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Abstract

We study the evolution of complete non-compact convex hypersurfaces in R"*! by the in-
verse mean curvature flow. We establish the long time existence of solutions and provide the
characterization of the maximal time of existence in terms of the tangent cone at infinity of the
initial hypersurface. Our proof is based on an a’priori pointwise estimate on the mean curvature
of the solution from below in terms of the aperture of a supporting cone at infinity. The strict
convexity of convex solutions is shown by means of viscosity solutions. Our methods also give an
alternative proof of the result by Huisken and Ilmanen in [30] on compact star-shaped solutions,
based on maximum principle argument.

1 Introduction

A one-parameter family of immersions F': M™ x [0,7] — R™*! is a smooth complete solution to
the inverse mean curvature flow (IMCF) in R™"1 if each M; := F(-,#)(M™) is a smooth strictly
mean convex complete hypersurface satisfying

o F(w.0) = H™ (5, ) w(p, (1)

where H(p,t) > 0 and v(p,t) denote the mean curvature and outward unit normal of M;, pointing
opposite to the mean curvature vector.

This flow has been extensively studied for compact hypersurfaces. Gerhardt [20] and Urbas [42]
showed compact smooth star-shaped strictly mean convex hypersurface admits a unique smooth
solution for all times ¢ > 0. Moreover, the solution approaches to a homothetically expanding
sphere as t — oo.

For non-starshaped initial data it is well known that singularities may develop (See [27] [39]).
This happens when the mean curvature vanishes in some regions which makes the classical flow
undefined. However, in [27, 28] Huisken and Ilmanen developed a level set approach to weak
variational solutions of the flow which allows the solutions to jump outwards in possible regions
where H = 0. Using the weak formulation, they gave the first proof of the Riemannian Penrose
inequality in General Relativity. One key observation in [28] was the fact the Hawking mass of
surface in 3-manifold of nonnegative scalar curvature is monotone under the weak flow, which was
first discovered for classical solutions by Geroch [23]. Note that the Riemannian Penrose inequality
was shown in more general settings by Bray [3] and Bray-Lee [4] by different methods. Using
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similar techniques, the IMCF has been used to show geometric inequalities in various settings. For
instance, see [24, 6] for Minkowski type inequalities, [32] for Penrose inequalities and [34, 14, 19|
for Alexandrov-Fenchel type inequalities among other results. Note another important application
of the flow by Bray and Neves in [2].

In [30] Huisken and Ilmanen studied the IMCF running from compact star-shaped weakly
mean convex initial data. Using star-shapedness and the ultra-fast diffusion character of the flow,
they derive a bound from above on H~! for ¢t > 0 which is independent of the initial curvature
assumption. This follows by a Stampacchia iteration argument and utilizes the Michael-Simon
Sobolev inequality. The C* regularity of solutions for ¢ > 0 easily follows from the bound on H 1.
The estimate in [30] is local in time, but necessarily global in space as it depends on the area of
the initial hypersurface My and uses global integration on M;. As a consequence, the techniques in
[30] cannot be applied directly to the non-compact setting. Note that [33] and [45] provide similar
estimates for the IMCF in some negatively curved ambient spaces.

This work addresses the long time existence of non-compact smooth convex solutions to the
IMCF embedded in Euclidean space R"1. While extrinsic geometric flows have been extensively
studied in the case of compact hypersurfaces, much remains to be investigated for non-compact
cases. The important works by K. Ecker and G. Huisken [16, 17] address the evolution of entire
graphs by mean curvature flow and establish a surprising result: existence for all times with the
only assumption that the initial data My is a locally Lipschitz entire graph and no assumption of
the growth at infinity of My. This result is based on priori estimates which are localized in space.
In addition, the main local bound on the second fundamental form |A|? of M, is achieved without
any bound assumption on |A|?> on My. An open question between experts in the field has been
whether the techniques of Ecker and Huisken in [16, 17] can be extended to the fully-nonlinear
setting, in particular on entire convex graphs evolving by the a-Gauss curvature flow (powers K¢
of the Gaussian curvature) and the inverse mean curvature flow.

In [10] the second author, jointly with Kyeongsu Choi, Lami Kim and Kiahm Lee, established
the long time existence of the a-Gauss curvature flow on any strictly convex complete non-compact
hypersurface and for any o > 0. They showed similar estimates as in [16, 17] which are localized in
space can be obtained for this flow, however the method is more involved due to the degenerate and
fully-nonlinear character of the Monge-Ampére type of equation involved. However, such localized
results are not expected to hold for the inverse mean curvature flow where the ultra-fast diffusion
tends to cause instant propagation from spatial infinity. In fact, one sees certain similarities between
the latter two flows and the well known quasilinear models of diffusion on R"”

up = div(u™? Vu). (1.2)

Exponents m > 1 correspond to degenerate diffusion while exponents m < 0 to ultra-fast diffusion.
We will see in the sequel that under the IMCF the mean curvature H satisfies an equation which
is similar to (1.2) with m = —1. Our goal is to study this phenomenon and establish the long time
existence, an analogue of the results in [16, 17] and [10].

Let us remark existing results on the IMCF of hypersurfaces other than closed ones. In [1], B.
Allen investigated non-compact solutions in the hyperbolic space which are graphs on the horo-
sphere. One key estimate in [1] was to show that uniform upper and lower bounds on the mean
curvature persist under some initial assumptions. The second author and Huisken [13] studied
non-compact solutions in R®*! under some initial conditions and we will discuss this result later
this section. The flow with free boundary, i.e. solutions with Neumann-type boundary condition,



Figure 1: Definition 1.1

has quite extensive literature. We refer the reader to [40, 41],[18] and citations there-in for the
mean curvature flow and [35, 36],[31] for the IMCF.

We will next state our main results. The following observation motivates the formulation of our
theorem.

Ezample 1.1 (Conical solutions to IMCF). For a solution I'; to the IMCF in S™, the family of cones

generated by I'y
CTy:={re e R"™ . r >0, 2Ty}

is a solution to the IMCF in R™*! which is smooth except from the origin. When I'g is a compact
smooth strictly convex, Gerhardt [22] and Makowski-Scheuer [34] showed the unique existence of
solution for time ¢t € [0,7T") with 7' < co and the convergence of solution to an equator as t — 7.
Moreover, we have explicit formula 7" = In|S"~!| — In|Ty| by the exponential growth of area in
time, (2) in Lemma 2.5. Note also that CT'y, restricted to the unit ball in R**!, moves by the IMCF
with free boundary on S™ in the sense of [31].

From Example 1.1 and the ultra-fast diffusive character of the equation, it is reasonable to guess
that the behavior of non-compact convex solution and its maximal time of existence is governed
by the asymptotics at infinity. For a non-compact convex set M, and the associated hypersurface
My = 8Mg, we recall the definition of the blow-down, so called the tangent cone at infinity.

Definition 1.1 (Tangent cone at infinity). Let My C R™! be a non-compact closed convez set.

For a point p € My, we denote the tangent cone of My at finity by
C’o = ﬂ)\>0)\(MQ - D).

The definition is independent of p € My. Cy := 8Cy is called the tangent cone of My = oM,
at infinity. T := CoNS™ and I'yg := Cy N'S™ are called the links of tangent cones Cy and Cy,
respectively.

In this work, we say M is convex hypersurface if it is the boundary of a closed convex set
with non-empty interior. See Definition 2.1 and subsequent discussion for more details. For convex



hypersurface My in R"*!, Lemma 2.3 shows My = Ny x RF for some convex hypersurface Ny in
R =% which is homeomorphic to either S”% or R"~*. In the first case, the existence of compact
IMCF, say Ny, running from N is known in [30] and thus N; x R¥ becomes a solution with initial
data My. Therefore, the essential remaining case is when My is homeomorphic to R™. We state
our existence result.

Theorem 1.2. Let My in R™! with n > 2 be a non-compact convex set with interior whose
boundary My is Cllgcl and homeomorphic to R™, and T = T (My) be a number defined by

T =In|S""!| —In P(I'y) € [0, o0]. (1.3)

Here, Ty is the link of tangent cone of My at infinity, |- | :== H"~'(-), and P(T) is the perimeter of
I inS" defined by

P(To) =

. { |To| if L'y has non-empty interior in S™ (1.4)

2|T| if Iy has empty interior in S™.

If T'> 0, a smooth convex solution to the IMCF, say M; = OM,, exists for 0 <t <T. My is the
initial data in the sense that M; converges to My locally uniformly ast — 0. My is strictly convex
if and only if My contains no infinite straight line inside.

Remark 1.2.

(i) 'y can be an arbitrary convex set in S™ which may possibly have empty interior. (See Defini-
tion 2.1 and Lemma 2.2 regarding the definition of convexity in S™.) In that case the perimeter
P(fo) is the limit of outside areas of decreasing sequence of convex sets with interior in S™
which approximate I'. (See Lemma A.10 and Lemma A.11.) According to (1.3), T = oo when
P(f‘o) = 0 and this happens if only if I’ has Hausdorff dimension less than n — 1. Note that
the definition of P(-) is not related with the notion of perimeter used in geometric measure
theory.

(ii) The tangent cone of M, at infinity, say I';, also evolves by IMCF in S™ in some generalized
sense (Lemma 4.5), and becomes flat as ¢ — 7~ when 7" < co. In Remark 4.2 we further
discuss this in connection with the asymptotic behavior of M; ast — T.

(iii) According to (1.3), T = 0 when P(I'g) = |[S""!|. In [9], it was shown that P(Ig) = [S"!| if
and only if Iy is either a hemisphere or a wedge

Wp, =S"N ({(rsin®,rcosf) : 6 € [0,6], and r > 0} x R""!) for some 6y € [0,7) (1.5)
up to an isometry of S”. We show in Theorem 1.3 no solution exists from such a M.

Remark 1.3. Let us emphasize Theorem 1.2 allows H = 0 on a possibly non-compact region of M.
Even in that case, H becomes strictly positive for ¢ > 0 and this is due to Theorem 1.4. A similar
phenomenon was observed for solutions to the Cauchy problem of the ultra-fast diffusion equation
(1.2) with m < 0 on R™. See Remark 4.3 for more details.

Next result asserts that 7' = T'(Mp) in Theorem 1.2 is the maximal time of existence. The result
holds not only for the solutions constructed in Theorem 1.2, but applies to arbitrary solutions.



Theorem 1.3. Let My = 8Mg satisfy the same assumptions as in Theorem 1.2 and T = T (M) be
given by (1.3). If T < oo, there is no smooth solution N, which is the boundary of Ny, Ny=oNy = Mo,
and existing 0 <t < T 4+ 7 some T > 0. In particular, no solution exists if T' = 0.

Non-compact IMCF in R™"*! was first considered by the second author and G. Huisken in [13],
where they established the existence and uniqueness of smooth solution to the IMCF, under the
assumption that the initial hypersurface My is an entire C? graph, x,+1 = ug(2’) with H > 0, in
the following two cases:

(i) My has super linear growth at infinity and it is strictly star-shaped, that is H(F —xg,v) > § >0
holds, for some zo € R*t1;

(i) My a convexr graph satisfying 0 < cog < H (F —x¢,en11) < Cg < +o0, for some zg € R"*! and
lies between two round cones of the same aperture, that is

aolz’| < up(z’) < apla’| + k, ap >0, k> 0. (1.6)

In the first case, a unique smooth solution exists up to time T = oo, while in the second case
a unique smooth convex solution M, exists for ¢ € [0,T) where T' > 0 is the time when the round
conical solution from {x,+1 = ag|z’|} becomes flat. In the latter case, the solution M; lies between
two evolving round cones and becomes flat as ¢t — 7. To derive a local lower bound of H, a
parabolic Moser’s iteration argument was used along with a variant of Hardy’s inequality, which
plays a similar role as the Micheal-Simon Sobolev inequality used in [30].

