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Abstract Material anisotropy may significantly

influence the behavior of fluid transport in sedimen-

tary basins and other environments with laminated or

foliated rocks. In this paper, we present a fracture

mechanics model to investigate primary migration of

petroleum (oil and gas) through propagation of a

vertical, buoyancy-driven blade crack in a transversely

isotropic source rock. The source rock is assumed to

have very low permeability and hence can be modeled

as a linear elastic medium. Fracture parameters (stress

intensity factor and crack opening displacement) are

derived using an equivalent set of anisotropic elastic

properties. The crack propagation velocity (i.e.,

petroleum migration velocity) and crack opening

(fracture aperture) are determined using a fracture

mechanics criterion together with the first order

approximation of plane Poiseuille flow equations of

fluid mechanics. For subhorizontal layering, we find

that the fluid migration velocity and fracture aperture

are significantly increased if the elastic modulus in the

vertical direction is smaller than that in the horizontal

direction. Finally, we discuss the applicability of the

formula for isotropic materials along with the

equivalent anisotropic elastic parameters introduced

in this paper to evaluate fracture aperture for cracks in

anisotropic rocks.

Keywords Fluid-filled crack � Crack propagation �
Primary petroleum migration �Anisotropy � Buoyancy

1 Introduction

Primary migration of petroleum is a process in which

oil and natural gas formed in the source rock are

transported from the source region to overlying carrier

rocks (Mann 1990; Hunt 1996). Several mechanisms

have been proposed for primary petroleum migration

in the source rock. These mechanisms include porous

fluid flow, molecular diffusion, and fracture perme-

ability (Mann 1990). Petroleum source rocks are

typically organic-rich shale characterized by extre-

mely low permeability, which renders porous flow

governed by Darcy’s law an unsatisfactory explana-

tion for primary migration in many instances, partic-

ularly where flow must occur across a strongly

laminated microfabric. Molecular diffusion and

migration in solution with water are typically consid-

ered as negligible contributors owing to the low

solubility of oil in water (England et al. 1987; Hunt

1996). Fracture permeability, on the other hand, has

been considered as the most likely mechanism for

primary petroleum migration (e.g., Palciauskas and
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Domenico 1980; Comer and Hinch 1987; Hunt 1990;

Miller 1995; Law and Spencer 1998; Nelson 2001;

Lash and Engelder 2005), which is supported by the

existence of bitumen-filled cracks found in samples

from source rocks (e.g., Comer and Hinch 1987; Hunt

1990; Mann 1990; Nelson 2001; Lash and Engelder

2005).

In this paper we examine primary petroleum

migration through crack propagation and in particular

the effect of host-rock anisotropy on the velocity and

physical dimensions of a mobile crack filled by oil or

gas ascending vertically through flat-lying, trans-

versely isotropic rocks. Primary petroleum migration

through fractures is generally driven by overpressures

that are generated in the petroleum source region,

buoyancy forces due to the density differences

between the host rock and petroleum in the crack, or

a combination of overpressure and buoyancy force.

Weertman (1971) first studied buoyancy-driven

propagation of an isolated, water-filled vertical crack.

During crack propagation the upper tip continuously

moves up as the rock is fractured and the lower crack

tip closes. Nunn (1996) considered propagation of an

oil-filled fracture and calculated the fracture propaga-

tion velocity using a first order approximation of

Poiseuille flow model. Nunn and Meulbroek (2002)

further studied propagation of a crack filled by

methane gas and considered the effects of gas

viscosity and compressibility on the gas migration

velocity. Jin and Johnson (2008) investigated the

effect of crack interaction on the fracture propagation

velocity and hence oil flux by considering multiple

parallel, oil-filled cracks. Jin et al. (2015) examined

the stability of a crack filled with methane and water

formed by dissociation of methane hydrates in low-

permeability marine muds. Besides cracks filled by

water, oil and gas, magma-filled isolated cracks have

also been studied. Dahm (2000a) simulated propaga-

tion direction of magma-filled fractures using a

boundary element method. Dahm (2000b) also dis-

cussed the shape and velocity for ascending fractures

filled by water, oil and magma. Roper and Lister

(2007) examined evolution of an isolated magma-

filled void from an initial elliptical shape to a crack-

like shape. Finally, Pan et al. (2014) simulated

interaction of CO2-filled cracks using a numerical

cellular automata method.

The existing studies on buoyancy-driven propaga-

tion of fluid-filled cracks assume that the host rock is

an isotropic medium. In general, petroleum source

rocks are anisotropic, i.e., their properties are direc-

tion-dependent. For example, in laminated sedimen-

tary rocks (including shale) the elastic modulus

usually does not vary significantly within the bedding

plane. However, the modulus perpendicular to the

bedding plane is typically lower than that in the

bedding plane although the opposite can also occur in

some cases (Amadei and Pan 1992). Such sedimentary

rocks are usually modeled as transversely isotropic

media with the bedding plane as the transversely

isotropic plane (Bayuk et al. 2008; Nihei et al. 2011).

The anisotropy of petroleum source rocks may

increase or decrease the velocity of petroleum migra-

tion through fractures because the velocity is propor-

tional to the square of the average fracture aperture

(Nunn 1996), which is influenced by the material

anisotropy.

The present work investigates the effect of elastic

anisotropy of a host rock on petroleum migration

through buoyancy-driven fracture propagation. As far

as we are aware, the effects of elastic anisotropy on

buoyancy-driven propagation of fluid-fill fractures

have not previously been investigated.We assume that

the host rock is transversely isotropic in the bedding

plane and has very low permeability. For the purposes

of the current analysis, we also assume that the

bedding plane is horizontal, although the method can

be extended to any orientation of transverse aniso-

tropy. The host rock thus can be modeled as a linearly

elastic, transversely isotropic medium. This assump-

tion is reasonable for shale petroleum source rocks as

well as a broad range of foliated metamorphic rocks.

