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Visualization of internal forces inside the proton in a classical relativistic model
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A classical model of a stable particle of finite size is studied. The model parameters can be chosen such that the described particle has the

mass and radius of a proton. Using the energy-momentum tensor (EMT), we show how the presence of long-range forces alters some notions

taken for granted in short-range systems. We focus our attention on the D-term form factor. The important conclusion is that a more careful

definition of the D-term may be required when long-range forces are present.
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1. Introduction

In this proceeding, we review the results for EMT densities

from Ref. [1] based on Białynicki-Birula’s classical model of

the proton (BB-model) [2]. The EMT can be studied through

generalized parton distribution functions in hard exclusive

reactions, and is of interest because it contains information

about the basic properties of a particle: the mass, spin, and

D-term [3–10]. Although less well-known, the D-term is of

equal importance as the other basic properties [11]. From the

D-term form factor D(t) and other EMT form factors, one

can learn about the 2D and 3D distributions of energy, angu-

lar momentum and internal forces [12–16]. Recently, first ex-

perimental insights on the D-term became available [17–20].

In Ref. [1] the BB-model [2] was used to understand the

impact of long-range forces not considered in other theoret-

ical studies in systems with exclusively short-range forces

[21-43]. The BB-model [1] yields qualitatively similar re-

sults to experimental insights [18,20]. Even though it is clas-

sical, the BB-model is well suited for our purpose since it lets

us investigate the impact of long-range forces without worry-

ing about technical difficulties that arise in quantum field the-

ory. We will later show that our conclusions about the impact

of the long-range forces are model independent.

2. EMT Tensor in the classical model

The BB-model [2] consists of “dust particles” in a spherically

symmetric region of radius R bound by three fields: a mas-

sive scalar field, φ, a massive vector field, V µ, and an elec-

tromagnetic field, Aµ. The particles couple to these fields via

the coupling constants gS , gV , and the electric charge e. The

classical field equations are relativistic and can be found in

Refs. [1, 2]. The parameters gS , mS , gV , mV correspond,

respectively, to the coupling constants and masses of sigma

and omega mesons as used in nuclear models [2].

In this work, we will focus on 3D EMT densities which

are well-defined concepts in the large-Nc limit, for nuclei

[13, 32], and of course in classical models [1]. For discus-

sions of 2D densities we refer to [14–16]. In Fig. 1a) we

show the energy density which yields the mass of the sys-

tem when integrated over the volume. T00(r) is always pos-

itive. The characteristic discontinuity at r = R is due to

dust particles which by the construction of the BB-model

are confined within the radius r ≤ R. The solutions to the

field equations are static with V µ = (V0, 0, 0, 0) and analo-

gous for the Coulomb field. At r > R, only the fields con-

tribute to the energy density which decay exponentially like

φ(r) ∼ (1/r) e−mSr and V0(r) ∼ (1/r) e−mV r for r ≫ R,

while the Coulomb potential is A0(r) ∼ (1/r) for r > R.

The exact expressions for the fields and dust particle distri-

bution can be found in [1, 2].

The pressure p(r) and shear force s(r) are defined

through the components of the stress tensor, i.e. the Tij com-

ponents of the EMT, as

T ij =

(

ei
re

j
r −

1

3
δij

)

s(r) + p(r) δij , (1)

where ei
r is the unit vector in the radial direction. The to-

tal pressure, p(r) = pscal(r) + pvec(r) + pCoul(r), receives

contributions from fields which are given by

pscal(r) = −
1

6
φ′(r)2 −

1

2
m2

S φ(r)2, (2)

pvec(r) =
1

6
V ′

0(r)2 +
1

2
m2

V V0(r)
2, (3)

pCoul(r) =
1

6
A′

0(r)
2. (4)

As can be seen in Eqs. (2–4), the scalar meson contribu-

tion is always negative, which corresponds to attractive forces

directed towards the inside. On the other hand, the contribu-

tions of the vector mesons and the Coulomb field are always

positive, which corresponds to repulsive forces directed to-

wards the outside. When we integrate

∞
∫

0

dr r2pi(r),



2 M. VARMA AND P. SCHWEITZER

FIGURE 1. EMT densities in the BB-model [1]. a) T00(r) (total) vs. r. b) p(r) and s(r) (total) vs. r in the region of smaller r (r . 2 fm).

