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Abstract Material anisotropy may significantly
influence the behavior of fluid transport in sedimen-
tary basins and other environments with laminated or
foliated rocks. In this paper, we present a fracture
mechanics model to investigate primary migration of
petroleum (oil and gas) through propagation of a
vertical, buoyancy-driven blade crack in a transversely
isotropic source rock. The source rock is assumed to
have very low permeability and hence can be modeled
as a linear elastic medium. Fracture parameters (stress
intensity factor and crack opening displacement) are
derived using an equivalent set of anisotropic elastic
properties. The crack propagation velocity (i.e.,
petroleum migration velocity) and crack opening
(fracture aperture) are determined using a fracture
mechanics criterion together with the first order
approximation of plane Poiseuille flow equations of
fluid mechanics. For subhorizontal layering, we find
that the fluid migration velocity and fracture aperture
are significantly increased if the elastic modulus in the
vertical direction is smaller than that in the horizontal
direction. Finally, we discuss the applicability of the
formula for isotropic materials along with the
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equivalent anisotropic elastic parameters introduced
in this paper to evaluate fracture aperture for cracks in
anisotropic rocks.
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1 Introduction

Primary migration of petroleum is a process in which
oil and natural gas formed in the source rock are
transported from the source region to overlying carrier
rocks (Mann 1990; Hunt 1996). Several mechanisms
have been proposed for primary petroleum migration
in the source rock. These mechanisms include porous
fluid flow, molecular diffusion, and fracture perme-
ability (Mann 1990). Petroleum source rocks are
typically organic-rich shale characterized by extre-
mely low permeability, which renders porous flow
governed by Darcy’s law an unsatisfactory explana-
tion for primary migration in many instances, partic-
ularly where flow must occur across a strongly
laminated microfabric. Molecular diffusion and
migration in solution with water are typically consid-
ered as negligible contributors owing to the low
solubility of oil in water (England et al. 1987; Hunt
1996). Fracture permeability, on the other hand, has
been considered as the most likely mechanism for
primary petroleum migration (e.g., Palciauskas and
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Domenico 1980; Comer and Hinch 1987; Hunt 1990;
Miller 1995; Law and Spencer 1998; Nelson 2001;
Lash and Engelder 2005), which is supported by the
existence of bitumen-filled cracks found in samples
from source rocks (e.g., Comer and Hinch 1987; Hunt
1990; Mann 1990; Nelson 2001; Lash and Engelder
2005).

In this paper we examine primary petroleum
migration through crack propagation and in particular
the effect of host-rock anisotropy on the velocity and
physical dimensions of a mobile crack filled by oil or
gas ascending vertically through flat-lying, trans-
versely isotropic rocks. Primary petroleum migration
through fractures is generally driven by overpressures
that are generated in the petroleum source region,
buoyancy forces due to the density differences
between the host rock and petroleum in the crack, or
a combination of overpressure and buoyancy force.

Weertman (1971) first studied buoyancy-driven
propagation of an isolated, water-filled vertical crack.
During crack propagation the upper tip continuously
moves up as the rock is fractured and the lower crack
tip closes. Nunn (1996) considered propagation of an
oil-filled fracture and calculated the fracture propaga-
tion velocity using a first order approximation of
Poiseuille flow model. Nunn and Meulbroek (2002)
further studied propagation of a crack filled by
methane gas and considered the effects of gas
viscosity and compressibility on the gas migration
velocity. Jin and Johnson (2008) investigated the
effect of crack interaction on the fracture propagation
velocity and hence oil flux by considering multiple
parallel, oil-filled cracks. Jin et al. (2015) examined
the stability of a crack filled with methane and water
formed by dissociation of methane hydrates in low-
permeability marine muds. Besides cracks filled by
water, oil and gas, magma-filled isolated cracks have
also been studied. Dahm (2000a) simulated propaga-
tion direction of magma-filled fractures using a
boundary element method. Dahm (2000b) also dis-
cussed the shape and velocity for ascending fractures
filled by water, oil and magma. Roper and Lister
(2007) examined evolution of an isolated magma-
filled void from an initial elliptical shape to a crack-
like shape. Finally, Pan et al. (2014) simulated
interaction of CO,-filled cracks using a numerical
cellular automata method.

The existing studies on buoyancy-driven propaga-
tion of fluid-filled cracks assume that the host rock is
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an isotropic medium. In general, petroleum source
rocks are anisotropic, i.e., their properties are direc-
tion-dependent. For example, in laminated sedimen-
tary rocks (including shale) the elastic modulus
usually does not vary significantly within the bedding
plane. However, the modulus perpendicular to the
bedding plane is typically lower than that in the
bedding plane although the opposite can also occur in
some cases (Amadei and Pan 1992). Such sedimentary
rocks are usually modeled as transversely isotropic
media with the bedding plane as the transversely
isotropic plane (Bayuk et al. 2008; Nihei et al. 2011).
The anisotropy of petroleum source rocks may
increase or decrease the velocity of petroleum migra-
tion through fractures because the velocity is propor-
tional to the square of the average fracture aperture
(Nunn 1996), which is influenced by the material
anisotropy.

