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Key points:

* Mantle clinopyroxene major and trace element data compiled and evaluated with machine
learning models

* Accuracy comparisons between low- and high-dimensional dataspaces reveal the most
important features for classification

* Machine learning models identify clusters of mantle metasomatism worldwide

Plain Language Summary
Clinopyroxene is a major mineral in Earth’s upper mantle. Previous studies have
attempted to discriminate between reactions modifying the mantle by plotting clinopyroxene

major and trace element compositions in two-dimensional (2-D) diagrams. However, these 2-
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D methods show poor accuracy when applied to global datasets. Therefore, we suggest a
machine learning approach to evaluate clinopyroxene compositional data in higher dimensions.
Our results demonstrate that machine learning can significantly improve the accuracy of
clinopyroxene compositional predictions over classical methods utilizing elemental ratios.
Furthermore, the application of our algorithm to a global clinopyroxene dataset suggests that

mantle metasomatism is globally widespread.

Abstract

Clinopyroxene major and trace element compositions document their physicochemical
evolution and have been widely used to detect mantle metasomatism. Classical methods
typically rely on one or several elemental ratios such as Ca/Al, Mg/Fe, La/Yb, and Ti/Eu to
determine whether rocks or minerals have been metasomatized. These methods have proven
useful at specific sites, but not globally. In this study, we used machine learning methods to
classify the chemical compositions of clinopyroxenes from mantle xenoliths and examine their
relationship with mantle metasomatism. We compiled major element data from 8,713
clinopyroxene samples (21,605 analyses) and trace element data from 1,235 clinopyroxene
samples (2,967 analyses). Samples were labeled “positive” if clearly affected by patent
metasomatism based on petrographic evidence, ‘“negative” if clearly unaffected by
metasomatism, or were left unlabeled if neither case applied. We then trained an XGBoost
machine learning model, which achieved higher accuracy than traditional methods using a
limited number of elemental ratios. Our results identify numerous locations with high mean
probabilities of mantle metasomatism and show variability in the probability distributions
observed across locations worldwide. These results indicate that metasomatism may be

globally widespread, but the probability of metasomatism is not correlated with geophysical
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parameters such as crustal thickness, lithospheric thickness, or mantle S-wave velocity. Hence,

the spatial distribution of metasomatism appears mainly driven by unobserved factors.

1. Introduction

Metasomatism modifies the mineralogy and composition of pre-existing rocks through
reaction with melt/fluid at high temperature. This important process produces geochemical and
isotopic heterogeneities within Earth’s mantle (Aiuppa et al., 2021; Roden & Murthy, 1985;
Wang et al., 2022; Zhang et al., 2009), which in turn affect chemical differentiation in the
mantle, craton stability, and the physical properties of the lithosphere (Araujo et al., 2009;
Dawson, 1984; Liu et al., 2021; Lloyd & Bailey, 1975; Menzies & Murthy, 1980; O’Reilly &
Griffin, 2013; Pearson et al., 2021; Peng et al., 2021; Rudnick et al., 1993). Therefore,
evaluating mantle metasomatism at the global scale is essential to understanding mantle
heterogeneity.

The composition of the upper mantle has been investigated through various approaches.
The chemical compositions of basalts and petrological models of peridotite-basalt melting
relationships have provided crucial information about the mantle (McDonough & Sun, 1995;
Ringwood, 1962). Mantle xenoliths brought to the surface as inclusions in basalts and peridotite
massifs directly sample the upper mantle and thus provide direct insights into upper mantle
processes and compositions. Knowledge of the petrography and geochemistry of these
peridotite samples is therefore likely to provide important information, particularly regarding
the nature of upper-mantle partial melting, fractional crystallization, and metasomatism
processes (Frey & Green, 1974; Frey & Prinz, 1978).