We note that cracks in general anisotropic rocks have

been investigated using both analytical and numerical

methods (e.g., Pan and Amadei 1996; Pan 1997; Chen

et al. 1998; Pan and Yuan 2000; Pan and Chen 2015).

The numerical methods developed in those works can

also be used to solve problems of cracks in arbitrary

orientations in an anisotropic rock. The present work

focuses on coupling between crack propagation and

petroleum migration and use of an equivalent set of

elastic parameters to investigate the effect of elastic

anisotropy of source rocks on primary petroleum

migration.

We consider a single blade crack filled by oil or gas

propagating in the vertical direction in the host source

rock. We first introduce the basic equations of

transversely isotropic elasticity and present an
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equivalent set of anisotropic material parameters. This

is the first application of these equivalent anisotropic

parameters in geophysics as far as we know. We then

use an integral equation method to solve the basic

anisotropic elasticity equations in terms of the equiv-

alent material parameters and derive the expressions

for crack propagation velocity and crack opening

displacement (i.e., fracture aperture). Numerical

results for migration of oil, methane gas and water

are presented to quantitatively illustrate the effect of

elastic anisotropy on the propagation velocity and

crack opening displacement.

2 Transversely isotropic elasticity

We consider vertical propagation of an isolated, fluid-

filled blade crack in a transversely isotropic host rock.

The isotropic plane is horizontal (x–y plane) in which

the elastic properties are the same in all in-plane

directions. The Young’s modulus in the vertical

direction (z-direction) differs from that in the isotropic

plane. The constitutive equations are as follows

exx ¼
1

Eh

rxx �
mhh
Eh

ryy �
mvh
Ev

rzz;

eyy ¼ � mhh
Eh

rxx þ
1

Eh

ryy �
mvh
Ev

rzz;

ezz ¼ � mvh
Ev

rxx �
mvh
Ev

ryy þ
1

Ev

rzz;

exy ¼
1

2Ghh

rxy; eyz ¼
1

2Gvh

ryz; ezx ¼
1

2Gvh

rzx

ð1Þ

where rij denotes stresses (i, j = x, y, z), eij strains, Eh

and Ev the Young’s moduli in the isotropic plane and

its perpendicular direction, respectively, mhh and mvh
the Poisson’s ratios in the isotropic plane and the x–z

(or y–z) plane, respectively, Ghh and Gvh the shear

moduli in the isotropic plane and the x–z (or y–z)

plane, respectively. Finally, the shear modulus Ghh is

not independent and is given by

Ghh ¼
Eh

2 1þ mhhð Þ

For plane strain in the x–z plane, i.e., eyy = eyz =
exy = 0, the second equation in Eq. (1) gives

ryy ¼ mhhrxx þ
Eh

Ev

mvhrzz ð2Þ

Substituting the equation above into Eq. (1) gives the

following stress–strain relations in plane strain

exx ¼
1

E0
h

rxx �
1

E0
mh

rzz;

ezz ¼ � 1

E0
mh

rxx þ
1

E0
m
rzz;

czx ¼
1

G0
mh

rzx

ð3Þ

where czx = 2ezx and

1

E0
h

¼ 1

Eh

1� mhhmhhð Þ;

1

E0
m
¼ 1

Ev

1� mhvmvhð Þ;

1

E0
mh

¼ mvh
Ev

1þ mhhð Þ;

G0
mh ¼ Gvh

ð4Þ

in which mhv and mvh are related by

mhv
Eh

¼ mvh
Ev

ð5Þ

mhv represents contraction in the vertical direction due

to horizontal tension whereas mvh represents contrac-
tion in the horizontal direction due to vertical tension.

The inverse form of Eq. (3) is

rzz ¼
E0
vE

0
vhE

0
vh

E0
vhE

0
vh � E0

hE
0
v

E0
h

E0
vh

oux

ox
þ ouz

oz

� �
;

rxx ¼
E0
hE

0
vhE

0
vh

E0
vhE

0
vh � E0

hE
0
v

oux

ox
þ E0

v

E0
vh

ouz

oz

� �
;

rzx ¼ G0
vh

ouz

ox
þ oux

oz

� �
ð6Þ

where the following strain–displacement relations are

used

ezz ¼
ouz

oz
; exx ¼

oux

ox
; czx ¼

oux

oz
þ ouz

ox
ð7Þ

in which uz and ux are the displacements in the z- and x-

directions, respectively.

Following Krenk (1979), we introduce the follow-

ing material parameters
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E0 ¼
ffiffiffiffiffiffiffiffiffiffi
E0
hE