The present work investigates the effect of elastic
anisotropy of a host rock on petroleum migration
through buoyancy-driven fracture propagation. As far
as we are aware, the effects of elastic anisotropy on
buoyancy-driven propagation of fluid-fill fractures
have not previously been investigated. We assume that
the host rock is transversely isotropic in the bedding
plane and has very low permeability. For the purposes
of the current analysis, we also assume that the
bedding plane is horizontal, although the method can
be extended to any orientation of transverse aniso-
tropy. The host rock thus can be modeled as a linearly
elastic, transversely isotropic medium. This assump-
tion is reasonable for shale petroleum source rocks as
well as a broad range of foliated metamorphic rocks.
We note that cracks in general anisotropic rocks have
been investigated using both analytical and numerical
methods (e.g., Pan and Amadei 1996; Pan 1997; Chen
et al. 1998; Pan and Yuan 2000; Pan and Chen 2015).
The numerical methods developed in those works can
also be used to solve problems of cracks in arbitrary
orientations in an anisotropic rock. The present work
focuses on coupling between crack propagation and
petroleum migration and use of an equivalent set of
elastic parameters to investigate the effect of elastic
anisotropy of source rocks on primary petroleum
migration.

We consider a single blade crack filled by oil or gas
propagating in the vertical direction in the host source
rock. We first introduce the basic equations of
transversely isotropic elasticity and present an
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equivalent set of anisotropic material parameters. This
is the first application of these equivalent anisotropic
parameters in geophysics as far as we know. We then
use an integral equation method to solve the basic
anisotropic elasticity equations in terms of the equiv-
alent material parameters and derive the expressions
for crack propagation velocity and crack opening
displacement (i.e., fracture aperture). Numerical
results for migration of oil, methane gas and water
are presented to quantitatively illustrate the effect of
elastic anisotropy on the propagation velocity and
crack opening displacement.

2 Transversely isotropic elasticity

We consider vertical propagation of an isolated, fluid-
filled blade crack in a transversely isotropic host rock.
The isotropic plane is horizontal (x—y plane) in which
the elastic properties are the same in all in-plane
directions. The Young’s modulus in the vertical
direction (z-direction) differs from that in the isotropic
plane. The constitutive equations are as follows

Exx = ! Oxx St VY o Ozz5
E, E, E, =

Eyy _ L Oxx + i Oyy o Oz

E E, E
87777\@ o Mawqt ! Oz

E, E, 7 E %

1 1 1
Exy = maxya Eyz = m V25 o = mau

where ¢;; denotes stresses (i, ] = x, y, 2), &; strains, Ej,
and E, the Young’s moduli in the isotropic plane and
its perpendicular direction, respectively, vy, and vy,
the Poisson’s ratios in the isotropic plane and the x—z
(or y-z) plane, respectively, Gy, and Gy, the shear
moduli in the isotropic plane and the x—z (or y-z)
plane, respectively. Finally, the shear modulus Gyj, is
not independent and is given by

E h

Gp=——
hh 2(1 —i—th)

For plane strain in the x—z plane, ie., &, = &, =
&y = 0, the second equation in Eq. (1) gives

Eh
Oyy = VhhOxx 1 £ VvhOzz (2)
VvV

Substituting the equation above into Eq. (1) gives the
following stress—strain relations in plane strain

1 1
Exx :E*;laxx_EiLhO—zza
1 1
&7 = _E—Cho’xx +E_,;O—ZZ? (3)
1
Vax G %=

where 7., = 2¢,, and

1 1

— =—(1 = vipvp),

E, Eh( hh Vi)
1 1

~ — = (1 - thvvh)a

E, B (4)
1 Vo

— —"

7 Ev( + Vi),

Gy = Gy

in which vy, and v, are related by

T (5)
E, E,

vy represents contraction in the vertical direction due
to horizontal tension whereas vy}, represents contrac-
tion in the horizontal direction due to vertical tension.
The inverse form of Eq. (3) is

EEE, Ej, Ou, Ou,
0, =—>2 " (1~ ,
“ EE,—EE \E,6 0x 0z
__EE,E, Ouy | E, Ou; 6)
T _EE\ox E,0) (
vh*™=vh h™=v vh

Ou, Ouy
=03+ 75
where the following strain—displacement relations are
used

Ou,
&y = —
T az I

in which u, and u, are the displacements in the z- and x-
directions, respectively.

