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Fairness and bias mitigation in data-driven systems has been ex- 2 F AM 38 150
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tensively studied in recent years. In this paper, we suggest a r}ovel 1 M M 3o %
approach towards fairness analysis and bias mitigation utilizing 5 F cs 3.8 120
the notion of provenance, which was shown to be useful for similar g I\FA ?SS ;g 18205
tasks in the context of data and process analyses. We illustrate the 3 M cs 35 95
idea using a simple use-case demonstrating a scenario of mitigat- 9 M cs 3.8 130
ing bias caused by inadequate minority group representation. We 1(1) 1\11 éss i;g }‘1“5)
conclude with an outline of opportunities and challenges in devel- 12 F cs 3.65 125

oping provenance-based solutions for bias analysis and mitigation
in data-driven systems.
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1 INTRODUCTION

Data-driven tools are widely used these days. These tools are grad-
ually supplanting humans in a wide range of application domains,
from deciding who should get a loan [1], to automated hiring [2],
students grading [3], and even in assessing the risk of paroling
convicted criminals [4]. With the increasing use of data-driven
tools, we also witness many cases where these tools are biased.
The increasing impact of data-driven methods on society and their
effect on human life, has given rise to increasing interest in the
study of algorithmic fairness and bias mitigation.

The data used in the development of data-driven decision sys-
tems typically undergoes numerous phases, and bias may be in-
troduced at different points [23, 27]. Biased results may stem from
historical bias. For instance, a tool developed by Amazon? for hiring
was discriminating against women, since the data used for training
was resumes submitted to the company over a 10-year period. Most
came from men, a reflection of male dominance across the tech
industry. Insufficient data representation of minority groups, lack of
diversity in data sets and data skews are other sources of bias [5, 9].

!https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-
against-women-2018-10
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Figure 1: Job Applicants Dataset

Representation issues may present in the collected data, arise from
(over/under) sampling, or emerge as a result of pre-processing and
data cleaning [6, 15]. Bias may also be caused by generalizing from
detailed data to statements in a broader context [21, 26]. For in-
stance, doctors have over-diagnosed ADHD for years after making
generalizations to age, sex, the maturity of the children?.

We envision the use of provenance to aid data scientists in the
process of fairness analysis and bias mitigation. Provenance based
solutions would provide explanations, detect the origin of unfair-
ness, and provide the user actionable information to mitigate bias
efficiently. Intuitively, fairness is a property of the dataset that is
induced by the tuples composing it. Namely, values of individual
tuples in the data are combined to compute a fairness measure. For
instance, data representation, dictated by the individuals in the data,
affects the fairness measures of a data-driven system. Provenance
encapsulates information about items in the data set and the effect
of data manipulation on them. Particularly, it may be used to deter-
mine or explain the effect of such manipulation on the existence
of tuples in the data or their value, which in turn can be used to
determine the effect on the representation of different groups in
the data. Thus, provenance can be useful in detecting or explaining
steps in the computation that alter the fairness of the data.

In what follows, we demonstrate the idea with a simple use-case,
showing the use of provenance in maintaining an inadequate rep-
resentation of protected groups in the data where the data transfor-
mation includes only relational algebra operations. We then outline
opportunities and challenges in the pathway towards provenance-
based solutions for more intricate cases.

2 RELATIONAL ALGEBRA AND
REPRESENTATION CONSTRAINTS

We (informally) present a simple use-case, demonstrating the use of
provenance in maintaining adequate groups representation through
a running example.

Zhttps://www.medicalnewstoday.com/articles/325595##age-related-factors
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Example 2.1. Consider a tech company that is looking to hire new
employees. The company is looking for applicants with a degree in
Computer Science and a GPA of at least 3.7 who have at least 100
hours internship experience at the company. The company’s data
analyst uses the candidates data shown in Figure 1 to extract poten-
tial candidates for a job interview. The applicants dataset consists
of candidates who had internships at the company and majored
in Computer Science (CS) or other related fields, such as Applied
Math (AM), and Information Systems (IS). It includes information
regarding the candidates: gender, major, GPA and internship hours.
The following query can be used to select candidates that meet the
company’s requirement form the dataset.

SELECT =
FROM Applicants AS a
WHERE a.Major='CS' AND a.GPA >= 3.7 AND a.IH >= 100

Candidates selected by the query are highlighted.

The increasing interest and awareness for diversity and under-
represented minority groups in a variety of positions, affect organi-
zations, particularly in their recruitment process. Many law firms,
government agencies, courts, and nonprofit organizations facili-
tate hiring programs based on diversity. E.g., diversity statements
have become an integral part of the materials submitted as part of
applications for academic faculty positions. Continuing with our
running example, note that among the four selected applicants,
there is a single female candidate. To increase diversity, the com-
pany may wish to increase the number of females invited for a
job interview. For example, they may decide to have at least three
females invited. This can be achieved by relaxing the criteria set by
the company for an interview. E.g., selecting applicants who have
majored in other fields, and/or loosening the conditions over the
GPA and/or the candidates’ internship hours.