Theorem 1.2 and the results in [13] show that convex surfaces with linear growth at infinity have
critical behavior in the sense that in this case the mazimal time of existence is finite and it depends
on the behavior at infinity of the initial data. However, while the techniques in [13] only treat this
critical linear case under the condition (1.6), Theorem 1.2 allows any behavior at infinity. Moreover,
the techniques in [13] require to assume that H is globally controlled from below at initial time,
namely that H(F — xg,v) > § > 0 in the case of super-linear growth and H (F — xg,ep+1) > ¢ >0
in the case of linear growth.

In this work we depart from the techniques in [13],[30], and establish a priori bound on H~!
which is local in time. For this, we develop a new method based on the maximum principle rather
than the integrations used in [13],[30]. Our key estimate roughly says that a convex solution has
a global bound on (H|F|)~! as long as a nontrivial convex cone is supporting the solution from
outside.

Theorem 1.4. Let F : M" x[0,T] — R"™ n > 2 and T > 0, be a compact smooth convex solution
to the IMCF and suppose there is 01 € (0,7/2) for which

(F,ept+1) >sinby |[F|  on M™ x [0,T]. (1.7)
Then ) )

—— < 14+ —5 M" T 1.

HIF S C ( + t1/2) on x [0, 7] (1.8)

for a constant C = C(60;) > 0.

The compactness assumption on M; above will only be used to apply mazimum principle and
will not affect the application of the estimate in proving of our non-compact result, Theorem 1.2, as



we will approximate non-compact solutions by compact ones. Note the estimate does not depend
on initial bound on (H|F|)~!, which will allow initial data with flat regions as described in Remark
1.3. Moreover, the new method developed while showing Theorem 1.4 leads us to a new proof
of Theorem 1.1 in [30], the H~! estimate for compact, star-shaped solutions. This is included in
Theorem A.5 in the appendix. In fact, one expects that similar estimates as in Theorem A.5 can
be possibly derived for the IMCF in other ambient spaces, including some positively curved spaces
or asymptotically flat spaces, using this new method and this generalizes the results of [30, 33, 45].
See in [29] for a consequence of such an estimate when this is shown in asymptotically flat ambient
spaces.

Remark 1.4. Recently, the first author and P.-K. Hung in [9] addressed the IMCF on convex
solutions allowing singularities on My. Using Theorem 1.4 as a key ingredient, [9] shows the
tangent cone obtained after blowing-up at a singularity point evolves by the IMCF. As a corollary,
one can consider an arbitrary non-compact convex hypersurface My in Theorem 1.2 and obtain the
following necessary and sufficient condition for the existence of a smooth solution: for an arbitrary
non-compact convex My with T (My) > 0, there is a smooth solution if and only if My has density
[Be@)OMol _ 1 for il p € My. See [9] for more details.

one everywhere. i.e. ©g(p) = lim, o =~
n

A brief outline of this paper is as follows: In Section 2, we introduce basic notation, evolution
equations of basic geometric quantities, and prove some useful identities. Section 3 is devoted to
the proof of main a priori estimate Theorem 1.4. In Section 4, we prove the long time existence of
solution (Theorem 1.2 and Theorem 1.3) via an approximation argument. Here, the passage to a
limit relies on the estimate Theorem 1.4. In Appendix A.1, we prove the convexity of solution is
preserved and show the solution becomes strictly convex immediately unless the lowest principle
curvature A; is zero everywhere. This will be shown for the solutions to the IMCF in space forms as
this adds no difficulty in the proof but could be useful in other application. In Appendix A.2, we give
an alternative proof of H~! estimate shown in [30] using a maximum principle argument, showing
how the star-shapedness condition can be incorporated in our method. Finally, in Appendix A.3 we
show the approximation theorems of convex hypersurfaces in R**! and S” that are used throughout
the paper.

Acknowledgement: The authors wish to express their gratitude to Gerhard Huisken and Pei-
Ken Hung for stimulating and useful discussions on the inverse mean curvature flow. The authors
are also indebted to the referees for carefully reading their manuscript and giving many thoughtful
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2 Preliminaries

In this section we present some basic preliminary results. Let us begin by clarifying some notions
and simple facts from convex geometry. Convex hypersurfaces are studied in both convex geometry
and differential geometry of submanifolds. As a result there are different notions of convexity
preferred in different subjects. In this paper, we use the following definition.

Definition 2.1 (Convex hypersurfaces in R**! and S").

(i) A hypersurface My € R™! is called convex if it is the boundary of a convex set My of
non-empty interior and My # R™*1,



(ii) A set [y C S" is convex if for all p and ¢ in Ty at least one minimal geodesic connecting the
two points is contained in I'y. T is a convex hypersurface in S™ if it is the boundary of a
convex set Iy with non-empty interior and Iy #£ S™.

(iii) A C? convex hypersurface is strictly convex at a given point if the second fundamental form
with respect to the inner the normal is positive definite.

There is a useful characterization of convexity in S™ which is immediate from Definition 2.1.

Lemma 2.2. A set g C S" is convex if and only if it s connected and Cly = {rz € R p >
0, x € I'g} is convex in R,

We prefer Definition 2.1 to the other one that defines convexity through certain properties of
the embedding or immersion since we will deal with convex hypersurfaces of low regularity. These
two notions are, however, equivalent under suitable assumptions. For example, if M, C R**!
(or Iy C S™) is a convex hypersurface, then it is a complete connected embedded submanifold.
Furthermore, if My (or Tg) is C2, then the second fundamental form with respect to the inner
normal is nonnegative definite. The converse question, namely under what conditions an immersed
or embedded hypersurface of nonnegative sectional curvature (or semi-definite second fundamental
form) bounds a convex set, has a long history and has been answered, for instance, by Hadamard
[25], Sacksteder-van Heijenoort [38, 26], H. Wu [44], do Carmo-Warner [8], Makowski-Scheuer [34]
under different assumptions. We refer the reader to the results and references cited in these papers.

The following simple observation will be used throughout this paper.

Lemma 2.3. Let My = BMO be the boundary of a closed convex set with interior MO C R,
that is My is a convex hypersurface in R"t1. Then either My = R™ or My = RF x Ny, for some
0<k<nand Ny = GNO where N(] C R*"M1=Fk s a closed convex set with interior which contains
no infinite line. Moreover, such Ny is either homeomorphic to S*™* or R"7F,

Proof. If M, contains an infinite straight line, then My splits off in the direction of the line by
the following elementary argument: suppose a line {te,; € R"*! : t € R} is contained in M,
and let us denote its cross-sections  x {I} := My N {xn+1 = [} for | € R. By convexity, for any
0 < t1 < tg the set t2 tlQ x {t1} is contained in My N {zp+1 = t1}. By taking to — oo while
fixing t1, we have Qo x {tl} C My N {Zp+1 = t1}. We can do a similar argument for t5 < t; <0
and thus Qg x R C M,. Similarly, we can do the same argument for all other sections QO x {l} and
obtain that €; x R C M. Therefore Qll = QlQ for all [; # Iy and My = x R. By repeating this
splitting, we conclude that My = Ny x R*. for some k > 0 where Ny does not contain any infinite
lines. In this case, a classical simple result in convex geometry (see for instance Lemma 1 in [44]),
implies that ANy is homeomorphic to either S*~* or R*~*.

O
We next derive some properties of smooth solutions to IMCF. Let V := V9®) and A := 9(0)
denote the connection and Laplacian on M™ with respect to the induced metric g;;(t) = (gg, OF 250,
Recall that on a local system of coordinates {x'} on M",
82F k 3F aF al/



where v denotes the outer unit normal. We also define the operator

5 (0 s

and use it frequently as this is the linearized operator of the IMCF. The IMCF or generally curvature
flows of homogeneous degree —1, have the following scaling property which we will frequently use:

Lemma 2.4 (Scaling of IMCF). If M* ¢ R"! is a solution to the IMCF, then M} = XM} is
again a solution for A > 0.

Lemma 2.5 (Huisken, Ilmanen [30]). Any smooth solution of the IMCF (1.1) in R™*! satisfies
(1) Ogij = 71 hij

(2) Owdp = dp, where dp is the volume form induced from g;;

(3) Ow=-VH '= - VH

(4) (8 — 7= A)hiy = — 2V HV,H + B0 by
(5) H = V(5 ViH) — 4L — LA - Z|vHpR - 14E

6) (0 — A A)H 1 =40 1

(7) (B — 7= A) (F — wo,v) = YA (F — 2, 0).

Remark 2.1. If the ambient space is not R™*!, then the evolution equations of 9ij, dt, and v remain
the same as in R”*1, but the evolution of curvature h;; is different and complicated. On a space
form of sectional curvature K, the formula hugely simplifies becoming

1 |A’2 2 nk hz'j

8thij = mAth + Whij — mVIHV]H — 72

(2.2)

(See Chapter 2 in [21].) In this paper we will mostly focus on the flow in Euclidean space and we
will only use (2.2) in Appendix A.1.

Using Lemma 2.5 one can easily deduce the following formulas.
Lemma 2.6. For a fized vector w in R""1, the smooth solutions to the IMCF (1.1) in R™*! satisfy
(1) (815 )|F—x0\2 %+%<F—xo,y>

(2) (0 —|—wy>
(3) (9 —

A (w &
) — ) = %(w,w.
Proof. By (2 1) we have
AF = g(05F =T Fy) = g7 (—hijy + T Fy = T5Fy) = —Hw.
which combined with 9;F = H~'v implies (3). Next,
A|F — 29> = 2(AF,F — o) + 2(VF,VF) = —2H (v, F — o) + 2n

8



implies (1). Finally,

Av = g"(0%v — TE.opw) = " (0;(h¥ Fy,) — TE )
= g9 ((0;h}) Fyy — hihjev + Ty hl Fy — T by F)
= —|APv 4 ¢¥V,hEFy = —|APv + VH
where we used the Codazzi identity in the last equation. This implies (2). O

The following simple lemma, which commonly appears in Pogorelov type computations, will be
useful in the sequel when we compute the evolution of products.

Lemma 2.7. For any C? functions f;(p,t), i = 1,...,m, denote

. fO1 rQ2 Qam
W= J1 Jo i TIm -

Then on the region where w # 0, we have

1 Oy —H2ANw 1 |[Vw]? & (0, — H2A)f; 1 |Vfi]?
i=1 ! i

Proof. The lemma simply follows from

1

(O —H2N)f 1 |VfP
f H2 f2

(2.4)

Next two lemmas are straightforward computations and we leave their proofs for readers.

Lemma 2.8. For any two C? functions f, g defined on M™x (0,T) and any C? function) : R — R,

O(f) = (Of)g + F(Cg) ~ (V. Vo)

and

where O := (0y — H2A).

