
Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict 1 

Mantle Metasomatism Worldwide 2 

Ben Qin1,2*, Fang Huang3, Shichun Huang4, Andre Python5, Yunfeng Chen1,2, J ZhangZhou1,2* 3 

1. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China. 4 

2. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, 5 

Hangzhou 310027, China. 6 

3. CSIRO Mineral Resources, Kensington, WA 6151, Australia. 7 

4. Department of Geoscience, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las 8 

Vegas 89154, USA. 9 

5. Center for Data Science, Zhejiang University, Hangzhou, China. 10 

 11 

Corresponding author: Ben Qin (charlesbenq@zju.edu.cn); J ZhangZhou 12 

(zhangzhou333@zju.edu.cn) 13 

 14 

Key points: 15 

• Mantle clinopyroxene major and trace element data compiled and evaluated with machine 16 

learning models 17 

• Accuracy comparisons between low- and high-dimensional dataspaces reveal the most 18 

important features for classification 19 

• Machine learning models identify clusters of mantle metasomatism worldwide 20 

 21 

Plain Language Summary 22 

Clinopyroxene is a major mineral in Earth’s upper mantle. Previous studies have 23 

attempted to discriminate between reactions modifying the mantle by plotting clinopyroxene 24 

major and trace element compositions in two-dimensional (2-D) diagrams. However, these 2-25 



D methods show poor accuracy when applied to global datasets. Therefore, we suggest a 26 

machine learning approach to evaluate clinopyroxene compositional data in higher dimensions. 27 

Our results demonstrate that machine learning can significantly improve the accuracy of 28 

clinopyroxene compositional predictions over classical methods utilizing elemental ratios. 29 

Furthermore, the application of our algorithm to a global clinopyroxene dataset suggests that 30 

mantle metasomatism is globally widespread. 31 

 32 

Abstract 33 

Clinopyroxene major and trace element compositions document their physicochemical 34 

evolution and have been widely used to detect mantle metasomatism. Classical methods 35 

typically rely on one or several elemental ratios such as Ca/Al, Mg/Fe, La/Yb, and Ti/Eu to 36 

determine whether rocks or minerals have been metasomatized. These methods have proven 37 

useful at specific sites, but not globally. In this study, we used machine learning methods to 38 

classify the chemical compositions of clinopyroxenes from mantle xenoliths and examine their 39 

relationship with mantle metasomatism. We compiled major element data from 8,713 40 

clinopyroxene samples (21,605 analyses) and trace element data from 1,235 clinopyroxene 41 

samples (2,967 analyses). Samples were labeled “positive” if clearly affected by patent 42 

metasomatism based on petrographic evidence, “negative” if clearly unaffected by 43 

metasomatism, or were left unlabeled if neither case applied. We then trained an XGBoost 44 

machine learning model, which achieved higher accuracy than traditional methods using a 45 

limited number of elemental ratios. Our results identify numerous locations with high mean 46 

probabilities of mantle metasomatism and show variability in the probability distributions 47 

observed across locations worldwide. These results indicate that metasomatism may be 48 

globally widespread, but the probability of metasomatism is not correlated with geophysical 49 



parameters such as crustal thickness, lithospheric thickness, or mantle S-wave velocity. Hence, 50 

the spatial distribution of metasomatism appears mainly driven by unobserved factors. 51 

 52 

1. Introduction 53 

Metasomatism modifies the mineralogy and composition of pre-existing rocks through 54 

reaction with melt/fluid at high temperature. This important process produces geochemical and 55 

isotopic heterogeneities within Earth’s mantle (Aiuppa et al., 2021; Roden & Murthy, 1985; 56 

Wang et al., 2022; Zhang et al., 2009), which in turn affect chemical differentiation in the 57 

mantle, craton stability, and the physical properties of the lithosphere (Araújo et al., 2009; 58 

Dawson, 1984; Liu et al., 2021; Lloyd & Bailey, 1975; Menzies & Murthy, 1980; O’Reilly & 59 

Griffin, 2013; Pearson et al., 2021; Peng et al., 2021; Rudnick et al., 1993). Therefore, 60 

evaluating mantle metasomatism at the global scale is essential to understanding mantle 61 

heterogeneity. 62 

The composition of the upper mantle has been investigated through various approaches. 63 

The chemical compositions of basalts and petrological models of peridotite-basalt melting 64 

relationships have provided crucial information about the mantle (McDonough & Sun, 1995; 65 

