals in Eqgs. (49) and (50) yields lengthy expressions
for Ey;, and E,,, which, making use of the transcendental
equation (38), can be rewritten as

2<QO_1>w% Nc
E. = —, 53
kin = 20y (Q9 — 1) + mR R (532)
2(Qy — 1)mR + Q
E,. =2 UmR+Q oy

T 20,(Qo-1)+mR"¢

The kinetic and mass contributions to the nucleon mass add
up to

Eq = Eiin + Emass =

(54)

i.e. to the total quark contribution to the nucleon mass, E,,
which corresponds to the expectation value of the quark
Hamiltonian operator H .

In Table IT we show the nucleon mass decomposition
in the physical situation, and for selected examples from
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the limits L1, L2, L3. Interestingly, the relative ratio
Eyin : Eyyg = 31 remains valid (in three space dimensions)
not only in the massless case as discussed above, but for
any m which is nontrivial. When m # 0 it is important
to keep in mind that the quark energy E, = N.Qy/R
in Eq. (54) depends for m #0 on R also through
Q) = /o3 + (mR)?, where wy = wy(mR) is an implicit
function of R due to Eq. (38). Noting that the variation of
@, with respect to R can be expressed as [109]
0a)0 o ma

— = , 55

we obtain the remarkable identity

oE d (N_,Q Ey;
e Y c=40 _ kin
OR aze( R ) R’ (56)

i.e. in the bag model the variation of the total quark energy
E, = Eyin + Engss With respect to R is simply related to the
quark kinetic energy. Equipped with the identity (56) we
can express the virial theorem (40) as

Eyin = 3Ebag (57)

which holds for any m. However, as illustrated Table II this
is only the relative partition of the quark kinetic and bag
energy. For m # 0 in addition the mass term E,,. enters
whose contribution is not given by a simple ratio.

Table II illustrates that one deals with much different
nucleon mass decompositions in the different limits. This is
not surprising because, as explained in Sec. IV, the three
limits correspond to different physical situations. The three
limits have in common that E,, contributes for mR — oo
asymptotically 100% of the nucleon mass, while the
contributions of Ey;, and Ej,, vanish. But the underlying
physics is much different. In fact, in each case we “start”
with the physical nucleon mass, but we end up asymptoti-
cally at very different values for M, namely (cf. Table I)

(i) in L1 (m — oo, B fixed): My — N.m — oo,

(i) in L2 (R—>o0, m=5MeV fixed): My—N . m=

15MeV,
(i) in L3 (m—myy=My/3=fixed): My = 938 MeV
is fixed at its physical value.
Considering the different physical situations, it is remark-
able that the relative contributions to the nucleon mass
defined as Ey;, /My, Evy/ My, Epass/My and plotted as a
function of mR (which in all limits goes to infinity, albeit
for different reasons), all coincide and are described by
universal curves in Fig. 14.

Eyin/My and Ey,,/My assume respectively the values
3/4 and 1/4 at mR = 0, and are monotonically decreasing.
They go to zero for mR — oo satisfying Ey, ! Ey,y = 311 at
each value of mR. The mass contribution is zero at mR = 0,
and E, /My is monotonically increasing for finite mR
approaching 100% as mR — oo. When mR =~ 1 the relative

Ei/My
T T T T T
1.0+ B
0.8} 4
0.6 - 4
0.4} B
— Exin
0.2f — Emass
[ R Ebag :
ST ST S ST ST ST ST S S S S
0 5 10 15 20 25 mR

FIG. 14. Nucleon mass decomposition in the bag model.
Shown are the relative contributions of Eyn/My, Epye/My,
Eo./My as functions of mR.

contributions of the bag energy and the mass term become
equal. When mR =~ 2.3 the relative contribution of the mass
term catches up to that of the quark kinetic energy, and
becomes the dominant contribution beyond that.