Following Krenk (1979), we introduce the follow-
ing material parameters

_6ux
XX — ax7

Ou, Ou,
[ e (7)
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VELE! E
Ey=/EE,, v= O
E' E;
EO vh h (8)

K=———W
4
2G),

and the transformations for coordinates, displace-
ments, and stresses

a=z/Vi, n=xVi
u = uz\/Z, Uy = ux/\/z
T =05/A T = A0k, Ti12=o0u(Kk+vo)/(1+vp)
©)
Now the constitutive relation in Eq. (6) can be
written in the following simplified form similar to that

for isotropic materials with “modulus” E, and “Pois-
son’s ratio” vy

E() <6u1 Ty abt2>
T P A_ 9
=9z v3 \ 0z 0 0z,
EO 6u2 aul
=0 (242 10
= 1—\%( +v0621 7 19)

02

E() aul auz
=577 a2 t=
2(1 =+ VO) 022 0z1

The equilibrium equations in terms of stresses g,

oy, and o, and the transformed stresses 7.z
(o, p=1,2)are

0o, Ooy
oz " ox O
00y | 004 —0 (11a)
oz  ox
and
6‘511 ( +V0) 6‘512
0z
(K +v9) 022 (11b)
(1 + Vo) 6112 @‘522

(k+v)0zy 0z

respectively. Substituting the transformed stresses in
Eq. (10) into Eq. (11b), we have the governing
equation for the transformed displacements as follows

%u o%u o%u
ﬂ1621+61 ﬁza 62_’
Z2 21022 (12)
O*u, %uy u,
oz2 +B1 073 +B26116z2_0

where f; and f, are constants given by
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Bi = 2(k+v0)/ (1 = v5),
By =vofy + 1

Parameters Ey, vy, A and k are an equivalent set of
elastic properties for transversely isotropic rocks
undergoing plane strain deformations in the x—
z plane. Equations (8) to (10) are equivalent to those
for orthotropic composites introduced by Krenk
(1979). By using these parameters and the transfor-
mations in Eq. (9), the governing equations for the
displacements of anisotropic materials are signifi-
cantly simplified, which is convenient for obtaining
closed-form solutions. Moreover, the similarity
between the transformed constitutive relation (10)
and that for isotropic materials allows examinations of
using the equations for isotropic materials with the
equivalent elastic properties to get approximate solu-
tions of more complex problems of anisotropic
materials.

(13)

3 A fluid-driven fracture propagation model

During the buoyancy-driven vertical propagation of an
isolated fluid-filled crack, the fluid flows upward along
the propagating fracture surfaces. The fluid pressure
on the crack surfaces may be related to the crack
opening displacement using the Poiseuville flow
equations in fluid mechanics as follows (Spence
et al. 1987; Roper and Lister 2007)

6 1 0 [4(%p.
o 1oz [‘5 <az ‘A”gﬂ (14)

where p. is the excess pressure on the crack surfaces, 0
the crack opening displacement, # the fluid viscosity,
Ap = Prock — Pfluid> Prock the rock denSity’ PAluid the
fluid density, g the gravitational acceleration, and Z a
fixed vertical coordinate. Consider a special case of
steady state crack propagation for which the crack
opening profile does not change as observed in the
moving coordinate attached to the crack (Spence et al.
1987; Lister 1991). Equation (14) now becomes
(Spence et al. 1987; Chen et al. 2007)

25 _ 10 [(0pe

where V is the crack propagation speed and z the
moving vertical coordinate with the origin at the crack
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center, i.e., the lower and upper crack tips are at
z = —a and z = a, respectively, where a is the half
crack length (Fig. 1). Integrate Eq. (15) twice to
obtain

Z
Pe(2) =pe(0) + Apgz — 120V / §7%dz (16)
0

Using Taylor series expansion for the integral in the
equation above we obtain the first order approximation
of the excess pressure as follows

127 V]
z.
9(0)
The fluid pressure in Eq. (17) is an equivalent form
of the assumption adopted by Weertman (1971),
Nakashima (1993) and Nunn (1996). A more general

form of Eq. (17) consistent with that of Nunn (1996)
can be written as

m@m@+P% (17)

Pe=po+piz (18)

where pq is the excess pressure at the crack center
(z =0) and p; the excess pressure gradient. Equa-
tion (17) reduces to that for a stationary crack when
the velocity V goes to zero. For the linear pressure
distribution in Egs. (18) or (17) to be reasonably
accurate for propagating cracks, the viscous flow
induced pressure drop must be much smaller than the

Host rock
Fluid e
Filled
Crack a
\ x
a

Fig. 1 A fluid-filled crack in the vertical z-direction

buoyancy force due to the density difference between
the host rock and fluid, i.e., 127 Va/52(0) or 12nVa/ &2

should be much smaller than Apga, where J,,, is the
average crack opening. This condition will be exam-
ined using the numerical examples in the following
Sect. 5.

While the linear pressure distribution may be a
reasonable approximation of fluid pressure under the
restricted condition discussed above, the argument is
based on a steady state crack propagation condition.
Steady state propagation has been adopted in a number
of investigations in magma driven crack propagation
(e.g., Spence et al. 1987; Lister 1991; Roper and Lister
2007; Chen et al. 2007) and oil/water migration
through propagating fractures (Nakashima 1993;
Nunn 1996; Jin and Johnson 2008). Roper and Lister
(2007) presented a steady state propagation solution
for a magma-filled semi-infinite crack. They also
examined evolution of an isolated magma-filled void
from an initial elliptical shape to a crack-like shape.
They concluded that the crack opening profile in the
head region approaches that for a steady state prop-
agating semi-infinite crack while the lower crack tip
remains stationary. Although upward propagation of
the entire crack (i.e., the lower tip also moves) was not
discussed in Roper and Lister (2007), their results
indicated that the crack opening profile may remain
approximately steady after the crack reaches its
critical length and starts to propagate upward during
which the lower tip closes and the crack length
remains constant. For a gas-filled crack, although the
crack length increases during crack propagation,
substantial crack length increase occurs only over
large propagation distances (the numerical example in
Sect. 5 shows that a 4 m long crack at 4000 m depth
increases to 4.6 m when the crack propagates to
2000 m depth). Hence, approximate steady state
condition may still prevail.