Ringwood, 1962). Mantle xenoliths brought to the surface as inclusions in basalts and peridotite 66 

massifs directly sample the upper mantle and thus provide direct insights into upper mantle 67 

processes and compositions. Knowledge of the petrography and geochemistry of these 68 

peridotite samples is therefore likely to provide important information, particularly regarding 69 

the nature of upper-mantle partial melting, fractional crystallization, and metasomatism 70 

processes (Frey & Green, 1974; Frey & Prinz, 1978). 71 

The occurrence of metasomatism can be revealed by the petrography and geochemistry of 72 

mantle xenoliths. Patent metasomatism is identified straightforwardly based on the presence of 73 

secondary minerals in xenoliths. In comparison, cryptic metasomatism and stealth 74 



metasomatism are not so easy to identify because the former does not produce new phases 75 

(Dawson, 1984) whereas the latter only produces minerals that are indistinguishable from 76 

common mantle minerals (e.g., clinopyroxene or garnet; Griffin et al., 2009). Therefore, it is 77 

often extremely difficult to identify mantle metasomatism based on petrographic observations 78 

alone, and researchers instead turn to the geochemistry of xenolithic minerals. Here, we focus 79 

on clinopyroxene compositions for three reasons: 1) clinopyroxene is abundant in the upper 80 

mantle, 2) it is a substantial reservoir for various minor and trace elements, and 3) its 81 

composition is sensitive to mantle metasomatism. Many studies have proposed using the 82 

chemical composition of clinopyroxene to identify metasomatism, including the ratios Ca/Al 83 

(Rudnick et al., 1993; Wang et al., 2010), Mg/(Mg + Fe) (Mg#) (Yaxley & Green, 1998), La/Yb 84 

(Coltorti et al., 1999; Zong & Liu, 2018), and Ti/Eu (Coltorti et al., 1999; Zong & Liu, 2018). 85 

These elemental ratios are based on petrological models describing reactions between silicate 86 

minerals and metasomatic agents (e.g., carbonate or silicate melts), which enrich clinopyroxene 87 

in incompatible elements (Dalou et al., 2009; Green et al., 1992; Klemme et al., 1995; Rudnick 88 

et al., 1993; Sweeney et al., 1995). 89 

Many major and trace element analyses have been reported for clinopyroxenes in xenolith 90 

samples worldwide (Figure 1; see section 2 for details on data selection). This highlights the 91 

challenge of directly estimating the scale and extent of mantle metasomatism, which requires 92 

the development of effective analytical tools capable of exploiting information from indirect 93 

indicators of major/trace element compositions. Although elemental ratios have been 94 

successfully used to identify metasomatism at specific sites, they have proven inaccurate when 95 

applied globally (Figure 2; see section 4 for more details), suggesting that the spatial 96 

distribution of metasomatism worldwide is driven by processes that cannot be captured by 97 

elemental ratios alone. A chemical model quantifying mantle metasomatism at the global scale 98 

has yet to be developed. 99 



Whereas elemental ratios do not seem to capture the main drivers of the spatial distribution 100 

of metasomatism worldwide, relevant information may be obtained from large-volume, high-101 

dimensional geochemical data. In recent years, machine learning (ML) approaches have been 102 

applied to mineralogy, petrology, and geochemistry datasets to provide new insights and 103 

identify trends and patterns that would otherwise be unobservable (e.g., Petrelli & Perugini, 104 

2016; Petrelli et al., 2020; Thomson et al., 2021; Ueki et al., 2018; Valetich et al., 2021; Wang 105 

et al., 2021; Zhao et al., 2019), demonstrating their potential to quantify mantle metasomatism 106 

worldwide. 107 

Here, we compiled a global dataset of major and trace element compositions of 108 

clinopyroxenes from mantle xenoliths and trained a supervised ML algorithm (XGBoost; Chen 109 

& Guestrin, 2016) to classify metasomatism in high-dimensional space. We also trained 110 

unsupervised machine learning models to ensure that the labeled training and testing dataset 111 

and unlabeled application dataset had similar distributions. Finally, we applied our trained ML 112 

model to predict the probability of the occurrence of metasomatism at the global scale. 113 