This was the nucleon mass decomposition in the bag
model as based on the bag energy and two quark contri-
butions in the Hamiltonian, namely quark kinetic energy
(@- p) and quark mass term (y°m). In literature, it was
proposed [4,5,10] that the nucleon mass should be decom-
posed in terms of the trace part (rank-0 scalar operator,
contributing 1/4) and the traceless part of the EMT (rank-2
tensor, contributing 3/4 to the nucleon mass), i.e.

1 w
T = g T+ T

traceless’

(58)

with the latter simply defined as Tty oo = T — 3¢ T%,.
In QCD, such a decomposition is natural. For instance,
the trace part receives a contribution from the trace
anomaly and is twist-4, while the traceless part of the
EMT is related to matrix elements of twist-2 operators
whose quark and gluon contributions are constrained by
information on parton distribution functions from deep-
inelastic scattering experiments. One obtains a nucleon
mass decomposition based on contributions from the trace
part § g°°T¢, and the traceless part 700, .. [4.5,10].

In the bag model, the situation is simpler as there is no
trace anomaly, and all matrix elements of the EMT are
explicitly known, see Eq. (42). The trace contributes to the

nucleon mass the portion,

1 1
MN,trace:4goo/d3rT”a(?):4/d3r(T20+ngg_3p(r))
1/N.Q, 4 1
= (24 _aR’B ) =-My, 59
4( R 13" > 4 (59)
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where we used the von Laue condition, Eq. (23a). The
contribution from the traceless part is

_ 3 _.700 4
MN.traceless - /d thraceleSs(r)

3
__/d3r(T30+ngg + ()

4
3/N,Q, 4 3

2 (R0 L T oRiB) =2 My (60
4<R+3ﬂ > gMn - (60)

using again the von Laue condition. While it is correct, one
does not gain much insight from considering the trace and
traceless parts separately. This is consistent with the general
discussion of Refs. [6,12].

X. CONCLUSIONS

This work was dedicated to the study of 2D energy-
momentum tensor (EMT) distributions of the nucleon. We
have obtained several general results, and presented results
from the quark model calculations in the bag model.
Among the model-independent results are explicit proofs
of several conditions for 2D EMT distributions based on
mechanical stability criteria. Another important model-
independent result is the demonstration that the different
definitions of 2D EMT distributions in the Breit, elastic and
infinite-momentum frames coincide in the large-N, limit
for a longitudinally polarized nucleon. (For AM distribu-
tions in a transversely polarized nucleon this is not the case,
due to a trivial contribution from the center-of-mass
motion.)

We then employed the bag model formulated in the
large-N, limit to study these 2D EMT distributions. The
large-N,. limit is important for the 3D interpretation EMT
distributions [72] and to make calculations of EMT form
factors in the bag model justified [109]. We have presented
numerical results for the 2D EMT distributions, and
demonstrated the consistency of the model description.
In the physical situation, for which we chose to use a
current quark mass of 5 MeV and bag radius of 1.7 fm, the
distributions of mass and electric charge in the proton
resemble each other. The 2D pressure distribution obeys the
pertinent von Laue condition, and the kinetic AM is
dominated by the intrinsic spin contribution which con-
tributes 66% of the nucleon spin, with the remaining 34%
being due to orbital angular momentum (OAM).

We then studied the EMT distributions in three different
limits, which helps deepen our understanding of the 2D
structure of the nucleon. In the “heavy-quark limit” limit
L1, we increased the quark mass m — oo while keeping the
strength of the strong forces (mimicked by the bag constant
B) fixed. In this limit the nucleon mass grows like My —
N.m — oo while the nucleon size shrinks, which implies,
for instance, an increase of the 2D energy distribution. In
the large system size limit L2, we kept the mass of the

quarks fixed at 5 MeV and gave them a larger and larger
volume to fill out by taking the bag radius R — 0. All
EMT distributions become diluted in this limit which is
supported by numerical results. As R — co with m =
5 MeV fixed, the nucleon mass goes to m = 15 MeV.
The forces encoded in the bag constant decrease like
B ~R7, which implies for the 2D distributions s(b)
and p(b) a scaling of the type R™*. In the constituent-
quark limit L3, we let the quark mass approach My /N,
while the nucleon mass My was kept at its physical value.
Thus, this limit creates a situation where the nucleon
mass is nearly entirely due to the masses of the quarks. By
taking m — My/N,. drives the bag radius to become
larger and B to decrease. Both limits L2 and L3 belong
to a class of “weak-binding limits.” Even though the
binding forces decrease, the quarks remain always con-
fined in the bag model.