0
v

q
; m0 ¼

ffiffiffiffiffiffiffiffiffiffi
E0
hE

0
v

p
E0
vh

; k4 ¼ E0
v

E0
h

;

j ¼ E0

2G0
vh

� m0

ð8Þ

and the transformations for coordinates, displace-

ments, and stresses

z1 ¼ z=
ffiffiffi
k

p
; z2 ¼ x

ffiffiffi
k

p

u1 ¼ uz
ffiffiffi
k

p
; u2 ¼ ux=

ffiffiffi
k

p

s11 ¼ rzz=k; s22 ¼ krxx; s12 ¼ rzx jþ m0ð Þ= 1þ m0ð Þ
ð9Þ

Now the constitutive relation in Eq. (6) can be

written in the following simplified form similar to that

for isotropic materials with ‘‘modulus’’ E0 and ‘‘Pois-

son’s ratio’’ m0

s11 ¼
E0

1� m20

ou1

oz1
þ m0

ou2

oz2

� �
;

s22 ¼
E0

1� m20

ou2

oz2
þ m0

ou1

oz1

� �
;

s12 ¼
E0

2 1þ m0ð Þ
ou1

oz2
þ ou2

oz1

� �
ð10Þ

The equilibrium equations in terms of stresses rzz,
rxx and rzx, and the transformed stresses sab
(a, b = 1, 2) are

orzz
oz

þ orzx
ox

¼ 0;

orzx
oz

þ orxx
ox

¼ 0

ð11aÞ

and

os11
oz1

þ 1þ m0ð Þ
jþ m0ð Þ

os12
oz2

¼ 0;

1þ m0ð Þ
jþ m0ð Þ

os12
oz1

þ os22
oz2

¼ 0

ð11bÞ

respectively. Substituting the transformed stresses in

Eq. (10) into Eq. (11b), we have the governing

equation for the transformed displacements as follows

b1
o2u1

oz21
þ o2u1

oz22
þ b2

o2u2

oz1oz2
¼ 0;

o2u2

oz21
þ b1

o2u2

oz22
þ b2

o2u1

oz1oz2
¼ 0

ð12Þ

where b1 and b2 are constants given by

b1 ¼ 2 jþ m0ð Þ= 1� m20
� �

;

b2 ¼ m0b1 þ 1
ð13Þ

Parameters E0, m0, k and j are an equivalent set of

elastic properties for transversely isotropic rocks

undergoing plane strain deformations in the x–

z plane. Equations (8) to (10) are equivalent to those

for orthotropic composites introduced by Krenk

(1979). By using these parameters and the transfor-

mations in Eq. (9), the governing equations for the

displacements of anisotropic materials are signifi-

cantly simplified, which is convenient for obtaining

closed-form solutions. Moreover, the similarity

between the transformed constitutive relation (10)

and that for isotropic materials allows examinations of

using the equations for isotropic materials with the

equivalent elastic properties to get approximate solu-

tions of more complex problems of anisotropic

materials.

3 A fluid-driven fracture propagation model

During the buoyancy-driven vertical propagation of an

isolated fluid-filled crack, the fluid flows upward along

the propagating fracture surfaces. The fluid pressure

on the crack surfaces may be related to the crack

opening displacement using the Poiseuville flow

equations in fluid mechanics as follows (Spence

et al. 1987; Roper and Lister 2007)

od
ot

¼ 1

12g
o

oZ
d3

ope

oZ
� Dqg

� �� �
ð14Þ

where pe is the excess pressure on the crack surfaces, d
the crack opening displacement, g the fluid viscosity,

Dq = qrock - qfluid, qrock the rock density, qfluid the

fluid density, g the gravitational acceleration, and Z a

fixed vertical coordinate. Consider a special case of

steady state crack propagation for which the crack

opening profile does not change as observed in the

moving coordinate attached to the crack (Spence et al.

1987; Lister 1991). Equation (14) now becomes

(Spence et al. 1987; Chen et al. 2007)

�V
od
oz

¼ 1

12g
o

oz
d3

ope

oz
� Dqg

� �� �
ð15Þ

where V is the crack propagation speed and z the

moving vertical coordinate with the origin at the crack
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center, i.e., the lower and upper crack tips are at

z = -a and z = a, respectively, where a is the half

crack length (Fig. 1). Integrate Eq. (15) twice to

obtain

pe zð Þ ¼ pe 0ð Þ þ Dqgz� 12gV
Zz

0

d�2dz ð16Þ

Using Taylor series expansion for the integral in the

equation above we obtain the first order approximation

of the excess pressure as follows

pe zð Þ ¼ pe 0ð Þ þ Dqg� 12gV

d2 0ð Þ

� �
z: ð17Þ

The fluid pressure in Eq. (17) is an equivalent form

of the assumption adopted by Weertman (1971),

Nakashima (1993) and Nunn (1996). A more general

form of Eq. (17) consistent with that of Nunn (1996)

can be written as

pe ¼ p0 þ p1z ð18Þ

where p0 is the excess pressure at the crack center

(z = 0) and p1 the excess pressure gradient. Equa-

tion (17) reduces to that for a stationary crack when

the velocity V goes to zero. For the linear pressure

distribution in Eqs. (18) or (17) to be reasonably

accurate for propagating cracks, the viscous flow

induced pressure drop must be much smaller than the

buoyancy force due to the density difference between

the host rock and fluid, i.e., 12gVa/d2(0) or 12gVa=d2ave
should be much smaller than Dqga, where dave is the
average crack opening. This condition will be exam-

ined using the numerical examples in the following

Sect. 5.

While the linear pressure distribution may be a

reasonable approximation of fluid pressure under the

restricted condition discussed above, the argument is

based on a steady state crack propagation condition.

Steady state propagation has been adopted in a number

of investigations in magma driven crack propagation

(e.g., Spence et al. 1987; Lister 1991; Roper and Lister

2007; Chen et al. 2007) and oil/water migration

through propagating fractures (Nakashima 1993;

Nunn 1996; Jin and Johnson 2008). Roper and Lister

(2007) presented a steady state propagation solution

for a magma-filled semi-infinite crack. They also

examined evolution of an isolated magma-filled void

from an initial elliptical shape to a crack-like shape.