 114 

2. Data compilation and labeling 115 

We downloaded compositional data for clinopyroxenes from mantle xenoliths from 972 116 

locations worldwide (Figure 1) from the GEOROC database (http://georoc.mpch-117 

mainz.gwdg.de/georoc/; accessed 14 July 2020) (Sarbas, 2008). Each location includes 118 

multiple samples and analyses (Figure S1). To exclude unreliable samples, we used only 119 

clinopyroxenes with 40–60 wt.% SiO2, <40 wt.% MgO, <30 wt.% FeOT (the superscript ‘T’ 120 

indicates total iron), <26 wt.% CaO, and oxide totals of 98.5–101.5 wt.%. Elements missing 121 

from >60% of the entire dataset were not considered. 122 

After this initial filtering, our “Parent” dataset contained 21,605 observations (rows) 123 

corresponding to clinopyroxene major element analyses (SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, 124 



MgO, MnO, and Na2O), and 2,967 rows of trace element analyses (including Sc, Ti, V, Cr, Ni, 125 

Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, 126 

Th, and U) (Figure S2). In general, the proportion of missing values varies among elements, 127 

with major element data being rather complete, e.g., 5% missing analyses for Cr2O3 (1,024 of 128 

21,605), and a higher proportion of missing data for trace elements, e.g., 32% missing analyses 129 

for Ti (961 of 2,967) (Figure S2). 130 

The Parent dataset was further divided into a labeled training and testing subset (“Labeled 131 

dataset”) and an unlabeled application subset (“Application dataset”). The Labeled dataset was 132 

used to classify clinopyroxene as being affected or unaffected by metasomatism. We classified 133 

clinopyroxenes in the Labeled dataset as being affected (“positive”) or unaffected by 134 

metasomatism (“negative”) based on the petrographic descriptions provided in the original 135 

literature. A sample was labeled “positive” if its petrographic description contains evidence of 136 

metasomatic phases, including silicate glass, calcite, hornblende, phlogopite, and apatite. In 137 

contrast, a sample was labeled “negative” if it shows a monotonous increase in chondrite-138 

normalized (McDonough & Sun, 1995) light rare earth element (LREE) concentrations (i.e., 139 

La, Ce, Pr, Nd, Sm, and Gd). Based on these criteria, 1,650 major and 539 trace element 140 

analyses were labeled “positive” and 439 and 333 respective analyses were labeled “negative”. 141 

In the Parent dataset, most examples (>70%; i.e., 19,516 major and 2,095 trace analyses) did 142 

not contain petrographic descriptions of metasomatic minerals in the original literature; this 143 

unlabeled Application dataset was used to test the unsupervised ML algorithm (see Section 144 

3.2). 145 

 146 

3. Methods 147 

We employed a three-step modeling process (Figure 3). First, supervised learning models 148 

were trained based on the Labeled dataset. Second, unsupervised learning models were 149 



implemented on the Parent dataset to verify that the overall data distributions of the Labeled 150 

and Application datasets were similar. Third, the optimal classification model obtained in step 151 

one was applied to the unlabeled clinopyroxene compositions in the Application dataset. In this 152 

study, all models were implemented using the scikit-learn Python package (Pedregosa et al., 153 

2011). 154 

 155 

3.1 Training the supervised learning models 156 

In the first step, we trained supervised ML models to classify clinopyroxenes as a binary 157 

variable (1 if affected by metasomatism, 0 otherwise). We tested several ML algorithms, 158 

including Random Forest (Breiman, 2001) and Support Vector Machines (Boser et al., 1992), 159 

and eventually chose XGBoost (Chen & Guestrin, 2016) due to its flexibility, predictive 160 

performance, computational efficiency, and interpretability. Importantly, the Random Forest 161 

and Support Vector Machines algorithms are not designed to handle missing values (Boser et 162 

al., 1992; Breiman 2001), which are frequent in our dataset. In contrast, XGBoost can 163 

accommodate sparse feature formats and can automatically identify the best imputation value 164 

for missing values based on reduction on training loss (Chen & Guestrin, 2016). Furthermore, 165 

in addition to its high predictive capability and computational efficiency, the tree structure of 166 

XGBoost facilitates interpretation of the results (Azodi et al., 2020), which is important for 167 

identifying features associated with the occurrence of metasomatism. We directly used the 168 

elemental data without any preliminary transformation as the input into the XGBoost 169 

classification algorithm. 170 

XGBoost is based on a gradient-boosting decision tree method (Friedman, 2001) and has 171 

been recently applied in a wide range of applications aiming to predict complex spatial 172 

phenomena at the global scale (e.g., Cook-Patton et al., 2020; Python et al., 2021; Zheng et al., 173 