In this study, we use the linear pressure distribution
in Eq. (18) to examine the effects of rock anisotropy
on the behavior of fluid migration through steady
crack propagation. The pressure at the crack center pg
and the pressure gradient p; are determined by the
conditions that the upper crack tip propagates criti-
cally in the host rock and the lower crack tip closes
during propagation. In linear elastic fracture mechan-
ics, these conditions are described by

Ki(a) = K, Ki(—a)=0 (19)
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where Ki(a) and Ki(—a) are the stress intensity factors
at the upper and lower tips, respectively, and Kj. the
fracture toughness of the host rock for crack propa-
gation in the vertical direction. The pressure param-
eters po and p; can be determined using the condition
(19) once the stress intensity factors are obtained using
fracture mechanics. The condition Ky(—a) = 0 in
Eq. (19) at the closing lower crack tip may be
reasoned as follows. First, Kj(—a) cannot be negative
because a negative K; means crack surface interpen-
etration in the near tip region. Second, if Kj (—a) > 0,
the lower crack tip is still open and will not move when
the upper tip moves upward. Hence the crack length
becomes longer which corresponds to a larger crack
area as Kj remains K. at the upper tip and the crack
opening profile remains similar in steady state crack
propagation. The larger crack area implies significant
fluid flow into the crack from the host rock (to
maintain the crack volume in the incompressible
liquid case and to maintain the pressure in the
compressible gas case), which contradicts the assump-
tion of effectively impermeable host rock.

Figure 1 shows a vertical section (in the x—z plane)
of a fluid-filled vertical blade crack where 2a is the
length of the crack in the vertical direction. We assume
that the size of the crack in the perpendicular direction
to the x—z plane (y-direction) is relatively large so that
a two-dimensional (2D) plane strain model (Nunn
1996; Bai and Pollard 2001) may be used.

A singular integral equation method is used to
simulate propagation of the fluid-filled crack. The
transformed Eqs. (10) and (12) and the equivalent
elastic parameters Ey, v, 4 and k are used to solve the
crack problem. The boundary conditions in terms of
the transformed quantities are formulated as follows

T = Jpo + Wiz, |al<a/Vi, =0

(20a)
=0, || >a/Vi, =0 (20b)
T2 = Oa ‘Zl ‘ <0, 2= 0 (ZOC)
11,722, T12 — 0, 2475 — 00 (204)

The problem is first solved in the z;—z;, plane and the
final integral equation is transformed back to the
physical z—x plane as follows (Jin and Mai 1997)
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1
] b
- ,“_“2(1+K)_] S—rds_ EO(Po-f—Pl )7 (21)

Ir| <1

where r = z/a and ¢(r) is the unknown density
function defined by

Ou,
$2) = 2 lomo 22)
The solution of Eq. (21) has the following form
Y (r)
r) =
A
. 2(1+K) 1 7(0) 7(1)
=m0 )+l )

(23)

Once the solution of the above integral equation is
obtained, the stress intensity factors at the crack tips
can be calculated from

Kifa) = 5 vaa|pod " (1) + prad (1]

Ki(~a) = 5 V7| pod " (1) + praf (1)

(24)

Besides the stress intensity factor, the crack surface
opening displacement is also an important physical
quantity which can be calculated from

5(r) = _2a~/2(1 + x)

2/E

1 1
YO (s) ' (s)
X po/de—p]a/mds

(25)

Using the Chebyshev polynomial expansion method,
the solution of 1% (r) and 'V (r) can be found as

WO (r) = =27y (r) = —2r,
Y (r) = ~To(r) =127,

where T'(r) and T,(r) are degree 1 and 2 Chebyshev
polynomials of the first kind, respectively. The stress
intensity factors at the upper and lower crack tips are
found to be
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1
Ki(a) = (po + §p1a> Vna,
1 (27)
Ki(—a) = (po — §p1a> Vra
which are the same as those for isotropic materials.
The crack opening displacement (COD) is

v2(1
o(r) = % (2po + prar)V'1 —r? (28)
ALY
Substituting Eq. (27) into Eq. (19) yields the pres-
sure parameters p, and p; as follows
o KIC o KIC
Po=s/ma P'~ ama

Following Nakashima (1993) and Nunn (1996), the
crack propagation velocity, V, is approximately
determined using the following relationship based on
the Poiseuille flow

(29)

2

501/8
V= 121 (Apg —p1) (30)

where J,,. is the average separation of the two crack
surfaces (i.e., average fracture aperture) defined by

ay/2AT+R)

) a
5ave _2_61/ 5(Z)dZ—TEOpOTE (31)

—a

and py and p; given in Eq. (29). The velocity in
Eq. (30) is also consistent with the first order approx-
imation of fluid pressure in Eqgs. (17) and (18) [with
0(0) replaced by .l

The critical crack length for upward buoyancy-
driven propagation can be determined from Eqgs. (30)
and (29) using the condition V = 0, i.e.,

wes)”

which is the same as that for isotropic rocks given in
Nunn and Meulbroek (2002).