In all three limits, one effectively deals with nonrela-
tivistic dynamics. Also the distinction between the energy
and the electric charge distributions becomes less and less
apparent. Asymptotically we have e(b)/My = pa,(b) in
the three limits, i.e. the mass and electric charge in the
proton are distributed in exactly the same way. Another
interesting observation is that in all three limits the quark
OAM becomes negligible compared to the intrinsic spin
distribution. The kinetic AM (defined in terms of the
asymmetric EMT) and the Belinfante AM (associated with
the symmetric part of the EMT) have significantly different
shapes, even though both consistently integrate to the value
1/2 for the nucleon spin. The difference has two different
origins, namely (i) a quadrupole contribution which is
present in 3D as well as in 2D Belinfante AM but not in the
kinetic AM, and (ii) a total derivative term. The character-
istic difference of these two AM distributions is not only
present in the physical situation, but persists in all con-
sidered limits.

We have also studied the mass decomposition. In the bag
model, one can unambiguously define three contributions
to the nucleon mass, namely due to (i) quark kinetic energy
Eyn, = (@ P), (ii) quark mass E, = (y°m), and (iii) bag
energy Ep,, =37R’B which simulates the confining
effects of gluons within the bag model. We showed that
the ratio of quark kinetic energy to bag energy is 3:1
independently of the quark mass. This is the case in the
physical situation, and in the limits. Another interesting
insight is that the relative mass decompositions Ey;,/ My,
Ernass/ My, Ene /My as functions of the product mR are
described by the same universal curves in all three limits.
This is remarkable considering the different physical
situations in the three limits. Finally we note that starting
from the EMT distributions, the contributions to the mass
do not separate naturally in the bag model into quark mass
and kinetic terms. Rather one directly encounters a decom-
position into two terms, the bag energy and total quark
energy. The latter can of course be further decomposed into
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the kinetic energy and mass term of quarks, but this
requires the evaluations of the expectation values of the
separate operators a - p and y°m in the Dirac Hamiltonian.

We hope our study will stimulate further model inves-
tigations of 2D EMT distributions. One interesting and
natural extension of this work could be the consideration of
effects due to chiral symmetry as modeled e.g. in the cloudy
bag model [114] similarly to what has been done in the
chiral quark-soliton model [115]. As illustrated by the
present work, the studies in models play an important role
for the understanding and interpretation of the nucleon
structure.
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APPENDIX A: STABILITY REQUIREMENTS FOR
2D BF DISTRIBUTIONS

In this appendix we provide the detailed proofs of the
stability requirements for the 2D EMT distributions in the
BF discussed in Sec. II D. In this appendix we do not work
in any specific limit, e.g. the number of colors N, is finite,
and the proofs are general and model independent.

The 3D EMT distributions satisfy certain criteria which
are necessary (but not sufficient) requirements for mechani-
cal stability. In particular, in a 3D stable system, the
following conditions are expected [21]:

(1) €(r)]— < 00, p(r)],— < o0 and s(r)],_y = 0.

2) 1) <0 and 421 < o,

(3) e(r) >0 and p,(r) >0,

(4) (Null energy condition) e(r) 4+ p,;(r) >0,

(5) (Weak energy condition) e(r) + p;(r) >0 and

e(r)>0,

(6) (Strong energy condition) e(r)+

e(r)+3p(r) >0,

(7) (Dominant energy condition) e(r) > |p;(r)| where

i=r,t.

Owing to Eq. (25), analogous conditions exist for the 2D
EMT distributions in the BF. Some of these conditions were
mentioned in the main text in Sec. I D. Below we will state
all conditions and provide explicit proofs that if the
corresponding 3D condition is true, then also its 2D
counterpart is true. To the best of our knowledge, these
2D conditions and their proofs have not been discussed
explicitly in literature before and will be presented and
proven below for the first time.