2021). XGBoost uses a gradient-descent algorithm to minimize the loss when adding new 174 



models. In practice, it continuously adds trees to fit the residuals of the previous prediction, 175 

and the predictions are computed as the sum of the effects of all trees. For a dataset with 176 

𝑛	observations, label element  with , and  features composed of 177 

feature element  with , the predictions  are obtained by summing 178 

the scores obtained in the corresponding leaves, which is expressed as (Chen & Guestrin, 2016): 179 

,     (Eq. 1) 180 

where  is the space of the regression trees, additive 181 

function tree , and each  corresponds to an independent tree structure	q and 182 

leaf weight w. Here, q represents the structure of each tree that maps an observation to a 183 

corresponding leaf, with T the total number of leaves in the tree.  represents the set of 184 

scores computed in all leaf nodes in a tree. We used XGBoost within a classification framework 185 

since the label  is binary (1 if affected by metasomatism, 0 otherwise). For each observation 186 

i, the output of the classification  represents the probability that metasomatism is present. 187 

In this classification framework,  is calibrated as a probability by taking only values 188 

between 0 and 1. To compute the elements of the confusion matrix, we dichotomize  as 189 

equal to 1 if  and 0 otherwise. 190 

To minimize bias and variance in the predictive scores, we performed a ten-fold cross-191 

validation procedure (Kohavi, 1995) by randomly splitting the Labeled dataset into training 192 

(70%) and testing subsets (30%). Therefore, overfitting and randomness can be mitigated by 193 

cross-validation and the splitting of the training and testing subsets utilized to evaluate the 194 

classifier performance. We applied Grid Search Cross-Validation (from the scikit-learn 195 

package), which aims to find an optimal hyperparameter combination (eta, gamma, max depth, 196 
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and alpha) through an iterative grid-search process. The procedure trains 9,000 candidate 197 

models and selects the model with the best predictive performance via ten-fold cross-validation. 198 

To evaluate the performance of XGBoost models, several classification metrics can be 199 

defined based on the confusion matrix (Stehman, 1997), a specific table layout that visualizes 200 

model performance. Each row of the confusion matrix represents the instances in an actual 201 

class, whereas each column represents the instances in a predicted class. We use Accuracy and 202 

the F1 score (Dice, 1945; Sørensen, 1948) described below: 203 

Accuracy is the ratio of the total number of correct “positive” and “negative” predictions 204 

to the total number of known “positive” and “negative” cases: 205 

.   (Eq. 2) 206 

The F1 score is the harmonic mean of Precision and Recall: 207 

,      (Eq. 3) 208 

where Precision is a measure of accuracy provided that a specific class (here, “positive”) has 209 

been predicted: 210 

.     (Eq. 4) 211 

Recall is a measure of the ability of a model to select instances of a certain class (again, 212 

“positive” here) from a dataset: 213 

.      (Eq. 5) 214 

Although Accuracy is a common and direct way to evaluate and improve models, the F1 215 

score can give a better measure of the incorrectly classified cases than Accuracy. The F1 score 216 

is more suitable when the classes are imbalanced. Given the class imbalance observed in our 217 

dataset, we favor the F1 score to compare the predictive performance of our models. 218 

Correct positive + negative predictionsAccuracy=
Known positive + negative cases

Precision  RecallF1 score = 2
Precision + Recall

×
×

Correct positive predictionsPrecision = 
All positive predictions

Correct positive predictionsRecall = 
Known positive cases



To test the impacts of feature selection on the ML results, we trained the XGBoost model 219 

on different major and trace element subsets selected from the Labeled dataset (Table 1). For 220 

major elements, we compared the relative feature importance when using two traditional 221 

element pairs (CaO and Al2O3; MgO and FeOT), all four of those elements (i.e., both pairs 222 

combined), and all nine major elements. For trace elements, we also used two traditional 223 

element pairs (Eu and Ti; La and Yb) and both pairs combined, but also considered 13 elements 224 

after dimensional reduction by trace element correlation, 25 non-fluid-mobile trace elements 225 

(i.e., excluding Rb, Sr, Ba, Pb, and U), and all 30 considered trace elements. 226 

 227 

3.2 Unsupervised machine learning models 228 

We used unsupervised machine learning models to assess the degree of similarity between 229 

the data distributions of the Labeled and Application datasets. The input data (all major 230 

elements) used in the unsupervised machine learning models was centered log-ratio 231 

transformed to prevent data closure (Aitchison, 1982). 232 

We applied k-means clustering to the Parent dataset to measure the similarity of the 233 