They concluded that the crack opening profile in the

head region approaches that for a steady state prop-

agating semi-infinite crack while the lower crack tip

remains stationary. Although upward propagation of

the entire crack (i.e., the lower tip also moves) was not

discussed in Roper and Lister (2007), their results

indicated that the crack opening profile may remain

approximately steady after the crack reaches its

critical length and starts to propagate upward during

which the lower tip closes and the crack length

remains constant. For a gas-filled crack, although the

crack length increases during crack propagation,

substantial crack length increase occurs only over

large propagation distances (the numerical example in

Sect. 5 shows that a 4 m long crack at 4000 m depth

increases to 4.6 m when the crack propagates to

2000 m depth). Hence, approximate steady state

condition may still prevail.

In this study, we use the linear pressure distribution

in Eq. (18) to examine the effects of rock anisotropy

on the behavior of fluid migration through steady

crack propagation. The pressure at the crack center p0
and the pressure gradient p1 are determined by the

conditions that the upper crack tip propagates criti-

cally in the host rock and the lower crack tip closes

during propagation. In linear elastic fracture mechan-

ics, these conditions are described by

KI að Þ ¼ KIc; KI �að Þ ¼ 0 ð19Þ

x

z

a

Fluid
Filled
Crack a

Host rock

Fig. 1 A fluid-filled crack in the vertical z-direction
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where KI(a) and KI(-a) are the stress intensity factors

at the upper and lower tips, respectively, and KIc the

fracture toughness of the host rock for crack propa-

gation in the vertical direction. The pressure param-

eters p0 and p1 can be determined using the condition

(19) once the stress intensity factors are obtained using

fracture mechanics. The condition KI(-a) = 0 in

Eq. (19) at the closing lower crack tip may be

reasoned as follows. First, KI(-a) cannot be negative

because a negative KI means crack surface interpen-

etration in the near tip region. Second, if KI (-a)[ 0,

the lower crack tip is still open and will not move when

the upper tip moves upward. Hence the crack length

becomes longer which corresponds to a larger crack

area as KI remains KIc at the upper tip and the crack

opening profile remains similar in steady state crack

propagation. The larger crack area implies significant

fluid flow into the crack from the host rock (to

maintain the crack volume in the incompressible

liquid case and to maintain the pressure in the

compressible gas case), which contradicts the assump-

tion of effectively impermeable host rock.

Figure 1 shows a vertical section (in the x–z plane)

of a fluid-filled vertical blade crack where 2a is the

length of the crack in the vertical direction.We assume

that the size of the crack in the perpendicular direction

to the x–z plane (y-direction) is relatively large so that

a two-dimensional (2D) plane strain model (Nunn

1996; Bai and Pollard 2001) may be used.

A singular integral equation method is used to

simulate propagation of the fluid-filled crack. The

transformed Eqs. (10) and (12) and the equivalent

elastic parameters E0, m0, k and j are used to solve the

crack problem. The boundary conditions in terms of

the transformed quantities are formulated as follows

s22 ¼ kp0 þ k
ffiffiffi
k

p
p1z1; z1j j � a=

ffiffiffi
k

p
; z2 ¼ 0

ð20aÞ

u2 ¼ 0; z1j j[ a=
ffiffiffi
k

p
; z2 ¼ 0 ð20bÞ

s12 ¼ 0; z1j j\1; z2 ¼ 0 ð20cÞ

s11; s22; s12 ! 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

q
! 1 ð20dÞ

The problem is first solved in the z1–z2 plane and the

final integral equation is transformed back to the

physical z–x plane as follows (Jin and Mai 1997)

k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jð Þ

p
Z1

�1

/ sð Þ
s� r

ds ¼ � 1

E0

p0 þ p1arð Þ;

rj j � 1

ð21Þ

where r = z/a and /(r) is the unknown density

function defined by

/ zð Þ ¼ oux

oz
x¼0j ð22Þ

The solution of Eq. (21) has the following form

/ rð Þ ¼ w rð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jð Þ

p
2kE0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p p0 ~w
0ð Þ rð Þ þ p1a ~w

1ð Þ rð Þ
h i

ð23Þ

Once the solution of the above integral equation is

obtained, the stress intensity factors at the crack tips

can be calculated from

KI að Þ ¼ � 1

2

ffiffiffiffiffiffi
pa

p
p0 ~w

0ð Þ 1ð Þ þ p1a ~w
1ð Þ 1ð Þ

h i
;

KI �að Þ ¼ 1

2

ffiffiffiffiffiffi
pa

p
p0 ~w

0ð Þ �1ð Þ þ p1a ~w
1ð Þ �1ð Þ

h i

ð24Þ

Besides the stress intensity factor, the crack surface

opening displacement is also an important physical

quantity which can be calculated from

d rð Þ ¼ � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jð Þ

p
2kE0

� p0

Z1

r

~w 0ð Þ sð Þffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p dsþ p1a

Z1

r

~w 1ð Þ sð Þffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds

2
4

3
5

ð25Þ

Using the Chebyshev polynomial expansionmethod,

the solution of ~wð0ÞðrÞ and ~wð1ÞðrÞ can be found as

~w 0ð Þ rð Þ ¼ �2T1 rð Þ ¼ �2r; �1� r� 1

~w 1ð Þ rð Þ ¼ �T2 rð Þ ¼ 1� 2r2; �1� r� 1
ð26Þ

where T1(r) and T2(r) are degree 1 and 2 Chebyshev

polynomials of the first kind, respectively. The stress

intensity factors at the upper and lower crack tips are

found to be

Geomech. Geophys. Geo-energ. Geo-resour.

123

Author's personal copy



KI að Þ ¼ p0 þ
1

2
p1a

� � ffiffiffiffiffiffi
pa

p
;

KI �að Þ ¼ p0 �
1

2
p1a

� � ffiffiffiffiffiffi
pa

p ð27Þ

which are the same as those for isotropic materials.