The occurrence of metasomatism can be revealed by the petrography and geochemistry of
mantle xenoliths. Patent metasomatism is identified straightforwardly based on the presence of

secondary minerals in xenoliths. In comparison, cryptic metasomatism and stealth
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metasomatism are not so easy to identify because the former does not produce new phases
(Dawson, 1984) whereas the latter only produces minerals that are indistinguishable from
common mantle minerals (e.g., clinopyroxene or garnet; Griffin et al., 2009). Therefore, it is
often extremely difficult to identify mantle metasomatism based on petrographic observations
alone, and researchers instead turn to the geochemistry of xenolithic minerals. Here, we focus
on clinopyroxene compositions for three reasons: 1) clinopyroxene is abundant in the upper
mantle, 2) it is a substantial reservoir for various minor and trace elements, and 3) its
composition is sensitive to mantle metasomatism. Many studies have proposed using the
chemical composition of clinopyroxene to identify metasomatism, including the ratios Ca/Al
(Rudnick et al., 1993; Wang et al., 2010), Mg/(Mg + Fe) (Mg#) (Yaxley & Green, 1998), La/Yb
(Coltorti et al., 1999; Zong & Liu, 2018), and Ti/Eu (Coltorti et al., 1999; Zong & Liu, 2018).
These elemental ratios are based on petrological models describing reactions between silicate
minerals and metasomatic agents (e.g., carbonate or silicate melts), which enrich clinopyroxene
in incompatible elements (Dalou et al., 2009; Green et al., 1992; Klemme et al., 1995; Rudnick
et al., 1993; Sweeney et al., 1995).

Many major and trace element analyses have been reported for clinopyroxenes in xenolith
samples worldwide (Figure 1; see section 2 for details on data selection). This highlights the
challenge of directly estimating the scale and extent of mantle metasomatism, which requires
the development of effective analytical tools capable of exploiting information from indirect
indicators of major/trace element compositions. Although elemental ratios have been
successfully used to identify metasomatism at specific sites, they have proven inaccurate when
applied globally (Figure 2; see section 4 for more details), suggesting that the spatial
distribution of metasomatism worldwide is driven by processes that cannot be captured by
elemental ratios alone. A chemical model quantifying mantle metasomatism at the global scale

has yet to be developed.
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Whereas elemental ratios do not seem to capture the main drivers of the spatial distribution
of metasomatism worldwide, relevant information may be obtained from large-volume, high-
dimensional geochemical data. In recent years, machine learning (ML) approaches have been
applied to mineralogy, petrology, and geochemistry datasets to provide new insights and
identify trends and patterns that would otherwise be unobservable (e.g., Petrelli & Perugini,
2016; Petrelli et al., 2020; Thomson et al., 2021; Ueki et al., 2018; Valetich et al., 2021; Wang
et al., 2021; Zhao et al., 2019), demonstrating their potential to quantify mantle metasomatism
worldwide.

Here, we compiled a global dataset of major and trace element compositions of
clinopyroxenes from mantle xenoliths and trained a supervised ML algorithm (XGBoost; Chen
& Guestrin, 2016) to classify metasomatism in high-dimensional space. We also trained
unsupervised machine learning models to ensure that the labeled training and testing dataset
and unlabeled application dataset had similar distributions. Finally, we applied our trained ML

model to predict the probability of the occurrence of metasomatism at the global scale.

2. Data compilation and labeling

We downloaded compositional data for clinopyroxenes from mantle xenoliths from 972
locations worldwide (Figure 1) from the GEOROC database (http://georoc.mpch-
mainz.gwdg.de/georoc/; accessed 14 July 2020) (Sarbas, 2008). Each location includes
multiple samples and analyses (Figure S1). To exclude unreliable samples, we used only
clinopyroxenes with 40-60 wt.% SiO», <40 wt.% MgO, <30 wt.% FeOT (the superscript ‘T’
indicates total iron), <26 wt.% CaO, and oxide totals of 98.5-101.5 wt.%. Elements missing
from >60% of the entire dataset were not considered.