Labeled and Application datasets. k-means clustering is an unsupervised machine learning 234 

algorithm that classifies a given dataset into k clusters. It defines k (an a priori fixed number) 235 

centroids, or mean points, one for each cluster  that minimizes a norm of the kind: 236 

,      (Eq. 6) 237 

where  are the mean points of all , and V is the objective function. In other words, 238 

k-means clustering can divide a dataset into several clusters. As a result, data in the same cluster 239 

have similar information that is different from data in other clusters. For example, after 240 

clustering of the Parent dataset, if the Labeled dataset is distributed in all clusters, then the 241 

Labeled dataset contains the same data distribution as that the Application dataset. Therefore, 242 
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we can utilize this result to predict the Application dataset. To visualize the k-means clustering 243 

result, we used principal component analysis (PCA) (Smith, 2002) to reduce the dimensionality 244 

to 2 dimensions. 245 

 246 

3.3 Application of trained models to unlabeled data 247 

Finally, we applied the best-performing supervised training model (see section 3.1) to the 248 

Application dataset. For an unlabeled clinopyroxene analysis, the XGBoost model classifies it 249 

as “positive” (metasomatized) or “negative” (unmetasomatized) based on its chemical 250 

composition. For each xenolith sampling site l, we defined the mean probability of occurrence 251 

of metasomatism ( ) by averaging the predictive probabilities obtained in all n analyses at 252 

that site as: 253 

.        (Eq. 7) 254 

Based on the predicted probabilities of metasomatism computed for each sampling location, 255 

we mapped the mean predicted probability of metasomatism at the global scale within 1° × 1° 256 

bins, for a total of 599 bins that represent our study area. 257 

 258 

4. Results and Discussion 259 

4.1 Limitations of traditional models 260 

Previous studies have proposed that metasomatism be identified based on elemental ratios 261 

such as CaO/Al2O3, Mg#, Ti/Eu, or (La/Yb)N (Brey et al., 2008; Coltorti et al., 1999; Klemme 262 

et al., 1995; Rudnick et al., 1993; Yaxley & Green, 1998; Zong & Liu, 2018). Although these 263 

parameters effectively characterize metasomatism at specific sampling locations, they perform 264 

poorly when used to predict metasomatism at the global scale (Figure 2). 265 
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Classification results using elemental ratios are inconsistent with the petrographically 266 

confirmed metasomatized natures of the samples. For example, among the 2,089 samples 267 

labeled according to the presence of metasomatic minerals, the classification of metasomatized 268 

and unmetasomatized xenoliths using clinopyroxene CaO/Al2O3 has an accuracy rate of 47% 269 

and 72%, respectively (Figure 2a). Other elemental ratios similarly show low accuracy in 270 

predicting metasomatism (17%, 15%, and 53% for Mg#, Ti/Eu, and (La/Yb)N, respectively), 271 

and higher accuracy in predicting unmetasomatized observations (69%, 100%, and 100%, 272 

respectively; Figure 2b–d). Therefore, it is complicated to predict the occurrence of 273 

metasomatism. Classic bi-variate plots are suitable for predicting unmetasomatized samples 274 

because the broad data range of those samples overlaps that of metasomatized samples: 275 

unmetasomatized samples are typically taken as having Ca/Al < 5, Mg# < 92, Ti/Eu > 1500, 276 

or (La/Yb)N < 3, but these ranges also describe numerous metasomatized samples. Our results 277 

show that globally, the accuracy of traditional bi-variate plots is relatively poor at only 43–278 

76.5%. 279 

Identifications of metasomatism using different traditional element ratios are also 280 

inconsistent (Figure S3). To demonstrate this, we labeled data with CaO/Al2O3 > 5 as “positive” 281 

and <5 as “negative” (Figure S3a). However, plotting these data points, labeled by their 282 

CaO/Al2O3 ratios, on the MgO vs. FeOT diagram (and taking Mg# > 92 as also indicating 283 

“positive”) exhibits a mean accuracy of 67% (Figure S3b). Similarly for trace elements, 284 

applying labels based on Ti/Eu values to (La/Yb)N shows 75% accuracy (Figure S3c, d). 285 

Therefore, the traditional elemental ratios CaO/Al2O3, MgO/FeOT, Ti/Eu, and (La/Yb)N cannot 286 

effectively and accurately classify metasomatism across different sampling sites worldwide. 287 