4 Density and viscosity of methane gas

We consider methane gas in the numerical analysis.
Both density and viscosity of methane gas are functions
of pressure and temperature, which continuously vary
during the upward vertical crack propagation. The

density is generally determined using an equation of
state (EOS) for the gas. The viscosity of the gas may be
determined using some curve-fitting schemes.

An iterative approach is used to determine the gas
density and the gas area which is also the crack area. It
is always assumed that Eq. (19) is satisfied during
crack propagation. For a given initial length of the
crack at an initial depth (equal to or greater than the
critical length), the crack volume (also the gas
volume) can be determined using Egs. (31) and (29)
(we assume a unit crack width (1 m) in the plane of the
blade crack in the calculation. The specific choice of
the crack width does not influence the results of crack
velocity and opening), and the average gas pressure in
the crack can be determined using the excess pressure
and confining pressure at the initial depth. The mole
and hence mass of the gas is first calculated using the
gas volume and pressure by the EOS. For a given
upward crack extension measured from the crack
center, a longer crack length is first assumed. The
crack volume can then be calculated using Eq. (31),
and the average gas pressure in the crack can be
calculated using Egs. (18) and (29), and the confining
pressure. The average pressure thus calculated is
subsequently used to determine the gas volume using
the EOS. If the volumes determined from Eq. (31) and
the EOS become equal (with a small tolerance), the
computation is terminated for this crack propagation
step and a new step is initiated. Otherwise, a new crack
length is assumed based on the gas volume from the
EOS and the computation continues until a converged
volume is obtained. The density is finally determined
using the volume and the mass of the gas (which is
assumed as a constant during propagation).

4.1 An equation of state for methane gas

We employ an EOS developed by Duan et al. (1992)
for methane gas. The EOS is valid over wide
temperature and pressure ranges (0—1000 °C and 0—
800 MPa, respectively). The P-V-T relation has the
following form

PV, Ci C (G C4
=1 2,3, 4
T, +V+V2+V4+V5
by b3 b3
*ww<@+w>l(w) (33)

where C; (i = 1, 2, 3, 4) are
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(& a1+ +T3, C, a4+ +T3,

(34)
a a
ap + i + ﬁ

C = ay + + T3 5 C4

In Egs. (33) and (34), P,= P/P.,, V,=VIV,
T,=T/T,., P is the fluid pressure, V is the molar
volume, T'is the absolute temperature, P. is the critical
pressure required to liquefy methane at the critical
temperature T, T, is the critical temperature above
which methane cannot be liquefied regardless of the
pressure applied, V. = RT /P, and R is the universal
gas constant. The EOS contains 15 constants: g;
(i=1,2,...,12), and b; (i = 1, 2, 3) which can be
found in Duan et al. (1992).

4.2 Viscosity of methane gas

We employ the model by Sanjari et al. (2011) for
methane gas. The model is valid for 0.01 < P, < 21
and 1.01 < T, < 3.0. The viscosity (in 0.1 pPa s) has
the following form

o+ P+ uP?+osInP, +osIn’ P+ 06T, + 0710’ T,
B 1+O€3P%+O€9T;1+0(10T:2+O(11T;3

(35)

where o (i =1, 2, ...,
et al. (2011).

11) can be found in Sanjari

5 Numerical results

This section presents numerical examples to illustrate
effects of elastic anisotropy on the crack propagation/
fluid migration velocity and average crack opening

(fracture aperture). In the numerical calculations, we
consider water, oil and methane gas. The host rock has
properties typical of shale (Nunn and Meulbroek
2002). Table 1 lists the material properties of the host
rock and the physical properties of water and oil. The
effect of elastic anisotropy is investigated by varying
the modulus ratio, E./E,, with fixed E,, given in
Table 1. The rock properties in the isotropic plane are
assumed to be the same as those of the isotropic rock in
all cases. In general anisotropic rocks, the fracture
toughness also depends on orientation (Chen et al.
1998). For the vertical crack propagation in trans-
versely isotropic rocks studied in this work, the
fracture toughness in the isotropic (horizontal) plane
is irrelevant and only the toughness for crack propa-
gation in the vertical direction is needed. We use the
fracture toughness data in Nunn (1996) and Nunn and
Meulbroek (2002) for the source rock in the Gulf of
Mexico. The crack is assumed to initiate at a depth of
4.0 km. The geothermal gradient is assumed to be
25 °C/km so that the initial temperature is 125 °C.
Figure 2 shows the propagation velocity of a water-
filled crack versus crack length for both isotropic host
rock and transversely isotropic rocks with E/E,, = 0.8
and 1.2, respectively. Water compressibility is ignored
so the crack area remains constant during propagation.
The propagation velocity for the crack in the
anisotropic rock with the smaller modulus ratio (E,/
E;, = 0.8) is more than 60% higher than that for the
crack in the isotropic rock. For example, the velocity
for the water-filled crack is about 0.33 mm/s for a
6.0 m long crack in the isotropic rock. The velocity
increases to 0.55 mm/s for the anisotropic case. The
propagation velocity for the crack in the anisotropic
rock with the larger modulus ratio (E/E, = 1.2),