After this initial filtering, our “Parent” dataset contained 21,605 observations (rows)

corresponding to clinopyroxene major element analyses (SiO2, TiO2, Al>O3, Cr203, FeOT, CaO,
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MgO, MnO, and Na;0), and 2,967 rows of trace element analyses (including Sc, Ti, V, Cr, Ni,
Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb,
Th, and U) (Figure S2). In general, the proportion of missing values varies among elements,
with major element data being rather complete, e.g., 5% missing analyses for Cr.O3 (1,024 of
21,605), and a higher proportion of missing data for trace elements, e.g., 32% missing analyses
for Ti (961 of 2,967) (Figure S2).

The Parent dataset was further divided into a labeled training and testing subset (“Labeled
dataset) and an unlabeled application subset (“Application dataset”). The Labeled dataset was
used to classify clinopyroxene as being affected or unaffected by metasomatism. We classified
clinopyroxenes in the Labeled dataset as being affected (“positive”) or unaffected by
metasomatism (“negative”) based on the petrographic descriptions provided in the original
literature. A sample was labeled “positive” if its petrographic description contains evidence of
metasomatic phases, including silicate glass, calcite, hornblende, phlogopite, and apatite. In
contrast, a sample was labeled “negative” if it shows a monotonous increase in chondrite-
normalized (McDonough & Sun, 1995) light rare earth element (LREE) concentrations (i.e.,
La, Ce, Pr, Nd, Sm, and Gd). Based on these criteria, 1,650 major and 539 trace element
analyses were labeled “positive” and 439 and 333 respective analyses were labeled “negative”.
In the Parent dataset, most examples (>70%; i.e., 19,516 major and 2,095 trace analyses) did
not contain petrographic descriptions of metasomatic minerals in the original literature; this
unlabeled Application dataset was used to test the unsupervised ML algorithm (see Section

3.2).

3. Methods
We employed a three-step modeling process (Figure 3). First, supervised learning models

were trained based on the Labeled dataset. Second, unsupervised learning models were
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implemented on the Parent dataset to verify that the overall data distributions of the Labeled
and Application datasets were similar. Third, the optimal classification model obtained in step
one was applied to the unlabeled clinopyroxene compositions in the Application dataset. In this
study, all models were implemented using the scikit-learn Python package (Pedregosa et al.,

2011).

3.1 Training the supervised learning models

In the first step, we trained supervised ML models to classify clinopyroxenes as a binary
variable (1 if affected by metasomatism, 0 otherwise). We tested several ML algorithms,
including Random Forest (Breiman, 2001) and Support Vector Machines (Boser et al., 1992),
and eventually chose XGBoost (Chen & Guestrin, 2016) due to its flexibility, predictive
performance, computational efficiency, and interpretability. Importantly, the Random Forest
and Support Vector Machines algorithms are not designed to handle missing values (Boser et
al., 1992; Breiman 2001), which are frequent in our dataset. In contrast, XGBoost can
accommodate sparse feature formats and can automatically identify the best imputation value
for missing values based on reduction on training loss (Chen & Guestrin, 2016). Furthermore,
in addition to its high predictive capability and computational efficiency, the tree structure of
XGBoost facilitates interpretation of the results (Azodi et al., 2020), which is important for
identifying features associated with the occurrence of metasomatism. We directly used the
elemental data without any preliminary transformation as the input into the XGBoost
classification algorithm.

XGBoost is based on a gradient-boosting decision tree method (Friedman, 2001) and has
been recently applied in a wide range of applications aiming to predict complex spatial
phenomena at the global scale (e.g., Cook-Patton et al., 2020; Python et al., 2021; Zheng et al.,

2021). XGBoost uses a gradient-descent algorithm to minimize the loss when adding new
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models. In practice, it continuously adds trees to fit the residuals of the previous prediction,
and the predictions are computed as the sum of the effects of all trees. For a dataset with
n observations, label element y, e R with i={l,...,n}, and m features composed of

feature element x; € R” with j={l,...,m}, the predictions J; are obtained by summing

the scores obtained in the corresponding leaves, which is expressed as (Chen & Guestrin, 2016):