 288 

4.2 Classification results and geochemical explanation 289 



Figure 4a presents the confusion matrix (see section 3.1) of the classification results based 290 

on the XGBoost model trained using data for all nine major elements from the analyses in the 291 

Labeled dataset. Based on the confusion matrix, we obtained a F1 score and accuracy of 0.968 292 

and 0.949, respectively. Consistently, the results based on all 30 trace elements produce an F1 293 

score and accuracy of 0.957 and 0.947, respectively (Figure 4c). These high F1 scores and 294 

accuracies suggest that both major and trace element models may outperform traditional ion-295 

pair classification methods. 296 

Based on the results of the XGBoost algorithm, we calculated the relative importance of 297 

each feature to the metasomatism classification. As shown in Figure 4b, Na2O, FeOT, MnO, 298 

and CaO have the highest relative importance scores among the major elements, indicating that 299 

they are important for discriminating whether a sample has been metasomatized. Indeed, the 300 

presence of melt affects clinopyroxene compositions, producing clinopyroxene with lower 301 

Mg# and higher Na/Ca (Yaxley & Green, 1998). Furthermore, Mn’s redistribution among 302 

garnet, orthopyroxene, clinopyroxene, and olivine is affected by metasomatism (Achterbergh 303 

et al., 2001; Norman, 1998). As shown in Figure 4d, Ho, Ce, U, Sr, Yb, and Ba are the most 304 

important trace elements for classifying metasomatism, consistent with previous studies 305 

evidencing that LREEs preferentially enter the mineral phase compared to HREEs during 306 

interactions between peridotite and melts enriched in incompatible elements (Green et al., 1992; 307 

Klemme et al., 1995; Rudnick et al., 1993; Sweeney et al., 1995). We note that most elements 308 

have positive but small (<17%) feature importance values, suggesting that they may not play a 309 

major role in classification of metasomatism, and that metasomatism cannot be effectively 310 

identified by using those elements alone. 311 

 312 

4.3 Feature correlation and selection 313 



The Parent dataset includes 21,605 observations (rows) corresponding to 9 major elements 314 

and 2,967 observations corresponding to 30 trace elements, and we calculated Pearson’s 315 

correlation coefficients (𝜌) between major (Figure 5) and trace elements (Figure S4), where 𝜌 316 

= 1 (−1) indicates a perfect positive (negative) correlation, and 𝜌 = 0 indicates no correlation. 317 

Several major element pairs are highly correlated (e.g., 𝜌 = −0.81 for SiO2 and TiO2) or 318 

moderately correlated (e.g., 𝜌 = −0.61 for MgO and TiO2), but most are poorly correlated (|𝜌| 319 

< 0.40; Figure 5). In comparison, less than a quarter of all trace element pairs are highly 320 

correlated (|𝜌| > 0.75; Figure S4). 321 

Our PCA results (Figure S5) for the Parent dataset show that only 64% and 56% of the 322 

variance in the major and trace element data, respectively, can be explained by two dimensions 323 

(Figure S5). Therefore, the correlation matrix (Figures 5 and S4) and PCA results further 324 

evidence that most elemental ratios provide distinct information and may independently 325 

contribute to identifying metasomatism. 326 

In general, XGBoost provides better classification results when it is trained on more 327 

elements (Table 1). For example, the respective F1 scores and accuracies of models trained on 328 

major element data from the Labeled dataset improved from 0.891–0.899 and 0.821–0.833 329 

when only two elements were used to 0.941 and 0.910 for four elements and 0.968 and 0.949 330 

for all nine major elements. For models trained on trace element data from the Labeled dataset, 331 

the respective F1 scores and accuracies improved from 0.818–0.933 and 0.771–0.916 for two 332 

elements to 0.945 and 0.931 for four elements and 0.960 and 0.950 for 13 elements, but do not 333 

improve markedly when using 25 (0.954 and 0.943) or 30 elements (0.957 and 0.947). Our 334 

results show that XGBoost performs optimally when trained on 13 features (elements) and does 335 

not improve when more features are used. Despite that each feature shows a relatively low 336 

variable importance value, the best predictive performance is achieved when most features are 337 



included. Given the data and within the limitations of the models, our results suggest that each 338 

feature may contribute to partially explain metasomatism. 339 

 340 

4.4 Evaluating ML model performance and applicability 341 

The ten-fold cross-validation procedure we performed on the Labeled dataset before it 342 

was randomly split into training (70%) and testing subsets (30%) resulted in a F1 score of 0.871 343 

with standard deviation (s.d.) = 0.073 for the major element data and 0.918 (s.d. = 0.122) for 344 

the trace element data. These results demonstrate that the Labeled dataset is relatively balanced. 345 