Intuitively, we wish to allow users to pose constraints on the
cardinality of groups in the data in the result of a sequence of data
manipulation queries. These constraints may express lower bounds
on minority group representation, as in the above example, but
would also allow users to set upper bounds on group representa-
tion, e.g., to avoid data skews. Constraints could also be used to
state proportions between groups in the data. For instance, the
number of black female should be no less than the number of white
male in the output. This problem, extends the notion of query
refinement, which was studied in the context of SQL queries in,
e.g., [19, 24]. While our problem is more general since it considers
a set of constraints on groups in the data, we build on the notion of
query refinement defined in [24] to formulate the problem.

2.1 Problem Formulation

We consider SPJU queries with selection predicates that include
range (<, <, 2, >) and equality (=). Predicates can be defined on
numeric or categorical attributes. We use the definition of [24] for
refinement of numeric and categorical predicates. Due to space
constraints and for ease of presentation, in the rest of the paper we
assume the numeric predicates are in the form of A; > C; where A;
is an attribute and C; is a constant, and consider only constraints
on the minimal representation of groups in the result of a query.
Therefor we focus on query relaxation, i.e., increasing the number
of tuples in groups satisfying a predicate. Our solution extends to a
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set of (general) constraints on groups representation in the result of
a of query supporting all the aforementioned forms of predicates.
The notation of relaxation as defined in [24] distinguishes be-
tween numeric and categorical predicates. Given a numeric pred-
icate P; : A; > C; (over an attribute A;), a relaxation of P; is any
predicate P] : A; > C] where C; > C;. Categorical attribute permit
only equality predicates and their relaxation is done through the
notion of expansion?, the process of disjunctively adding additional
predicates to a categorical predicate. Namely, if P; is a categorical
predicate over an attribute A;, a relaxation Pi’ is an expansion of P;.
Finally, a query Q” with predicates P{,.. ., P, is a relaxation of the
query Q with predicates Py, ..., Py if P] is a relaxation of P;.

Example 2.2. Consider again the query Q given in Example 2.1.
The following query Q’ relaxes Q with respect to the categorical
attribute Major and the numerical attribute GPA.

SELECT =
FROM Applicants AS a
WHERE (a.Major='CS' or a.Major='IS')
AND a.GPA >= 3.65 AND a.IH >= 100

Data groups and representation constraints. Let D be a dataset,
Q a query and Q(D) the result of executing Q over D. We define
groups in Q(D) using a conjunction of conditions G = A;(A; op v;)
where A; are distinct data attributes in Q(D), and op can be one
of {=, <, <, >, >}. For instance, in our running example G is the
condition Gender = F. We use Q(D)g to denote the data tuples
in Q(D) that satisfy the condition G. A representation constraint
over Q(D)g is an expression of the form Q(D)g op x, where op €
{<,<,>,2} and x can be a constant or & - Q(D) g for some other
data groups defined using G’ and @ € R. As mentioned above, for
simplicity we assume a single constraint of the form Q(D)g > x
where x is a constant, but the solution extends to set of any type of
the aforementioned constraints. Given a set of constraints, there
may be multiple ways to relax a query in order to fulfill them.

Example 2.3. Continuing with our example, the constraint over
the number of female student is Q(D)Gender=r = 3. The result
of the query Q’ given in Example 2.2, a relaxation of Q from
Example 2.1, satisfies the constraint. Other plausible relaxations
of Q that satisfy the constrain are the query relaxation that re-
laxes the Major predicate to be (a.Major='CS' or a.Major='IS'
or a.Major='AM'), or the relaxation that relaxes the predicate
GPA to be a.GPA >= 3.65 and the IH predicate to be a.IH >= 80.

The relaxations depicted in the above example suggest the com-
pany various ways to achieve its diversity goal. Each applies differ-
ent modifications to the query. Intuitively, minimal modifications
to the original query are preferred, e.g., a relaxation that relaxes
the predicate GPA to be a.GPA >= 3.65 is preferred over one that
modifies the predicate GPA to be a.GPA >= 3.5, however, relax-
ations that modify different attributes may be incomparable when
no additional preferences information is provided by the end-user.
To this, we are interested in the set of minimal relaxations.