Lemma 2.9. If a C? function f is defined on a solution M; of the IMCF and satisfies
0 1 |A|?
<a B ﬁA> J="T=!
then for any fized 8 # 0 we have

0 1\ AP s BB-DIVP
(- e2) =88 g

For instance, H=1, {w,v) and (F — xq,v) are examples of such a function f.

We finish with the following local estimate which is an easy consequence of Proposition 2.11 in
[13]. Here B, denotes an extrinsic ball of radius r > 0 in R**1.

9



Proposition 2.10 (Proposition 2.11 [13]). For a solution My, t € [0,T], to the IMCF, there is a
constant C,, > 0 such that
sup H < C,max( sup H,r1).
MiNB, MoNB,
Proof. Although this proposition is proven in [13] we include below its proof for completeness. For

fixed r > 0, let n:= (r2 — |F|?)% be a cut-off function defined in the ambient space. Using Lemma
2.6 and 2.8,

0 1 _ 2 2 0 1 2 2 2 2 2
(5 - 728) =202 = 1FP)s | (55 = 2 ) 1FP| - 721902 = 1P

2n 4 8
= —2n'/? <—HQ + g (F V>> - ﬁ|FT|2

and
o 1 4nm/? 8 IVH|?  |A]? 2
4nnt/? 1 2 nH
< (2 _ 2 -
< syt — Vi), Vi) -

In the last inequality, we used |A[? > n~1H? and |(F,v)| < |F| < r. Let m(t) be the maximum of
nH on M,;. Then the above inequality implies

oym(t) < 4nM + 8|l L2 — mit) 4ni + 83 — lm(t)
! - m(t) e n —  m(t) n '
Thus m(t) will decrease if
4 t
70 Wr;) - % + 8% <0 <= m?(t) — Snr3m(t) — 4n*r® >0 <= m(t) > (4 +2V5)nrd.

Therefore, m(t) < max (m(0), (4 + 2v/5)nr?). The proposition is implied since

sup (2 — (r/2)%)2H < supnH < max (m(0), (4 + 2v5)nr?)
MtﬂBT/Q

<max( sup H,(4+2V5)nr?).
MoNB,

3 L*™ bound of (H|F|)™!

Before giving the proof of Theorem 1.4, lets us introduce some notations. We consider spherical
coordinates with respect to the origin in R™*!, namely

= (x1,...,Tpn41) = (rw sinf,rcosh) withr >0, we S and 0 € [0, 7]

which are smoothly well-defined away from z,1-axis. We will also denote by V and V metric-
induced connections on (R"*!, g...) and (M™, F*geuc), respectively. Before the proof, we need the
evolution equation of 6, defined in the ambient space as follows:

10



Definition 3.1. We define
6 :R™1\ {0} = [0,7] by 6(z):= arccos (@7‘677]“)) (3.1)

and
r: R 5 [0,00) by r(z) = |zl

Moreover, we define smooth unit orthogonal vector fields
10 (w’ cos 6

T2 90 , —sin 9) on R"\ {z,,, — axis}

eo(z) = ep(2, ony1) = mm

and

er(z) = — on R™™1\ {0}.

oz
or m
Though 6 is not smooth at the points on the z,,1-axis, note that 62, cos @, and sec§ are all smooth
on {zp41 > 0}.

Note 6 represents a scaled distance from the north pole measured in the sphere. The first
negative term on the right hand side of (3.2) will justify the use of # in the estimate. Compare
(3.2) with (1) in Lemma 2.6.

Lemma 3.2. On the region {0 # 0,7} N {|z| # 0},

1 1 <n—|VT|2> 1|Ve? 2 Vr

— —(— Vo). 3.2
H?2 H2p2 tan 6 H2 tan 6 + < VO + 7w Vo) (3.2)

(0 — —5A)0 = —

2
H
Proof. Consider a spherical coordinate chart

(r,0, (W)a=1..n1) with >0, 8 € (0,7), (w*) € S"!

around a point {§ # 0,7} N {|z| # 0} in R"*! where w® is a coordinate chart of S*~!. On this
chart,

Joue = dr? + 12 d6? + 12 sin? Ooap dw®dw”. (3.3)
Also note that
10 1 0
grad § = 295 = ;¢ and gradr = o =6 on (R, geue).- (3.4)

At a given p € M"™ with {6 # 0,7} N {|z| # 0}, let us choose a geodesic normal coordinate of
M™, say {y"}*_;. In this coordinate at this point,

0 0 o (1,0 0
8= Za@'f’ﬂ - Z o (o) =S 2y (559 57)

0 1 o 0 0 1,0
Z gy ) e+ 13 Vaugg ) + o5 (5 —hiv)
Since (( 62i>j:1 , 1/) constitutes an orthonormal basis of T F(p)R"+1,
Z(i e@(i er) + (v, er) (v, e9) = (er,e9) = 0. (3.5)
- ayl7 ayl7 ) 7 )
Therefore,
-0 0
AO = ——(v,e9) + (v en)ves) + 5 D (Vo 75, 3 (3.6)



Claim 3.1.

n

-0
Z<v3i%7

i=1

yl> =——(n-01-(re))-(1-(ve)?). (3.7)

Proof of Claim 3.1 . By computing the Christoffel symbols from the metric (3.3), we get:

5 9 9 19 _ 0 cosf 0O
Vaga—z—rav V%%:;%7 vgffﬁ%:sineawa'

(3.8)

Suppose 0; = 0,i = agdy + a,0r + > @aOype. Then ?@.% = —ragdr + 20§ + ), 0a :i’ﬁg&ua and
hence

_ 90 9 cos 3

9 9.v_ _ 22 a
<v8¢ 90’ 8yi> Tagayr + raga, + 7 SIn esin0aaa’60
_cost || O 2 /9 . 2 v . 2
~ sind ||0yt ayi’ " oy '
The claim follows by summing this over i. O
1
Now 0,0 = d0(0,F) = E(u, grad 0) = <VT’;9>, (3.6) and (3.7) imply
1 2(v, eg) 1 cos 6 2 2
(0= gz 8)0 = 22— | Sl = (1= (e)®) = (1= (e0))) + 20} )

n
Hence, the lemma follows by using (3.4) and the orthonormality of (( 821-) - ,1/) in the equation
1=

above. O

Proof of Theorem 1.4. Using the definition (3.1), our condition (1.7) can be written as 6(p,t) <

-0
w/2 — 601. Setting ¢ := T 201 > 1, we have c < § — 3 < T and sec(c) < 2sect for 6 = 0(p,1)
T — 401
ontel0,T].
By lemma 2.8,

Osec(ch) = esec(ch) tan(cd)6 — mCQ [sec(ch) tan?(ch) + sec3(ch)]| VO]

2
= sec(c) ctan(cG)DH—%(2tan2(66’)+1)\V9]2 .

After defining ¢ := sec(cf), Lemma 3.2 and % = ctan(cf) V6 imply

Oy ¢ tan(ch) 9 o 9 2 ,Vr Vo 2, Vo
= __ _ — 2V Bl AL A WIS 4
¥ H?r2 tané (n = Vr] T|v|)+H2<r’gp>+H<V’<p>
2 |Vg|? L 2
o e IV
tan(cf)

(since n — |Vr|> =r?|VO> =n —2>0 and

Vr ch 2 ?gp

¢ 2 !W?P

< _H2T2 (n - |VT‘|2) H?2 2<

12



sec(ch)t

Note that this inequality holds on {z,+1 > 0}, where our solution M, is located. Let w := = yr

Hr
where 1) := H~!. Then by Lemma 2.7 and the previous inequality

Ow 1 |[Vwl|?

w  H? w?
. W90|2) n (@ LWMQ) _ E(D’"Q 1 WT?‘Q) L1
- © H?2 ¢2 H?2 H?2 wQ 2\ 2 H2 4
e 1 [Ve]? |A|? 1 |V|? n 2 Vr 2 |Vr|? 1
_(<p H2 902 )+(H2+H2 wQ )+(H2’I"2 H<V’ 7"> H2 2 )+t (3.9>

A2 1 2, Vp 2, Vr

<[+ 20 D - 2w T

1 [|IVY]? n Vr|? n—|Vr|? |Ve|? Vr V
1 LS ..
H Y r r r ® r’op
=:(1)+(2).
Suppose a nonzero maximum of w(p,t) on M™ x [0,t1] is achieved at (pg,to) with tg € (0,¢1]. At

this point,
_Yu_ Ve, Ve Wr

0 — Y _ Y7
w Y ® r
and therefore )
VYP _|Vr _ Vel" _ Vi Vel _ oY Ve
U O 2 rloe
A . . . .. . 2 n- ’vr|2 f
t the maximum point, by plugging this into (2) in (3.9), (2) = —(¢* — DTTZ Therefore at

the maximum point,

0< () (-1t VrP

H?2r?
Let us estimate terms in (1). Note that by our choice of ¢ > 1,
y _ 1 2 2 1 C
Vel _ lctan(cd)VO| < ¢ tan(cf) = — sin(ch) sec(cl) < < —— = —
%) r r rcosf — rsinb; r

for some C' = C'(61). Next, ‘}3—‘; < 1 from convexity and |Vr| < 1 imply at (po, to),

c—1 C 1
0< —(n—|Vrf? — 414 =
< ~(n=lvrl )H27“2+Hr+ +t0
c—1 C 1 ' )
__—H2r2+m+1+% (since |Vr|* <1, n >2)
< C_1+ C +1
=ToH%2 T o(e—1) Tty

Note that 0 < tg < t; and 1 < ¢ < C on M x [0,t1]. Multiplication of (¢(po,to)to)? implies

2
2 pto
w (po,to) <H7”> <Ct (tl + 1)

On any other point p € M at t = t1,

. (p,t1) = (Mpi’tl))>2<m<c(1+i).

H?r? tie(p,t) )~ o3 (ptr) ~ t
We used ¢ > 1 in the last inequality. This finishes the proof of Theorem 1.4. O
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Remark 3.1. If we define w := @i¢r~! and follow the rest similarly, we get an estimate which
includes the initial bound

1 <C 1
_— max
me =GP EE !

After the preprint of this work has been posted, M.N. Ivaki pointed that ¢(sec §) with ¢ of form
(A.12) could replace the use of sec(cf) in the previous proof. If p(sec6) is used, one may avoid
computing the evolution of 6 as the evolution of secf = (F, e,+1)/|F| can be derived from Lemma
2.6.

4 Long time existence of non-compact solutions

Let us provide a sketch on how we prove Theorem 1.2. Since Theorem 1.4 was shown for compact
solutions, we first construct a family of compact convex approximating solutions M; ; = oM, i+ which
is monotone increasing in 7. Each compact expandlng solution M;; exists for all time by [20] [42]
thus we may define the limit Mt = lim;_, 4 Mzt as a set. We will see, however, that the limit Mt
is non-trivial only up to time ¢ < T and the proof of Theorem 1.3 will show M, =R for ¢t > T,
meaning M; = OM; is empty.

Let us briefly explain where the connection between our solution M; in Euclidean space and
solutions on the sphere is revealed. Recall I is the link of the tangent cone of M. For each § > 0,
there is a smooth strictly convex I') € S such that 'y cC I} and Ts := In|S"| — In|T$| > T — 4.