The crack opening displacement (COD) is

d rð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jð Þ

p
kE0

2p0 þ p1arð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ð28Þ

Substituting Eq. (27) into Eq. (19) yields the pres-

sure parameters p0 and p1 as follows

p0 ¼
KIc

2
ffiffiffiffiffiffi
pa

p ; p1 ¼
KIc

a
ffiffiffiffiffiffi
pa

p ð29Þ

Following Nakashima (1993) and Nunn (1996), the

crack propagation velocity, V, is approximately

determined using the following relationship based on

the Poiseuille flow

V ¼ d2ave
12g

Dqg� p1ð Þ ð30Þ

where dave is the average separation of the two crack

surfaces (i.e., average fracture aperture) defined by

dave ¼
1

2a

Za

�a

d zð Þdz ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jð Þ

p
2kE0

p0p ð31Þ

and p0 and p1 given in Eq. (29). The velocity in

Eq. (30) is also consistent with the first order approx-

imation of fluid pressure in Eqs. (17) and (18) [with

d(0) replaced by dave].
The critical crack length for upward buoyancy-

driven propagation can be determined from Eqs. (30)

and (29) using the condition V = 0, i.e.,

2ac ¼ 2
KIc

Dqg
ffiffiffi
p

p
� �2=3

ð32Þ

which is the same as that for isotropic rocks given in

Nunn and Meulbroek (2002).

4 Density and viscosity of methane gas

We consider methane gas in the numerical analysis.

Both density and viscosity of methane gas are functions

of pressure and temperature, which continuously vary

during the upward vertical crack propagation. The

density is generally determined using an equation of

state (EOS) for the gas. The viscosity of the gas may be

determined using some curve-fitting schemes.

An iterative approach is used to determine the gas

density and the gas area which is also the crack area. It

is always assumed that Eq. (19) is satisfied during

crack propagation. For a given initial length of the

crack at an initial depth (equal to or greater than the

critical length), the crack volume (also the gas

volume) can be determined using Eqs. (31) and (29)

(we assume a unit crack width (1 m) in the plane of the

blade crack in the calculation. The specific choice of

the crack width does not influence the results of crack

velocity and opening), and the average gas pressure in

the crack can be determined using the excess pressure

and confining pressure at the initial depth. The mole

and hence mass of the gas is first calculated using the

gas volume and pressure by the EOS. For a given

upward crack extension measured from the crack

center, a longer crack length is first assumed. The

crack volume can then be calculated using Eq. (31),

and the average gas pressure in the crack can be

calculated using Eqs. (18) and (29), and the confining

pressure. The average pressure thus calculated is

subsequently used to determine the gas volume using

the EOS. If the volumes determined from Eq. (31) and

the EOS become equal (with a small tolerance), the

computation is terminated for this crack propagation

step and a new step is initiated. Otherwise, a new crack

length is assumed based on the gas volume from the

EOS and the computation continues until a converged

volume is obtained. The density is finally determined

using the volume and the mass of the gas (which is

assumed as a constant during propagation).

4.1 An equation of state for methane gas

We employ an EOS developed by Duan et al. (1992)

for methane gas. The EOS is valid over wide

temperature and pressure ranges (0–1000 �C and 0–

800 MPa, respectively). The P–V–T relation has the

following form

PrVr

Tr
¼ 1þ C1

Vr

þ C2

V2
r

þ C3

V4
r

þ C4

V5
r

þ b1

V2
r T

3
r

b2 þ
b3

V2
r

� �
exp � b3

V2
r

� �
ð33Þ

where Ci (i = 1, 2, 3, 4) are
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C1 ¼ a1 þ
a2

T2
r

þ a3

T3
r

; C2 ¼ a4 þ
a5

T2
r

þ a6

T3
r

;

C3 ¼ a7 þ
a8

T2
r

þ a9

T3
r

; C4 ¼ a10 þ
a11

T2
r

þ a12

T3
r

ð34Þ

In Eqs. (33) and (34), Pr = P/Pc, Vr = V/Vc,

Tr = T/Tc, P is the fluid pressure, V is the molar

volume, T is the absolute temperature, Pc is the critical

pressure required to liquefy methane at the critical

temperature Tc, Tc is the critical temperature above

which methane cannot be liquefied regardless of the

pressure applied, Vc = RTc/Pc, and R is the universal

gas constant. The EOS contains 15 constants: ai
(i = 1, 2, …, 12), and bi (i = 1, 2, 3) which can be

found in Duan et al. (1992).

4.2 Viscosity of methane gas

We employ the model by Sanjari et al. (2011) for

methane gas. The model is valid for 0.01\Pr\ 21

and 1.01\ Tr\ 3.0. The viscosity (in 0.1 lPa s) has

the following form

g¼ a1þ a2Pr þ a3P2
r þ a4 lnPr þ a5 ln

2Pr þ a6T�1
r þ a7 ln

2 Tr

1þ a8P2
r þ a9T�1

r þ a10T�2
r þ a11T�3

r

ð35Þ

where ai (i = 1, 2, …, 11) can be found in Sanjari

et al. (2011).

5 Numerical results

This section presents numerical examples to illustrate

effects of elastic anisotropy on the crack propagation/

fluid migration velocity and average crack opening

(fracture aperture). In the numerical calculations, we

consider water, oil and methane gas. The host rock has

properties typical of shale (Nunn and Meulbroek

2002). Table 1 lists the material properties of the host

rock and the physical properties of water and oil. The

effect of elastic anisotropy is investigated by varying

the modulus ratio, Ev/Eh with fixed Eh given in

Table 1. The rock properties in the isotropic plane are

assumed to be the same as those of the isotropic rock in

all cases. In general anisotropic rocks, the fracture

toughness also depends on orientation (Chen et al.