Bi=d(x) =Y fi(x), with £, €F (Eq. 1)

where F ={f(x)= W, )}(q :R" > T,weR") is the space of the regression trees, additive

(x
function tree k={l,...,K}, and each f, corresponds to an independent tree structure g and
leaf weight w. Here, g represents the structure of each tree that maps an observation to a
corresponding leaf, with 7" the total number of leaves in the tree. w, ., represents the set of
scores computed in all leaf nodes in a tree. We used XGBoost within a classification framework
since the label y; 1is binary (1 if affected by metasomatism, 0 otherwise). For each observation
i, the output of the classification J; represents the probability that metasomatism is present.
In this classification framework, J; is calibrated as a probability by taking only values
between 0 and 1. To compute the elements of the confusion matrix, we dichotomize J; as
equal to 1 if p;, >0.5 and 0 otherwise.

To minimize bias and variance in the predictive scores, we performed a ten-fold cross-
validation procedure (Kohavi, 1995) by randomly splitting the Labeled dataset into training
(70%) and testing subsets (30%). Therefore, overfitting and randomness can be mitigated by
cross-validation and the splitting of the training and testing subsets utilized to evaluate the
classifier performance. We applied Grid Search Cross-Validation (from the scikit-learn

package), which aims to find an optimal hyperparameter combination (eta, gamma, max depth,
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and alpha) through an iterative grid-search process. The procedure trains 9,000 candidate
models and selects the model with the best predictive performance via ten-fold cross-validation.

To evaluate the performance of XGBoost models, several classification metrics can be
defined based on the confusion matrix (Stehman, 1997), a specific table layout that visualizes
model performance. Each row of the confusion matrix represents the instances in an actual
class, whereas each column represents the instances in a predicted class. We use Accuracy and
the F1 score (Dice, 1945; Serensen, 1948) described below:

Accuracy is the ratio of the total number of correct “positive” and “negative” predictions
to the total number of known “positive” and “negative” cases:

Correct positive + negative predictions
Accuracy= — - . (Eq. 2)
Known positive + negative cases

The F1 score is the harmonic mean of Precision and Recall:

F1 score = - Precision - Recall

, Eqg. 3
Precision + Recall (. 3)

where Precision is a measure of accuracy provided that a specific class (here, “positive”) has
been predicted:

Correct positive predictions

Precision = (Eq. 4)

All positive predictions
Recall is a measure of the ability of a model to select instances of a certain class (again,
“positive” here) from a dataset:

Correct positive predictions
Recall = P P .

— (Eq. 5)
Known positive cases

Although Accuracy is a common and direct way to evaluate and improve models, the F1
score can give a better measure of the incorrectly classified cases than Accuracy. The F1 score
is more suitable when the classes are imbalanced. Given the class imbalance observed in our

dataset, we favor the F1 score to compare the predictive performance of our models.
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To test the impacts of feature selection on the ML results, we trained the XGBoost model
on different major and trace element subsets selected from the Labeled dataset (Table 1). For
major elements, we compared the relative feature importance when using two traditional
element pairs (CaO and Al,Os3; MgO and FeO?), all four of those elements (i.e., both pairs
combined), and all nine major elements. For trace elements, we also used two traditional
element pairs (Eu and Ti; La and Yb) and both pairs combined, but also considered 13 elements
after dimensional reduction by trace element correlation, 25 non-fluid-mobile trace elements

(i.e., excluding Rb, Sr, Ba, Pb, and U), and all 30 considered trace elements.

3.2 Unsupervised machine learning models

We used unsupervised machine learning models to assess the degree of similarity between
the data distributions of the Labeled and Application datasets. The input data (all major
elements) used in the unsupervised machine learning models was centered log-ratio
transformed to prevent data closure (Aitchison, 1982).