Given a query with a set of predicate P and their relaxation $’,
we say that P’ satisfies a constraint if the output of the correspond-
ing relaxed query satisfies the constraint. Given a constraint c, a
3The categorical relaxation of [24] also include the roll-up. For simplicity we do not

consider hierarchy over categorical attribute, however our model can support roll-up
relaxations as well.
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minimal relaxation of P is a relaxation P’ such that P’ satisfies c,
and there is no relaxation of £’ such that P”" # P’ and P’ satisfies
c. Our goal is then to find all minimal relaxations satisfying the
given constraint. Intuitively, these relaxations form a skyline [7].
We note that there may be many minimal relaxations, this could be
addressed by exploiting methods for refining, reducing and ranking
the set of skyline points (see, e.g., [20]).

Our proposed solution utilizes provenance to find the set of mini-
mal relaxations. In particular we leverage the notion of hypothetical
reasoning [11] to examine the effect of possible relaxations on the
outcome of the query.

2.2 Provenance Model

We next depict our provenance model. We leverage the idea of
conditional tables (c-tables) [17], where tuples are associated with
conditions. To capture the possible relaxations, we annotate tuples
in the data with the query selection conditions. Finally, we follow
the semiring model [16] to propagate the annotations through
query evaluation. Intuitively, when applying a selection predicate
over the data, instead of actually deleting tuples that do not meet
the selection criteria, we annotate each tuple ¢ in the data with
a variable (condition) v such that v is evaluated to 1 if ¢ satisfies
the selection predicate and 0 otherwise. Namely, if Q is a selection
query over D with predicates (numerical and categorical) over the
attributes Ay, . . ., Ag, we annotate each tuple t € Q(D) as prov(t) =
]_[ilf Ai[r.4;,] Where [t.A;] denotes the value of the attribute A;
in t. Using the resulting provenance expression we can construct
inequality expressions that express the constraint. The provenance
inequality of the constraint Q(D)g > x is Xreq(p)g prov(t) = x

Example 2.4. Consider again our running example and the con-
straint Q(D)Gender=F = 3. The corresponding provenance inequal-
ity is Maym - Gs.8 - IH150 + Mjs - G35 - [Hi5 + Mcs - Gs.g - IHigo +
Mcs - Gs.g - IHgo + Mys - G3.75 - IH140 + Mcs - G3.65 - [H125 = 3.
Where M and G are short for Major and GPA respectively.

Relaxations through valuation. We now establish the connection
between relaxations and valuation of the provenance inequality p of
a constraint. A relaxation ¥ that satisfies a given constraint should
correspond to a valuation that satisfies the inequality. Recall that
the set of variables A;, in p correspond to the predicates in . The
valuation assign a value of 0 or 1 to each such variable as follows.
If A; is a numerical attribute and P; is A; > C; then valp (Aj,) =1
if v > C; and 0 otherwise . If A; is a categorical attribute and P;
is a predicate over A; then valp(A;,) = 1 if v satisfies P; and 0
otherwise. We denote by Tp (p) the truth value of the inequality
resulting by applying valp (A;,) on each variable A;, in p.

Example 2.5. The truth value T (p) of the provenance inequality
p from Example 2.4 and set of predicates  appearing in the query
presented in Example 2.1 is false since the only term in p evaluated
to 1is Mcs - G3.g-IHi20 and 1 # 3. The result of the valuation using
the set of predicates P’ from the query Q’ depicted in Example 2.2
is true since the terms Mjs - G3.75 - [H140 and Mcs - G365 - [Hi25
are also evaluated to 1.

We can show the following property of the model.

PROPOSITION 2.6. Let D be a dataset and Q be a query. Q satisfies
a constraint Q(D)g = x if and only if Tp (p) = True where p is the
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AG | AH | AMs | AMans
1 my my my my
2| my ms mg me
3 ms mg ms my
4 mg my my ms
5 my my my my

Figure 2: Minimal changes table. m; corresponds to the i’th
element in the provenance inequality given in Example 2.4.

provenance inequality of the constraint over Q(D) and P is the set of
predicates appearing in Q.

Given the provenance inequality of the constraint over Q(D)
we can examine the effect of query relaxations on the constraint
satisfaction without the need to access the data and execute the
potential query relaxations. Furthermore, the provenance inequality
may guide the relaxations search as we next explain.

2.3 Generating Minimal Relaxations

We next present a method for generation of minimal relaxations.
Intuitively, given a set of predicates $ and a provenance inequality
p,if Tp(p) = False, a minimal relaxation $’ increases the number
of terms in p that are evaluated to 1. For each term m; in p such
that m; is evaluated to 0, we can derive the minimal relaxation 7’,’,”
required to flip the evaluation of m;, and the minimal changes in
this relaxation with respect to the attributes of numeric predicates
and values of categorical predicates. For numeric predicates, the
minimal change between P; : A; > C; in P and P : A; > C] in P’
is C; — C]. For categorical predicates, we consider a minimal change
with respect to each possible attribute value, so if P; is a categorical
predicate over A;, the minimal change with respect to the (possible
attribute) value v is 0 if v satisfies both P; and Pl.' . 1if v satisfies Pl.’
but not P;, and oo otherwise.