Table 1 Properties of the
host rock, water and oil
(Nunn and Meulbroek

2002) Young’s modulus in the vertical direction
Poisson’s ratio in the xz plane
Shear modulus in the xz plane

Density of rock

Fracture toughness in the vertical direction

Density of water
Viscosity of water
Density of oil
Viscosity of oil

Young’s modulus in the horizontal plane

Poisson’s ratio in the horizontal plane

E, = 2800 MPa
Vpn = 0.4

E, = 0.8E,, 1.2E,
vy = 0.35, 0.45
G, = 900 MPa

Prock = 2300 kg/m®
Ki. = 0.1 MPa m'?
Pwaer = 1000 kg/m®
Nwater = 0.001 Pa s
Poil = 840 kg/m3
Noit = 0.01 Pa s
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Fig. 2 Propagation velocity of a water-filled crack versus crack
length for anisotropic rocks (E,/E;, = 0.8 and 1.2, v,, = 0.35)
and the corresponding isotropy medium

however, is slightly lower than that in the isotropic
rock. The critical crack length for upward buoyancy-
driven propagation is approximately 5.4 m according
to Eq. (32). The crack can become longer than the
critical length because it may intersect other water-
filled cracks during upward propagation thereby
trapping more fluid and increasing its length.

Figure 3 shows the average crack opening dis-
placement (COD) (i.e., average fracture aperture) for a
water-filled crack as a function of crack length for both
isotropic host rock and transversely isotropic rocks
with E,/E;, = 0.8 and 1.2, respectively. The COD for
the anisotropic rock with the smaller modulus ratio
(E\/Ey, = 0.8) is more than 25% larger than that for the
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Fig. 3 Average fracture aperture (i.e., crack opening displace-
ment) of a water-filled crack versus crack length for anisotropic
rocks (E,/E,, = 0.8 and 1.2, v;,, = 0.35) and the corresponding
isotropy medium

isotropic rock. This explains the faster crack propa-
gation velocity in the anisotropic rock shown in Fig. 2
because the propagation velocity is proportional to the
square of the average COD according to Eq. (30). On
the other hand, The COD for the anisotropic rock with
the larger modulus ratio (E,/E}, = 1.2) is smaller than
that for the isotropic rock.

The propagation velocity and the average COD for
an oil-filled crack are shown in Figs. 4 and 5,
respectively. The properties of the rocks are the same
as those in Figs. 2 and 3. The compressibility of oil is
also ignored. Similar to the water-filled crack, the
propagation velocity and the average COD for the
anisotropic rock with E, < E,, are significantly larger
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Fig. 4 Propagation velocity of an oil-filled crack versus crack
length for anisotropic rocks (E\/E;, = 0.8 and 1.2, v, = 0.35)
and the corresponding isotropy medium
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Fig. 5 Average fracture aperture (i.e., crack opening displace-
ment) of an oil-filled crack versus crack length for anisotropic
rocks (E\/E,, = 0.8 and 1.2, v;,, = 0.35) and the corresponding
isotropy medium
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than the corresponding quantity for the isotropic rock,
and propagation of the oil-filled crack is slower than
that of the water-filled crack: oil has a higher viscosity
and the propagation velocity is inversely proportional
to the viscosity. The critical length for the oil-filled
crack is approximately 5 m. As with water, the crack
can become longer than the critical length because it
may intersect other oil-filled cracks or pools during
upward propagation. Finally, the propagation velocity
and the average COD for the anisotropic rock with
E, > E, are smaller than the corresponding quantity
for the isotropic rock.

As discussed in Sect. 3, for the linear fluid pressure
distribution in Eq. (18) to be reasonably accurate for
propagating cracks, the viscous flow induced pressure
drop must be much smaller than the buoyancy force,

ie., 12yVa/ 53W = 36a should be much smaller than
Apga. We now examine if this condition is satisfied
with water-filled and oil-filled cracks in the above
examples with E,/E, = 0.8. For a water-filled crack
that is slightly longer than the critical length, i.e.,

2a = 5.4 m, we have Apga = 12753a (g = 9.81 m/
s?) and 12yVa/ 0% =36a. The condition is thus

satisfied. For a crack length of 2a¢ =6m,

1217Va/5§ve = 18964, which indicates that the fluid
pressure may be approximated by a linear function
only for cracks that are not much longer than the
critical length. For the oilfilled crack,

Apga = 14323a. For a crack length of 2a = 5.5 m,
12nVa/&2,, = 1951a, which also indicates that the

linear fluid pressure may be reasonable.