In Table 1, the mean F1 score of the best model as determined by Grid Search Cross-346 

Validation on the major element training data was 0.950 (MajorI-9) and that for the trace 347 

element data was 0.973 (TraceI-25). The XGBoost models can then be further evaluated by 348 

applying these best models to the testing set (30% of the Labeled data). The best major and 349 

trace element models achieved accuracies of 0.949 (MajorI-9) and 0.950 (TraceI-13), 350 

respectively, when applied to the testing set (Table 1). 351 

Unsupervised learning is useful for discerning patterns from the characteristics of the data 352 

itself (Figure 6). In our k-means unsupervised model trained on the Parent dataset, the highest 353 

silhouette coefficient (a measure of how similar an object is to its cluster compared to other 354 

clustered, with high values indicating objects are well-matched to their clusters and poorly 355 

matched to neighboring clusters; Rousseeuw, 1987) corresponds to two major element clusters 356 

and two trace element clusters. The Labeled dataset is distributed across all clusters in which 357 

the Application dataset is distributed, indicating that both the Application and Labeled datasets 358 

have similar distributions. These results indicate that the model trained on the Labeled dataset 359 

can be confidently applied to the Application dataset. 360 

 361 

4.5 Probability of mantle metasomatism at the global scale 362 



When applied to the Application dataset, our model predictions are presented as the 363 

probability of metasomatism, which ranges from 0 to 1 by definition. The global map of the 364 

predicted mean probability of metasomatism identifies locations with high probabilities of 365 

metasomatism (Figure 7). Here, we computed the mean for each location because multiple 366 

analytical points were available at each location. 367 

The map highlights variations in the distribution of the probability of metasomatism. 368 

Figure 8 shows the predicted probability distributions at four localities. These locations were 369 

chosen because they cover four continents and because a sufficient number of samples (>100) 370 

were available at each to accurately estimate metasomatism. The results suggest bimodal 371 

distributions at Hannuoba (North China Craton) and Zealandia (South Pacific Ocean), and 372 

unimodal distributions with high probabilities of metasomatism at Pulpwood Harbour (South 373 

Canadian Shield) and Finsch (Kaapvaal Craton). The variability observed in the results may 374 

indicate that mantle metasomatism occurs widely but heterogeneously. Therefore, the 375 

probability of metasomatism at the global scale is generally high, and melt heterogeneity may 376 

reduce the likelihood of metasomatism in some locations. Alternatively, the machine learning 377 

algorithms work well for moderately metasomatized samples from the classic stable cratons 378 

(e.g., South Canadian Shield, Kaapvaal Craton), yet misclassify extensively metasomatized 379 

samples affected by multiple metasomatic agents that first fertilized and later depleted mineral 380 

chemical compositions (Zhang, 2009). 381 

In addition, we also compared the probability of metasomatism to xenolith rock type. The 382 

results show that no correlation exists between the probability of metasomatism and rock type, 383 

including clinopyroxenite, dunite, harzburgite, lherzolite, peridotite, pyroxenite, and wehrlite 384 

(Figure S6). Indeed, it has been suggested that metasomatism may occur in various tectonic 385 

settings (Aiuppa et al., 2021; Dawson, 1984; Liu et al., 2021; Menzies & Murthy, 1980; Roden 386 

& Murthy, 1985; Wang et al., 2022). In particular, carbon and water lower the melting 387 



temperatures of peridotites, and carbonated and hydrous silicate melts have been suggested as 388 

effective metasomatic agents (Hirschmann, 2000; Dasgupta and Hirschmann, 2006; Sarafian 389 

et al., 2017; Sun and Dasgupta, 2019; Thomson et al., 2016). However, considering only mantle 390 

xenoliths might present a bias because they are preferentially affected by melt when brought 391 

to the surface by eruptions, but cannot represent the average mantle composition (Artemieva, 392 