Here and later, we use A cc B to denote A C int(B). As explained in Example 1.1, Fg admits a
smooth I'? in S which exists up to time T and we will make use of CT') as a barrier which contains
M; ;. Indeed, by moving its vertex far away from My initially, we can make CTY (after the initial
translation) contain M;; up to time T, implying that each M; ; satisfies condition (1.7) in Theorem
1.4 up to time T'—§ for all § > 0. Theorem 1.4 then leads to an upper bound on (|F| H)™! showing
that the IMCF on M, ; is locally uniformly parabolic and the rest is straightforward.

The proof of Theorem 1.2 consists of four steps. First, we define our solution M; = OM, as a
limit of compact approximating solutions. Second, we show that M; is a smooth non-trivial solution
for t € (0,7T) using the idea mentioned above. Third, we show that M; locally converges to My, as
t — 0. Finally, we show the strict convexity assertion of Theorem 1.2. Since the proof is long, we
will address some proofs of technical lemmas in Appendix.

Proof of Theorem 1.2. Suppose T' = T'(My) satisfies 0 < T < oo following the assumption of
theorem. We may also assume without loss of generality that My does not contain any infinite
straight lines. Let us justify this claim. By Lemma 2.3, My = R* x Ny for some non-compact
convex hypersurface Ny C R**1=% and it is homeomorphic to R** as M is homeomorphic to R™.
Note 0 < k < n — 2 since k =n — 1 or n would imply f‘o,]\fﬂ) is a wedge in (1.5) (when k =n —1)
or a hemisphere (when k = n), and 7' = 0 in both cases. If f[)’ a, © S™ and f‘o, & C S"=* are the

links of the tangent cones of Mg and Ng, then we have
T(Mp) =In|S" | = In P([y 1 ) = [S"* | = In P(T 5. ) = T(No). (4.1)

In conclusion, N(’)"”_k = ON, is a non-compact convex hypersurface in R("—*)+1 (with n —k > 2)
homeomorphic to R* %, i.e. Ny satisfies the assumption of Theorem 1.2 and Np has no infinite
straight line inside. Since the existence of a solution Ny of IMCF in R"**+! with initial data Ny
implies that M; := R* x Ny is a solution of IMCF in R**! with initial data My, we conclude that it
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Figure 2: Approximation of M

would be sufficient, as we claimed, to assume that My does not contain any infinite straight lines.
In this case, the link f‘o of the tangent cone of Mg does not contain any antipodal points and is
compactly contained in some open hemisphere H(vy) := {p € S™ : (p,vo) > 0} for some vy € S"
(see Lemma 3.8 in [34]).

Next, we create hypersurfaces M; o = 81\%70 with certain properties which approximate My from

inside. A sequence of sets A; is called strictly increasing if A; int(Ai+1) (and we write A; CC
A;it1). Let us denote the ball of radius r centered at p by B, (p). Setting ii,O := B;(0) N Mo, f]i,() isa
(weakly) increasing sequence of convex sets. By Lemma A.6, each ¥; o admits a strictly increasing
approximation by compact smooth strictly convex hypersurfaces ; ; = 85]2-7j. Furthermore, we
may assume dH(XA]Z-,g,XAJM) < j71, where dy is the Hausdorff metric (A.17). Then a diagonal
argument gives a sequence n; — oo so that MLO = ZA]W strictly increases to M. By [42] and [22],
each M, admits a unique smooth IMCF M;; = BMivt, which exists for all ¢ € [0,00). Note M;,
is smooth strictly convex hypersurface (see Remark A.1) which is strictly monotone increasing in
¢ by the comparison principle. We use the sequence of solutions M;; to define next the notion of
innermost candidate solution from M.

Definition 4.1. For a convex set M, with non-empty interior, let ]L272-70 be a sequence of compact
sets with smooth strictly convex boundary which strictly increases to My. We define the innermost
candidate solution from M as

M; :=U® M, fort € [0,00) (4.2)
where M;,; = OJ\jfi,t is a sequence of compact smooth strictly convex solutions with initial data
M, . M; is convex by definition and the definition does not depend on M;; (See Remark 4.1.)

It remains to show that M, := dM,; defines a non-empty strictly convex smooth solution to
the flow, for t € (0,T(My)), and converges to My locally uniformly as t — 07. We need an
approximation lemma for I'y, the link of the tangent cone of My at infinity.

Claim 4.1. Let Ty C S" be a closed conver set contained in an open hemisphere. Then there is a
sequence of smooth, strictly convex hypersurfaces I = oY in the open hemisphere which strictly
decreases and N;I) =Tg. For every such sequence, |T}| = P(I'})) — P(Iy).

Proof of Claim 4.1. This is a direct consequence of Lemma A.9 and Lemma A.10. Since their proofs
require some other results from convex geometry, we prove them separately in the appendix. [
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{zn+1 =0}

Figure 3: Outside hyperplane and inside sphere barriers around xzg € My,

Now fix an arbitrary time to € (0,T). By the claim, we may find a j such that 77 := In [S" 1| —
In|T)| > t. Since Iy is contained in the interior of I‘O, we may find a vector v € R”H so that
My C CF] + v . By the definition of Mo, it then follows that Mzo C My C CI‘ , for all 1.
Theorem 1.4 [34] guarantees the existence of a smooth strictly convex IMCF solutlon Fi in S"
with initial data I}, for ¢ € [0, T7). Note CT% is an IMCF which is smooth away from the origin.
Unless the convex cone CFJ is flat, the origin can not be touched from inside by a C? hypersurface.
Therefore a version of comparison principle can be justified and we obtain ]\[n C CF] + U for

€ [0,77). Since Ft is a strictly convex solution which converges to an equator, we may ﬁnd a
direction wp € S™ and small g > 0 such that

(F —vj,wo) > (sindg) | F — vj], for t € [0,20] on M.
By Theorem 1.4, we have a uniform bound
(HIF =)™t <Cc(1+t7"2) for M;; on t € (0, o). (4.3)

The barrier Cf‘g + 11; also shows M, # R™ 1 and hence M; is non-empty for t € [0,to].

Let us next prove that M, for t € (0,T(Mpy)), is a smooth solution of IMCF. First, note that
My C int(Mt) for t > 0: indeed, since My is locally in C11, for every point p € My, there is an
inscribed sphere at p whose largest radius depends on the local C*! norm of Mj. By the comparison
principle between the sphere solution running from this inscribed sphere and M; ;, we conclude that
D€ int(Mt) for all ¢ > 0. (In practice, if N; = ONy is a smooth compact solution Containing the
origin and No - ]\[ some 7 > 0, then the comparison and Lemma 2.4 1Inp1y (1-— E)Nt C ]\[L Tt
for i > i, showing (1 — €)N; C M,,;. We then take e — 0 to conclude N; C M,.)

Next goal is to show, for each (zg,t9) € R"*! x (0, T(Mp)) with zg € My, there is a spacetime
neighborhood, say U x [tg—T, to], around (g, tp) such that the portions of M; ; in this neighborhood
can be represented as graphs over a fixed hyperplane with uniformly bounded C' norm. We
may assume that zop = 0 and that {z,4+1 = 0} is a supporting hyperplane of Mto satisfying
Mi,t C {zp+1 > 0} for t < tg. For the discussion below we refer the reader to Figure 3. The
observation in the previous paragraph says 2rg := dist (Mg, 0) > 0. Note that the estimate on H
shown in Proposition 2.10 holds even when My N B,.(x¢) is empty. Thus, applying this proposition
gives that H is bounded by c,r, L on M;: N By, (0) for all ¢ and ¢ > 0. Recall that for smooth
convex hypersurfaces, one has |A|?> < H2. Since a (local) uniform limit of smooth functions with
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bounded C? norm is in CY!, M, has to be C1! around 0 and hence there is some ry such that
By, (r1en+1) C Mto. Let us choose r; sufficiently small so that By, (r1ep+1) C Br,(0). The uniform
bound on (H|F — U;-|)*1 in (4.3) implies that there is L such that H~! < L on B,,(0) N M;, for
t € [to/2,to]. Using this speed bound, we obtain that

B —rr(r1ent1) € My,—,  for all 7 € [0, min(%, 21)].
To prove this, let us define, for —%0 <s<0,
d(s) := dist (r1ep+1, Miy+s) and d;i(s) := dist (riep+1, Mito+s)-
Note that d;(s) is a Lipschitz function and the bound on H~! gives
0< dz(s) <L ifse [—%’, 0] and 7Tiep41 € Mi,t0+s- (4.4)

Since d(s) = lim; o d;(s), d(s) is Lipschitz and (4.4) holds for d(s) as well. Since d(0) = r; and

rient1 € My 40, we may integrate (4.4) to conclude

d(s)>r+Ls and rie, € My, forallse[— min(%, 1), 0.

In summary, we have shown that there are positive 7/, h’, and 7/ such that for i > i’ large, we
have
BT/(h'enH) C M@t C {.’L‘n+1 > 0} for all t € [to — T/,to].

Therefore: if D, = {a’ € R" : |2/| < '}, we can write M;; N (D x [—K',k']) as a graph
Tpp1 = uD (2, t) on Dy x [tg — 7/,t0). Note we have a uniform bound of |D,u| on D, /5 by
the ball and hyperplane barriers above and below. Since M;; are solutions to IMCF, the graphs
Znp1 = u® (2!, t) evolve by the fully nonlinear parabolic equation

(4 |DuH2 21/2 | 1 Du -

and the equation is uniformly parabolic if |Du|, H, H~! are bounded. Therefore, our estimates
above show that u(® are solutions to a uniformly parabolic equation on D,/ X [to — 7/, to] and
moreover they are uniformly bounded, since |u(i) | < K. Standard parabolic regularity theory implies
a smooth subsequential convergence u’ — u on D, /4 X [to—7'/2,t0]. Since the sequence of surfaces
M, ;+ is monotone in 7, this proves that x,4+1 = u(2’,t) is a smooth graphical parametrization of M;
which is a solution to (4.5). Our argument holds in a neighborhood around any point zg € M;, and
for any to € (0,7'(Mpy)), therefore showing that M; is a smooth solution to the IMCF for t € (0,T).

We will next obtain the local uniform convergence of My — My, as t — 0, by showing that
ﬂt>oMt = Mo. Arguing by contradiction, suppose that MO C ﬂt>th, that is there exists a point
pE int(ﬂt>0Mt) \ M. This means for each ¢ > 0, there is i; such that Mi,t contains p if ¢ > 4;. Let
us define d;(t) := dist (p, M;,). Note that d;(0) > 0 and d;(t) is nonnegative decreasing function.
In view of the bound (4.3), by choosing ty = T//2, we conclude that there is C' = C(p, My) > 0 such
that if 0 <t < T/2, then

di(t) > —Ct7Y/2, (4.6)

Furtermore, the function d;(¢) is Lipschitz continuous and hence the above inequality holds a.e.
One obtains this inequality by considering those points attaining the distance at each fixed time
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and estimate the rate of changes in the distances between those points and p using the bound on
H~'. Integrating (4.6) from 0 to t, we get d;(t) — d;(0) > —2C't'/2, for 0 < t < T/2. Note that
d;(0) > dist (p, Mo) > 0. There is t; > 0 such that d;(t) > dist (p, Mp)/2 for all i and ¢ € (0,,).
This is a contradiction to the assumption which says d;(t) = 0 for large i > i;.