c) r4p(r) and r4s(r) at very large r (r & 2 fm), where we see the new features (the power r4 is included to enhance the features).

we get −10.916MeV from the scalar fields, 10.891MeV
from the vector field, and a miniscule 0.025MeV from the

Coulomb field. This reflects that the proton is a bound state

of strong forces and the electromagnetic contribution plays a

minor role. But no contribution, no matter how small, can be

neglected as these numbers must add up exactly to zero and

fulfill von Laue condition,

∞
∫

0

dr r2p(r) = 0, (5)

which shows that the internal forces balance each other and is

a necessary condition for mechanical stability [21]. The von

Laue condition is exactly satisfied in the BB-model [1, 2].

The shear force is s(r) = φ′(r)2 − V ′

0(r)2 − A′

0(r)
2.

Notice that the dust particles do not contribute to s(r) and

p(r). The pressure and shear force are not independent but

connected by (2/3) s′(r) + (2/r) s(r) + p(r) = 0 due to

EMT conservation. The model results are shown in Fig. 1b).

The pressure inside the proton obtained from this model is

an order of magnitude smaller than in the chiral quark soli-

ton model [21] or that inferred from experiment [18]. This is

because the BB-model is based on “residual nuclear forces”

which are about an order of magnitude weaker than the strong

forces among quarks inside the proton.

The results for s(r) and p(r) in Fig. 1b) are qualitatively

very similar to what was found in other theoretical studies

[21-42]. In order to see the impact of long-range forces, it is

necessary to look more closely at the region of large r which

we shall do in the next section.

3. Effects of long-range forces on the EMT

In previous studies of strongly interacting systems governed

by short-range forces, three common features were observed.

The first feature is that the shear force is always positive. The

second feature is that the pressure has one node at some point

r0 with p(r) > 0 when r < r0 and the pressure is less than

zero for r > r0. This property arises from the fact that the

pressure must have at least one node to satisfy the von Laue

condition, and the ground state exhibits a single node. Fi-

nally, the combination of (2/3) s(r) + p(r), which is normal

force per unit area, is always positive.

The BB-model is different from other studies, as it in-

cludes long-range Coulomb forces. From the model expres-

sions for T00(r), s(r) and p(r), we obtain the long-distance

behavior which holds numerically for r & 2 fm,

T00(r) =
1

2

α

4π

~c

r4
+ . . . , (6)

s(r) = −
α

4π

~c

r4
+ . . . , (7)

p(r) =
1

6

α

4π

~c

r4
+ . . . , (8)

where the dots indicate contributions from the strong fields

which are exponentially suppressed, and α is the fine-

structure constant. We observe that T00(r) is always greater

than zero which is in agreement with all prior studies. Be-

cause of the 1/r4 decay of T00(r), the total energy converges

but the mean square radius of the energy density diverges.

In Fig. 1b) we saw that s(r) is positive, which agrees

with prior studies. But this is true only up to about 2.1 fm
at which point s(r) changes sign as shown in Fig. 1c). Simi-

larly, the picture of the pressure in the BB-model in Fig. 1b)

agrees with observations in other studies with p(r) turning

from positive to negative around 0.8 fm. However, looking

more closely in the region of larger r we see that p(r) ex-

hibits a second node around 2.4 fm, and then remains pos-

itive. For completeness, we remark that the normal force,

(2/3) s(r) + p(r), exhibits an unusual feature and turns neg-

ative in the large r region [1].