2009). 393 

To assess whether the probability of metasomatism is related to local lithospheric 394 

structures, we compared our results with geophysical observations of crustal thickness, 395 

lithospheric thickness, and S-wave velocity (at 50–200 km depth in 25-km depth intervals) and 396 

parameterized the globe into a 1° × 1° grid (Figure S7). Within each cell, we averaged the 397 

probabilities of metasomatism for each location and compared them with geophysical 398 

observations (Figures S7, S8). We also used unsupervised machine learning to search for 399 

clustering of metasomatism probabilities and geophysical parameters, but did not observe any 400 

correlations (Figure S8). We identified three possible reasons for this. First, mantle 401 

metasomatism may not necessarily be related to specific tectonic settings. Second, 402 

metasomatism produces only secondary effects on geophysical parameters such as seismic 403 

wave velocity, and a full separation of compositional from thermal factors is required to 404 

identify potential metasomatic modifications to the lithospheric mantle. Third, our dataset does 405 

not provide information on the depth or age distributions of the clinopyroxenes, making it 406 

difficult to relate the predicted metasomatic probabilities to the lithospheric mantle at a specific 407 

spatiotemporal location. Therefore, further efforts are required to reconcile the effects of 408 

metasomatism on both the chemical and physical properties of the lithospheric mantle at the 409 

global scale. 410 

 411 

5. Conclusions 412 



We developed a model to predict whether xenolithic clinopyroxenes have been 413 

metasomatized by applying a multidimensional approach using the XGBoost machine learning 414 

algorithm. Our model can predict whether a given sample has been metasomatized with better 415 

accuracy (95%) than traditional approaches using elemental ratios (43–77%). Our results 416 

indicate that models trained on clinopyroxene compositions, including all major and at least 13 417 

trace elements, achieve the best prediction accuracy compared to traditional methods using 418 

only two or four elements. Furthermore, k-means clustering showed that the Application and 419 

Labeled datasets had similar data distributions, indicating that the models trained on the 420 

Labeled data can confidently be used to predict whether clinopyroxenes experienced 421 

metasomatism based on unlabeled data. Finally, our results show that many locations are likely 422 

to have undergone metasomatism and that metasomatism is heterogeneously distributed 423 

worldwide. 424 

 425 
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 627 

Figure Captions 628 

Figure 1. Locations of sample analyses used in this study. The color of each sampling point 629 

represents the number of analyses performed on clinopyroxenes in mantle xenoliths from that 630 

location. 631 



Figure 2. The application of elemental ratios proposed in previous studies to attempt to identify 632 

metasomatism in the global dataset. Symbols indicate whether each sample was 633 

petrographically identified as metasomatized (‘positive’) or not affected by metasomatism 634 

(‘negative’). (a) The accuracy (Eq. 2) of CaO versus Al2O3 is 59.5%; (b) that of MgO versus 635 

FeOT is 43%; (c) that of Ti versus Eu is 57.5%; and (d) that of La versus Yb is 76.5%. 636 

Figure 3. Operational flow chart of the methods used in this study. Step I: the Labeled dataset 637 

was used to train the XGBoost models and evaluate model performance. Step II: the 638 

preprocessed Parent dataset was used to train k-means clustering models to verify that the data 639 

distributions of the Labeled and Application datasets were similar. Step III: the best model was 640 

used to predict the probability of metasomatism worldwide within 1° × 1° grid cells based on 641 

the Application dataset. 642 

Figure 4. Results of the XGBoost model trained on the Labeled dataset to classify 643 

clinopyroxenes as affected or unaffected by metasomatism. (a, c) Confusion matrices of 644 

classification results based on major and trace element compositions from the testing subset, 645 

respectively. (b, d) The relative feature importances of major and trace elements, respectively. 646 

Figure 5. Heat-map matrix of linear correlations (Pearson coefficients) between major 647 

elements concentrations in clinopyroxenes of the Parent dataset (21,605 observations). 648 

Figure 6. Unsupervised learning results illustrating the similarity of the (a) major and (b) trace 649 

element data distributions in the Labeled (training, orange diamonds) and Application datasets 650 

(gray circles). 651 

Figure 7. Probability map of mantle metasomatism at 972 unique sampling locations. Symbol 652 

color indicates the predicted probability of metasomatism from 0 (blue) to 1 (red). 653 

Figure 8. Probability distributions of metasomatism at four selected sampling locations: (a) 654 

Hannuoba, North China Craton; (b) Zealandia, South Pacific Ocean; (c) Pulpwood Harbour, 655 

South Canadian Shield; and (d) Finsch, Kaapvaal Craton. 656 



Table 1. Summary of XGBoost model performance. 657 