Finally, we prove the strict convexity assertion in Theorem 1.2 using Appendix A.1. If M,
contains an infinite line, a solution at later time Mt also contains the same line and hence M; it is
not strictly convex by Lemma 2.3. Now suppose My has no infinite straight. In view of Corollary
A4, it suffices to show H"(v[M;]) > 0 for all t € (0,7T). Let us fix an arbitrary tg € (0,7"). In the
construction of Mt, we have shown that M;;, (and hence My,) are contained in some round cone
C:={z eR"! : (z—wv,w) > (sind)|z —v|}. Observe that the outward normal of each supporting
hyperplane of C should belong to v[M,;,] as we may translate the hyperplane to make it support
tho somewhere. We directly compute the set of outward normals of supporting hyperplanes of C
as {v € S" : (v, —w) > cosd} =: I". This shows H"(v[M;,]) > H™(I") > 0, finishing the proof.

O

Remark 4.1. The definition of innermost candidate in (4.2) does not depend on the choice of
approximation M’z‘,oi if AA/[,L-,O and ]\7[1»’70 are two approximations of My, we have A7[,i,0 cC NI?’I,‘,.O for
large n;, showing that ]\ZTM C Uj]LAifj’-at and vice versa. By the same argument, the comparison
principle holds between two innermost candidates if one contains the other at initial time. The
solution is innermost in the sense described in Lemma 4.2. This fact will be used in the remaining
of the section.

Lemma 4.2. Let N; = aNt for t > 0 be a smooth solution to the IMCF with initial data No =
Ne>oN: and My be the innermost candidate from My by Definition 4.1. If My C Ny, then My C Ny
as long as Ny = ON; exists.

Proof. ]\;[2-70 cC Ny implies Mi,t c N, by the comparison principle, showing M, C N. [l
Next lemma shows conical solutions can be used as barriers from inside.

Lemma 4.3. Let Iy = 90y C S" be a smooth strictly convex hypersurface in S™ and T'y be the
unique solution to the IMCF obtained by [34] and [22]. Let Ny the innermost candidate from Ny
by Definition 4.1. If CT'o C Ny, then CI'y C N; for t € [0,In|S" 1| — In|Tg)).

Proof. After a rotation, we may assume that e,41 is in the interior of f‘o in ™. Then CI'y can be
written as a graph of an entire homogeneous function x,11 = f(z), * € R™, which is uniformly
Lipschitz. Since the graph is a cone, we have f(Az) = Af(x). Let n be a usual smooth radially
symmetric mollifier supported on B;(0), and define

fe(x) == fxn(x) = . flz+w)n(e tw)e ™ dw.

The convexity of this mollified function f. can be easily checked:

feQz+ (1= Ny) = /f()\x + (1 = Ny 4+ w)n(e tw)e "dw
> [+ w)+ (1= Nf =+ wle tw)e ™ du (4.7)
= )‘fe(m) + (1 - )‘)fe(y)
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Moreover, f. > f since

e tw —e 1w
@) = [ o) Mt 1)

By FCENUES R

e "dw

(4.8)

Lw)e dw > /f(a:)n(e_lw)e_”dw = f(x),

the uniform Lipschitz condition of f implies that || fe — f]|cc < 00 for all € > 0, and that || fe— f|locc —
0, as € = 0. Next, observe that

Let My = dMy be the convex hypersurface {(z,2Zn1) : Zny1 = fi(z)}. Then (4.9) implies that
the tangent cone of My at infinity is CI'g. Theorem 1.2 shows the existence of a smooth solution
My, for t € [0,In|S" | — In |Ty|) with initial data My.

We will show next that: for t € [0,In[S""!| —In|To|), eM; converges to CT'y in L$S,. Assuming
this, let us first finish the proof of the lemma: for each ¢ > 0, (4.9) implies eMy = {zp 41 = fe(x)}
and thus (4.8) implies eMO is contained in No d\[t is an innermost candidate as M’t is. Thus
e]\jft - Nt by the comparison in Remark 4.1 and, by taking ¢ — 0, we conclude Cft - Nt.

We are left to prove the convergence of eM; to CI';. Following the construction in Theorem 1.2,
let M;; be compact convex solutions which approximate M; from inside. Since Mw is contained
in CI'y, the comparison principle implies Mi,t C CI', showing M; C CI;. Let us express M; by
the entire graphs z,41 = fi(z,t) and CT'y by x,+1 = f(z,t). Observe that the gradients |D fi]
and |Df| are uniformly bounded on (z,t) € R® x [0,[S""!| — In|[g|). This is because e, is
an interior point of fo and hence Mt and Cft contain a fixed round convex cone whose axis in
positive e,41 direction. Next, note f(-,0) € Cp2(R™\ {0}) and fc(-,0) — f(-,0) in Cp2.(R™\ {0})
as € — 0. This convergence and (4.9) imply that there is C' > 0 such that H(|z| + 1) < C for
My. Proposition 2.10 then implies that the mean curvature H(x,t) of M; at (x, f1(z,t)) satisfies
the bound H(x,t)(|Jx| +1) < C’. Next, since CI'y works as a conical barrier outside, Theorem 1.4
(see also Remark 3.1) can be applied to the approximating compact solutions M;; to conclude that
(H‘F’)fl < Cson M; fort € [O,T(Mo) — (5]

All the bounds above imply that the solutions eM; when viewed as entire graphs, have uniform
gradient bounds, locally uniform height bounds, and locally uniform bounds of H and H~' on
compact domains which do not contain the origin. In the previous statement, the uniformity of
estimates holds both in € > 0 and ¢ € [0,7(Mp) — 0] for all fixed § > 0. By the regularity
estimates of uniformly parabolic equations, we may pass to a sub-sequential limit and obtain, as
e = 0, ef(e tw,t) converges to some fo(z,t) smoothly on (Bs-1 \ Bs) x [0,T — 6) for all § >
0. It follows that {x,+1 = fo(z,t)} is a smooth solution to IMCF on R™ \ {0}. Meanwhile,
{Zn+1 = fo(x,t)} represents a convex cone as it is the blow-down of M;. Combining these together,
{Zn+1 = fo(z,t)} = CT} for some smooth convex hypersurface I';, C S™ and T} evolves by the IMCF.
Since I'; is the unique solution to IMCF with initial data I'g = I}, we conclude that I'; = I',. This
proves that fo(z,t) = f(z,t) and the convergence of eM; to CI';.

O

Proposition 4.4. Let M; = OM; be a conver non-compact solution obtained from Theorem 1.2
and Ty be the link of the tangent cone of M;. Suppose I'g has no interior in S™ but H" 1 (I'g) > 0.
Then 'y has interior fort > 0.
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Figure 4: Proposition 4.4

Proof. We may assume that %" '(To N {znp1 > 0}) > 0 and 0 € int(Mp), by rotating and
translating the coordinates respectively. Since CTy is convex in R#4L CTo N Loy w== | e Q is
convex in R™. Moreover, { has no interior in R and H" () > 0 since the gnomonic projection
(A.18) is (locally) bi-Lipschitz map between R™ and S™ N {zp41 > 0}. If a convex set in Euclidean
space has no interior, then it should be contained in some hyperplane. Therefore, Q) is contained
in a (n — 1)-plane and Q has interior in that (n — 1)-plane as otherwise  would be contained in a
(n—2)-plane, contradicting H"~1(Q) > 0. As a result,  in R” x {1} contains a (n— 1)-dimensional
disk of some radius ry. The cone generated by this (n — 1)-disk is contained in Cfo and thus C’fo
should contain a rotated image of the following n-dimensional cone for some 0 < r < rq:

C:= {(ml,xg,...,xn,()) eRnJrl : \/m%'i_"'—i_x%—l ern}

By letting ¢ := r/v/1 +r2, observe B (aent1) X {0} is contained in C for all a > 0. Since we
assumed 0 € int(My), there are v € T'gp C S™, € > 0, and a rotation operator J such that the family
of expanding thin disks a@ 4+ J(B(0) x (—¢, €)) are contained in My for all a > 0.

Claim 4.2. Let Dg, := B}%(0) x (—¢,€) C R™™ be a thin disk e € (0, R/100) and N; = ON; be a
smooth IMCF. If lA)R,6 - ]\70, then there is ¢, > 0 such that BgnJr}%t(O) c N fort € [0, cp].

Proof of Claim. Let us smoothen out the edges of D, := 8153,6 to obtain a smooth pancake
like convex hypersurface ¥ g, by a similar method of Lemma 4.3: consider the convex conical
hypersurface in R"*2 generated by Dg x {1} € R"*2 from the origin. We can represent this cone
by an entire graph z,12 = f(z) of a 1-homogeneous function f(z). Then f~1({1}) = Dpg.. If
we consider the regularization of f, say fs, as constructed in Lemma 4.3, then fs > f and it is
smooth convex function. For sufficiently small §, the level set fd_l({l}) =: YR, is a smooth convex
hypersurface in R™*! which is contained in lA)RVE. Since the regularization of a linear function is
the same as itself, Dr . and Y. coincide on BZJ/FQI(O) for small § > 0.

Observe that X g . has the same symmetry as Dg . i.e. O(n)-rotational symmetry and reflection
symmetry with respect to {z,, 41 = 0}. Thus the IMCF Xg(t) starting at ¥ must contain two
points (0, € 4 ¢(t)) and (0, —e — ¢(t)), for each t > 0, at which the normal vectors to X (t) are
ent1 and —ep 41, respectively. In view of Lemma 2.10, ¢/(t) > c¢R as long as € 4+ ¢(t) < R/2. Since
Yr.(t) contains these two points and the disk B} /2 X {0}, convexity implies that g (t) includes

our desired ball. This finishes the proof as 3 Re(t) C N; by the comparison principle. O
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t=20 t>0

Figure 5: Claim 4.2

By the claim, av + Bglnt}lt(O) C M, for all 0 < t < ¢, and a > ag some ag > 0. T'; has interior

since M; contains a round cone.

]
We now prove Theorem 1.3. Note that the same proof works for both 7'=0 and 7" € (0, c0).

Proof of Theorem 1.3. Let M, for t > 0, be the innermost candidate solution from My (see Def-
inition 4.1). Since M; C N; (by Lemma 4.2), it suffices to show Mgy, = R**! for 7 > 0. One
useful observation is that if Mto contains a half space at tg > 0 then Mt =R for ¢t > to: suppose
{2ny1 > 0} C My,. By the comparison with spherical solutions, DB 1 % JRE M, . Since
Br(eT’/n—l)(O) C B, /n(rent1) C ]\;[tOJrT/ for all » > 0, we get JV[tOJrT/ = R"tL,

We may assume 0 € int(Mo). Suppose Mto contains a cone Cf{) with a smooth strictly convex
link T'{, in an open hemisphere. Since the IMCF running from I'{, converges to an equator as
t — In|S" | — In|T)| (by [22][34]), Lemma 4.3 and the observation above imply that M; = R"!
for t > tg +1In|S""!| — In|T}|. In view of the approximation in Lemma A.9, the same assertion
holds when f() is a convex set with interior and contained in an open hemisphere.

In general, the link of initial tangent cone o is a convex set in a closed hemisphere. After a
rotation, we may assume that e, € I'o and represent My using a convex function f on a convex
domain Qy C R™ by My = {(z,Zn41) : Tny1 = f(z),z € Qp}. Let us define M&o = I (BB )
Tnt1 > f(z)+ey/|z]? + 1,2 € Qo} and observe that it is still convex with C’llo’i boundary. The links
of the tangent cones of ]\AL,()7 say f‘e,o, are contained in a fixed open hemisphere and fe,() increases
to I'p as € — OF. P(f€70) is monotone in € by Lemma A.11. Let us assume the following claim for
the moment.