We applied k-means clustering to the Parent dataset to measure the similarity of the
Labeled and Application datasets. k-means clustering is an unsupervised machine learning
algorithm that classifies a given dataset into & clusters. It defines & (an a priori fixed number)

centroids, or mean points, one for each cluster S, that minimizes a norm of the kind:

V=2 e K =X, (Eq. 6)

where X, are the mean points of all X ; €8;,and Vis the objective function. In other words,

k-means clustering can divide a dataset into several clusters. As a result, data in the same cluster
have similar information that is different from data in other clusters. For example, after
clustering of the Parent dataset, if the Labeled dataset is distributed in all clusters, then the

Labeled dataset contains the same data distribution as that the Application dataset. Therefore,
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we can utilize this result to predict the Application dataset. To visualize the k-means clustering
result, we used principal component analysis (PCA) (Smith, 2002) to reduce the dimensionality

to 2 dimensions.

3.3 Application of trained models to unlabeled data

Finally, we applied the best-performing supervised training model (see section 3.1) to the
Application dataset. For an unlabeled clinopyroxene analysis, the XGBoost model classifies it
as “positive” (metasomatized) or “negative” (unmetasomatized) based on its chemical

composition. For each xenolith sampling site /, we defined the mean probability of occurrence

of metasomatism ( p;) by averaging the predictive probabilities obtained in all » analyses at

that site as:

— Z?: D
p === (Eq. 7)
n

Based on the predicted probabilities of metasomatism computed for each sampling location,
we mapped the mean predicted probability of metasomatism at the global scale within 1° x 1°

bins, for a total of 599 bins that represent our study area.

4. Results and Discussion
4.1 Limitations of traditional models

Previous studies have proposed that metasomatism be identified based on elemental ratios
such as CaO/AlLO3, Mg#, Ti/Eu, or (La/Yb)n (Brey et al., 2008; Coltorti et al., 1999; Klemme
et al., 1995; Rudnick et al., 1993; Yaxley & Green, 1998; Zong & Liu, 2018). Although these
parameters effectively characterize metasomatism at specific sampling locations, they perform

poorly when used to predict metasomatism at the global scale (Figure 2).
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Classification results using elemental ratios are inconsistent with the petrographically
confirmed metasomatized natures of the samples. For example, among the 2,089 samples
labeled according to the presence of metasomatic minerals, the classification of metasomatized
and unmetasomatized xenoliths using clinopyroxene CaO/Al>Os has an accuracy rate of 47%
and 72%, respectively (Figure 2a). Other elemental ratios similarly show low accuracy in
predicting metasomatism (17%, 15%, and 53% for Mg#, Ti/Eu, and (La/Yb)x, respectively),
and higher accuracy in predicting unmetasomatized observations (69%, 100%, and 100%,
respectively; Figure 2b—d). Therefore, it is complicated to predict the occurrence of
metasomatism. Classic bi-variate plots are suitable for predicting unmetasomatized samples
because the broad data range of those samples overlaps that of metasomatized samples:
unmetasomatized samples are typically taken as having Ca/Al < 5, Mg# < 92, Ti/Eu > 1500,
or (La/Yb)n < 3, but these ranges also describe numerous metasomatized samples. Our results
show that globally, the accuracy of traditional bi-variate plots is relatively poor at only 43—
76.5%.

Identifications of metasomatism using different traditional element ratios are also
inconsistent (Figure S3). To demonstrate this, we labeled data with CaO/Al,O3 > 5 as “positive”
and <5 as “negative” (Figure S3a). However, plotting these data points, labeled by their
CaO/Al O3 ratios, on the MgO vs. FeO' diagram (and taking Mg# > 92 as also indicating
“positive”) exhibits a mean accuracy of 67% (Figure S3b). Similarly for trace elements,
applying labels based on Ti/Eu values to (La/Yb)x shows 75% accuracy (Figure S3c, d).
Therefore, the traditional elemental ratios CaO/A1>:03, MgO/FeO', Ti/Eu, and (La/Yb)n cannot

effectively and accurately classify metasomatism across different sampling sites worldwide.