1998). For the vertical crack propagation in trans-

versely isotropic rocks studied in this work, the

fracture toughness in the isotropic (horizontal) plane

is irrelevant and only the toughness for crack propa-

gation in the vertical direction is needed. We use the

fracture toughness data in Nunn (1996) and Nunn and

Meulbroek (2002) for the source rock in the Gulf of

Mexico. The crack is assumed to initiate at a depth of

4.0 km. The geothermal gradient is assumed to be

25 �C/km so that the initial temperature is 125 �C.
Figure 2 shows the propagation velocity of a water-

filled crack versus crack length for both isotropic host

rock and transversely isotropic rocks with Ev/Eh = 0.8

and 1.2, respectively. Water compressibility is ignored

so the crack area remains constant during propagation.

The propagation velocity for the crack in the

anisotropic rock with the smaller modulus ratio (Ev/

Eh = 0.8) is more than 60% higher than that for the

crack in the isotropic rock. For example, the velocity

for the water-filled crack is about 0.33 mm/s for a

6.0 m long crack in the isotropic rock. The velocity

increases to 0.55 mm/s for the anisotropic case. The

propagation velocity for the crack in the anisotropic

rock with the larger modulus ratio (Ev/Eh = 1.2),

Table 1 Properties of the

host rock, water and oil

(Nunn and Meulbroek

2002)

Young’s modulus in the horizontal plane Eh = 2800 MPa

Poisson’s ratio in the horizontal plane mhh = 0.4

Young’s modulus in the vertical direction Ev = 0.8Eh, 1.2Eh

Poisson’s ratio in the xz plane mhv = 0.35, 0.45

Shear modulus in the xz plane Gvh = 900 MPa

Density of rock qrock = 2300 kg/m3

Fracture toughness in the vertical direction KIc = 0.1 MPa m1/2

Density of water qwater = 1000 kg/m3

Viscosity of water gwater = 0.001 Pa s

Density of oil qoil = 840 kg/m3

Viscosity of oil goil = 0.01 Pa s
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however, is slightly lower than that in the isotropic

rock. The critical crack length for upward buoyancy-

driven propagation is approximately 5.4 m according

to Eq. (32). The crack can become longer than the

critical length because it may intersect other water-

filled cracks during upward propagation thereby

trapping more fluid and increasing its length.

Figure 3 shows the average crack opening dis-

placement (COD) (i.e., average fracture aperture) for a

water-filled crack as a function of crack length for both

isotropic host rock and transversely isotropic rocks

with Ev/Eh = 0.8 and 1.2, respectively. The COD for

the anisotropic rock with the smaller modulus ratio

(Ev/Eh = 0.8) is more than 25% larger than that for the

isotropic rock. This explains the faster crack propa-

gation velocity in the anisotropic rock shown in Fig. 2

because the propagation velocity is proportional to the

square of the average COD according to Eq. (30). On

the other hand, The COD for the anisotropic rock with

the larger modulus ratio (Ev/Eh = 1.2) is smaller than

that for the isotropic rock.

The propagation velocity and the average COD for

an oil-filled crack are shown in Figs. 4 and 5,

respectively. The properties of the rocks are the same

as those in Figs. 2 and 3. The compressibility of oil is

also ignored. Similar to the water-filled crack, the

propagation velocity and the average COD for the

anisotropic rock with Ev\Eh are significantly larger
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Fig. 2 Propagation velocity of a water-filled crack versus crack

length for anisotropic rocks (Ev/Eh = 0.8 and 1.2, mhv = 0.35)

and the corresponding isotropy medium
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Fig. 3 Average fracture aperture (i.e., crack opening displace-

ment) of a water-filled crack versus crack length for anisotropic

rocks (Ev/Eh = 0.8 and 1.2, mhv = 0.35) and the corresponding

isotropy medium

Fig. 4 Propagation velocity of an oil-filled crack versus crack

length for anisotropic rocks (Ev/Eh = 0.8 and 1.2, mhv = 0.35)

and the corresponding isotropy medium

Fig. 5 Average fracture aperture (i.e., crack opening displace-

ment) of an oil-filled crack versus crack length for anisotropic

rocks (Ev/Eh = 0.8 and 1.2, mhv = 0.35) and the corresponding

isotropy medium
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than the corresponding quantity for the isotropic rock,

and propagation of the oil-filled crack is slower than

that of the water-filled crack: oil has a higher viscosity

and the propagation velocity is inversely proportional

to the viscosity. The critical length for the oil-filled

crack is approximately 5 m. As with water, the crack

can become longer than the critical length because it

may intersect other oil-filled cracks or pools during

upward propagation. Finally, the propagation velocity

and the average COD for the anisotropic rock with

Ev[Eh are smaller than the corresponding quantity

for the isotropic rock.

As discussed in Sect. 3, for the linear fluid pressure

distribution in Eq. (18) to be reasonably accurate for

propagating cracks, the viscous flow induced pressure

drop must be much smaller than the buoyancy force,

i.e., 12gVa=d2ave ¼ 36a should be much smaller than

Dqga. We now examine if this condition is satisfied

with water-filled and oil-filled cracks in the above

examples with Ev/Eh = 0.8. For a water-filled crack

that is slightly longer than the critical length, i.e.,

2a = 5.4 m, we have Dqga = 12753a (g = 9.81 m/

s2) and 12gVa=d2ave ¼ 36a. The condition is thus

satisfied. For a crack length of 2a = 6 m,

12gVa=d2ave ¼ 1896a, which indicates that the fluid

pressure may be approximated by a linear function

only for cracks that are not much longer than the

critical length. For the oil-filled crack,

Dqga = 14323a. For a crack length of 2a = 5.5 m,

12gVa=d2ave ¼ 1951a, which also indicates that the

linear fluid pressure may be reasonable.