The above-stated 3D stability conditions can be trans-
lated into 2D stability conditions as follows:

(1) €(b)lp—g < o0, p(b)[y—¢ < o0 and s5(b)[,—9 = 0.
Proof.—Let us write €(b) as

e(b):/_:dze(r):2/hoodrr2+bze(r). (A1)

Then, at b = 0 we get €(b)|,_o = 2 [5° dre(r) < oo where
itis clear that the integral is finite because My = [ d°re(r)
is finite. Similarly,

p0)= ["az o+ 3

r 3p% =22
At b=0, the expression yields p(b)|,—o=
2 [s°dr[p(r) —%s(r)]. Therefore, by using the 1D von

Laue stability condition Eq. (23c), we get

p(b)|p_o = 2%00 drs(r) =2y < . (A3)

Finally, s(b)|p—o =0 1is satisfied by the definition
of s(b —f°° dzbfs()
@ 2:db) < .
Proof —Flrst let us suppose ) < 0. Then
de(b) o b de(r)
— = dr——— <0 A4
db . o dr (A4)
Similarly by using the equation d”déh) = —% as given in
[21], we get
dp,.(b 2 [o b?
peb) 2 [y b <0, (A5
db b Jp Vit — bt~
>0
where we used the equation dpd;ir) = ZSTU) and the 3D

stability condition dp.(r == ) <0 to determine the sign of s(r).

(3) e(b) =0 and p,(b) > 0.
Proof.—Suppose ¢(r) > 0, then

o0 r
elb) = dze(r) =2 dr———¢(r) > 0. A6
) = [Tt =2 [T ar Lo 20, (a)
Next, writing p,(b) in terms of
r r2 —b?
pr(b) =2 dr\/rz———bz {Pr(r) —TS(’”) (A7)

yields at b =0
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(A8)

peDleo =2 [~ ar|plr) - 350

Then by using the 1D von Laue relation Eq. (23c) we
conclude that

P8l =2 [T drs() =2 > 0. (a9)

On the other hand, p,(b)

dition 2 above, we know that < 0. As a result, we
conclude that the radial pressure p,(b) decreases mono-
tonically from » =0 to b — oo and can only take non-
negative values, i.e. p.(b) > 0.

(4) (Null energy condition) e(b) + p;(b) > 0.

Proof.—First, by using the 2D condition 3, we conclude
that e(b) + p,(b) > 0. Next, let us suppose e(r) + p,(r) >
0. Then

= 0. Moreover, from con-
dpy( )

|b—>oo

e(b) + p,(b) = /_oo dze(r) + /_oo dzp,(r) >0 (A10)

(5) (Weak energy condition) €¢(b)+ p;(b) >0 and
e(b) > 0.
Proof.—This condition is satisfied as a result of the 2D
conditions 3 and 4.
(6) (Strong energy condition) €(b) + p;(b) >0 and

e(b) +2p(b) > 0.
Proof.—Suppose €(r) + p,(r) > 0. Then

o0 2_n2
e(b)+2p(b) = /_Oo dz {e(r) +2p(r) —I—us(r)]

3r?
2p(r)+3s(r)
S 1 b2 — 272
> /_oo dz {p(r) + gs(r) + 3r22s(r)}
— p(b). (Al1)
Since p,(b) > 0, we get e(b) +2p(b) > 0.
(7) (Dominant energy condition) e(b) > |p;(b)|.
Proof—First, let us suppose that e(r) > |p,(r)|. Since
e(r) >0 and p,(r) > 0, we get
[ azet)= [ aelp o). (A12)

On the other hand, by taking into account p,(b) > 0 as well
as s(r) > 0, we obtain

[ @02 [ dz]p)-550] = o0

Therefore

(A13)

(A14)

The proof that e(b) > |p,(b)| follows directly from the
definitions. Suppose €(r) > |p,(r)|. Then

/dze( ) > /dZ|pt |>|/dzp, r)l.