4.2 Classification results and geochemical explanation
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Figure 4a presents the confusion matrix (see section 3.1) of the classification results based
on the XGBoost model trained using data for all nine major elements from the analyses in the
Labeled dataset. Based on the confusion matrix, we obtained a F1 score and accuracy of 0.968
and 0.949, respectively. Consistently, the results based on all 30 trace elements produce an F1
score and accuracy of 0.957 and 0.947, respectively (Figure 4c). These high F1 scores and
accuracies suggest that both major and trace element models may outperform traditional ion-
pair classification methods.

Based on the results of the XGBoost algorithm, we calculated the relative importance of
each feature to the metasomatism classification. As shown in Figure 4b, Na>O, FeO', MnO,
and CaO have the highest relative importance scores among the major elements, indicating that
they are important for discriminating whether a sample has been metasomatized. Indeed, the
presence of melt affects clinopyroxene compositions, producing clinopyroxene with lower
Mg# and higher Na/Ca (Yaxley & Green, 1998). Furthermore, Mn’s redistribution among
garnet, orthopyroxene, clinopyroxene, and olivine is affected by metasomatism (Achterbergh
et al., 2001; Norman, 1998). As shown in Figure 4d, Ho, Ce, U, Sr, Yb, and Ba are the most
important trace elements for classifying metasomatism, consistent with previous studies
evidencing that LREEs preferentially enter the mineral phase compared to HREEs during
interactions between peridotite and melts enriched in incompatible elements (Green et al., 1992;
Klemme et al., 1995; Rudnick et al., 1993; Sweeney et al., 1995). We note that most elements
have positive but small (<17%) feature importance values, suggesting that they may not play a
major role in classification of metasomatism, and that metasomatism cannot be effectively

identified by using those elements alone.

4.3 Feature correlation and selection
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The Parent dataset includes 21,605 observations (rows) corresponding to 9 major elements
and 2,967 observations corresponding to 30 trace elements, and we calculated Pearson’s
correlation coefficients (p) between major (Figure 5) and trace elements (Figure S4), where p
=1 (—1) indicates a perfect positive (negative) correlation, and p = 0 indicates no correlation.
Several major element pairs are highly correlated (e.g., p = —0.81 for SiO> and TiO2) or
moderately correlated (e.g., p = —0.61 for MgO and TiO), but most are poorly correlated (|p|
< 0.40; Figure 5). In comparison, less than a quarter of all trace element pairs are highly
correlated (|p| > 0.75; Figure S4).

Our PCA results (Figure S5) for the Parent dataset show that only 64% and 56% of the
variance in the major and trace element data, respectively, can be explained by two dimensions
(Figure S5). Therefore, the correlation matrix (Figures 5 and S4) and PCA results further
evidence that most elemental ratios provide distinct information and may independently
contribute to identifying metasomatism.

In general, XGBoost provides better classification results when it is trained on more
elements (Table 1). For example, the respective F1 scores and accuracies of models trained on
major element data from the Labeled dataset improved from 0.891-0.899 and 0.821-0.833
when only two elements were used to 0.941 and 0.910 for four elements and 0.968 and 0.949
for all nine major elements. For models trained on trace element data from the Labeled dataset,
the respective F1 scores and accuracies improved from 0.818-0.933 and 0.771-0.916 for two
elements to 0.945 and 0.931 for four elements and 0.960 and 0.950 for 13 elements, but do not
improve markedly when using 25 (0.954 and 0.943) or 30 elements (0.957 and 0.947). Our
results show that XGBoost performs optimally when trained on 13 features (elements) and does
not improve when more features are used. Despite that each feature shows a relatively low

variable importance value, the best predictive performance is achieved when most features are
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included. Given the data and within the limitations of the models, our results suggest that each

feature may contribute to partially explain metasomatism.