Claim 4.3. P(f’€7o) increases to P(I'g) as e — 0.

Choose ngo such that 7" := In|S""!| — P(Twg) < T + 7/2 and note 7’ > 0 by Lemma
A.11. By Theorem 1.2, there is a smooth strictly convex solution M. ; for 0 < ¢t < T". At
to := min(7/4,7’/2), the link of the tangent cone of ]\;[6/7150, say f‘glvto, has interior by Proposition
4.4. f‘elm is contained in an open hemisphere due to strict convexity of M ;. By Lemma A.11,
T" :=In|S"!| —In|Te 4| < In|S"Y| — P(f6r70) < T +7/2. M.y, C My, by Lemma 4.2. Because
Cfe’,t() G Mto, we apply the assertion in the second paragraph to conclude that M, = R"*! for
t >to+T". Note that to + 7" < T + 37/4 finishing the proof.
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Proof of Claim. Let us define a locally Lipschitz map

(x7$71,+1 + €‘l|)

) . Rn+1 o 0 H Rn-ﬁ-l l el x fr— bl
W {0} oy e, Tnt1) |(z, xpy1 + €|x])|’

and observe 1170 = ’z/)g(fo). 1 induces a bijection between {z,4; = alz|} N S" and {z,+1 =
(a + €)|z|} NS™ for all @ € R, hence 1. induces a bijection from and onto S™. Let us define
d(x, Tpt1) := |zlens1 so that ¥c(p ) — 2+e@P) - At each differentiable point of 1, the differential

Ip+ed(p)]” o
of 1¢, D1, represented by a (n+ 1) x (n + 1) matrix is

p+ep
[p+eg| b+ ed|?
Using |p| = 1, |¢| < 1 and |D¢| < 1 on p € S, we may find positive C and ¢y such that for
0 <e<eateachpeS" — {Fe,p1} and V € T,S" = {(W € R*™! . (W, p) = 0}

Dy(p) = (Int1+€Do) — (p+ f¢) (Int1+€Do).

(1 = COWV] < |(de)p(V)| = [De(p)V]| < (1 + Ce)|V].

The shows that (1 — Ce)" 1 |Tg| < [Teo] < (1 + Ce)" Ty
[]

O

In the remaining part of this section, we assume 0 < T'(Mp) < oo and discuss the behavior of
innermost solution Mt ast — T~. By Theorem 1.2, M; is a smooth IMCF for 0 < ¢t < T which is
innermost by Lemma 4.2. Observe Iy, the link of the tangent cone of M;, is a kind of weak solution
to the IMCF on S™.

Lemma 4.5. Suppose f‘6 c Ty for some compact convex set f‘() with smooth strictly convex boundary
and let T, be the IMCF' from T,. Then, FQAC I'y. Similarly, if Ty C T for some I'{y # S™ with
smooth strictly convex boundary, then I'y C T'y. The inequalities hold as long as T, exists.

Proof. For such a f‘6 - f‘o, we may find a vector v € R"*! such that Cf’f) +v C M. Then Lemma
4.3 implies that CI', + v C My, hence I', C T';.

In the other case, if we first assume strict inclusion Ty CC f’f), then the proof goes similarly
except that we don’t use Lemma 4.3 and use the usual comparison principle between the ap-
prox1rnat1ng compact solutions M;; and the conical barrier outside (and then take i — o0). For
general I‘o - FO, consider a strictly decreasing approximating sequence {FZ 0} of I‘O, obtained from

Lemma A.9, and apply the result which assumes strict inclusion. This shows that I, c ﬂzI‘Z t and

I, c ﬁle,t' In view of Lemma A.9, we have the following equalities
(Nl )| = Jim [T | = lim eI | = €' [T = ||
1—>00
and the strict outer area minimizing property (the last assertion in Lemma A.9) implies [, = ﬁif‘;t,

and this shows I'; T
U
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Remark 4.2 (Asymptotic behavior of My, ast — T'7). In the case when I'g admits a smooth strictly
convex IMCF, the comparison in Lemma 4.5 implies that I'; must be this solution and, by the result
of [34] or [22], Ty converges to an equator in C1®, as t — T~ = In [S"~ 1| —In P(I'y). In other words,
the solution M; becomes flat, as t — T, in the sense that the tangent cone CI'; converges to a
hyperplane in Cllo’ca. Next, since UpepCly € CT'p € My + v, for some v € R™ My + v must
contain the closure of Ut<TCf‘t, a closed half space. Thus MT is either a closed half space or R™"*1,
In the first case, M; converges to a hyperplane as ¢ — T, and in the second case, M; disappears
to infinity as ¢ — T~. Furthermore, in the first case the convergence to the hyperplane is in Cllo’f
as we have a locally uniform C? bound (see Proposition 2.10). Note this result resembles C1®
convergence of flow with boundary to a flat disk shown in [31]. One additional condition on M
which leads to the first case is to assume there is v € R"*! such that Mg C Cf’g +v. Then Cf’t + v
becomes a barrier which contains Mt and thus MT has to be a half space.

In general I'g may not admit a smooth IMCF solution. This gave the motivation for further
research by the first author and Pei-Ken Hung [9] and one of the results in [9] shows the following:
there is tg < T := In|S"~!| — In P(I'g) and 0 < k < n — 2 such that CT'y = RF x CT"} and T} is a
IMCF in S"~* which becomes smooth strictly convex for ¢ € (tg,T). Therefore, in this general case
one obtains the same asymptotic behavior as in the case of previous paragraph.

If we do not assume the result of [9], we still have some partial results on the asymptotic behavior
of the solution. {T't}¢( ) is a monotone family of convex hypersurfaces which are all contained
in some hemisphere and that |I';| = e!P(T'g). Therefore, the closure of U;-7T; is a convex set in a
(closed) hemisphere whose outer area is the same as the area of an equator |[S"~!|. Such a convex
set is either a hemisphere or a wedge discussed in (1.5). Since Ut<Tft is contained in fT, CfT is
either a wedge, a half space, or R""!. In the first case (although there is no such case if the result
of [9] is assumed), M7 = ¥ x R*~! for some non-compact Cllo’cl convex curve ¥ = % in R? and
M; converges, as t — T, to ¥ x R*! in C’llo’f. The cases when CI'r is a half space or R"! were
described the above.

Remark 4.3 (The connection with wultra-fast diffusion on R™). In [11, 12], the second author and
M. del Pino studied the Cauchy problem of ultra-fast diffusion equations u; = V- (u™ 'Vu) on R"
for m< — 1. In an attempt to find the fastest possible decay of initial data ug which guarantees a
solvability of the equation on ¢t € (0,7"), some partial necessary or sufficient conditions had been
found. As pointed earlier, the evolution of H in the IMCF is similar to the ultra-fast diffusion
equation of m = —1 and it shares similar features. Let us first summarize some of results when
m = —1 from [11, 12]. First, there is C(n) so that if the Cauchy problem u; = V - (u=2Vu) with
u(z,0) = up(z) > 0 has a solution for ¢ € (0,7"), then

1
limsup—/ U, d:EZC’Tl/Q.
R—o0 Rn_l BR 0

There exist, however, some ug(z) > 0 such that

1
A R /BR to=C=>0

but for which no solution exist with initial data wug, for any 7" > 0. Such solutions are characterized

by a non-radial structure at spatial infinity. Indeed, for initial data which is bounded from below
near infinity by positive radial functions there is a necessary and sufficient for existence as follows:
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there is an explicit constant E* > 0 such that if the problem has a solution for ¢ € (0,7"), then

(1 R s 1
li — _ d > F*71/2,
oy | R (/0 Wy /5"0 x) =

Moreover, if ug is radially symmetric and locally bounded,

= Ry .
liminf | —= </ Si / uo dac) > E*TY/?
R—oo |R \Jy wps" ! Jp, |

guarantees an existence of a solution on R" x (0,7"). For non-radial ug, there is a similar condition

in Theorem 1.3. [12]. Every result mentioned here is in some sense sharp when explicit solutions

’UT(SL', t) _ \/2(71 — |1x)’(T - t)-l—

are considered. These results explain partial conditions for non-existence and existence of solutions,
but a complete description was missing. For the convex IMCF, however, Theorem 1.2 and 1.3 depict
a fairly complete picture. This was possible by the geometric estimate Theorem 1.4. Note that this
lower bound has the same decay of v”(z,t) above. Instead of the integral operators used in [12],
the asymptotic geometry of My is used to provide the lower bound on H in Theorem 1.4. It would
be interesting to see if a similar idea could be implemented in the theory of ultra-fast diffusion
equation (1.2), with m < 0.

A Appendix

A.1 Strict convexity of solutions in space forms

Throughout this subsection, unless otherwise stated, we assume the solutions are smooth immersed
n-dimensional possibly incomplete submanifods in (N"*1, g) which is a space form of sectional
curvature K € R. This ambient space, in particular, includes Euclidean space, the sphere, or
hyperbolic space. Since smooth solutions are strictly mean convex (H > 0), this necessarily implies
that the solutions are orientable. As before, we denote the outward unit normal which is opposite
to the mean curvature vector by v, the norm of mean curvature by H, and the second fundamental
form with respect to —v by h;;. Moreover, we say a solution is convex if h;; is nonnegative definite
everywhere. Note that the convex solution in this subsection is weaker notion than the convex
solution in other sections which uses Definition 2.1. For instance, a C? hypersurface convex in the
sense of Definition 2.1 should necessarily be complete and embedded.

Our aim is to prove Theorem A.3, a strong minimum principle on A\;. However by looking at
the evolution of the second fundamental form h;; given in (2.2), it is not clear that the convexity is
preserved. To do so we need to use a viscosity solution argument and we need the following lemma
shown from [5].

Lemma A.1 (Lemma 5 in Section 4 [5]). Suppose that ¢ is a smooth function such that \y > ¢
everywhere and A\ = ¢ at x = p € Q). Let us choose an orthonormal frame so that

hij:)\iéij atp € Q with A\ :AQZ...:)\M </\/H—1 <... < A\
We denote pu > 1 by the multiplicity of \1. Then at p, Vihg = 01 V;¢ for 1 < k.1 < u. Moreover,
ViVip < V;Vihy — QZ()‘j — 1) H(Vihg))2
J>p
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Proposition A.2. Forn > 1, let F: Q x (0,T) — (N""1,g) be a smooth convex solution to the
IMCF where (N, g) is a space form. Let \1 denote the lowest eigenvalue of hz Then u := A\ /H 1is
a viscosity supersolution to the equation

0 1 1 4%
—u— —Au+ —{(V,Vu) + > )
tu HQAU H3< , Vu) <H4> u>0 (A.1)

where V' is a vector field, and W is a scalar function such that
W, |V| < C(IVH|,n) at each point.
Proof. Using equation (2.2) in Remark 2.1, we compute the evolution of h;'» JH:

(0~ 238) 5 = 2 = — 2723 |+ 21 (VHV" b — V' HYV H). (A.2)

Suppose a smooth function of space time, namely ¢/H, touches \; /H from below at (p,t). At time
t around p, let us fix a time independent frame {e;} using the metric g(¢) as in Lemma A.1.