In view of what has been learned from other studies

based on short-range forces, these three features are counter-

intuitive. It is an important observation that the presence of

long-range interactions introduces new features which have

not been observed in prior studies of EMT densities. One

important practical implication is the divergence of D-term

which we shall review in the next section.
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4. Divergence of the D-term

The D-term, “the least known global property [13]”, is given

in terms of two equivalent definitions (arising from EMT con-

servation) in terms of shear force and pressure,

D = −
4

15
M

∫

d3r r2s(r) = M

∫

d3r r2p(r) . (9)

The Coulomb contributions to s(r) and p(r) are minuscule

in the region r < 2 fm, see Fig. 1b), giving the impression

that the electromagnetic interaction plays a very small role

for the description of the structure of a charged hadron. How-

ever small, the Coulomb contribution cannot be ignored, as it

tells is that there is an electric charge. Especially at large

r, the long-range 1/r behavior of the Coulomb contribution

takes over which has an important impact on the D-term. Be-

cause of the asymptotic behavior of s(r) and p(r) at large r
in Eqs. (7, 8), both expressions for the D-term in (9) diverge.

The fact that the D-term diverges due to long-range forces is

a new result, which has not been seen in prior studies.

In order to obtain a finite (“regularized”) value for the

D-term, one can introduce a regularization prescription. A

unique regularization method can be derived by observing

that, if the integrals were finite, then any linear combination

of the two equivalent expressions in Eq. (9) would give the

same expression for D. However, the divergence can be re-

moved by considering one and only one linear combination

which leads to finite regularized result for D, namely

Dreg = M

∫

d3r r2

[

4

9
s(r) +

8

3
p(r)

]

. (10)

Numerically, we find Dreg = −0.317, i.e. this regulariza-

tion method preserves the negative sign of the D-term that

has been observed in all prior studies. The numerical value

is about an order of magnitude smaller than e.g. in the quark

soliton model [21], which is expected as the BB-model is

based on “residual nuclear forces” that are weaker than the

strong interactions among quarks. It would be interesting to

see if other methods exist to regularize these divergences.

The form factor D(t) in the BB-model is negative in a

wide range of t. Only when (−t) . 2.8 × 10−4 GeV2

does it become positive, and diverges like D(t) ∼ 1/
√
−t

for still smaller t [1]. Such small momentum transfers are

currently beyond experimental reach. Noteworthy, the reg-

ularized value Dreg together with a quadrupole fit, provide

a very good approximation to the exact numerical model re-

sults for D(t) which confirms the practical usefulness of the

regularization method [1].

5. Model independent conclusions

Our results for the EMT densities are model dependent in

the region r < 2-3 fm, where the strong forces dominate.

However, at r ≫ 3 fm, exact QED calculations yield the

same EMT density results as us, since QED has to repro-

duce Maxwell’s classical theory at long distances. In par-

ticular, the results in Eqs. (6, 7, 8) are model independent

and were obtained in QED calculations [44, 45]. The di-

vergence of D(t) at small t due to QED effects was also

found in chiral perturbation theory calculations for charged

pions [46]. When comparing our results for D(t) to those

found using effective field theory techniques, we find that in

the region (−t) < 10−6 GeV2, the model exactly reproduces

QED [44, 46].

6. Conclusion

In Ref. [1], we used a classical model [2] which includes

long-range forces through the Coulomb contribution to cal-

culate the D-term. The classical character of the model was

not an impediment. It allowed us to investigate properties

affected by the presence of long-range forces without worry-

ing about the technical difficulties which arise when studying

more complicated quantum systems. We found that the D-

term of the proton diverges, in direct contrast to the conver-

gent results of previous studies. This feature is due to the infi-

nite range of the electromagnetic interaction and model inde-

pendent. In fact, the model gives T00(r), s(r), p(r) ∼ (α/r4)
at large r [1] which agrees with QED calculations [44,45]. In

the model, we were able to derive a unique regularization pre-

scription to obtain a meaningful, finite, negative value for the

D-term in agreement with other studies. Without such a reg-

ularization, the form factor D(t) changes sign and diverges

at very small momentum transfers below −t < 10−4 GeV2.

While this t-region is currently out of reach experimentally,

it indicates that it may be necessary to refine the definitions

of the EMT properties in the presence of long-range forces.

It is currently an open question how to do this in a model-

independent way, or whether the divergence of D(t) may be

remedied by considering QED radiative corrections.
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