Example 2.7. Consider the provenance inequality shown in Ex-
ample 2.4. The minimal required relaxation to flip the valuation of
the first term mq = Mups- G3 g - IHj50 is to relax the predicate Major
to be (a.Major="CS' or a.Major='AM'). The minimal changes
with respect to G and IH are 0 and the minimal change with respect
to Maps is 1 (and 0 with respect to Mcgs and oo for Mg).

The solution is based on Fagin’s Threshold Algorithm [13]. We
sort the terms in the provenance inequality based on the minimal
changes in the minimal relaxation required to flip their evaluation
with respect to each numeric attribute and categorical value. To this
end we use the minimal changes table (MCT) with a column AA; for
each numeric attribute and AA;, for each value v of a categorical
attribute. The values in MCT are terms in the provenance inequality
sorted in an ascending order by their minimal change with respect
to each column. Ties are broken based on their order in the leftmost
column of MCT, and for the leftmost column, arbitrarily. Figure 2
depicts the table constructed for our running example. Since we
consider only a simple case of relaxation, columns corresponding
to categorical predicates that appear in the predicate set (AMcs)
and terms that are evaluated to 1 by predicates set in the given
query (ms3) are omitted from the table.

Searching with the MCT. To search for minimal relaxations, we
traverse the MCT in a left-right top-down fashion. The algorithm
maintains a result set R, adding (and removing) relaxations to (and
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from) R as it traverses the table. For each term mj in the table, the
algorithm first computes the minimal relaxation required #p,, to
flip the evaluation of m;. If P, is a satisfying relaxation then it is
compared with the previous relaxations found in R, to determine
the new set R. Otherwise, let r and c be the current cell’s row and
column indices in the search respectively. The algorithm computes
the minimal relaxation required £, to flip the evaluation of all
the terms in any subset of terms M appearing in column ¢ and
rows 1,...,r which include the term m;. If for any such subgroup
M, P//V( is a satisfying relaxation, P;V( is used to update R. Once a
first minimal relaxation 7’/'\/( was found, where M is either a single
term or a set of terms, we can compute a stop line, which intuitively
indicates areas of the table that are not relevant for the search since
they are not minimal with respect to the found relaxation. For each
column c in the table, the stop line is the maximal row r such that
mj € M appears in row r and column c of the table.

Example 2.8. Consider again our running example and the MCT
depicted in Figure 2. The algorithm first considers the relaxation
P, shown in Example 2.7. This is not a satisfying relaxation, thus
the algorithm continues to the next cells in the first row. None of
the corresponding relaxations are satisfying. Next, the algorithm
start traversing the second row of the table. Since #p,, is not a
satisfying relaxation, it considers the relaxation Pp,, n,,} Which
relaxes the predicate Major and IH. This is a satisfying relaxation,
and therefore it is added to the result set R. At this point, the stop
line (marked in blue in the table) is computed. The grey part of the
table can be avoided by the algorithm.

3 CHALLENGES AND OPPORTUNITIES

We have demonstrated the use of provenance for bias mitigation in
the context of group representation in the result of SPJU queries.
Our solution, inspired by the use of provenance for hypothetical
reasoning, utilizes the semiring model to generate provenance in-
equalities that corresponds to constraints over the representation of
groups in the data. We then use these inequalities to find minimal
relaxations that satisfy the constraints with an algorithm based on
Fagin’s Threshold Algorithm. We next highlight intriguing direc-
tion as well as challenges in the development of provenance-based
solution for bias analysis and mitigation in data-driven tools.
Data-driven tools and pipelines comprise multiple phases, e.g.,
data collection or integration, cleaning and analysis, model training,
and result evaluation and analysis. To enable bias mitigation across
these phases models for complex transformation languages are nec-
essary. Provenance has been studied for different query languages
and data transformations (see, e.g., [8, 10, 14, 16]). These solutions
could serve as the inspiration for such provenance based methods.
A major challenge in this regard is handling the model training
phase. We note that [29] has propose the use of provenance for
incremental model updates for linear and logistic regression models.
Another intriguing direction towards this goal is to leverage the
line of works on machine learning algorithm representation using
relational algebra [18, 22], for which provenance models exists.
The solution presented in this paper focuses on adequate group
representation, which is an important facet of fairness. There is a
wealth of study on algoritmic bias, and a broad scope of fairness
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definitions and use-cases. E.g., the notion of fairness was stud-
ied in the context of classification, ranking and recommendation
(see, e.g., [25, 28]). Considering group fairness and individual fair-
ness [12], and supporting a wide range of definitions may require
new models and probably novel algorithms for provenance usage.
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