Since ¢ < A\; < h} and they coincide at (p,t), ;¢ > 0:hi at (p,f). At this point (p,t) with the
frame {e;}, we use Lemma A.1, equation (A.2), and the Codazzi identity V;hj, = V;hi; to obtain

D¢>3h_1_i 2SSO = ) Vg ?
otH H? H3 1) Vik
o>
hi, 2 -1 2
—DH+H— Z (Aj = A1) [ Vihig]
i>1,5>u
A.3)
2 A2 2 Y AN 2 V1 hij |2 (
J 7 J7IAM 2 1My
2, 2 H |V H]?+ H
ig i g | VeVl = VI H mzj;u Aj =i
2 |V1hij|?
> = |V,,HV, HP?+H J
> g1 | VIV = [VHP +H 5 S
i>1,5>p

The last inequality uses A1 > ; A; < >, )\? = |A|?, which holds on convex (or more generally on
mean convex) hypersurfaces.
Next, note that

ViHVIH =Y VihiVihj; = 2uV1HV1¢ — 12[Vig]* + Y VihiiVihy;. (A)
Y] P> J >
Since H V% =Vo¢— %VH , we have the following for each fixed unit direction e,,
¢, 9 2
Vi HV @ Vi HV % + HW | (A.5)
We first plug (A.5) with m = 1 into (A.4) and then plug that into the last line of (A.3) to obtain
¢ 2 2@, 2(1—2p) 2 ¢
s = I Sl a4 -
2 ¢ 201 —p) ¢ 207 V1o
il mHV — + = 7 HV, —
+H3mz>:1v Vg T s Vi T aE (A.6)
2 _
+ o [H =M TVaGP = ) Vihi Vi,

i>1,5>u >, g>
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We now use the convexity, A\; > 0, in the proof of the following claim.
Claim A.1. [HY ;0,0 = A) Vi 2 = Yo Vlhiivlhﬂ} >0 on {\ > 0}.

2u? V16
Assuming that the claim is true, then by taking away the good term % Vadl in (A.6), we

easily conclude that (A.1) holds by choosing a vector filed V and a scalar function W as a function

of VH accordingly. Thus it remains to show the claim.

Proof of Claim A.1. Since Ay >0, H =351 A > >, A, the claim follows by:

H > (=M VbGP =) AN A ViG> = > ATk
i>1,5>p I>u > P> 1,J >
)\jA;l\VlhiiP + )\Z‘/\]-_1|V1hjj|2

= > 5 (A7)

>4, >
> Y VihiVihy;.
i>p,j>p
[]
]

Now, let M; ¢ N™t! be a smooth complete convex solution for ¢t > 0, which could be either
compact or non-compact. One expects M; to be strictly convex, that is to have A; > 0 for ¢ > 0.
Indeed, this follows easily by Proposition A.2 and the strong minimum principle for nonnegative
supersolutions which is a consequence of the weak Harnack inequality for nonnegative viscosity
super solutions to (locally) uniformly parabolic equations. (See Chapter 4 in [43]).

Theorem A.3. Suppose F': M™ x (0,T) — (N""1,g) is a smooth complete convex solution to
the IMCF with H > 0 where (N"*1.g) is a space form. If M\i(po,to) = 0 at some (po,to) with
0<ty<T, then \y =0 on M"™ x (0,1].

Proof. Since solution is smooth, |H|, |[VH|, and |[H~!| = |0;F| are locally bounded. Therefore, A
is a nonnegative supersolution to equation (A.1) which is locally uniformly parabolic with bounded
coefficients. We can apply strong minimum principle on a sequence {Qx} of expanding domains
containing (po, o) such that M"™ = UrQ and conclude that the theorem holds. ]

Corollary A.4. Let F: M™ x (0,T) — R be a smooth complete convex solution to the IMCF.
If H™(v[My,]) > 0 at to € (0,T), then My, is strictly conver.

Proof. 1f it is not, Theorem A.3 implies A; = 0 for all M"™ x (0,t9]. The Gauss map v : M;, — S"
is Lipschitz. Thus the area formula implies

y Kdy = . HO(Vfl({Z}))dH"(z) > HP (W[ My,)). (A.8)

Since K = 0, this is a contradiction and proves the assertion. O
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Remark A.1 (Strict convexity of compact solutions). We may use Theorem A.3 to show the initial
strict convexity of smooth compact solution is preserved. Let M; be the smooth IMCF running
from smooth compact immersed hypersurface My with positive h;;. By considering the first time
A1 becomes zero at some point, Theorem A.3 implies that there is no such time as long as the
smooth solution exists and this proves h;; is positive for M;. Furthermore, if M; is a flow in R,
then it is the boundary of a compact convex set with interior by Hadamard [25], showing M; is
convex in the sense of Definition 2.1.

A.2 Speed estimate for closed star-shaped solutions

The goal is this section is to give an alternative proof of Theorem 1.1 in [30] which will be based
on the maximum principle. The theorem holds in any dimension n > 1.

Theorem A.5 (Theorem 1.1 in [30]). Let F : M™ x [0,T] — R""! be a smooth closed star-shaped
solution to (1.1) such that My := Fy(M™) satisfies

0 < Ry < (F,v) < Ro. (A.9)

Then, there is a constant C,, > 0 depending only on n such that

1 Ry 1 t
H <G, (R_1> <1 + m) Ry en (A.10)

holds everywhere on M™ x [0,T].
Proof. Since M satisfies (A.9), by Proposition 1.3 in [30], we have

Ry < Rien < (F,v) <|F| < Roen (A.11)
for all 0 < t < 4+00. Let us denote w := (F,v)~! and we will consider a function

(pl—e(w) 6’y|F|2

Q=1

for some function ¢ := p(w), constants v > 0 and € € (0, 1) which will be chosen shortly.
By (i) in Lemma 2.6,

(8 — ﬁA) nelfl” = (9, - ﬁA)]F\ =-mt g0
Moreover, by (7) in Lemma 2.5 and Lemma 2.9 with g = —1,
1 A]? 2 2
(O = ged)w =—w = Vvl

and hence, on {p # 0},

1 a_H—QA 1 |V 2 A2 / \V4 2 / " /2
(at__zA)hw:(t )so+_\ el AP Yw  [Vu 2£+g_s0_2 .
H we @ P

H2 902 H2 © H2

Inspired by the choice of ¢ in the well known interior curvature estimate by Ecker and Huisken in

[17] (see also [7]), we define
p(s) = (QR_f - s) - (A.12)
1
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For this ¢ := ¢(w), under the notation ¢’ = ¢'(w) and ¢” = ¢"(w), a direct computation yields

/ 12

pw :—<L) and 2 L4
%) 2 —whky wep

/

© 2

(,0,/ s0/2 ©
T T2
¥

Lemma 2.7 and the computations above imply

2 —1|2 2 1 2

H? H—? Hw H? H? o H? 2
B (le - 26) | A2 < 4 2n — ey |F 2|V |F||?
EBRYE) THw 7 2
— 2
BRI PPN\ 2l Y\
H2 2 H-2 ’€|F|2’2
(A.13)
152 }V‘F‘Q‘Q ) ]
Note that we have added and subtracted the term e in the last equality. At a nonzero

critical point of @,

vQ Vo Vel vhg-!
0= Q (]‘ - ) © + Y 6|F|2 + Hfl 3
and thus
2 2
VH-|? Vo  VelfP .| Vel? Vo Velfl? , | VelFI®
-1 | — (1—¢ Ve =[1—-€|—| +2(1-e)y o oFE e
Vo 1—ce€ Velfl?
< (1 — )2 _ vy 2
<=ttt a4 | T

1.2 |ve|F|2’2
e2lF?

IVel? | _
=(1—c¢ +e€
(1-9"

For a given T' > 0, note that RRlT < wR; < 1. It remains to choose € and . The choice
2€ M

€:= RR1 makes the first term on RHS of the second equality in (A.13) nonpositive. Next, choose
2Roem
o= ;ﬁ > 0 so that 4e 'y|F|> < n on M, for t € [0,T]. Combining the choices and
2€m
estimates, at a nonzero spatial critical point of @,
1 (Gt — ) |VQ|2 n 4
O — —=A)InQ = ——t+—. A.14
(0 H? )InQ Q t Q2 =7 H2+Hw ( )

We will now apply the maximum principle on Q := t(Q). Suppose that nonzero maximum of Q
on M™ x [0,T] occurs at the point (pg,tog), which necessarily implies to > 0. At this point, (A.14)

implies
1 A 4 1 n 8 1
0< (O —-5A) Q<7 (-5 — < 4SRN )+ — A5
<@ A0y (gt ) < (Cgm Bt ) s ()
where the second inequality comes from
4 8 n 8 n
< < R2 27 v
Hw_nw2+2H2_n 2¢ " +2H2
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The rest is a standard argument shown in the proof of Theorem 3.1 [17]. By the choices of €, 7,

bounds (A.11) and
Ry

SRacT/n = P((Rae"™)™) < p(w) < p(RyY) =1,

we proceed and obtain, for every (p,t) € M™ x (0,T],

1 Ry \*7° 1, 1
ﬁ(p,t) <Cp <R—1€n> (Roen) <1 + ;) . (A.16)

Now for time ¢ > 1, we can alway apply this estimate starting at time ¢ — 1. Inequality (A.11)
implies that the ratio between star-shapedness bounds from above and below remains unchanged
over time. This way we can replace (Rge%/Rl)Q*6 in the above estimate by (Ra/R1)%>™¢ after
possibly enlarging the constant C,,. Since (Rg/R1)*~¢ < (Ra/R1)?, the theorem follows. O

A.3 Smooth approximation of convex hypersurfaces

In this appendix, unless it is stated otherwise, convergence of compact convex sets (or their bound-
ary hypersurfaces) means the convergence in the Hausdorff metric, defined as

dp (A, B) := max(sup inf ||z —yl||,sup inf ||z —y]|). (A.17)
z€A YEB zeA YE€B

In case where A, B are compact convex sets, it is known that dy (A, B) = dg(0A,0B) (Lemma
1.8.1 [37]). For a compact convex set M C R"*! M? denotes the d-envelope

M? = {z e R"*! : dist (z, M) < 6} = M + 6By(1).
Here the dist (2, M) is measured in Euclidean distance.

Lemma A.6. Forn > 1, let M Cc R" 1 pe g compact convex set with non-empty interior. Sup-

pose 0 € int(M). Then there is a sequence compact convez sets M, with smooth strictly convex
boundaries such that

M,fe =(1+ k‘_l)Mk is strictly decreasing, M,ﬁ” =(1-— k‘_l)Mk 1s strictly increasing,

and both converge to M as k — . Here, we say that f)ge (EA)}C") is strictly decreasing (strictly
increasing) if 0% C int (30¢) (S C int (3],), respectively).