Unlike the cases of water- and oil-filled cracks, the
length of a gas-filled crack increases when it propa-
gates towards the surface (Nunn and Meulbroek
2002). This is because the gas volume increases with
decreasing pressure at shallower depths. Moreover,
the critical length of a gas-filled crack for upward
propagation depends on the depth. The critical length
for a methane gas filled crack is about 4 m according
to Eq. (32) and the gas density of 278 kg/m® at the
4 km depth. Figure 6a shows the length evolution for a
gas-filled crack during crack propagation. The crack
has an initial length of 4.02 m, slightly longer than the
critical length, at a depth of 4 km. The crack length
increases from its initial value to about 4.65 m when
the crack reaches a depth of 2 km. The modulus ratio
E/E,, however, does not affect the crack length
variation. This is because both the stress intensity

@ Springer

factors (Eq. 27) and the critical crack length (Eq. 32)
have the same expressions as those for isotropic rocks.
For a transversely isotropic rock, the fracture tough-
ness in the direction perpendicular to the isotropic
plane is different from that in the isotropic plane. In
this work we are mainly concerned with the effect of
elastic anisotropy and assume that the fracture tough-
ness for the corresponding isotropic rock has the same
value as that in the direction perpendicular to the
isotropic plane of the anisotropic rock.

Figure 6b, ¢ shows the average density and viscos-
ity of the gas in the crack during crack propagation.
The density decreases from 278 kg/m’ at the initial
4 km depth to 224 kg/m> when the crack reaches 2 km
depth. The viscosity decreases from 42 x 107° Pa s
at the 4 km depth to 30.5 x 107° Pa s at the 2 km
depth. Again, the density and viscosity are not
influenced by the modulus ratio.

Figure 7 shows the average COD versus depth
during propagation of a gas-filled crack with an initial
length of 4.02 m (slightly longer than the critical
length). The COD also increases when the crack
continuously propagates upward. For the isotropic
host rock, the average COD increases from 0.038 mm
at 4 km depth to 0.041 mm when the crack reaches
2 km depth. Compared with the isotropic rock case,
the crack in the anisotropic rock with E, < E}, has a
larger average COD, and that in the anisotropic rock
with E, > E;, has a lower average COD. With
increasing crack length and average COD in the
anisotropic rock with E, < Ey, the cross-sectional area
of the blade crack also increases when the crack
propagates to a shallower depth.

Figure 8 shows the propagation velocity for a gas-
filled crack with an initial length of 4.02 m. The
propagation velocity increases as the crack propagates
upward. This is because the average fracture aperture
and density difference become larger and the viscosity
becomes smaller at shallower depths, which results in
higher velocities as indicted by Eq. (30). For the
isotropic rock, the velocity increases from 0.016 mm/s
at the initial depth of 4 kmto 17.5 mm/s when the crack
propagates to a depth of 2 km. For the anisotropic rock
cases, the velocity reaches 28.5 and 16.2 mm/s at a
depth of 2 km for E,/E;, = 0.8 and 1.2, respectively.

The effect of Poisson’s ratio vy, in the xz plane on
the propagation velocity is examined in Fig. 9. We
consider a gas-filled crack with an initial length of
4.02 m at an initial depth of 4 km. The modulus ratio
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Fig. 9 Propagation velocity of a gas-filled crack versus depth
for an anisotropic rock (E./E, = 0.8, vy, = 0.45) and the
corresponding isotropy medium. The crack has an initial length
of 4.02 m

is taken as E./E, = 0.8. We use a Poisson’s ratio
Vv = 0.45, which is larger than that in the isotropic
plane (vy, = 0.4). The propagation velocity in the
anisotropic rock is still much higher than that in the
isotropic rock. However, the increase in velocity is
less significant compared with the case of v,, = 0.35
(<Van = 0.4) shown in Fig. 8.

Itis generally accepted that Poiseuille flow equations
can be used to describe flow of liquid (e.g., magma,
water and oil) in propagating fractures (Spence et al.
1987; Lister and Kerr 1991; Nakashima 1993; Rubin
1995; Nunn 1996; Roper and Lister 2007). For appli-
cation of the Poiseuille equations to gas flow in a
fracture, the Reynolds number should be carefully
examined so that no turbulent flow occurs. Using the
numbers for the 4.02 m long initial crack in an
anisotropic material with E/E;, = 0.8 and vy, = 0.35,
the Reynolds numbers may be estimated as follows

PgasVOave 278 x 0.026 x 1073 x 0.048 x 1073

Re —
¢ . 42 % 10-6
~0.008 at 4000 m
Re — pggsV5aV€
17
224 % 0.028 x 0.052 x 103
X X “ P ~10 at2000m

31.5 x 10

which are much smaller than the experimentally
measured critical Reynolds number of 1350 for
turbulent plane Poiseuville flow to occur (Dou and
Khoo 2011).
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Finally, we need to examine if 12yVa/ 5ive

smaller than Apga so that the linear fluid pressure can
be used. Using the numbers for an anisotropic material
with E/E,, = 0.8 and v, = 0.35 we have

is much

12¢Va /8%, = 5.69a,

ave

12nVa/&2,, = 3914a,

ave

Apga = 19836a at 4000 m
Apga = 20366a at 2000 m

The above results indicate that the linear fluid
pressure may be a reasonable approximation for the
crack that has not reach 2000 m depth. At shallower
depths, the viscous flow induced pressure drop will be
a significant fraction of the buoyancy induced pres-
sure, which may invalidate the use of the linear
pressure distribution.