Unlike the cases of water- and oil-filled cracks, the

length of a gas-filled crack increases when it propa-

gates towards the surface (Nunn and Meulbroek

2002). This is because the gas volume increases with

decreasing pressure at shallower depths. Moreover,

the critical length of a gas-filled crack for upward

propagation depends on the depth. The critical length

for a methane gas filled crack is about 4 m according

to Eq. (32) and the gas density of 278 kg/m3 at the

4 km depth. Figure 6a shows the length evolution for a

gas-filled crack during crack propagation. The crack

has an initial length of 4.02 m, slightly longer than the

critical length, at a depth of 4 km. The crack length

increases from its initial value to about 4.65 m when

the crack reaches a depth of 2 km. The modulus ratio

Ev/Eh, however, does not affect the crack length

variation. This is because both the stress intensity

factors (Eq. 27) and the critical crack length (Eq. 32)

have the same expressions as those for isotropic rocks.

For a transversely isotropic rock, the fracture tough-

ness in the direction perpendicular to the isotropic

plane is different from that in the isotropic plane. In

this work we are mainly concerned with the effect of

elastic anisotropy and assume that the fracture tough-

ness for the corresponding isotropic rock has the same

value as that in the direction perpendicular to the

isotropic plane of the anisotropic rock.

Figure 6b, c shows the average density and viscos-

ity of the gas in the crack during crack propagation.

The density decreases from 278 kg/m3 at the initial

4 km depth to 224 kg/m3 when the crack reaches 2 km

depth. The viscosity decreases from 42 9 10-6 Pa s

at the 4 km depth to 30.5 9 10-6 Pa s at the 2 km

depth. Again, the density and viscosity are not

influenced by the modulus ratio.

Figure 7 shows the average COD versus depth

during propagation of a gas-filled crack with an initial

length of 4.02 m (slightly longer than the critical

length). The COD also increases when the crack

continuously propagates upward. For the isotropic

host rock, the average COD increases from 0.038 mm

at 4 km depth to 0.041 mm when the crack reaches

2 km depth. Compared with the isotropic rock case,

the crack in the anisotropic rock with Ev\Eh has a

larger average COD, and that in the anisotropic rock

with Ev[Eh has a lower average COD. With

increasing crack length and average COD in the

anisotropic rock with Ev\Eh, the cross-sectional area

of the blade crack also increases when the crack

propagates to a shallower depth.

Figure 8 shows the propagation velocity for a gas-

filled crack with an initial length of 4.02 m. The

propagation velocity increases as the crack propagates

upward. This is because the average fracture aperture

and density difference become larger and the viscosity

becomes smaller at shallower depths, which results in

higher velocities as indicted by Eq. (30). For the

isotropic rock, the velocity increases from 0.016 mm/s

at the initial depth of 4 km to 17.5 mm/swhen the crack

propagates to a depth of 2 km. For the anisotropic rock

cases, the velocity reaches 28.5 and 16.2 mm/s at a

depth of 2 km for Ev/Eh = 0.8 and 1.2, respectively.

The effect of Poisson’s ratio mhv in the xz plane on

the propagation velocity is examined in Fig. 9. We

consider a gas-filled crack with an initial length of

4.02 m at an initial depth of 4 km. The modulus ratio
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Fig. 6 a Length of a gas-filled crack versus depth as the crack

continuously propagates upward (initial crack

length = 4.02 m). b Average density of the gas in the crack

versus depth as the crack continuously propagates upward

(initial crack length = 4.02 m). c Average viscosity of the gas

in the crack versus depth as the crack continuously propagates

upward (initial crack length = 4.02 m)

Fig. 7 Average fracture aperture (i.e., crack opening displace-

ment) of a gas-filled crack versus depth for two values of

anisotropy parameter Ev/Eh and mhv = 0.35 (initial crack

length = 4.02 m)

Fig. 8 Propagation velocity of a gas-filled crack versus depth

for two values of anisotropy parameter Ev/Eh and mhv = 0.35

(initial crack length = 4.02 m)
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is taken as Ev/Eh = 0.8. We use a Poisson’s ratio

mhv = 0.45, which is larger than that in the isotropic

plane (mhh = 0.4). The propagation velocity in the

anisotropic rock is still much higher than that in the

isotropic rock. However, the increase in velocity is

less significant compared with the case of mhv = 0.35

(\mhh = 0.4) shown in Fig. 8.

It is generally accepted that Poiseuille flow equations

can be used to describe flow of liquid (e.g., magma,

water and oil) in propagating fractures (Spence et al.

1987; Lister and Kerr 1991; Nakashima 1993; Rubin

1995; Nunn 1996; Roper and Lister 2007). For appli-

cation of the Poiseuille equations to gas flow in a

fracture, the Reynolds number should be carefully

examined so that no turbulent flow occurs. Using the

numbers for the 4.02 m long initial crack in an

anisotropic material with Ev/Eh = 0.8 and mhv = 0.35,

the Reynolds numbers may be estimated as follows

Re ¼
qgasvdave

g
� 278� 0:026� 10�3 � 0:048� 10�3

42� 10�6

� 0:008 at 4000 m

Re ¼
qgasvdave

g

� 224� 0:028� 0:052� 10�3

31:5� 10�6
� 10 at 2000 m

which are much smaller than the experimentally

measured critical Reynolds number of 1350 for

turbulent plane Poiseuville flow to occur (Dou and

Khoo 2011).