Proof. By Theorem 3.4.1 in [37] and its immediate following discussion, there is a sequence of
compact convex sets Mk with non-empty interior and smooth strictly convex boundaries such that
dgr (M, M;;) — 0. Note that (1+ k~1)M and (1 — k~')M are strictly monotone sets. Hence, using
a diagonal argument, we may choose a subsequence of My, so that (1+ k_l)Mk and (1 — k:_l)Mk
are strictly monotone as well. O

Let T be a compact convex set in the upper open hemisphere S™ N {z,41 > 0} =: S’.. Since cr
is convex in R"*1_ if we define Q x {1} := CI'N {x,+1 = 1}, then Q is a compact convex set in R™.
I' and Q are related by I' = ¢(£2) using the gnomonic projection (z,1) € R"* — ¢(z) € St

o(z) = — ) forrcR” (A.18)

(1 + [z
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Since (R", p*gsn) and (S}, gs») are isometric, we have |oT) = |8Q|¢,*9Sn. Here, the surface area

measure ||+ g, is (n—1)-Hausdorff measure on metric space (R", dy+ 4., ), induced from Riemannian
structure (R™, p*gsn). Since 0N is (n — 1)-rectifiable, we will use the area formula and avoid using

the metric dy+ g, in actual computation of |02« g, -

Lemma A.7. Forn > 1, assume that a sequence of compact convex sets Mk C R™ converges to a
compact convex set M with non-empty interior. Then limy_,o |My| = |M|. Similarly, if a sequence
of compact convex sets Iy C S’ converges to a compact convex set with non-empty interior I'csn,
then limy_oo |Tk| = [T

Proof. Our proof is a modification of the proof of Theorem 4.2.3 in [37]. For the first part, we
may assume 0 € int(My) for all k. Let p(My,-) be a spherical parametrization of Mj, around 0,
meaning that p(Mk,y)y for y € S™ is a point in M. Let I/(Mk, y) denote an arbitrary outer
unit normal (in the sense of supporting normal) of M, at p(Mk, y)y. The normal I/(Mk, y) is
unique for H"-almost all y € S” (Theorem 2.2.5 in [37]). If M}, converges to M as k — oo, then
p(My,-) — p(M,-) everywhere. Moreover, v(My,-) — v(M,-) H"-almost everywhere, otherwise if
V(Mik, y') — V' for some v as i — oo, this would implies that M has a supporting hyperplane
{(z — p(M,y)y',v") = 0} at p(M,y')y’, but on the other hand the outer normal of M uniquely
exists H'-almost everywhere. Finally, since M;, contains the origin in its interior, there is a uniform
d > 0 such that (y, V(Mk,y» > ¢ for all k and y.

Let v : U C R® — S", 2 = (2},...,2") = (2) = y, be a smooth local coordinate chart of S"
and g;; be the metric gs» on U. Note that p(Mk,l/}(')) is a Lipschitz function. At each point y
where the function pg(y) := p(]\ka, y) is differentiable, one can directly compute that

Opr Oy
pky - g'L] azz 82]

Thus from the convergence of v(Mj, -) and the lower bound (y, v(My,y)) > 6, if poo(y) := p(M, ),

then we have ‘?)p k1 < Cs and 8” ko 88’)"5’ almost everywhere for alli =1,...,n.

Denote by fr and foo : U — R the functions fi(z) = p(My, ¥ (2))(2) and foo(z) :=
p(M,1(z))Y(z). By the area formula, we have |f(U)| = [;; J5, (z)dz", where

Jp(2) = \/det [<g‘£’;(z),%(z)>} - \/det B”’“ gp,; + p2gi }

v(My,y) =

holds almost everywhere. The Lebesgue dominated convergence theorem, then yields that

@) = [ T = [ oo Mol VAT = )] s = .

Using a standard partition of unity argument, we conclude that |My| — |M| as k — oo, which

concludes the proof of the first assertion of the lemma.

We will now prove the second assertion of the lemma. Note that the preimages of I'; and I
under ¢ are compact convex sets in R”. On a given compact set, the metrics induced by (R, ¢*gsn)
and (R", grn) are equivalent. i.e. one is less than a constant multiple of the other and the constant

30



depends on the compact set. We may assume that there is some p € R" such that M, = o1 (fk) —
and M := ¢~ (') — p contain the origin in their interiors and d (M, M) — 0 as k — oo.
Defining pi, poo : S*~! — R, a smooth local chart ¢ : U ¢ R*! — S*~1  and the functions
frs foo : U — R™ similarly as in the previous case (note that the dimension is 1 less than the
dimension in the previous case), we get the convergence of pi to poo With positive uniform upper
and lower bounds and the convergence of 8p k to 88'02"5 with uniform bound on their absolute value.

With ¢(x) := ¢(x + p), the area formula says that [o(fr(U) +p)| = [ Jgof, (2)dz", where

Jaof, (2) = \/det [< —(fr(z ))8fk (2 )7 (fk( ))(Zflj (z )>}

Note that ¢ is a smooth function, which in particular has bounded higher order derivatives on each
compact domain. Therefore the Lebesgue dominated convergence theorem yields that

lo(fr(U) +p)| = lo(foo(U) +p)|, ask — o0

and a partition of unity can be used to show
[p(My +p)| = [Tk| = lo(M +p)| = [T].
O

The following is a well known lemma and a stronger statement than this also holds, but we
provide a proof of this simple version for the completeness of our work.

Lemma A.8. Forn > 1, a convex hypersurface M = OM in R™ has the outer area minimizing
property among convex hypersurfaces, i.e. if M C M’ then |M| < |M'|. Moreover, when M is
smooth strictly convex, then the property is strict in the sense that equality holds if and only if
M =M.

Proof. The proof uses a standard calibration argument. Assume 0 € int(M ) Assume M is smooth
and strictly convex. Then AM, A > 1, gives a foliation of smooth strictly convex hypersurfaces.
Let M’ be a set containing M. The foliation gives a smooth vector field consisting of the outer
normal vectors v of {AM}x>;. If we denote the unit normal on (M’ \ M) pointing from M’ \ M
by ¢/, then the divergence theorem implies

O</ H = divu/ <1/,1/>dA+/ (y,y/>dA/ <V,V/>dA—/ dA
M/\M M\ M M’ M M’ M

and hence
| M| :/ dAS/ (1/./1/>dA§/ dA = |M'|.
M / M’

(The divergence theorem can be applied for a set with rough boundary when the boundary consists
of convex hypersurfaces. One could also avoid doing this by approximating M’ from outside using
Lemma A.6 and Lemma A.7). The strict outer area minimizing is a consequence from the fact
H>0on M\ M.

For a general convex M = OM , we consider smooth approximation from inside, say M ,1" which
was shown to exist in Lemma A.6. By the first case, [M;"| < |M’|. Lemma A.7 implies that
|Mi"| — |M| as k — oc and this finishes the proof. ]
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We do have a similar result for convex hypersurfaces in S™.

Lemma A.9. Forn > 2, let L cs'n {@ns1 > 0} = ST be a compact convex set with non-empty
interior. Then T’ can be approzimated from inside (and outside) by a strictly monotone sequence of
compact sets in S with smooth strictly convex boundaries. For any sequence of compact convex sets
', converging to ', we have |Fk| — |T| as k — oco. Moreover, I satisfies the outer area minimizing
property on ST. That is, i c IV c St and ' is convex, then || < |T'|, and if T is smooth
strictly convex, then |T'| = |I| if and only if T =T".

Proof. Let Q) := Lpfl(f’) C R™. Then by Lemma A.6, Q could be approximated from inside (and
outside) by strictly monotone sequence of compact sets with smooth strictly convex boundaries.
The images of these sequences of sets under ¢ give the desired approximating sequences. The
convergence of area is shown in Lemma A.7.

The proof of the second part is similar to the proof of Lemma A.8. Suppose first I' = oI'
is smooth and I' ¢ IV ¢ $" N {z,11 > 0}. Fix p € Q = ¢ 1(I') and consider the foliation
{AM€Q —p)+ p}r>1. Then the image of this foliation under ¢, that is

(A2 —p) +p) CS", for A >1,

gives a foliation of the region S" — 1nt( ) by smooth convex hypersurfaces in S”. By the same
calibration argument, we obtain |F’ | > |T'|. In the non-smooth case we approximate I" from inside
by smooth sets and apply Lemma A.7.

O

The next approximation lemma concerns with the case where I'c S has empty interior.

Lemma A.10. For n > 2, suppose I in S is a compact convex set which has empty interior in
S™. Then there is {f‘k} a sequence of compact convex sets with non-empty interior and smooth
strictly convex boundam’es which strictly decreases to T'. For any such sequence T, Tx| = \8fk\
decreases to P(T) as k — oco. Here P(T') is defined by (1.4).

Proof. Q = ¢~ '(T') has empty interior in R™. Consider the set Q9 := d-envelope of Q in (R”, ggn).
Then O is a compact convex set with non-empty interior, implying that @(Q‘s) is a closed convex
set with non-empty interior in S™. By a diagonal argument applied to the approximations of
@(Ql/ k), which is similar to the proof of Lemma A.6, we obtain the existence of a strictly decreasing
approximation.

Let us now prove the convergence |I';| — P(I'), as k — oo. If a convex set 2 C R” has empty
interior, it is contained in a hyperplane of R™. Since a rotation is an isometry of (R",p* ggn)
we may assume that {2 C {z, = 1}, for some [ > 0. Let 3 ¢ R*! denote the projection of
to {z, = 0} = R"! and 3% denote the d-envelope of 3 in R"! with respect to the standard
Euclidean metric. Observe that 30 x {1} = Q° N {x,, = I}. Moreover, Q% C %% x [l — 6,1 + 6]. The
outer area minimizing property (Lemma A.9) implies that

Eisd < (052 % [=6,6)) | g

= |825 X [l - (571 + 5”@*93% + ’26 X {l - (5}’@*%” + ‘26 X {l + 5}‘90*98"'

It is clear that as 6 — 0, the first term in the last line is of order O(J). Since 339 decreases to
3], together with the smoothness of ¢, we conclude that each of remaining two terms converges
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to |3 x {1} o*gsn- This shows limsups_.q \8@5]90*%” < P(I'). Next, 9Q° contains 3 x {I — ¢} and
3 x {l 4+ ¢}, implying that

|§] X {l - 5} P*gsn + |i] X {l + 6}|<,0*gs” < ‘agalsﬂ*gsn

and hence
2 i x {1 *gen < lim inf QJ * gan +
| { }|<,0 gsn — lgllon | |<P gs

This proves that lims_,o |Q%|,+gen = P(T). Now, for any decreasing approximation by convex sets
with non-empty interior Iy, limg_eo Tk | exists as it is a decreasing sequence. For each k, we may
find 6, (k) and d5(k) which converge to 0 as k — oo such that ¢(Q®) c I, € (%2(*)) and this,
in particular, implies that [Q%1®)| .. < |Ty| < Q20| ... We conclude that |T| — P(T), as
k — oo.

O

We conclude this appendix by the following generalized outer area minimizing property.

Lemma A.11. For n > 2, if fl,f‘z, are compact convex sets such that Iy cly c St. Then,
P('1) < P(I'g)< S

Proof. By Lemma A.9 and A.10, there are approximating sequences of strictly decreasing compact
convex sets f1,k and f2,k in S with smooth strictly convex boundaries. |I'yj| — P(f‘l) and
ITox| — P(T'9) by the two lemmas say. By the strict monotonicity of the sequences, for fixed &
there is lg such that IAHJ C f2,k for I > ly. Taking [ — oo, the outer area minimizing property
in Lemma A.9 implies P(I'1) < IT'2%|. The first inequality now follows by letting & — oco. The
second inequality is implied by Iy c S"N {xn+1 < €} for small € > 0, the first inequality, and
IS N {zpy1 = €} < [SPY.

]
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