4.4 Evaluating ML model performance and applicability

The ten-fold cross-validation procedure we performed on the Labeled dataset before it
was randomly split into training (70%) and testing subsets (30%) resulted in a F1 score of 0.871
with standard deviation (s.d.) = 0.073 for the major element data and 0.918 (s.d. = 0.122) for
the trace element data. These results demonstrate that the Labeled dataset is relatively balanced.

In Table 1, the mean F1 score of the best model as determined by Grid Search Cross-
Validation on the major element training data was 0.950 (Majorl-9) and that for the trace
element data was 0.973 (Tracel-25). The XGBoost models can then be further evaluated by
applying these best models to the testing set (30% of the Labeled data). The best major and
trace element models achieved accuracies of 0.949 (Majorl-9) and 0.950 (Tracel-13),
respectively, when applied to the testing set (Table 1).

Unsupervised learning is useful for discerning patterns from the characteristics of the data
itself (Figure 6). In our k-means unsupervised model trained on the Parent dataset, the highest
silhouette coefficient (a measure of how similar an object is to its cluster compared to other
clustered, with high values indicating objects are well-matched to their clusters and poorly
matched to neighboring clusters; Rousseeuw, 1987) corresponds to two major element clusters
and two trace element clusters. The Labeled dataset is distributed across all clusters in which
the Application dataset is distributed, indicating that both the Application and Labeled datasets
have similar distributions. These results indicate that the model trained on the Labeled dataset

can be confidently applied to the Application dataset.

4.5 Probability of mantle metasomatism at the global scale
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When applied to the Application dataset, our model predictions are presented as the
probability of metasomatism, which ranges from 0 to 1 by definition. The global map of the
predicted mean probability of metasomatism identifies locations with high probabilities of
metasomatism (Figure 7). Here, we computed the mean for each location because multiple
analytical points were available at each location.

The map highlights variations in the distribution of the probability of metasomatism.
Figure 8 shows the predicted probability distributions at four localities. These locations were
chosen because they cover four continents and because a sufficient number of samples (>100)
were available at each to accurately estimate metasomatism. The results suggest bimodal
distributions at Hannuoba (North China Craton) and Zealandia (South Pacific Ocean), and
unimodal distributions with high probabilities of metasomatism at Pulpwood Harbour (South
Canadian Shield) and Finsch (Kaapvaal Craton). The variability observed in the results may
indicate that mantle metasomatism occurs widely but heterogeneously. Therefore, the
probability of metasomatism at the global scale is generally high, and melt heterogeneity may
reduce the likelihood of metasomatism in some locations. Alternatively, the machine learning
algorithms work well for moderately metasomatized samples from the classic stable cratons
(e.g., South Canadian Shield, Kaapvaal Craton), yet misclassify extensively metasomatized
samples affected by multiple metasomatic agents that first fertilized and later depleted mineral
chemical compositions (Zhang, 2009).

In addition, we also compared the probability of metasomatism to xenolith rock type. The
results show that no correlation exists between the probability of metasomatism and rock type,
including clinopyroxenite, dunite, harzburgite, lherzolite, peridotite, pyroxenite, and wehrlite
(Figure S6). Indeed, it has been suggested that metasomatism may occur in various tectonic
settings (Aiuppa et al., 2021; Dawson, 1984; Liu et al., 2021; Menzies & Murthy, 1980; Roden

& Murthy, 1985; Wang et al., 2022). In particular, carbon and water lower the melting
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temperatures of peridotites, and carbonated and hydrous silicate melts have been suggested as
effective metasomatic agents (Hirschmann, 2000; Dasgupta and Hirschmann, 2006; Sarafian
etal.,2017; Sun and Dasgupta, 2019; Thomson et al., 2016). However, considering only mantle
xenoliths might present a bias because they are preferentially affected by melt when brought
to the surface by eruptions, but cannot represent the average mantle composition (Artemieva,
2009).