Finally, we need to examine if 12gVa=d2ave is much

smaller than Dqga so that the linear fluid pressure can
be used. Using the numbers for an anisotropic material

with Ev/Eh = 0.8 and mhv = 0.35 we have

12gVa=d2ave ¼ 5:69a; Dqga ¼ 19836a at 4000 m

12gVa=d2ave ¼ 3914a; Dqga ¼ 20366a at 2000 m

The above results indicate that the linear fluid

pressure may be a reasonable approximation for the

crack that has not reach 2000 m depth. At shallower

depths, the viscous flow induced pressure drop will be

a significant fraction of the buoyancy induced pres-

sure, which may invalidate the use of the linear

pressure distribution.

6 Approximations of fracture aperture using

equations for isotropic materials

It is known from Sect. 2 that the transformed consti-

tutive relation (10) using the equivalent elastic prop-

erties has the same form as that for isotropic rocks. An

interesting question is whether or not approximate

solutions of complex problems for anisotropic rocks

can be obtained by employing the equations for

isotropic materials together with the equivalent elastic

properties. The advantage of this approach is that

solutions of many problems of isotropic materials are

available and they could be used as approximate

solutions for anisotropic rocks by simply employing

the equivalent properties. In this section, we explore

this possibility in determination of the average fracture

aperture.

For isotropic rocks with a modulus E and a

Poisson’s ratio m, the equivalent material constants in

Eq. (8) reduce to

E0 ¼
E

1� m2
; m0 ¼

m
1� m

; k ¼ 1; j ¼ 1 ð36Þ

i.e., E0 and m0 represent the equivalent modulus and

Poisson’s ratio in plane strain. Using the above

constants, the average fracture aperture in Eq. (31)

reduces to

disoave ¼
1� m2

E
ap0p ð37Þ

An approximate average fracture aperture for

transversely isotropic rocks may be formulated if we
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Fig. 9 Propagation velocity of a gas-filled crack versus depth

for an anisotropic rock (Ev/Eh = 0.8, mhv = 0.45) and the

corresponding isotropy medium. The crack has an initial length

of 4.02 m
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adopt Eq. (37) for isotropic rocks and replace

(1 - m2)/E by 1/E0, i.e.,

daprave ¼
1

E0

ap0p ð38Þ

Now we examine the relative errors of using

Eq. (38) to calculate the aperture. We also examine

the error of using Eq. (37) with the modulus and

Poisson’s ratio in the isotropic plane of the trans-

versely isotropic rock, i.e., Eh and mhh for E and m,
respectively.

Using Ev = 0.8Eh and the properties listed in

Table 1 in Eq. (31) (precise anisotropy), Eq. (38)

(approximate anisotropy) and Eq. (37) (isotropy with

Eh and mhh), we obtain

dave ¼ 3:830� 10�4ap0p;

daprave ¼ 3:476� 10�4ap0p;

disoave ¼ 3:000� 10�4ap0p

The relative errors for the approximate anisotropic

and isotropic equations are 10.16 and 27.63%,

respectively. If the modulus in the vertical direction

increases to Ev = 0.9Eh, the relative errors reduce to

8.48 and 17.68%, respectively. Finally, if we use

Ev = 0.8Eh and a Poisson’s ratio mhv of 0.45 instead of
0.35, the relative errors become 5.32 and 17.61%,

respectively. These results suggest that in some cases

the formula for isotropic materials may be employed

to approximately determine fracture aperture for

transversely isotropic rocks by using the equivalent

elastic constant E0 of the anisotropic material.

7 Concluding remarks

Effects of material anisotropy on primary petroleum

migration through buoyancy-driven propagation of an

isolated blade crack filled by oil or gas are investi-

gated. The host source rock is modeled as a linearly

elastic, transversely isotropic medium which is

described by an equivalent set of anisotropic elastic

properties that, as far as we know, is new to the

geophysics literature. We also assume steady state

crack propagation and use a linear fluid pressure

distribution in the crack (first order approximation of

Poiseuille flow), which may be reasonably accurate for

propagation of an isolated crack with a length equal to

or slightly longer than the critical length. Our model

thus may be directly used to investigate migration of

oil, gas and other fluids through transversely isotropic

rocks and sediments with very low permeability.

Parameters describing crack propagation and fluid

migration velocity (stress intensity factors and crack

opening displacement) are obtained by an integral

equation method. In the case where the plane of

transverse isotropy is horizontal, the numerical results

show that (a) fluid transport velocity is significantly

increased if the elastic modulus in the vertical

direction is smaller than that in the horizontal direc-

tion. The velocity is slightly decreased if the elastic

modulus in the vertical direction is larger than that in

the horizontal direction, (b) the length of a gas-filled

crack increases as the crack propagates from deeper to

shallower levels in the crust and the elastic anisotropy

does not influence this crack length increase, (c) the

crack opening displacement (i.e., fracture aperture)

and therefore velocity for a gas-filled crack increases

as the crack propagates to shallower depths, and (d) at

a given depth, the fracture aperture increases with a

decrease in the elastic modulus in the vertical direction

relative to that in the horizontal direction. Finally, in

some cases the formula for isotropic materials may be

employed to approximately determine fracture aper-

ture for transversely isotropic rocks by using the

equivalent elastic constant E0 of the anisotropic

material. Extension of this conclusion to more com-

plex problems of anisotropic materials requires further

investigation.
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