Hence

(A15)

e(b) 2 |p,(b)]. (A16)

APPENDIX B: RELATION OF KINETIC AND
BELINFANTE AM DISTRIBUTIONS

In this appendix, we explicitly show that the difference
between the kinetic and Belinfante AM distributions is a
total derivative which yields zero under the volume integral.
From Egs. (43c) and (43d), the total kinetic AM distribu-
tion reads

2

(R =

@35 + a2 ji]®y, (BI)

whereas the total Belinfante AM can be expressed as

A2

o 2m
Tia(7) = g priod + 2|1 = coR0)0y. (B2)

One can decompose the Belinfante AM distribution in
terms of its monopole and quadrupole contributions by
using the relation (1 — cos?0) = 3 Py(cos 6) — 2 P,(cos )

as follows:
. = A? Rw,
Jmono(r) ]2 r]O]l +a ]] ®V’ (B3)
. A? 2w,
Jquad( ) = 12 — TJoJ +a Jl P2(0059)® : (B4)

The difference between the kinetic and Belinfante AM
distributions can therefore be written as

A’R?
r2<JZ _J]ZBCI)(?) :24(0%7[

—4x3j0(x)j] (x)|®y -

3(x) +a2x?j3(x)

rz‘](z}uad(F) ’

where we defined a new variable x = wyr/R. By using the
spherical Bessel function relations jj(x) = —j;(x) and
Ji(x) = jo(x) =2 ji(x) one can express the difference in
terms of a total derivative and a quadrupole term

[3a%.x%j

(BS)

A’R? d . .
@A) - @ A W)])ey
@y

-r J(zquad(_}) (B6)

P = Ty)(F) =
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Under volume integration, the quadrupole term drops out,
while the contributions from the monopole terms in (B6)
correspond to a total derivative with respect to r. The latter
evidently vanishes at the lower integration limit, and is
proportional to &% j3(wy) — a% j3(w,) at the upper integra-
tion limit which is zero due to the transcendental
equation (38).

APPENDIX C: AXIAL FORM FACTORS,
INTRINSIC SPIN DISTRIBUTION, AND PROOF
OF EQ. (17)

In this appendix, let us first include for completeness the
definition of the nucleon axial form factors and their
relation to the 3D quark spin density (16) in the BF which
are given by

(P57 g (0)r'yswq(0)|p,5)

o an Ay -
=003 7560 + 3 GHO .
N

= 2P / B reid T80 (7). (C1)
Since it is defined in terms of two independent form factors,
the monopole and quadrupole contributions to S;(?) are
independent of each other as mentioned in Sec. II B. This is
in contrast to the other “orbital-like” angular distributions

related to a single form factor like, e.g. Jj, ,(¥) which is

defined solely in terms of J,(z).

Evaluating the bag model expression for the contribution
of the quark flavor ¢ to the axial form factor in Eq. (C1) in
the large-N, limit yields the result

3

GA(0) = 4maR° [ &5l (k)

—atejeyty(k)t (k)] (C2)
where K =k+A and k = |1:| K= |1?\ The 1;(k) are
defined in terms of Fourier transforms of the spherical
Bessel functions in the bag [109]. The model expression for
the form factor S,(¢) was derived in the Appendix of
Ref. [109]. It is important to remark that in the bag model
these two form factors satisfy the general relation’
[14,16,117]
1
5,(0) =3 G4(0)

This is another consistency test of the model [109].

(C3)

*Notice that the notation the form factor associated with the
antisymmetric part of the kinetic EMT is such that 287 (¢) s work
corresponds to —F () in Ref. [109] and —D4(¢) in Ref. [21].
Notice also that the D-term form factor DY (7) i work COITesponds
to 4C%(1) in Ref. [21].