To assess whether the probability of metasomatism is related to local lithospheric
structures, we compared our results with geophysical observations of crustal thickness,
lithospheric thickness, and S-wave velocity (at 50-200 km depth in 25-km depth intervals) and
parameterized the globe into a 1° % 1° grid (Figure S7). Within each cell, we averaged the
probabilities of metasomatism for each location and compared them with geophysical
observations (Figures S7, S8). We also used unsupervised machine learning to search for
clustering of metasomatism probabilities and geophysical parameters, but did not observe any
correlations (Figure S8). We identified three possible reasons for this. First, mantle
metasomatism may not necessarily be related to specific tectonic settings. Second,
metasomatism produces only secondary effects on geophysical parameters such as seismic
wave velocity, and a full separation of compositional from thermal factors is required to
identify potential metasomatic modifications to the lithospheric mantle. Third, our dataset does
not provide information on the depth or age distributions of the clinopyroxenes, making it
difficult to relate the predicted metasomatic probabilities to the lithospheric mantle at a specific
spatiotemporal location. Therefore, further efforts are required to reconcile the effects of
metasomatism on both the chemical and physical properties of the lithospheric mantle at the

global scale.

5. Conclusions
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We developed a model to predict whether xenolithic clinopyroxenes have been
metasomatized by applying a multidimensional approach using the XGBoost machine learning
algorithm. Our model can predict whether a given sample has been metasomatized with better
accuracy (95%) than traditional approaches using elemental ratios (43—77%). Our results
indicate that models trained on clinopyroxene compositions, including all major and at least 13
trace elements, achieve the best prediction accuracy compared to traditional methods using
only two or four elements. Furthermore, k-means clustering showed that the Application and
Labeled datasets had similar data distributions, indicating that the models trained on the
Labeled data can confidently be used to predict whether clinopyroxenes experienced
metasomatism based on unlabeled data. Finally, our results show that many locations are likely
to have undergone metasomatism and that metasomatism is heterogeneously distributed

worldwide.
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Figure Captions
Figure 1. Locations of sample analyses used in this study. The color of each sampling point
represents the number of analyses performed on clinopyroxenes in mantle xenoliths from that

location.
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Figure 2. The application of elemental ratios proposed in previous studies to attempt to identify
metasomatism in the global dataset. Symbols indicate whether each sample was
petrographically identified as metasomatized (‘positive’) or not affected by metasomatism
(‘negative’). (a) The accuracy (Eq. 2) of CaO versus Al,O3is 59.5%; (b) that of MgO versus
FeOT is 43%; (c) that of Ti versus Eu is 57.5%; and (d) that of La versus Yb is 76.5%.

Figure 3. Operational flow chart of the methods used in this study. Step I: the Labeled dataset
was used to train the XGBoost models and evaluate model performance. Step II: the
preprocessed Parent dataset was used to train k-means clustering models to verify that the data
distributions of the Labeled and Application datasets were similar. Step III: the best model was
used to predict the probability of metasomatism worldwide within 1° % 1° grid cells based on
the Application dataset.

Figure 4. Results of the XGBoost model trained on the Labeled dataset to classify
clinopyroxenes as affected or unaffected by metasomatism. (a, c¢) Confusion matrices of
classification results based on major and trace element compositions from the testing subset,
respectively. (b, d) The relative feature importances of major and trace elements, respectively.
Figure 5. Heat-map matrix of linear correlations (Pearson coefficients) between major
elements concentrations in clinopyroxenes of the Parent dataset (21,605 observations).
Figure 6. Unsupervised learning results illustrating the similarity of the (a) major and (b) trace
element data distributions in the Labeled (training, orange diamonds) and Application datasets
(gray circles).

Figure 7. Probability map of mantle metasomatism at 972 unique sampling locations. Symbol
color indicates the predicted probability of metasomatism from 0 (blue) to 1 (red).

Figure 8. Probability distributions of metasomatism at four selected sampling locations: (a)
Hannuoba, North China Craton; (b) Zealandia, South Pacific Ocean; (c¢) Pulpwood Harbour,

South Canadian Shield; and (d) Finsch, Kaapvaal Craton.
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