6 Approximations of fracture aperture using
equations for isotropic materials

It is known from Sect. 2 that the transformed consti-
tutive relation (10) using the equivalent elastic prop-
erties has the same form as that for isotropic rocks. An
interesting question is whether or not approximate
solutions of complex problems for anisotropic rocks
can be obtained by employing the equations for
isotropic materials together with the equivalent elastic
properties. The advantage of this approach is that
solutions of many problems of isotropic materials are
available and they could be used as approximate
solutions for anisotropic rocks by simply employing
the equivalent properties. In this section, we explore
this possibility in determination of the average fracture
aperture.

For isotropic rocks with a modulus E and a
Poisson’s ratio v, the equivalent material constants in
Eq. (8) reduce to

E y
= — Vo =
T—v2 Ty

E() A= 1, k=1 (36)
i.e., Ey and v, represent the equivalent modulus and
Poisson’s ratio in plane strain. Using the above
constants, the average fracture aperture in Eq. (31)

reduces to

2
isoil_v
ave ~ E

apom (37)

An approximate average fracture aperture for
transversely isotropic rocks may be formulated if we
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adopt Eq. (37) for isotropic rocks and replace
(1 — VY/Eby 1/Ey, ie.,

o = - apu (38)

Now we examine the relative errors of using
Eq. (38) to calculate the aperture. We also examine
the error of using Eq. (37) with the modulus and
Poisson’s ratio in the isotropic plane of the trans-
versely isotropic rock, i.e., E, and v, for E and v,
respectively.

Using E, = 0.8E,, and the properties listed in
Table 1 in Eq. (31) (precise anisotropy), Eq. (38)
(approximate anisotropy) and Eq. (37) (isotropy with
E;, and v;;,), we obtain

Save = 3.830 x 10 *apy,
89" = 3.476 x 10 *apym,

ave

952 —=3.000 x 10 *apn

ave

The relative errors for the approximate anisotropic
and isotropic equations are 10.16 and 27.63%,
respectively. If the modulus in the vertical direction
increases to E, = 0.9F}, the relative errors reduce to
8.48 and 17.68%, respectively. Finally, if we use
E, = 0.8E} and a Poisson’s ratio vy, of 0.45 instead of
0.35, the relative errors become 5.32 and 17.61%,
respectively. These results suggest that in some cases
the formula for isotropic materials may be employed
to approximately determine fracture aperture for
transversely isotropic rocks by using the equivalent
elastic constant E, of the anisotropic material.

7 Concluding remarks

Effects of material anisotropy on primary petroleum
migration through buoyancy-driven propagation of an
isolated blade crack filled by oil or gas are investi-
gated. The host source rock is modeled as a linearly
elastic, transversely isotropic medium which is
described by an equivalent set of anisotropic elastic
properties that, as far as we know, is new to the
geophysics literature. We also assume steady state
crack propagation and use a linear fluid pressure
distribution in the crack (first order approximation of
Poiseuille flow), which may be reasonably accurate for
propagation of an isolated crack with a length equal to
or slightly longer than the critical length. Our model

thus may be directly used to investigate migration of
oil, gas and other fluids through transversely isotropic
rocks and sediments with very low permeability.
Parameters describing crack propagation and fluid
migration velocity (stress intensity factors and crack
opening displacement) are obtained by an integral
equation method. In the case where the plane of
transverse isotropy is horizontal, the numerical results
show that (a) fluid transport velocity is significantly
increased if the elastic modulus in the vertical
direction is smaller than that in the horizontal direc-
tion. The velocity is slightly decreased if the elastic
modulus in the vertical direction is larger than that in
the horizontal direction, (b) the length of a gas-filled
crack increases as the crack propagates from deeper to
shallower levels in the crust and the elastic anisotropy
does not influence this crack length increase, (c) the
crack opening displacement (i.e., fracture aperture)
and therefore velocity for a gas-filled crack increases
as the crack propagates to shallower depths, and (d) at
a given depth, the fracture aperture increases with a
decrease in the elastic modulus in the vertical direction
relative to that in the horizontal direction. Finally, in
some cases the formula for isotropic materials may be
employed to approximately determine fracture aper-
ture for transversely isotropic rocks by using the
equivalent elastic constant E; of the anisotropic
material. Extension of this conclusion to more com-
plex problems of anisotropic materials requires further
investigation.
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