To show that in the bag model the difference between the
kinetic and Belinfante AM can be expressed as the total
derivative of the intrinsic spin distribution, let us first
rewrite the right-hand side of Eq. (17) as

LIS P - 55,

= 18,(Pes + 5P (VISP ~ VISP, (C4)
where we use the spin density notation for a nucleon
polarized along a general direction. In the main text, the
AM distributions are defined for a nucleon in a spin-up
state with respect to a chosen polarization axis. Then,
Eq. (17) is equivalent to

[Lij(?)]s/s - [Ji?.el.q(?)]x’s :ir](vj [S;(?)]s’s -V [S{I(?)]s’y)
(C5)

The evaluation of the spin (16) and (C1), OAM (13a), and

Belinfante AM (13c) quark distributions for a nucleon

polarized along an arbitrary i direction yields in the large-
N, limit the bag model expressions

[Sg(F)]s = ngz @t jgoy, +atii(2e5e, - Gos = 0y,)1Oy,
(Co)
P A?
(L4 (P)lys = = —la2ji(e1, - Bys =0y )I®v, (CT)
2
Uparg ey = =22 (220 r_rjojy + 2
x (efe, - 64, — 0!, )Oy, (C8)

where ai,s = )(;f,oi)(s. The left-hand side of Eq. (C5) then
can be written as

[Liz(;Z)]s’s - [J{Bel,q(?>]s’s
PA% - [2er ,
= é]n_ <elrer X O'ls/s) |:T]0]1 - 0!%]%:| Q. (C9)

To evaluate the right-hand side of Eq. (CS5), we first
compute

YIS} (A=t €l Ca v,

elo’

s's

>
2
+

2 . .
+;a%j%((6”_2'elre£) r )|Oy.

(C10)

014012-23



LORCE, SCHWEITZER, and TEZGIN

PHYS. REV. D 106, 014012 (2022)

and obtain a similar expression for V/[S/ (7)],/, by exchang-
ing i <> j in Eq. (C10). Then, by using the Bessel function
identities j{(x) = —j;(x) and j}(x) = jo(x) —2j;(x), one
obtains

Vi [S; (?)]x’s - vl[S{I (?)]S‘IS

L | - WY | CR T
Therefore,
%ﬂ(vx’[smm—Vf[S’q(?)]say)

_P gi‘z (e, Gyy—0l,) [%jojl —a%j%} ey (C12)

yields the same result as in Eq. (C9).

APPENDIX D: ELECTRIC CHARGE
DISTRIBUTION OF THE PROTON

In this appendix, we derive the bag model expression for
the electric charge distribution of the proton which is used
in the main text for a comparison to the energy distribution.
The matrix elements of the electromagnetic current oper-
ator j# can be parametrized in terms of electric and
magnetic Sachs form factors, G and G,,, as follows [118]:

(p'.51j#(0)|p,s)
MNPﬂ e ieﬂaﬂlAaPﬂyin
pr F 2P?

=a(p',s’)
(D1)

The electric Sachs form factor G(r) encodes the charge
distribution which can be obtained by the Fourier transform

Gy (1) |u(p,s).

palf) = [ G ST Ga0. (D2)

To obtain G () from Eq. (D1), one can choose ¢ = 0 in the

-

Breit frame, i.e. P =

('

0, and set s = §'. This yields

p.8) =2MyG(1). (D3)

We evaluate the electric Sachs form factor Gg(¢) in the bag
model in the large-N,. limit, by choosing the nucleon
polarization along the z axis and momentum transfer

= (0,0, A%). The result then reads

3
S k()

+ 28, - epty(k)t, (K)],

GE(t) == 4JTA2R6

(D4)

with ¥ and k as defined in Eq. (C2). Carrying out the
Fourier transform in Eq. (D2) yields the charge distribution

A2 .
pen(r) = e jg + a2 j]Oy. (D5)
In the limit mR — oo which may be realized in various
physical situations, see Sec. IV, the electric charge dis-
tribution of the proton becomes

pen(r) = cojo(kr)* @y + - -+, (D6)
where the dots indicate terms which are suppressed by
powers of 1/(mR). The constants k and ¢ are defined in

the sequel of Eq. (46). The normalization is such that
[ dregjo(xr)?©y = 1, see Sec. IV.
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